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ATOMIC DECOMPOSITION OF MARTINGALE
WEIGHTED LORENTZ SPACES WITH

TWO-PARAMETER AND APPLICATIONS

MARYAM MOHSENIPOUR AND GHADIR SADEGHI

ABSTRACT. We introduce martingale weighted two-
parameter Lorentz spaces and establish atomic decomposi-
tion theorems. As an application of atomic decomposition
we obtain a sufficient condition for sublinear operators de-
fined on martingale weighted Lorentz spaces to be bounded.
Moreover, some interpolation properties with a function pa-
rameter of those spaces are obtained.

1. Introduction. It is well known that the method of atomic de-
compositions plays an important role in martingale theory and har-
monic analysis. For instance, atomic decomposition is a powerful tool
for dealing with duality theorems, interpolation theorems and some
fundamental inequalities both in martingale theory and harmonic anal-
ysis. In [7], Coifman used the Fefferman-Stein theory of HP spaces [9]
to decompose the functions of these spaces into basic building blocks
(atoms). Coifman and Weiss have provided a comprehensive treat-
ment of these ideas and many applications to harmonic analysis [8].
For one- and two-parameter martingale spaces, Weisz [17] gave some
atomic decomposition theorems on martingale spaces and proved many
important martingale inequalities and the duality theorems for martin-
gale Hardy spaces with the aid of atomic decompositions. Hou and
Ren [11] obtained some weak types of martingale inequalities through
the use of atomic decompositions.

Atomic decompositions of Lorentz martingales were first studied by
Jiao, et al., in [12]. In [10], Ho investigated the atomic decomposition
of Lorentz-Karamata martingale spaces using similar ideas as in [12].
Riyan and Shixin [16] obtained atomic decomposition for B-valued
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martingales in the two-parameter case and, in [13], Li and Liu proved
atomic decomposition theorems for two-parameter B-valued martin-
gales in weak Hardy spaces. The technique of stopping times used
in the one-parameter case is usually unsuitable for the case of two-
parameter martingales, but the method of atomic decompositions deals
with them in the same way. In this paper, by using the ideas of [17],
we prove the atomic decomposition theorem for martingale weighted
Lorentz spaces. We obtain a sufficient condition for sublinear opera-
tors, defined on martingale weighted Lorentz spaces, to be bounded.
Finally, we establish some interpolation theorems of these spaces with
a function parameter.

2. Preliminaries. Let (Ω,F , P ) be a probability space. The distri-
bution function λf of a measurable function f on Ω is given by

λf (t) = P ({w ∈ Ω : |f(w)| > t}), t ≥ 0,

and its decreasing rearrangement of f is the function f̃ defined on [0,∞)
by

f̃(s) = inf{t > 0 : λf (t) ≤ s}, s ≥ 0.

Let φ > 0 be a non-negative and local integrable function on [0,∞).
The classical Lorentz space Λq(φ) is defined to be the collection of all
measurable functions f for which the quantity

∥f∥Λq(φ) :=


(∫ ∞

0

(f̃(t)φ(t))q
dt

t

)1/q

, 0 < q <∞,

sup
s
f̃(s)φ(s), q = ∞,

is finite. Moreover, integration by parts yields∫ ∞

0

(f̃(t)φ(t))q
dt

t
= q

∫ ∞

0

yq−1

{∫ λf (y)

0

φq(t)
dt

t

}
dy, 0 < q <∞,

and hence, ∫ ∞

0

(f̃(t)φ(t))q
dt

t
= q

∫ ∞

0

yq−1wq(λf (y)) dy,
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where w(t) = {
∫ t

0
φq(s) ds/s}1/q is a positive, non-decreasing weight,

see [4]. For q = ∞, we have

∥f∥Λ∞(φ) = sup
y
yw(λf (y)) <∞.

Recall that, for 0 < q ≤ ∞, ∥ · ∥Λq(φ) is a quasi-norm if its fundamental

function w(t) = {
∫ t

0
φq(s) ds/s}1/q satisfies the ∆2-condition, w(2t) ≤

Cw(t) for some C > 0, and, since w is a non-decreasing function, we
have that w(x+ y) ≤ C(w(x) + w(y)). Then

∥f + g∥qΛq(φ) = q

∫ ∞

0

yq−1wq(λf+g(y)) dy

≤ q

∫ ∞

0

yq−1wq

(
λf

(
y

2

)
+ λg

(
y

2

))
dy

≤ C

∫ ∞

0

yq−1wq

(
λf

(
y

2

)
+ wq

(
λg

(
y

2

)))
dy

≤ C(∥f∥qΛq(φ) + ∥g∥qΛq(φ)).

These spaces play an important role in the theory of Banach spaces,
and they have been the object of intensive investigation [1, 2, 3, 5, 6].

Let (A0, A1) denote a compatible quasi-Banach pair (i.e., A0 and A1

are quasi-Banach spaces, and both are continuously embedded in some
Hausdorff topological vector space). For every f ∈ A0 + A1, and any
0 < t <∞, the so-called Peetre K-functional is defined by

K(t, f, A0, A1) = K(t, f) := inf
f0+f1=f

{∥f0∥A0 + t∥f1∥A1},

where fi ∈ Ai, i = 0, 1. For 0 < q ≤ ∞, and each measurable function
ϱ, the real interpolation space (A0, A1)ϱ,q consists of all elements of
f ∈ A0 +A1 such that the following quantity is finite:

∥f∥(A0,A1)ϱ,q :=


(∫ ∞

0

(
K(t, f)

ϱ(t)

)q
dt

t

)1/q

, 0 < q <∞,

sup
t>0

K(t, f)

ϱ(t)
, q = ∞.

Let a and b be real numbers such that a < b. Following Persson’s
convention [14], we adopt the following notation. By φ(t) ∈ Q[a, b],
we mean that φ(t)t−a is non-decreasing and φ(t)t−b is non-increasing
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for all t > 0. Moreover, we say that φ(t) ∈ Q(a, b), wherever
φ(t) ∈ Q[a + ϵ, b − ϵ] for some ϵ > 0. By φ(t) ∈ Q(a,−), or
φ(t) ∈ Q(−, b), we mean that φ(t) ∈ Q(a, c), or φ(t) ∈ Q(c, b), for
some real number c.

In this paper, we shall consider the interpolation spaces (A0, A1)ϱ,q
with a parameter function ϱ = ϱ(t) ∈ Q(0, 1), where A0 and A1 are
martingale spaces. It is easy to see that ϱ(t) = tθ, 0 < θ < 1, belongs
to Q(0, 1); thus, by replacing the measurable function ϱ = ϱ(t) with
tθ, we obtain (A0, A1)θ,q. Let 0 < p0, p1 < ∞, p0 ̸= p1, 0 < q ≤ ∞,
ϱ ∈ Q(0, 1). Then, by [14, Proposition 6.2], we know that

(2.1) (Lp0 , Lp1)ϱ,q = Λq(t
1/p0/ϱ(t1/p0−1/p1)).

In order to prove our main results, we need the next lemma.

Lemma 2.1 ([14]). Let 0 < q ≤ ∞, 0 < p < ∞ and ψ(t) ∈ Q(−,−).
Let h be a positive and non-increasing function on (0,∞).

(i) If φ(t) ∈ Q(−, 0), then(∫ ∞

0

(φ(t))q
(∫ t

0

(h(u)ψ(u))p
du

u

)q/p
dt

t

)1/q

≤ C

(∫ ∞

0

(φ(t)h(t)ψ(t))q
dt

t

)1/q

.

(ii) If φ(t) ∈ Q(0,−), then(∫ ∞

0

(φ(t))q
(∫ ∞

t

(h(u)ψ(u))p
du

u

)q/p
dt

t

)1/q

≤ C

(∫ ∞

0

(φ(t)h(t)ψ(t))q
dt

t

)1/q

.

(C depends only upon q and the constants involved in the definitions of
φ and ψ.)

Next, we state some basic facts and provide standard notation for
two-parameter stochastic processes as may be found in [17]. Let us
denote the set of non-negative integers and the set of integers, by N
and Z, respectively.
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For n,m ∈ N2, n = (n1, n2), m = (m1,m2), n ≤ m means that
n1 ≤ m1 and n2 ≤ m2; n < m means that n ≤ m and n ̸= m.
Moreover, n ≪ m means that both of the inequalities n1 < m1 and
n2 < m2 hold. For n = (n1, n2) ∈ N2, we set n− 1 := (n1 − 1, n2 − 1).

Let (Ω,F , P ) be a probability space and {Fn, n ∈ N2} an increasing
family of sub-σ-algebras of F . We introduce the following σ-algebras:

F∞ = σ

( ∪
n∈N2

Fn

)
, Fn1,∞ = σ

( ∞∪
k=0

Fn1,k

)
, F∞,n2 = σ

( ∞∪
k=0

Fk,n2

)
.

For the sake of simplicity, we assume that F∞ = F and define
F−1 := F0, F−1,−1 := F0,0, F−1,i := F0,i and Fi,−1 := Fi,0 (i ∈ N).

We denote by E, En, En1,∞ and E∞,n2 the expectation operator
and the conditional expectation operators with respect to Fn (n ∈
N2∪{∞}), Fn1,∞ and F∞,n2 (n1, n2 ∈ N), respectively. For simplicity,
we assume that Enf = 0 when n1 = 0 or n2 = 0.

Suppose that f = (fn, n ∈ N2) is an integrable process. Then, f is
a martingale if

• f is adapted to the filtration (Fn, n ∈ N2), i.e., each fn is
Fn-measurable;

• E[fm|Fn] = fn for all n ≤ m.

A martingale f is said to be Lp-bounded if

sup
n∈N2

∥fn∥p <∞.

Recall that a stopping time τ relative to (Fn, n ∈ N2) is a random
variable which maps Ω into the set of subspaces of N2 ∪ {∞} such
that the elements of τ(w) are incomparable for all w ∈ Ω, i.e., if
(k, l), (n ·m) ∈ τ(w), then neither (k, l) ≤ (n ·m) nor (n ·m) ≤ (k, l);
of course, (k, l) < ∞ for all k, l ∈ N, and {n ∈ τ} := {w ∈ Ω : n ∈
τ(w)} ∈ Fn for every n ∈ N2. The maximal function of a martingale
f = (fn, n ∈ N2) is denoted by

f∗n := sup
m≤n

|fm|, f∗ := sup
m∈N2

|fm|.

For a martingale f = (fn, n ∈ N2) relative to (Ω,F , P ), denote the
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martingale differences by

dmf := fm1,m2 − fm1−1,m2 − fm1,m2−1 + fm1−1,m2−1,

and dmf := 0 if m1 = 0 or m2 = 0.

We define the square function and the conditional square function
of f as follows:

Sm(f) :=

( ∑
n≤m

|dnf |2
)1/2

, S(f) :=

( ∑
n∈N2

|dnf |2
)1/2

,

sm(f) :=

( ∑
n≤m

En−1|dnf |2
)1/2

, s(f) :=

( ∑
n∈N2

En−1|dnf |2
)1/2

.

For 0 < q ≤ ∞, martingale weighted Lorentz spaces as follows are
defined by

Λ∗
q(φ) =

{
f = (fn)n∈N2 : ∥f∥Λ∗

q(φ) := ∥f∗∥Λq(φ) <∞
}
,

Λs
q(φ) =

{
f = (fn)n∈N2 : ∥f∥Λs

q(φ) := ∥s(f)∥Λq(φ) <∞
}
,

ΛS
q (φ) =

{
f = (fn)n∈N2 : ∥f∥ΛS

q (φ) := ∥S(f)∥Λq(φ) <∞
}
.

Note that, if φ(t) = t1/p, then Λq(φ) = Lp,q, Λ
∗
q(φ) = H∗

p,q, Λ
s
q(φ) =

Hs
p,q and Λs

q(φ) = HS
p,q. In particular, if φ(t) = t1/q, then Λq(φ) = Lq,

Λ∗
q(φ) = H∗

q , Λ
s
q(φ) = Hs

q and ΛS
q (φ) = HS

q . In what follows, C always
denotes a constant, which may be different in different places. For two
non-negative quantities A and B, by A . B, we mean that there exists
a constant C > 0 such that A ≤ CB, and, by A ≈ B, that A . B and
B . A. Throughout this article, we assume w ∈ ∆2, where w is the
function defined by

w(t) =

(∫ t

0

φq(s)
ds

s

)1/q

, q <∞,

for a given weight φ in Λs
q(φ).

3. Atomic decomposition. For two-parameter martingale spaces,
Weisz obtained some atomic decomposition theorems which are used to
establish important martingale inequalities and interpolation theorems
for martingale Hardy spaces. In this section, using ideas from [17],
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we establish the atomic decomposition theorem of martingale weighted
Lorentz spaces.

Definition 3.1. A function a ∈ Lr is called a (p, r) atom if there exists
a stopping time ν such that

(1) an := Ena = 0, if ν ̸≪ n;
(2) ∥a∗∥r ≤ P (ν ̸= ∞)1/r−1/p, 0 < p ≤ r, 1 < r ≤ ∞.

Theorem 3.2. If f = (fn, n ∈ N2) ∈ Λs
q(φ), 0 < q ≤ ∞, then there

exists a sequence {(ak, νk)}k∈Z of (p, 2) atoms, 0 < p ≤ 2, such that

∞∑
k=−∞

µkEna
k = fn,

where µk = 2k+1
√
2P (νk ̸= ∞)1/p and

(3.1) ∥{2kw(P (νk ̸= ∞))}k∈Z∥lq . ∥f∥Λs
q(φ).

Moreover, if 0 < q ≤ 1, then

∥f∥Λs
q(φ) ≈ inf ∥{2kw(P (νk ̸= ∞))}k∈Z∥lq ,

where the infimum is taken over all the preceding decompositions of f .

Proof. Let f = (fn, n ∈ N2) ∈ Λs
q(φ). Set Fk := {s(f) > 2k}

and, for any k ∈ Z, define stopping times νk as νk := inf{n ∈ N2 :
Enχ(Fk) > 1/2}. Now, for stopped martingale fνn :=

∑
m≤n χ (ν

̸≪ m)dmf , we obtain∑
k∈Z

(fνk+1
n − fνk

n )=
∑
k∈Z

( ∑
m≤n

(χ(νk+1 ̸≪ m) dmf−χ(νk ̸≪ m) dmf)

)

=
∑
m≤n

(∑
k∈Z

χ(νk ≪ m ̸≫ νk+1) dmf

)
= fn.

Put

akn =
f
νk+1
n − fνk

n

µk
.
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Obviously, (akn, n ∈ N2) is a martingale. It is easy to see that ak is a
(p, 2) atom corresponding to the stopping time νk, and

fn =
∑
k∈Z

(fνk+1
n − fνk

n ) =
∑
k∈Z

µka
k
n =

∑
k∈Z

µkEna
k.

Let 0 < q < ∞. Applying Chebyshev’s inequality, the equivalence
between H∗

2 , L2 and w ∈ ∆2, we obtain∑
k∈Z

2kqwq(P (νk ̸= ∞)) =
∑
k∈Z

2kpwq
(
P
(
sup
n
Enχ(Fk) > 1/2

))
≤

∑
k∈Z

2kqwq
(
4E

(
sup
n
Enχ(Fk)

)2)
.

∑
k∈Z

2kqwq
(
E
(
sup
n
Enχ(Fk)

)2)
.

∑
k∈Z

2kqwq(P (Fk))

=
∑
k∈Z

2kqwq(P (s(f) > 2k))

.
∑
k∈Z

∫ 2k

2k−1

yq−1dy wq(P (s(f) > 2k))

.
∑
k∈Z

∫ 2k

2k−1

yq−1wq(P (s(f) > y)) dy

.
∫ ∞

0

yq−1wq(P (s(f) > y)) dy = ∥f∥qΛs
q(φ).

If q = ∞, then

2kw(P (νk ̸= ∞)) . 2kw(P (s(f) > 2k)) . ∥s(f)∥Λ∞(φ) =: ∥f∥Λs
∞(φ),

which implies supk∈Z 2kw(P (νk ̸= ∞)) . ∥f∥Λs
∞(φ). The proof of the

first part of Theorem 3.2 is complete. Further, we have∑
n∈N2

En−1|dnf |2χ(νk ≪ n ̸≫ νk+1)

=
∑
n∈N2

En−1|dnf |2χ(νk ≪ n ̸≫ νk+1)χ(s(f) ≤ 2k+1)
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+
∑
n∈N2

En−1|dnf |2χ(νk ≪ n ̸≫ νk+1)χ(s(f) > 2k+1)

= I+ II.

We first estimate I:

I ≤
∑
n∈N2

En−1|dnf |2χ(νk ≪ n ̸≫ ∞)χ(s(f) ≤ 2k+1)

≤ s(f)2 (νk ̸= ∞) χ(s(f) ≤ 2k+1) ≤ 4k+1.

Taking the conditional expectation in II with respect to Fn−1, we
obtain

II =
∑
n∈N2

En−1|dnf |2χ(νk ≪ n ̸≫ νk+1)En−1χ(s(f) > 2k+1).

By the definition of νk+1 we have En−1χ(s(f) > 2k+1) ≤ 1/2 if νk+1

̸≪ n. It follows that

II ≤ 1/2
∑
n∈N2

En−1|dnf |2χ(νk ≪ n ̸≫ νk+1).

Hence,

s(akn)
2 = s

(
f
νk+1
n − fνk

n

µk

)2

=
1

µ2
k

∑
n∈N2

En−1|dnf |2χ(νk ≪ n ̸≫ νk+1)

< P (νk ̸= ∞)−2/p.

Consequently,
∥s(ak)∥∞ < P (νk ̸= ∞)−1/p.

Since akn = Ena
k = 0 on {νk ̸≪ n}, we have

χ (ν ̸≪ n)En−1|dnak|2 = En−1 χ (ν ̸≪ n)|dnak|2 = 0.

Hence, s(ak) = 0 on {νk = ∞}. Thus,

P (s(ak) > y) ≤ P (s(ak) ̸= 0) ≤ P (νk ̸= ∞).

Therefore, we obtain

∥ak∥qΛs
q(φ) = q

∫ ∞

0

yq−1wq(P (s(ak) > y)) dy



936 MARYAM MOHSENIPOUR AND GHADIR SADEGHI

= q

∫ P (νk ̸=∞)−1/p

0

yq−1wq(P (s(ak) > y)) dy

≤ qwq(P (νk ̸= ∞))

∫ P (νk ̸=∞)−1/p

0

yq−1dy

≤ wq(P (νk ̸= ∞))P (νk ̸= ∞)−q/p.

Finally, since, for 0 < q ≤ 1, the quasi-normed ∥ · ∥Λs
p(φ) is equivalent

to a q-norm,

∥f∥qΛs
q(φ) ≤

∥∥∥∥∑
k∈Z

µks(a
k)

∥∥∥∥q
Λq(φ)

≤
∑
k∈Z

µq
k∥s(a

k)∥qΛq(φ)

≤
∑
k∈Z

µq
kw

q(P (νk ̸= ∞))P (νk ̸= ∞)−q/p

.
∑
k∈Z

2kqwq(P (νk ̸= ∞)).

The proof is complete. �

4. Sublinear operator on martingale spaces. As an applica-
tion of atomic decompositions, we obtain some sufficient conditions
which cause the sublinear operator to be bounded from the martingale
weighted Lorentz spaces to weighted Lorentz spaces.

An operator T : X → Y is called a sublinear operator if it satisfies

|T (f + g)| ≤ |Tf |+ |Tg|, |T (αf)| ≤ |α||Tf |, α ∈ R,

where X is a martingale space and Y is a measurable function space.

Definition 4.1. A function F is said to obey the △-condition, often
written as F ∈ △, if there exists a positive constant b such that
F (xy) ≤ bF (x)F (y) for arbitrary x, y ≥ 0; and it obeys the ∇-
condition, symbolically denoted as F ∈ ▽, if there exists a positive
constant B such that F (x)F (y) ≤ F (Bxy) for arbitrary x, y ≥ 0, where
B ≥ 1, see [15].

Theorem 4.2. Let w ∈ △ ∩ ▽, and let T : Hs
2 → L2 be a bounded

sublinear operator. For every atom a of (p, 2), 0 < p < 2, if Ta = 0
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on {νk = ∞}, where ν is the stopping time associated with a, then

∥Tf∥Λ∞(φ) ≤ ∥f∥Λs
∞(φ), f ∈ Λs

∞(φ).

Proof. Let f ∈ Λs
∞(φ). Then, f has an atomic decomposition of

(p, 2) atoms as in Theorem 3.2. For any y > 0, choose j ∈ Z such that
2j−1 ≤ y < 2j , and let

f =
∑
k∈Z

µka
k =

j−1∑
k=−∞

µka
k +

∞∑
k=j

µka
k =: g + h.

We have

{|Th| ̸= 0} ⊂
∪
k≥j

{T (ak) ̸= 0} ⊂
∪
k≥j

{νk ̸= ∞}

because T (ak) = 0 on {νk = ∞}. Since |Th| ≤
∑∞

k=j µk|T (ak)|,

w(P (|Th| > y)) ≤ w(P (|Th| ̸= 0)) .
∞∑
k=j

w(P (νk ̸= ∞))

.
∞∑
k=j

w(P (s(f) > 2k))

≤
∞∑
k=j

2−k∥s(f)∥Λ∞(φ), by inequality (3.1),

. y−1∥s(f)∥Λ∞(φ).

It follows, from the boundedness of T and s(ak) = 0 on {νk = ∞}, that

∥Tg∥2 ≤ C∥g∥Hs
2
= C∥s(g)∥2

≤ C

∥∥∥∥ j−1∑
k=−∞

µks(a
k)

∥∥∥∥
2

≤ C

j−1∑
k=−∞

µk∥s(ak)∥2

≤ C

j−1∑
k=−∞

µkP (νk ̸= ∞)−1/pP (νk ̸= ∞)1/2

≤ C

j−1∑
k=−∞

2kP (νk ̸= ∞)1/2.
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Since w ∈ △ ∩▽, we have

w(P (|Tg| > y)) ≤ w(y−2∥Tg∥22)

≤ w

(
y−2

(
C

j−1∑
k=−∞

2kP (νk ̸= ∞)1/2
)2)

.
(
w

(
y−1

j−1∑
k=−∞

2kP (νk ̸= ∞)1/2
))2

, by w ∈ △,

.
( j−1∑

k=−∞

y−12kw(P (νk ̸= ∞)1/2)

)2

.
( j−1∑

k=−∞

y−12k/22k/2w(P (νk ̸= ∞)1/2)

)2

. (y−1/2∥s(f)∥1/2Λ∞(φ))
2, by w ∈ ∇,

= y−1∥s(f)∥Λ∞(φ).

Then, it follows from the sublinearity of T that |Tf | ≤ |Tg|+ |Th| and

P (|Tf | > 2y) ≤ P (|Tg|+ |Th| > 2y) ≤ P (|Tg| > y) + P (|Th| > y).

Thus, we obtain

w(P (|Tf |>2y)).w(P (|Tg|>y)) + w(P (|Th|>y)).y−1∥s(f)∥Λ∞(φ),

and, therefore, T : Λs
∞(φ) → Λ∞(φ) is bounded. �

Corollary 4.3. Let w ∈ △∩▽. Then, the following imbeddings hold :

Λs
∞(φ) ↩→ Λ∗

∞(φ), Λs
∞(φ) ↩→ ΛS

∞(φ).

Proof. Let T be the maximal operator Tf = f∗. We know that
∥f∗∥2 ≤ ∥s(f)∥2, and T is sublinear. If a is a (p, 2) atom with respect
to the stopping time ν, then Ta = a∗ = 0 on {ν = ∞}. It follows from
Theorem 4.2 that

∥f∗∥Λ∞(φ) ≤ ∥s(f)∥Λs
∞(φ).

Using Theorem 4.2 and ∥S(f)∥2 ≤ ∥s(f)∥2, it similarly follows that

∥S(f)∥Λ∞(φ) ≤ ∥s(f)∥Λs
∞(φ). �
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5. Interpolation. In this section, as another application, we apply
atomic decompositions of two-parameter martingale weighted Lorentz
spaces to the real interpolation between two-parameter martingale
Hardy spaces. The next lemma follows from Theorem 3.2 by the atomic
decomposition of Λs

q(φ).

Lemma 5.1. Let f ∈ Λs
q(φ), 0 < q ≤ ∞, y > 0, and fix 0 < p ≤ 1.

Then f can be decomposed into the sum of two martingales g and h,
such that

∥g∥2 ≤ C2

[(∫
{s(f)≤y}

s(f)2dP

)1/2

+ yP (s(f) > y)1/2
]

and

∥h∥Hs
p
≤ Cp

(∫
{s(f)>y}

s(f)pdP

)1/p

,

where the positive constant Cp depends only upon p.

Proof. The proof is similar to that of [17, Theorem 5.19]. �

Theorem 5.2. Let 0 < p ≤ 1, 0 < q ≤ ∞ and ϱ ∈ Q(0, 1) be parameter
functions. Then

(Hs
p , L2)ϱ,q = Λs

q

t1/p

ϱ(t1/p−1/2)
.

Proof. Let f be a function in Λs
q(t

1/p/ϱ(t1/p−1/2)), and let s̃ be
the non-increasing rearrangement of s = s(f). Set 1/α = 1/p− 1/2
and, for a fixed t > 0, consider y := s̃(tα). For this y, denote the
two martingales in Lemma 5.1 by ht and gt. By the definition of the
functional K,

K(t, f,Hs
p , L2) ≤ ∥ht∥Hs

p
+ t∥gt∥L2 .

By Lemma 5.1, we obtain

(5.1) ∥ht∥Hs
p
≤ C

(∫
{s(f)>y}

s(f)pdP

)1/p

= C

(∫ tα

0

s̃(x)pdx

)1/p

.
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Let 0 < q <∞. By [14, Lemma 1.1], 1/ϱ(t1/α) ∈ Q(−1/α, 0), we have

∫ 1

0

(∥ht∥Hs
p

ϱ(t)

)q
dt

t
≤ C

∫ 1

0

(
1

ϱ(t)

)q(∫ tα

0

(s̃(x))pdx

)q/p
dt

t
(5.2)

≤ C

∫ 1

0

(
1

ϱ(t1/α)

)q(∫ t

0

(s̃(x))pdx

)q/p
dt

t

≤ C

∫ 1

0

(
t1/ps̃(t)

ϱ(t1/α)

)q
dt

t
, by Lemma 2.1,

= C∥s(f)∥q
Λq(t1/p/ϱ(t1/α))

.

It follows from Lemma 5.1 that

(5.3) ∥gt∥2 ≤ C

(∫
{s(f)≤s̃(tα)}

s(f)2dP

)1/2

+ Cs̃(tα)P (s > s̃(tα))1/2.

Moreover,

(5.4) P (s > s̃(tα)) = P (s̃ > s̃(tα)) ≤ tα.

Since s and s̃ have identical distributions, it follows from (5.3) and (5.4)
that

(5.5) ∥gt∥2 ≤ C

(∫ 1

tα
s̃(x)2dx

)1/2

+ Cs̃(tα)tα/2.

Hence,

∫ 1

0

(
t∥gt∥2
ϱ(t)

)q
dt

t
≤ C

∫ 1

0

(
t

ϱ(t)

)q(∫ 1

tα
(s̃(x))2dx

)q/2
dt

t
(5.6)

+ C

∫ 1

0

(
t

ϱ(t)

)q

s̃(tα)qt(αq)/2
dt

t

= I+ II.

We shall estimate I and II separately. First, ϱ(t)t−ϵ is non-decreasing
for some ϵ > 0. Since ϱ ∈ Q(0, 1), it follows that ϱ(t) ≤ Cϱ(4t) for
t > 0. Moreover, t1/α/ϱ(t1/α) ∈ Q(0, 1/α) by [14, Lemma 1.1]; thus,
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we conclude that

I ≤ C

∫ 1

0

(
t1/α

ϱ(t1/α)

)q(∫ 1

t

(s̃(x))2dx

)q/2
dt

t

≤ C

∫ 1

0

(
t1/α

ϱ(t1/α)

)q(∫ 1

t/4

(x1/2s̃(x))r
dx

x

)q/r
dt

t
, by [17, (5.14)],

≤ C

∫ 1

0

(
t1/α+1/2

ϱ(t1/α)

)q

s̃(t)q
dt

t
, by Lemma 2.1,

= C∥s(f)∥q
Λq(t1/p/ϱ(t1/α))

,

where r ≤ min(2, q). It is clear that

II ≤ C

∫ 1

0

(
t1/α

ϱ(t1/α)

)q

s̃(t)qtq/2
dt

t
= C∥s(f)∥q

Λq(t1/p/ϱ(t1/α))
.

It follows from (5.2), (5.6) and the definition of the functional K,

∥f∥(Hs
p,L2)ϱ,q =

(∫ 1

0

(
K(t,X,Hs

p , L2)

ϱ(t)

)q
dt

t

)1/q

(5.7)

≤ C∥f∥Λs
q(t

1/p/ϱ(t1/p−1/2)).

Thus, the first is included in the second.

Now, suppose that f ∈ (Hs
p , L2)ϱ,q. We consider the operator T : f

7→ s(f). The sublinear operators T : L2 → L2 and T : Hs
p → Lp are

bounded. By [14, Theorem 2.2], the operator

T : (Hs
p , L2)ϱ,q −→ (Lp, L2)ϱ,q = Λq

(
t1/p

ϱ(t1/p−1/2)

)
, by (2.1),

is bounded. Hence,

∥f∥Λs
q(t

1/p/ϱ(t1/p−1/2)) :=∥s(f)∥Λq(t1/p/ϱ(t1/p−1/2))≤C∥f∥(Hs
p,L2)ϱ,q .

Thus, f ∈ Λs
q(t

1/p/ϱ(t1/p−1/2)).
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Suppose now that q = ∞. Since ϱ ∈ Q(0, 1), then ϱ(t)t−ϵ is non-
decreasing for some ϵ > 0. Therefore, we have

sup
t>0

∥ht∥Hs
p

ϱ(t)
≤ C sup

t>0

(
∫ tα

0
s̃(x)pdx)1/p

ϱ(t)
, by (5.1),

≤ C sup
t>0

(
∫ t

0
s̃(xα)pxα−1dx)1/p

ϱ(t)

≤ C sup
x>0

xα/ps̃(xα)

ϱ(x)
sup
t>0

ϱ(t)t−ϵ(
∫ t

0
xpϵ−1dx)1/p

ϱ(t)

≤ C∥f∥Λs
∞(t1/p/ϱ(t1/α))

and

sup
t>0

t∥gt∥2
ϱ(t)

≤ C sup
t>0

t

ϱ(t)

(∫ 1

tα
(s̃(x))2dx

)1/2

+ C sup
t>0

t

ϱ(t)
s̃(tα)tα/2, by (5.5),

= III+ IV.

As at the beginning of the proof, we will estimate III and IV separately.
First, since ϱ(t)t−1+ϵ is non-increasing for some ϵ > 0, it follows that

III ≤ C sup
t>0

t

ϱ(t)

(∫ 1

tα/4

(x1/2s̃(x))r
dx

x

)1/r

, by [17, (5.14)],

≤ C sup
t>0

t

ϱ(t)

(∫ 1

t

(xα/2s̃(xα))r
dx

x

)1/r

≤ C sup
x>0

xα/ps̃(xα)

ϱ(x)
sup
t>0

tϱ(t)t−1+ϵ(
∫ 1

t
x−ϵrdx/x)1/r

ϱ(t)

≤ C∥s(f)∥Λ∞(t1/p/ϱ(t1/α)),

where 0 < r < 2. Moreover,

IV ≤ C sup
t>0

t1/α

ϱ(t1/α)
s̃(t)t1/2 = C∥s(f)∥q

Λ∞(t1/p/ϱ(t1/α))
.

Therefore,

∥f∥(Hs
p,L2)ϱ,∞ = sup

t>0

K(t, f,Hs
p , L2)

ϱ(t)
≤ C∥f∥Λs

∞(t1/p/ϱ(t1/p−1/2)).
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Hence, Λs
∞(t1/p/ϱ(t1/p−1/2)) ⊆ (Hs

p , L2)ϱ,∞. In order to prove the
converse, consider the operator T : f 7→ s(f). The sublinear operators
T : L2 → L2 and T : Hs

p → Lp are bounded. By [14, Theorem 2.2],
the operator

T : (Hs
p , L2)ϱ,∞ −→ (Lp, L2)ϱ,∞ = Λ∞(t1/p/ϱ(t1/p−1/2)), by (2.1),

is bounded. Thus, we have

∥f∥Λs
∞(t1/p/ϱ(t1/p−1/2)) := ∥s(f)∥Λ∞(t1/p/ϱ(t1/p−1/2))≤ C∥f∥(Hs

p,L2)ϱ,∞ .

Hence, (Hs
p , L2)ϱ,∞⊆Λs

∞(t1/p/ϱ(t1/p−1/2)). The proof is complete. �

Corollary 5.3. For 0 < θ < 1 and 0 < p0 ≤ 1, if we take ϱ(t) = tθ in
Theorem 5.2, then

(Hs
p0
, L2)θ,q = Hs

p,q,
1
p = 1−θ

p0
+ θ

2 .

Theorem 5.4. Let φi(t) ∈ Q(1/2,−), i = 0, 1, 0 < p ≤ 1, 0 < q0, q1,
q ≤ ∞ and ϱ ∈ Q(0, 1). Then

(i) (Λs
q0(φ0), L2)ϱ,q = Λs

q(φ), where φ(t) = φ0(t)/ϱ(φ0(t));
(ii) if φ1(t) ∈ Q(1/2, 1/p), then (Hs

p ,Λ
s
q1(φ1))ϱ,q = Λs

q(φ), where φ(t)

= t1/p/ϱ(t1/p/φ1(t));
(iii) if φ0(t)/φ1(t) ∈ Q(0,−) or φ0(t)/φ1(t) ∈ Q(−, 0), then (Λs

q0(φ0),
Λs
q1(φ1))ϱ,q = Λs

q(φ), where φ(t) = φ0(t)/ρ(φ0(t)/φ1(t)).

Proof. First, we prove (iii). Put ϱi(t) = tα/p/φi(t
α) where 1/α =

1/p − 1/2, and choose α and p such that ϱi(t) ∈ Q(0, 1), i = 0, 1.
According to [14, Corollary 4.4 (3)] and Theorem 5.2, we obtain

(Λs
q0(φ0),Λ

s
q1(φ1))ϱ,q = ((Hs

p , L2)ϱ0,q0 , (H
s
p , L2)ϱ1,q1)ϱ,q

= (Hs
p , L2)ϱ0ϱ(ϱ1/ϱ0),q = Λs

q(φ),

where φ(t) = φ0(t)/ρ(φ0(t)/φ1(t)). In order to prove (ii), we first note
that, by [14, Lemma 1.1], the condition φ1(t) ∈ Q(1/2, 1/p) implies
that ϱ1(t) = tα/p/φi(t

α) ∈ Q(0, 1). Thus, the proof follows as above
by using Theorem 5.2 and [14, Corollary 4.4 (2)]. In a similar way, we
see that (i) is an easy consequence of Theorem 5.2 and [14, Corollary
4.4 (1)]. The proof is complete. �
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The following result is a simple application of Theorem 5.4 (iii) by
replacing parameter function ϱ = ϱ(t) by tθ.

Corollary 5.5. Under the hypothesis of Theorem 5.4 (iii), we have

(Λs
q0(φ0),Λ

s
q1(φ1))θ,q = Λs

q(φ
1−θ
0 φθ

1).
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