
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 47, Number 3, 2017

MORITA EQUIVALENCES OF SPIN BLOCKS OF
SYMMETRIC AND ALTERNATING GROUPS

RUTHI LEABOVICH AND MARY SCHAPS

ABSTRACT. We complete the demonstration of source
algebra equivalences between spin blocks of families of cov-

ering groups {S̃n} and {Ãn} of symmetric and alternating
groups, for pairs of blocks at the ends of maximal strings.
These equivalences remain within the family of groups if
cores of the two blocks have the same parity and cross over
from one family to the other if the cores are of opposite
parity. This demonstrates Kessar and Schaps’ crossover con-
jecture for the easier case of extremal points of maximal
strings. We use this result to give an improved bound for the
highest degree necessary in order to get representatives of all
Morita equivalence classes of spin blocks for a given weight.

1. Introduction. Let G be a finite group, and let F be an alge-
braically closed field of characteristic p. We are interested here in the
modular case when p > 0. Writing

FG =
r⊕
j=1

Bj

as a decomposition into blocks, we let Dj be the defect group of
block Bj , the smallest subgroup over which Bj modules are relatively
projective, which is determined up to conjugacy in G.

Donovan has conjectured that there are only a finite number of
Morita equivalence classes although, asG runs through all finite groups,
there are infinitely many blocks with given defect group D. Puig has
generalized this to a conjecture that, for a given defect group, there are
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only finitely many classes of blocks up to Puig equivalence, in which
blocks are equivalent if they have the same source algebra.

Two blocks are derived-equivalent if there is an equivalence of cat-
egories between the corresponding bounded derived categories. If two
blocks are derived-equivalent, then they share many important invari-
ants, including the number of simple modules. Broué has conjectured
[3, 4] that, if the defect group D is abelian, the block will be derived
equivalent to its Brauer correspondent. For abelian D, this would re-
duce the number of possible derived equivalence classes to the number
of possible blocks with normal defect group D, which is generally much
smaller than the number of Morita equivalence classes.

The original proof of the Donovan conjecture for symmetric groups
by Scopes [17] depended on certain operations on partitions known
as Scopes involutions. These have since been shown to be artifacts of
a much deeper theory of categorification developed in the symmetric
group case by Chuang and Rouquier [8] in which blocks are organized
into strings, on each of which a certain element of a Weyl group acts
as a reflection. In the interior of the strings the image of the block
under this reflection is only derived-equivalent, but, at the end of the
strings, one obtains an actual Morita equivalence; these are the Scopes
involutions.

In this paper, we are interested in faithful representations of a
family of central extensions of the symmetric group. We assume,
henceforward, that our ground field F is of positive, odd characteristic.
For n > 7, there are only two possible central extensions; one in which
involutions still lift to involutions and one in which they lift to elements
of order 4. These two groups can also be defined for n ≤ 7. The group
algebras of the two groups are isomorphic; thus, from the point of view
of representation theory it does not matter which we choose. We will

denote by S̃n the group in which the transpositions lift to elements
whose squares are the non-trivial central element and refer to it as the
chosen covering group or, more briefly, the covering group. Both of the

possible choices have isomorphic alternating groups Ãn, and the groups
in this family will be called covering groups of the alternating group.

We consider the possible Morita equivalences among blocks in the

two families {S̃n} and {Ãn}, the chosen covering groups of the sym-
metric and alternating groups. Kessar [12] has already demonstrated
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Donovan’s conjecture for blocks of the covering groups of symmetric
groups [12] using a version of the Scopes maps adapted for the cov-
ering groups, and she proved not just Morita equivalence but actual
source algebra equivalence. In [13], Kessar and the second author

demonstrated that, for this purpose, the two families, {S̃n} and {Ãn},
should be treated together, in that, when the parity of the partitions
corresponding under the Scopes map are different, the expected source

algebra equivalences takes a block of {S̃n} to a block of {Ãn}, and vice
versa. The proof of a similar result, for the case where the parities are
equal, is embedded in Kessar [12] but is difficult to extract because the
primary aim of the author was to prove Donovan’s conjecture.

In this paper, we redefine the Scopes map to be an involution, more
compatible with the new understanding of the theory, and we give a
new proof, using permutation modules, for the case of equal parity.
This leads to a better bound for Donovan’s conjecture.

The blocks are determined by a core ρ, a weight w and choice of

family between {S̃n} and {Ãn}. The crossover conjecture [2] asserts
that, for any w, there are exactly two derived equivalence classes

in the union of blocks from the two families {S̃n} and {Ãn}. The
correspondence of the blocks is determined by Scopes involutions on the
cores. We show here that, for each such class under Scopes involution,
there is a degree after which all of the Scopes involutions actually
produce source algebra equivalences.

In Section 2, we review spin representations and give labels ρw to
spin blocks based on the core and the weight.

In Section 3, we define i-strings of block labels in terms of the abacus
notation and determine the combinatorics of these i-strings. Also, in
Section 3, where we will be concerned with labels as combinatorial
objects, we will work with the labels themselves, without discussion of
whether they represent blocks of symmetric or alternating groups.

In Section 4, we demonstrate that the blocks corresponding to the
labels at the two ends of an i-string, with crossovers where necessary,
are source algebra equivalent, and thus, Morita equivalent. Also,
in Section 4, where we consider the blocks over a complete discrete
valuation ring O and are concerned with the block as an algebra, we
must distinguish between the blocks of the two groups.
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In Section 5, we use the results of Sections 3 and 4 to give a sharp
bound for Donovan’s conjecture for spin blocks.

In order to study the source algebra equivalences we will work over
a modular system (K,O, F ), where O is a discrete valuation ring, K
is its quotient field, of characteristic 0 and F , of characteristic p, is
the residue field after dividing out by the maximal ideal. Letting G
be a covering group of either symmetric or alternating groups for some
degree n, defined more precisely below, we associate to each block both
a set of irreducibles from KG, which will be called characteristic 0
irreducibles or ordinary irreducibles and a set of irreducibles from FG,
which will be called modular irreducibles. It is the spin blocks of OG
which will form the bridge between them.

For any core ρ, let Bρw be the block algebra of OS̃n with core ρ and

weight w, and let B′
ρw be the corresponding block of OÃn with core ρ

and weight w. We will prove the following:

Theorem. Suppose that the blocks with cores ν and µ and weight w
lie at the ends of a maximal string. Then, if the parities are the same,
Bνw is source algebra equivalent to Bµw , and B′

νw is source algebra
equivalent to B′

µw . If the parities are different, Bνw is source algebra
equivalent to B′

µw , and B
′
νw is source algebra equivalent to Bµw .

2. Definitions and notation.

2.1. Spin blocks of symmetric and alternating groups. In the
notation fixed in Section 1 the symmetric group Sn and the alternating

group An have central extensions S̃n, Ãn with kernel C2, the cyclic
group of order 2, generated by an involution z. We assume hencefor-
ward that the characteristic of the ground field is finite but not 2. The
group algebra of each of the covering groups can be decomposed into
two subalgebras of equal dimension by the value of the characters on
the central involution z. One of these subalgebras is isomorphic to the
group algebra of the original group since, in every character, the value
of z is 1. The characters of the second subalgebra, for which z takes
the value −1, will be called spin representations, and the corresponding
blocks will be called spin blocks.
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For every block of Sn, isomorphism classes of irreducible represen-
tations over a field of characteristic 0 are labeled by the partitions of

n. For every spin block of S̃n and Ãn, isomorphism classes of charac-
teristic 0 irreducible spin representations are labeled by the strict par-
titions λ = (λ1, . . . , λr) where λi ̸= λj for i, j satisfying 1 ≤ i, j ≤ r.

For example, in S̃6, characteristic 0 irreducible spin representations are
labeled by strict partitions

(6), (5, 1), (4, 2), (3, 2, 1).

Each strict partition λ has a parity ϵ(λ) ∈ {0, 1} that equals the
parity of a permutation with cycle structure given by λ and which thus
equals the parity of the number of even parts. If we denote by |λ| the
sum of the parts, which we call the degree of the partition, and the
number of parts by h(λ), then ϵ(λ) ≡ |λ| − h(λ) mod 2.

In addition to the characteristic 0 irreducibles we will also need to
know something about characteristic p irreducibles. For the ordinary
representations of the symmetric group characteristic p irreducibles can
be labeled by a subset of the partitions. There are two dual choices,
either p-regular partitions which do not have p or more copies of any one
part, or p-restricted partitions, in which two adjacent parts do not differ
by more than p. For spin representations, we need a different set of
labels, determined by Brundan and Kleshchev [5] using supermodules.

Not only are the labels for characteristic p irreducibles not a subset of
the labels of characteristic 0 irreducibles, but, even on the intersection
of the two sets, the definition of parity may be different, as the formulae
in the next definition will show. For a given p-block, either all of the
characteristic p-irreducibles will be even and will come in pairs, or they
will all be odd, and there will be a single characteristic p irreducible
for each label.

For characteristic 0 irreducibles, if the block is not of defect 0, there

will be some of each parity. In spin blocks of S̃n odd irreducibles will

be doubled and, for blocks of Ãn, even irreducibles will be doubled. For

example, for spin blocks of S̃3, two linear characteristic 0 irreducibles
have the same odd label (2, 1), and the unique characteristic 0 irre-
ducible of degree 2 has even label (3).
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Figure 1. λ = (10, 9, 7, 4, 2, 1).

Definition 2.1. A partition is p-strict if the only possible multiple
parts are divisible by p. A p-strict partition λ = (λ1, . . . , λr) is re-
stricted if

(i) λi+1 − λi ≤ p for i < r,
(ii) if λi+1 − λi = p, then p does not divide λi.

For a restricted p-strict partition µ we define hp′(µ) to be the number
of parts not divisible by p, and then let

ϵ′(µ) ≡ |µ| − hp′(µ) mod 2

be the parity of µ as the label of a characteristic p irreducible. Obvi-
ously, ϵ′(µ) will differ from the parity

ϵ(µ) ≡ |µ| − h(µ) mod 2

defined above whenever the number of parts prime to p has a different
parity than the total number of parts.

2.2. The abacus notation and p-bar cores. The strict partitions
can be represented on an abacus with p runners labeled by residues
0, 1, . . . , (p− 1) where the parts of the strict partition are represented
as beads, which can be in position 0, 1, 2, . . . [12, Section 4]. The part
λi = ap + b, 0 ≤ b ≤ p − 1, corresponds to a bead on the runner b in
position a, except that no bead is allowed on runner 0 at position 0
since this would correspond to a part of length 0. Since the positions
are linearly ordered by ap + b, we will say that a bead is smaller or
larger, respectively, than another according to numerical ordering on
the corresponding positions, while beads in the same position, which
can occur only on runner 0 for p-strict partitions, will be incomparable.
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In the example in Figure 1, the largest bead, corresponding to 10, is at
the top of the 0-runner, and the smallest is part 1 at the bottom of the
1-runner.

Definition 2.2. Removing a p-bar. Removing a p-bar from a strict or
p-strict partition λ consists either of

(i) lowering the position of one bead one place down on its runner
into an available place (usually empty, but for the 0-runner of
a p-strict partition any space is available), which corresponds to
reducing a single part λi by p when possible;

(ii) removing a bottom bead in the 0-runner, which corresponds to
removing a part p from the partition λ; or

(iii) removing two bottom beads on runners i and p− i for 0 < i < p.

In each case, we reduce the sum of the parts of the strict partition
by p. For labels of the modular irreducibles, which allow multiple copies
of parts divisible by p, we denote the multiplicity by an integer next to
the bead.

Definition 2.3. A p-bar core is a strict partition from which no p-bars
can be removed and still leave a strict partition after reordering. When
the maximal number w of p-bars is removed from a strict partition or a
restricted p-strict partition λ, a strict partition ρ called the p-bar core
of λ and denoted by ρ(λ) is attained. The integer w is called the weight
of the partition.

Remark 2.4. Amongst other properties, a p-bar core has no parts
divisible by p and no pairs of parts which sum to p. The p-core is
independent of the order in which the p-bars are removed. As an
example, if p = 5 and we begin with a partition (10, 9, 7, 4, 2, 1) as
in Figure 1, we cannot reduce 9 to 4 until we have removed the pair 4
and 1. To eliminate 10, we first reduce it to 5 and then we remove
part 5, which we can do because it is the bottom bead on the 0-runner.
There are many different ways to remove four p-bars, but the final
result, whichever order is used, will be the same p-bar core (7, 4, 2).

2.3. Types of blocks. All spin representations of S̃n (or Ãn) that
have the same p-bar core belong to the same spin block [5] and have
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the same weight w. We use the notation ρw as a label for such a block.
When w = 0, ρ0 labels three blocks, for if ρ is an even partition, it

labels two irreducibles in FÃn and one in FS̃n and, if it is odd, it

labels two irreducibles in FS̃n and one in FÃn.

For w > 0, the symbol ρw labels two blocks, one for the group algebra

FS̃n and the other for the group algebra FÃn. One of the two blocks
has one irreducible for each restricted p-strict label and is said to be
of type M . The other has two irreducibles for each restricted p-strict

label and is said to be of type Q. The block of typeM is a block of FS̃n
if ϵ(ρ)−w is even and is a block of FÃn if ϵ(ρ)−w is odd. The names
Q andM come from the theory of superalgebras, where each restricted
p-strict label corresponds to a unique supermodule irreducible, and
it is only by forgetting the supermodule structure that we get two
irreducibles for each label in the modules for blocks of type Q.

For a given integer weight w, all spin blocks which are of type M
have the same number ℓ of simple modules, and all blocks of type Q
have 2ℓ simples. We cannot have a source algebra equivalence between
a block of type Q and a block of typeM for a given weight w because a
source algebra equivalence, being a Morita equivalence, must preserve
the number of simple modules, and the block of type Q will have
twice as many modular irreducibles. For this reason, we consider both
families together in order to allow for matching of the types.

For example, for p = 5, the block of FS̃19 that is labeled by (7, 2)2 is
of type Q and has ten modular irreducibles labeled by the restricted p-
strict partitions (10, 7, 2), (7, 5, 5, 2), (7, 5, 4, 2, 1), (9, 7, 2, 1), (7, 6, 4, 2),
all of which are odd as labels of modular irreducibles, even though they
are not all odd as partitions, since 19 is odd and the number of parts
prime to 5 is even in each case.

2.4. The combinatorics of block labels. Let t = (p− 1)/2. In [2],
we define a directed graph with edges labeled by residues {0, 1, . . . , t},
called the block-reduced crystal graph, in which the vertices were labels
ρω. Using the theory of i-addable and i-removable nodes from [5],
the graph contained an edge of residue i from ρω to συ if and only if
there was a restricted p-strict partition for ρω with an i-addable node
producing a p-strict partition for συ. The corresponding graph for
n ≤ 12 and p = 5 is given in Figure 2. The paper [2] considered the
combinatorial properties of what were called maximal i-strings, which
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were sequences of vertices of maximal length connected by edges of
residue i. In this paper, in place of i-addable and i-removable nodes
in a Young diagram, we will add or subtract 1 from a part congruent
to i or p − i, which will be represented in Section 3 below by shifting
a bead from the i or p− i runner to an adjacent runner in the abacus
notation described just before Definition 2.2.

For the usefulness of studying combinatorial relationships between
the labels we cite the work of Kang, Kashiwara and Tsuchioka [11] in
which they construct a family of quiver Hecke superalgebras in which
there is one block for each label. They conjecture [11, page 3] that the
blocks of the quiver Hecke superalgebras are all of type M . This was
proven by Hill and Wang [9, subsection 6.5].

From paper [11], blocks are obtained which are Morita equivalent
to the type M block of a given label. The Morita equivalence involves
replacing a block of form Mr(R) in the symmetric or alternating
group, for r a power of 2, with the block algebra R, thus eliminating
superfluous powers of two.

However, for the result of this paper, we do not need the full strength
of these methods, or even the block-reduced crystal graph. We have
produced Figure 2 here merely as an aid to understanding the meaning
of i-strings and Scopes involutions. Instead of using crystals and affine
Lie algebras as was done in the original thesis [15], for the purpose of
this paper, in Definition 3.5, we define i-strings in terms of i-shifts in
the abacus notation.

2.5. Scopes involutions.

Definition 2.5 ([2]). Let t = (p− 1)/2, where, as always, p is an odd
prime, any p-core ρ can be represented by a core t-tuple

c(ρ) = ((ℓ1, ϵ1), . . . , (ℓt, ϵt))

where ℓi is the number of beads on the runner numbered i or p− i, and
we set ϵi = 0 if there are beads on runner i; otherwise, we set ϵi = 1.
Note the rather counter-intuitive choice that, if there are no beads on
either runner, so that li = 0, then ϵi = 1. We will abbreviate c(ρ(λ))
by c(λ).
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Figure 2. Block-reduced crystal graph for p = 5, n ≤ 12.
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In what follows, cores ρ will generally be represented by their core
t-tuple c(ρ), since the description of the actual partition is too bulky
and does not exhibit special properties of the core. We give the core
t-tuples for some of the cores in Figure 2:

• λ = (6, 1), c(λ) = ((2, 0), (0, 1))
• λ = (4, 3), c(λ) = ((1, 1), (1, 1))
• λ = (6, 2, 1), c(λ) = ((2, 0), (1, 0))
• λ = (7, 2), c(λ) = ((0, 1), (2, 0)).

Definition 2.6. Let D be the set of all p-strict partitions. For
0 ≤ i ≤ t, we define Scopes involutions Ki : D → D by the following.

• For 0 < i < t: the involution Ki interchanges beads on runner i
and i + 1 as well as beads on runner p − i and p − i − 1. For a core
λ ∈ D, with core t-tuple

c(λ) = ((l1, ϵ1), . . . , (ℓi, ϵi), (ℓi+1, ϵi+1), . . . , (ℓt, ϵt))

applying Ki gives a new core λ with core t-tuple

c(λ) = ((ℓ1, ϵ1), . . . , (ℓi+1, ϵi+1), (ℓi, ϵi), . . . , (ℓt, ϵt)).

• For i = t: the involution Kt interchanges beads on runner t + 1
and runner t. In particular, for cores λ, we have c(Ki(λ)) = c(λ) if
ℓt = 0, and otherwise, the core t-tuple becomes

c(λ) = ((ℓ1, ϵ1), . . . , (ℓt, 1− ϵt)).

• For i = 0: the involution K0 moves beads in position a ≥ 1 on
runner 1 to the position a− 1 on runner p− 1 and, similarly, beads in
position a′ on runner p−1 are moved to a′+1 on runner 1. Furthermore,
we add part 1 to K0(λ) if λ does not have part 1 and remove it if λ
does have part 1, so that the total number of beads on runners 1 and
p − 1 in λ differs by 1 from the number of beads on those runners in
K0(λ). If λ is a core, we get that, if λ = K0(λ), then

c(λ) = ((ℓ1 − (−1)ϵ1 , 1− ϵ1), (ℓ2, ϵ2), . . . , (ℓt, ϵt)).

Remark 2.7. For i > 0, the involution given here, restricted to strict

partitions, is exactly that S̃ci+1 defined in [12]. For i = 0, the map K0

is actually an involution, unlike S̃c1 of [12].
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Figure 3. λ = (12, 11, 7, 6, 4, 2, 1) → K0(λ) = (12, 9, 7, 6, 4, 2).

Example 2.8. For p = 5, let

ρ = (2), c(ρ) = ((0, 1), (1, 0))

be a partition and the core t-tuple of the p-core labeled by ρ0 in
Figure 1. Then,

K0(ρ) = (2, 1), c(K0(ρ)) = ((1, 0), (1, 0));

K1(ρ) = (1), c(K1(ρ)) = ((1, 0), (0, 1));

K2(ρ) = (3), c(K2(ρ)) = ((0, 1), (1, 1)).

Referring to Figure 2, one can see that Scopes involutions are
reflecting strings in the diagram, where the heavy diagonal lines are
0-strings, the dotted diagonal lines are 1-strings and the vertical lines
are 2-strings.

Example 2.9. For a more complicated example, for p = 5, let

ρ = (12, 7, 6, 2, 1), λ = (12, 11, 7, 6, 4, 2, 1)

be, respectively, the p-core and a partition in the block labeled by ρ3.
Then,

K0(ρ) = (12, 7, 4, 2),K0(λ) = (12, 9, 7, 6, 4, 2);

K1(ρ) = (11, 7, 6, 2, 1),K1(λ) = (12, 11, 7, 6, 3, 2, 1);

K2(ρ) = (13, 8, 6, 3, 1),K2(λ) = (13, 11, 8, 6, 4, 3, 1).

A sample of Scopes involution K0 in abacus notation is given in
Figure 3.
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In order for these involutions to be of use, we must show that they
preserve block labels, which is equivalent to showing that they preserve
cores.

Lemma 2.10. If λ ∈ D and, if Ki(λ) = χ, then

Ki(ρ(λ)) = ρ(χ).

Proof. For 0 ≤ i ≤ p− 1, denote by ni and n
′
i the numbers of beads

on runner i in the abacus representation of λ and χ, respectively. For
i > 0, the lemma was proven in [12, Lemma 4.7], with changes in
notation mentioned in Remark 2.7. For i = 0, we have n′1 = np−1 + 1
and n′p−1 = n1 if 1 is not a part of λ and n′1 = np−1 and n′p−1 = n1−1,
otherwise.

If n1 ≤ np−1, the core t-tuple of ρ(λ) equals ((np−1−n1, 1), . . .) and
that of ρ(χ) equals ((np−1 − n1 + 1, 0), . . .), which is the image of the
core ρ(λ) under K0, as claimed in Lemma 2.10. If n1 > np−1, then the
core t-tuple of ρ(λ) equals ((n1 − np−1, 0), . . .) and that of ρ(χ) equals
((n1 − np−1 − 1, 1), . . .), again as claimed. �

3. Equivalences of extremal spin blocks. The aim of this sec-
tion is to determine combinatorial conditions under which a block label,
in the language of [2], is extremal in a maximal i-string. Then, in the
next section, we will show Scopes involution on such block labels en-
sures a source algebra equivalence of corresponding blocks. However,
since we are avoiding the use of Lie algebra methods in this paper,
we must first translate the concept of i-addable and i-removable nodes
from [5] to the abacus notation. The degree of the Young diagram of
a partition λ is |λ|, the sum of the parts. Since adding or removing
a node from the Young diagram changes the degree by exactly 1, our
basic move will be to shift a bead to an adjacent runner, which corre-
sponds to increasing or decreasing the part corresponding to that bead
by exactly 1.

3.1. The i-shifts.

Definition 3.1. Let i = 0, . . . , t, with, as usual, t = (p− 1)/2, and let
Ki be the corresponding Scopes involution.
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(i) i > 0. An i-shift consists of moving a bead to an empty position
at the same height on the adjacent runner with which its runner is
interchanged by Ki and will be called an i-shift up or down according
to whether the part represented by the bead is increased or decreased
by the shift, and corresponding runners will be called low or high.

(ii) i = 0. A 0-shift down can be one of three possible types:
removing part 1 on the 1-runner, moving a bead on the 1-runner to
the 0 runner, or moving a bead on the 0-runner to an empty space on
the p− 1 runner. A 0-shift up consists of moving a bead from the p− 1
runner to the 0 runner, moving a bead from the 0-runner to an empty
space on the 1-runner, or adding a bead corresponding to part 1 if the
0 position on the 1-runner is open. In describing a 0-shift, the p − 1
runner will be called the lowest runner, the 0-runner will be called the
middle runner and 1-runner will be called the highest runner.

Begin with a core ν of degree n such that µ = Ki(ν) is of lower
degree m, and generate all intermediate block labels in the i-string
connecting the two cores. Then perform all possible i-shifts down on
ν in random order to produce µ. As follows from the work of [5] the
string of block labels of intermediate partitions would be independent
of this choice of ordering. However, in order to extend the procedure
to non-cores, Brundan and Kleshchev [5] introduced an ordering to the
procedure of adding and removing nodes, which requires an ordering
to the i-shifts as well. In the proofs involving i-shifts, we will make
i-shifts up starting with the lowest part and i-shifts down starting with
the highest part.

The basic order will be ascending for i-shifts up and descending
for i-shifts down, but there is an additional subtlety which appears
in their theory as the i-signature, and which we will translate into
the abacus notation by recursively declaring certain beads to be inert
while choosing one of the active beads for which an i-shift will be called
“proper.” For those accustomed to the Brundan-Kleshchev signature
theory, for i > 0, active beads on high runners correspond to − and
active beads on low runners correspond to +. The situation that we
are trying to achieve, by eliminating “+−” pairs, is one in which all of
the beads on high runners are numerically smaller than the beads on
low runners. As usual, the situation for i = 0 is more complicated to
describe.
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Definition 3.2. (A proper i-shift.)

(i) i ̸= 0. For i > 0, the original set of inert beads are those on
runners not involved in an i-shift or those whose target position under
Ki is already full. An active bead on a high runner can make itself
inert as well as the first active bead on a low runner which is smaller
than it in the ordering of parts, if such a bead exists. When all such
pairs have been made inert, a proper i-shift up will move the smallest
bead on a low runner to the adjacent high runner, and a proper i-shift
down will move the largest bead on a high runner to the adjacent low
runner.

(ii) i = 0. Initially, a bead on the middle runner will be up-inert if
the adjacent position on the highest runner is full and otherwise it will
be up-active. Similarly, it will be down-inert if the adjacent position on
the lowest runner is full and otherwise it will be down-active. An up-
active bead on the middle runner will make inert either the first active
bead larger than it on a high runner or the first down-active bead on
the middle runner, whichever comes first, if such a bead exists. An
active bead on the lowest runner will make down-inert the first down-
active bead on the middle runner larger than it or make inert the first
active bead on the highest runner larger than it, whichever comes first,
if it exists. When all such pairs have been made inert, a proper 0-shift
up will move the smallest bead on a low runner to the adjacent high
runner, and a proper 0-shift down will move the largest bead on a high
runner to the adjacent low runner.

Remark 3.3. When we start with a core, the target is empty so there
are no initially inert beads except those on irrelevant runners. If we
make the i-shifts up from the bottom of low runners or from the top of
the high runners, then we are always in the situation where the active
beads on the high runners are smaller than the active beads on the low
runners, and it is never necessary to invoke the recursion step. We have
included the definition of a proper i-shift in order that i-strings will be
well defined even when extremal points are not cores.

Example 3.4. Let p = 5, and consider the block with label (3, 1)12.
One of its restricted, p-strict partitions is (18, 12, 10, 9, 6, 5, 3, 1). In
Figure 4, we show the inert and active beads first for the 0-shift up to
(6, 3, 1)11 and then for the 2-shift down to (2, 1)12. In the case of the 0-
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Figure 4. λ = (18, 12, 10, 9, 8, 7, 6, 5, 3, 1), 0-shift up, 2-shift down.

shift up, the beads on runners 2 and 3 are initially inert. Bead 6 makes
five up-inert, and bead 9 makes ten down-inert. The two active beads
in the down direction are 1 and 5, which are both smaller than 10, the
only active bead in the up direction. In order to make the 0-shift up,
we increase 10 to 11, giving (18, 12, 11, 9, 6, 5, 3, 1).

In the second case, 7 and 8 were initially inert, while 18 and 12
were eliminated by recursion because 12 was an active bead on a low
runner which was below 18, an active bead on a high runner. This
leaves 3, on a high runner, as the only active bead. In the diagram in
Figure 4, we have indicated inert beads by circles, and on the 0-runner,
a “−” marks an “up-inert, down-active” bead, while a “+” marks a
“down-inert, up-active” bead.

Definition 3.5. If ρu and σu are two block labels with Ki(ρ
u) = σu

and deg(ρ) > deg(σ), choose any restricted, p-strict partition λ for ρu.
It defines an i-string of block labels obtained by making i-shifts down
starting with the highest active bead until reaching σ and recording
the block label after each i-shift. The same string could be obtained
by starting with σ and taking i-shifts up, taking each time the lowest
active bead. Such a string will be called a maximal i-string if it is
not a substring of any other i-string. The block labels at the ends of
a maximal i-string, together with their corresponding blocks, will be
called extremal for that i-string, and those block labels in the interior
will be called internal to the i-string.

Example 3.6. Consider the 0-string at the bottom of Figure 1, where,
in this case, p = 5: (4)1 → ∅2 → (1)2 → (6, 1)1. The block with label
(4)1 has two restricted p-strict labels of irreducibles, and for each, we
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make a series of proper i-shifts up.

(5, 4) −→ (5, 4, 1) −→ (5, 5, 1) −→ (6, 5, 1),

(4, 3, 2) −→ (4, 3, 2, 1) −→ (5, 3, 2, 1) −→ (6, 3, 2, 1).

As the first step, part 1 was added to the 1-runner. At the second
stage, part 4 on the 4-runner was moved to become 5 on 0-runner, and
finally the 5 was pushed onto the 1-runner, where it became 6.

3.2. The w-allowed actions. Now we shall consider what restric-
tions are on w, in order that ρw be an extremal block label in its
i-string, for 0 ≤ i ≤ t. For the purposes of proving that the blocks cor-
responding to extremal block labels on an i-string are source algebra
equivalent, we will formulate this condition in terms of ℓi, the number
of parts in the core on runner i or p− i.

Later, in Section 5, we will formulate and prove a global condition,
which will show that, for any w, there is an integer N(w) such that any
block label ρw occurring in degree n ≥ N(w) will be extremal.

Definition 3.7. When ρw is an extremal block label in its maximal
i-string, we will say that the involution Ki is a w-allowed action for
ρw.

The following technical lemma will be needed for the proof of the
main theorem in Section 4. In this lemma, we fix a core ρ and a residue i
and show that, for w larger than the bound established in the lemma,
ρw is the label of a block which is internal in its i-string.

In Section 5, we will fix w while allowing i and ρ to vary, and show
that, for all cores ρ such that ρw is the label of a block of degree n with
n ≥ N(w), there exists an i for which ρw labels an extremal block in
an i-string. In addition, for this i-string, the source algebra equivalent
block corresponding to the label at the other end of the i-string will
have lower degree, and this fact will allow us to establish an improved
bound for Donovan’s conjecture.

Lemma 3.8. Let ρ be a p-core, with core t-tuple

c(ρ) = ((ℓ1, ϵ1), . . . , (ℓt, ϵt)).
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(i) The involution K0 is a w-allowed action for ρw if and only if
w ≤ ℓ1 + ϵ1 − 1.

(ii) The involution Kt is a w-allowed action for ρw if and only if
w ≤ 2ℓt + 1.

(iii) The involution Ki, 1 < i < t, is a w-allowed action for ρw if and
only if :

• w ≤ (ℓi+1 − ℓi) · (−1)ϵi , for ϵi = ϵi+1,
• w ≤ ℓi + ℓi+1, for ϵi ̸= ϵi+1.

Proof. The core ρ is fixed. From [2], we know that the length of
the string containing ρw is nondecreasing in w and that, whenever the
string increases, there is one block label of weight 0 added at each
end. Let v0(i) be the maximal weight w such that ρw is extremal in
direction i, and let v1(i) be v0(i) + 1, which is the minimal weight w
such that ρw is internal in its i-string. By definition, only for extremal
block labels do we get a w-allowed action, i.e., for block labels with
weight w satisfying w ≤ v0(i). For every w ≥ v1(i), ρ

w will be internal
because the string lengths are non-decreasing in w [2].

We assume i is fixed and write v1 for v1(i). We investigate ρv1 .
By the minimality of v1, we see that the block label which bounds it
must be of weight 0, and we denote it by µ0. Thus, µ must be a core
such that moving one bead to an adjacent runner produces the abacus
representation of an element λ of D which reduces in v1 moves to the
core ρ. Since µ, which is a core, has no beads at all on the 0 runner,
the resulting element λ is in fact a strict partition, since, for elements
of D, all multiple parts must be divisible by p. For each i, there are
two possible cases. The core µ can be at the high degree end of the
string and require an i-shift down to reach the block label with core ρ,
or it can be as the low-degree end of the string and require an i-shift
up to reach the block label with core ρ.

(i) i = 0: First assume that a 0-shift down from block label µ0 will
give ρv1 , so the proper 0-shift down exists and must move a bead from
runner 1 to the 0-runner. This requires that the core µ have ℓ′1 > 0
beads on runner 1, and thus, the core t-tuple has the form

c(µ) = ((ℓ′1, 0), (ℓ2, ϵ2), . . . , (ℓt, ϵt)).

The change which produces a restricted partition λ in ρv1 corresponds
in terms of the abacus to removing the upper bead on runner 1 and
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placing it parallel in the 0 runner. When this is done, the bead goes
down ℓ′1 − 1 times and disappears, and v1 = ℓ′1 − 1, see Definition 2.2.
Recalling that

c(ρ) = ((ℓ1, ϵ1), . . . , (ℓt, ϵt)),

we thus have ℓ1 = ℓ′1 − 1, so v1 = ℓ1 and v0 = ℓ1 − 1 = ℓ1 + ϵ1 − 1. The
block label ρw is internal if and only if w ≥ ℓ1.

Now assume that a 0-shift up from µ0 will give ρv1 . This requires
that µ have the form

c(µ) = ((ℓ′1, 1), (ℓ2, ϵ2), . . . , (ℓt, ϵt)),

with ℓ′1 > 0 (since otherwise the resulting partition is also a core, with
weight 0, and is not internal). The bead which is added is part 1. This
cancels the lowest bead on runner p−1, which gives one move, and the
remaining ℓ′1 − 1 beads move down, so now we get v1 = ℓ′1 = ℓ1 + 1,
and v0 = ℓ1. Since, in this case, ϵ1 = 1, this gives the formula in the
statement of the lemma.

(ii) i = t: Every t-shift down from a core µ0 for

c(µ) = ((ℓ1, ϵ1), . . . , (ℓ
′
t, 1))

corresponds in terms of the abacus to removing the upper bead on
runner t+1 and putting it parallel in runner t. When this is done, the
bead goes down ℓ′t − 1 times, and then the two bottom-most beads on
runners t and t + 1 are removed, all of the beads on runner t + 1 go
down, and the total number of moves is by v1 = 2ℓ′t−2. Let ρv1 be the
block label obtained by the t-shift down. It will satisfy ℓt = ℓ′t − 2, so
v1 = 2ℓt + 2, and thus, v0 = 2ℓt + 1. The procedure making a t-shift
up is similar, except that it is the bottom bead which moves from the
t runner to the t+ 1 runner. The total number of moves is the same.

(iii) 0 < i < t: Every i-shift down from a block label µ0 for
c(µ) = ((ℓ1, ϵ1), . . . , (ℓt, ϵt)) corresponds in terms of the abacus to
moving a bead from runner i + 1 to runner i or to moving a bead
from runner p− i to p− i− 1.
• First we examine the case that ϵi = ϵi+1:

Case 1. ϵi = ϵi+1 = 0: In this case, an i-shift down corresponds
to removing the upper bead in runner i + 1 and placing it parallel in
runner i. This is only possible if ℓ′i+1 > ℓ′i. When this is done, the
bead goes down until there are no empty places, i.e., ℓ′i+1 − ℓ′i − 1
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moves. Let ρv1 be the block label after the shift down from the core µ.
The core t-tuple of ρ satisfies ℓi+1 = ℓ′i+1 − 1 and ℓi = ℓ′i + 1; thus,
v1 = (ℓi+1 − ℓi + 1), and v0 = ℓi+1 − ℓi. The case of an i-shift up is
similar.

Case 2. ϵi = ϵi+1 = 1: In this case, an i-shift down corresponds to
removing the upper bead in runner p−i and placing it parallel in runner
p− i−1. This is only possible if ℓ′i > ℓ′i+1. When this is done, the bead
goes down until there is no empty place, i.e., v1 = ℓ′i − ℓ′i+1 − 1 times.
Let ρv1 be the block label after removing an i-good node from the core
µ. It satisfies ℓi = ℓ′i − 1 and ℓi+1 = ℓ′i+1 + 1; thus, v1 = ℓi − ℓi+1 + 1,
and v0 = ℓi − ℓi+1. The case of an i-shift up is similar.

• Finally, we examine the case where ϵi ̸= ϵi+1. In order for an
i-shift down to exist, the runners i and p − i − 1 must be empty. Let
a1p + (i + 1) be the upper bead of runner i + 1 and a2p + (p − i) the
upper bead of runner p− i.

Case 1. a1p + (i + 1) > a2p + (p − i): In this case, an i-shift down
corresponds to removing the upper bead from runner i+1 and placing
it parallel in runner i. When this is done, the bead goes down ℓ′i+1 − 1
times, then the bottom-most bead of runner p − i and the bead in
runner i are removed, and all of the beads on runner p − i again go
down (ℓ′i − 1 times).

Case 2. a1p + (i + 1) ≤ a2p + (p − i): In this case, an i-shift down
corresponds to removing the upper bead from runner p− i and placing
it parallel in runner p− i− 1. When this is done, the bead goes down
ℓ′i − 1 times, then the bottom-most bead of runner i+ 1 and the bead
in runner p − i − 1 are removed, and all of the beads on runner i + 1
again go down (ℓ′i+1 − 1 times).

In both cases, the weight is v1 = ℓ′i + ℓ′i+1 − 1. Let ρw be the block
label after an i-shift down from the core µ. Its core t-tuple satisfies
ℓi = ℓ′i−1 and ℓi+1 = ℓ′i+1−1; thus, v1 = ℓi+ℓi+1+1 and v0 = ℓi+ℓi+1.

The procedure for an i-shift up is similar, except that the bead to be
transferred is taken from the first place which is empty on the runner
with which we are making the exchange. �

4. Source algebra equivalences. Kessar [12] proved in certain
cases that extremal blocks of maximal i-strings in the block-reduced
crystal graph are source algebra equivalent. We now strengthen this
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result so that it applies to every pair of extremal blocks in an i-string. In
this section, we will demonstrate that a w-allowed action corresponds
to a source algebra equivalence between appropriately chosen blocks
labeled by the given cores.

Unlike in the previous section, we will now be concerned with char 0
representations, and thus, with strict partitions. Furthermore, we will
no longer be concerned with making proper i-shifts and thus will not
need all of the consideration of active or inert beads. Fix i and let λ
and χ be two strict partitions such that n = |λ| > |χ| = m. We now
define Mn−m(λ, χ) to be the set of possible paths leading from the
abacus notation for λ to the abacus notations for χ by moving beads
one at a time from a high runner for Ki to a low runner in such a way
that, at every stage, we have a strict partition. The number will be 0
if there is no way to get from λ to χ by moving beads, in which case
K(λ) ̸= χ.

The next definition is the key to proving the result we desire. Let
Jn be the set of strict partitions with core ν and weight w, where
n = |ν|+wp, and let Jm be the set of strict partitions with core µ and
weight w, where m = |µ|+ wp.

Definition 4.1 ([13]). A w-compatible pair (ν, µ) for i is defined to
be a pair of cores such that:

(i) Ki : Jn → Jm is one-to-one and onto, and Ki(ν) = µ.

(ii) For any λ ∈ Jn and χ ∈ Jm,

|Mn−m(λ, χ)| =

{
0 if χ ̸= Ki(λ);

|Mn−m(ν, µ)| if χ = Ki(λ).

(iii) ϵ(λ) + ϵ(Ki(λ)) = ϵ(µ) + ϵ(ν).

We shall now prove that, if Ki gives a w-allowed action for νw, then
the pair of cores (ν, µ), is a w-compatible pair. In the remainder of
this section we will show that the w-compatible pair gives the desired
source algebra equivalence.

We first prove some lemmas which will be needed to establish this
result.
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Lemma 4.2. Let ν be a core, and let i ∈ {0, 1, . . . , t} be such that
µ = Ki(ν) is different from ν and |µ| < |ν|. Then

|Mn−m(ν, µ)| =

{
(n−m)! if i ̸= 0;

(n−m)!/2(n−m−1)/2 if i = 0.

Proof.

(i) i > 0: In this case, there are n − m extra beads on the high
runner, which can each be moved independently of the others, so we
obtain (n−m)! possible orders in which we can move these beads.

(ii) i = 0: We try to count the number of ways to get from the
abacus for ν to the abacus for µ by moving one bead at a time. Except
for part 1, which is destroyed in a single shift, all of the other i-shifts
come in pairs: a shift to runner 0 and a further shift to runner p − 1.
Thus, n −m is odd, and we have (n−m− 1)/2 pairs of i-shifts. The
number of possible orders in which we could make these moves if there
were no restriction on the pairs would be (n−m)!. However, for each
adjacent pair, we must first move the bead to the 0-runner and then
later to the one p−1-runner, a consideration which divides the number
of permissible orderings by 2. For each adjacent pair, we must divide by
2, so in total we must divide by 2(n−m−1)/2. This reduces the number
of permissible orderings to (n−m)!/2(n−m−1)/2. �

Remark 4.3. Let there be given a core t-tuple

c(ν) = ((ℓ1, ϵ1), . . . , (ℓt, ϵt)).

If µ = Ki(ν) with n ̸= m, then the number |Mn−m(ν, µ)| of possible
paths by which to reduce beads is positive in the following cases:

(i) Ki, 0 < i < t:

• ϵi = 1, ϵi+1 = 0, and we note that, by our convention, ϵi+1 = 0
implies that ℓi+1 > 0.

• ϵi = ϵi+1 = 0, ℓi+1 > ℓi.

• ϵi = ϵi+1 = 1, ℓi+1 < ℓi.

(ii) K0, ℓ1 > 0, ϵ1 = 0.

(iii) Kt , ℓt > 0, ϵt = 1. The complementary cases all increase the
rank. For example, when ϵi = 0, ϵi+1 = 1, we have ℓi > 0. There are
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no w-allowed actions which leave the rank fixed, except those which
are trivial because there are identical configurations of beads on each
pair of interchanged runners. The K0 action is never trivial.

As in Definition 4.1, let Jn be the set of strict partitions with core ν
and weight w, and let Jm be the set of strict partitions with core µ and
weight w. Take λ ∈ Jn and χ ∈ Jm, where n > m by our assumptions
on ν and µ. To go back from ν to λ (or from µ to χ ) we must perform
w moves which correspond to adding p-bars. There are three kinds of
moves:

• moving a bead up on its runner;

• inserting a pair of beads to runners i and p− i where the bottom
place in each runner is empty;

• creating a bead on runner 0.

Lemma 4.4. Let ν be a core. The number of actions needed to insert
n pairs of beads on runners i, p − i for some i > 0 in the abacus
representation of ν is:

n2 + ℓin.

Proof. By induction.

For n = 1: To insert one pair, we must lift the ℓi beads on runner i
or on runner p− i upwards, that is, ℓi moves and then insert the pair,
that is, one more move. Altogether, we make ℓi + 1 moves.

Assume that Lemma 4.4 is true for n, i.e., the number of actions
needed to insert n pairs of beads on runners i, p − i in the abacus
representation of ν is n2 + ℓin.

Now we prove that Lemma 4.4 is true for n + 1. To insert a pair
after inserting n pairs: First we must lift the n+ ℓi beads that are on
runner i or runner p − i upwards, that is, n + ℓi actions; second, we
must lift the n beads that are on the other runner upwards, that is,
another nmoves. We can then insert the new pair, another move, doing
2n + ℓi + 1 new moves in total. Inserting n pairs, by the assumption
n2 + nℓi moves, we have

n2 + nℓi + 2n+ ℓi + 1 = (n+ 1)2 + ℓi(n+ 1). �
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Corollary 4.5. Suppose that Ki is a w-allowed action for νw.

It is not possible to insert a pair of beads on runners j and p− j in
the following cases:

(i) j = i for 0 < i < t, ϵi = ϵi+1 = 1 and ℓi > ℓi+1.

(ii) j = i for 0 < i < t, ϵi = ϵi+1 = 0 and 2ℓi + 1 ≥ ℓi+1 > ℓi.

(iii) i = 0 and j = 1.

Nor is it possible to insert more than one pair of beads on runners t
and t+ 1 when ℓt > 0.

Proof. We divide the proof into cases, using Lemma 3.8 to bound w.

• i ̸= t: (i) In this case, we know that w ≤ ℓi − ℓi+1 and, inserting
this pair is ℓi+1 moves, i.e., ℓi+1 ≤ w ≤ ℓi− ℓi+1, which implies that
ℓi+1 ≤ −1, a contradiction to the definition of the ℓi.

• In this case, we know that w ≤ ℓi+1 − ℓi and, inserting this pair is
ℓi + 1 actions, i.e., ℓi + 1 ≤ w ≤ ℓi+1 − ℓi ⇒ 2ℓi + 1 ≤ ℓi+1.

• In this case, we know that w ≤ ℓ1−1 if ϵ1 = 0 and w ≤ ℓ1 if ϵ1 = 1.
Inserting this pair is ℓ1 + 1 actions, i.e., ℓ1 + 1 ≤ w ≤ ℓ1 ⇒ 1 ≤ 0, a
contradiction.

• i = t: In this case, we know that w ≤ 2ℓt + 1 and, inserting more
than one pair, is at least 2ℓt + 4 actions, a contradiction. �

Definition 4.6. We say that a bead can be reduced if and only if the
bead can move from runner i to an empty place at the same height, in
runner i−1 for 2 < i < p−1, or from runner 1 to an empty place at one
height less, in runner p − 1 for height bigger than 1, or from runner 1
at height 1 to disappearance of the bead. As mentioned in the proof of
Lemma 4.4, the move from runner 1 to runner p − 1 is actually made
in two steps: first to runner 0 and then to runner p − 1. This action
will be called to reduce a bead. Such a reduction reduces the rank by
1 or 2, the latter only when moving the bead from runner 1 to runner
p− 1.

We now have enough background to prove one of the main results
of this section:
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Proposition 4.7. If Ki gives a w-allowed action with respect to νw,
then (ν, µ) is a w-compatible pair via Ki.

Proof.

(i) Ki is an involution. By Lemma 2.1, we see that, for every strict
partition λ ∈ Jn, there is a suitable strict partition χ ∈ Jm obtained
by Ki.

(ii) We need to compare |Mn−m(λ, χ)| and |Mn−m(ν, µ)|. The strict
partition λ is obtained from the core ν by adding w p-bars. To the
extent that these moves take place on runners not affected by Ki, the
same moves will be involved in obtaining χ from µ. Thus, the only
moves which affect the possibility of reducing beads are on runners
affected by Ki, or on runner 0 in the case of i = 0. We consider the
cases listed in Remark 4.3, the only relevant cases when Ki reduces the
rank.

(a) Ki, 0 < i < t:
• Case 1: ϵi = 1, ϵi+1 = 0, ℓi + ℓi+1 > 0. Moving beads up does
not block any bead reductions. By Corollary 4.5, we cannot add pairs
unless ℓi > ℓi+1. If we add d > 0 pairs to ν, then we must use up
dℓi + d2 moves, and this is ≥ ℓi + d; thus,

ℓi + d ≤ w ≤ ℓi + ℓi+1.

The number of moves remaining is then

≤ ℓi+1 − d.

Therefore, in the remaining moves on runner i, the topmost bead
cannot rise above the topmost bead in runner i + 1. The number
of bead on runner i + 1 which can be reduced decreases by d, but the
number of beads which can be reduced on runner i increases by the
same d, so the total number of beads which can be reduced is the same
as in ν.

• Case 2: ϵi = ϵi+1 = 0, ℓi+1 > ℓi. Since w is the positive difference,
we cannot move any beads on runner i up past the topmost bead of
runner i+ 1. We can add pairs only to runner i and only when

d ≤ dℓi + d2 ≤ w ≤ ℓi+1.
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The beads whose reduction is blocked on runner i+ 1 will be compen-
sated for by d new beads on runner i, thus again, the total number will
be the same.

• Case 3: ϵi = ϵi+1 = 1, ℓi+1 < ℓi. This case is similar to Case 2,
with i and i+ 1 reversed.

(b) K0, ℓ1 > 0, ϵ1 = 0. In this case, there are no pairs which can be
added, and no beads on runner p − 1 to block the reduction of beads
from runner 1. However, here, we must deal with the problem of beads
on runner 0, in the manner described above.

(c) Kt, ℓt > 0, ϵt = 1. In this case, merely moving beads up will not
block any reductions. If a pair is added, it is only one, and adding it
uses up ℓt+1 moves, while w ≤ 2ℓt+1; thus, the new bead on runner t
cannot rise above the topmost bead of runner t+ 1.

(iii) As stated before, λ belongs to the block with label νw, and χ to
the block with label µw. For every core ρ, we define ϵ(ρ) ≡ |ρ| + h(ρ)
(mod 2). Adding a p-bar to the core ρ may be done in one of two ways:
One is lifting up one bead on its runner so that the number of parts
does not change but |ρ| becomes |ρ| + p. The other is adding a pair
of beads (i, p − i), so h(ρ) becomes h(ρ) + 2 and |ρ| becomes |ρ| + p,
recalling that p is odd. In both ways, the parity of the partition is
changed from even to odd, or from odd to even. For w additions of p
we can summarize the result as follows. If w is even, the parity changes
w times, and therefore ϵ(ρw) = ϵ(ρ); and, if w is odd, then the parity
changes according to the scheme ϵ(ρw) = 1 − ϵ(ρ). Therefore, for an
even w, we obtain ϵ(λ) + ϵ(χ) = ϵ(ν) + ϵ(µ), and for odd w, we obtain
ϵ(λ) = 1− ϵ(ν) and ϵ(χ) = 1− ϵ(µ). Thus,

ϵ(λ) + ϵ(χ) = 1− ϵ(ν) + 1− ϵ(µ) ≡ ϵ(ν) + ϵ(µ) (mod 2). �

We now arrive at the source algebra equivalence and the problem
of crossovers. As mentioned in the introduction we will work over a
modular system (K,O, F ).

Let ν be a core of rank n−wp, and let µ be a core of rank m−wp,
with n > m. A block idempotent is a centrally primitive idempotent

in the center of the group algebra, and the center of OÃn is also the

center of OS̃n [12]. Let b ∈ OÃn represent the block idempotent of

Bνw or B′
νw , and let c ∈ OÃm represent the block idempotent of Bµw
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or B′
µw . If Ki is a w-allowed action for νw with µ = Ki(ν), then we

must try to prove that one of the following holds:

(i) if the parities are the same, then Bνw is source algebra equivalent
to Bµw , and B

′
νw is source algebra equivalent to B′

µw .
(ii) If the parities are different, then Bµw is source algebra equivalent

to B′
µw , and B

′
νw is source algebra equivalent to Bµw ,

The first set of equivalences was essentially proven in [12]. However,
since the main thrust of that paper was the Donovan conjecture, it is
rather hard to extract the particular result that we need. Therefore,
we recast our results in a form which will allow us to apply [10,
Theorem 2.5]. For the second set of equivalences, we will cite [13],
which used permutation modules.

For any strict partition λ, when ϵ(λ) = 0, we let θ+λ and η±λ be

the corresponding irreducible character or characters of S̃n or Ãn, and
the characters η±λ are conjugate. When ϵ(λ) = 1, we let θ±λ and

η+λ be corresponding irreducible characters or character of S̃n or Ãn,

respectively. The characters θ±λ are called associate and are actually

conjugate when S̃n is embedded in S̃n+2.

Definition 4.8 ([10]). Let λ be a strict partition of n and χ a strict

partition of m, with n > m. Let θ±λ be an irreducible character of S̃n
corresponding to λ and θ±χ an irreducible character of S̃m corresponding

to χ. Let u be an idempotent of (OS̃n)S̃m . We define

r(θ±λ , θ
±
χ , u) =

{
0 if χ ̸= Ki(λ);

⟨IndS̃n
S̃m

(θ±χ )|KS̃nu, θ
±
λ ⟩| if χ = Ki(λ),

which is equal to the number of constituents of the irreducible module

V ±
λ representing θ±λ in the projective module KS̃nu ⊗ U±

χ , where

U±
χ is the irreducible module representing the character θ±χ . The

corresponding number for Ãn will be denoted by r′.

We restrict ourselves henceforward to the case where the parities
are the same; thus, either both characters belong to pairs or both are
single.
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In order to quote Theorem 2.5 from [10] we must give a few general
definitions. LetG be a group andH a subgroup containing a p-groupD.
Set A = OG, and let

BrD : AD −→ FCG(D)

be the Brauer homomorphism. For any idempotent u of (OG)H , we let
mH,D(uOGu) be the number of idempotents i in a primitive idempotent
decomposition of u in (uOGu)H for which BrD(i) is non-zero.

As for the case to which we wish to apply the theorem, we let b be
the idempotent of a block of OG and let c be the idempotent of a block
of OH, assuming that the two blocks have a common defect group D.
The product bc commutes with H because it is an idempotent, since b
is central in OG, and c is central in OH. Thus, bc is an idempotent in
(OG)H . We denote by Irr(G, b) the set of K-irreducibles for the group
G which lie in the block with idempotent b.

In what follows, we will take u = bc. Then bcOGbc is a subalgebra of
the block algebra bOGb and, because b is central, can be written in the
form cOGbc. The source algebra idempotent, which is found in [10,
Proof of Theorem 2.5] and which gives the source algebra equivalence,
will be an idempotent of (cOGbc)H .

We set G = S̃n and H = S̃m. For any core ρ, let Bρw be the

block algebra of OS̃n with core ρ and weight w, and let Bρw′ be the

corresponding block of OÃn with core ρ and weight w.

Lemma 4.9. Let α := n−m, and let β := |Mα(ν, µ)|. Suppose that ν
and µ form a w-compatible pair and that ϵ(ν) = ϵ(µ). Write ϵ(α) = 0

if α is even, and ϵ(α) = 1 otherwise. Then | Irr(S̃n, b)| = | Irr(S̃m, c)|
and, for each θ±λ ∈ Irr(S̃n, b),∑

θ±τ ∈Irr(S̃m,c)

r(θ±λ , θ
±
τ , bc) = 2(α−ϵ(α))/2β,

and, for each θ±χ ∈ Irr(S̃m, c),∑
θ±τ ∈Irr(S̃n,b)

r(θ±τ , θ
±
χ , bc) = 2(α−ϵ(α))/2β.
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Proof. Let λ be a strict partition of n and χ a strict partition of m.

Let θ±λ be an irreducible character of S̃n corresponding to λ and θ±χ
an irreducible character of S̃m corresponding to χ. It follows from the
branching rules for spin representations, see, for example, [18], that, if

θ±λ is a constituent of IndS̃n
S̃m

(θ±χ ), then there is at least one path from

λ to χ so Mα(λ, χ) is non-empty, which implies by Definition 4.1 that
Mα(ν, µ) is also non-empty.

(i) α ̸= 1. Since in our situation ν and µ have the same parities,
α is odd if i = 0 and even if i > 0, for i such that Ki(µ) = ν. We
can calculate the coefficients of induced characters using the branching
rules in [18]. Stembridge shows that, if we can build λ up step-by-step
from χ, then there will be a character for λ occurring in the module
induced from χ. In Proposition 4.1, we precisely showed that, in the
case of a w-allowed action, λ could be built up by i shifts. Furthermore,
since the module was induced from the block with idempotent c, it is
not destroyed by multiplication by c, so r(θ±λ , θ

±
χ , bc) would be expected

to be non-zero. The difficulty lies in counting exactly how large it is.

If α is even, then i ̸= 0, so that λ and χ have the same number of

parts, and the multiplicity of θ±λ as a constituent of IndS̃n
S̃m

(θ±χ ) is 2
α/2β

if ϵ(χ) = 0 and is 2α/2−1β if ϵ(χ) = 1.

If α is odd, then i = 0 and λ has one more part than χ. Since

α > 1, the multiplicity of θ±λ as a constituent of IndS̃n
S̃m

(θ±χ ) is 2
α−1/2β

if ϵ(χ) = 0 and 2α−3/2β if ϵ(χ) = 1.

These branching rules may be summarized in a single formula,
recalling that ϵ(α) is the parity of α. Recall that β = |Mα(ν, µ)|.
Then, if α ̸= 1,

r(θ±λ , θ
±
χ , bc) = 2(α−ϵ(α)−ϵ(λ)−ϵ(χ))/2β.

We now verify that the sums in the statement of Lemma 4.9 are
correct. When ϵ(χ) = 0, there is only one character in each of the
sums in the statement of the lemma with non-zero coefficients, and
that coefficient has the correct value required. When ϵ(χ) = 1, there
are exactly two with non-zero coefficients, and the sum of those two
coefficients has the correct value.
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(ii) α = 1. We have β = 1 since the only way to have the parities
preserved is for ν to be obtained from µ by adding part 1. In this case,
θ+χ lifts to a unique character, either θ+λ or θ−λ , with multiplicity 1 (and

similarly for θ−χ , when ϵ(χ) = 1).

In the special case where α = 1 and ϵ(χ) = 0,

r(θ+λ , θ
+
χ , bc) = 1,

giving both sums in the lemma (recalling that β = 1 and α−ϵ(α) = 0).

In the special case that α = 1 and ϵ(χ) = 1, there is a specific
correspondence between paired characters; thus,

r(θ+λ , θ
+
χ , bc) + r(θ+λ , θ

−
χ , bc) = 1,

and

r(θ−λ , θ
+
χ , bc) + r(θ−λ , θ

−
χ , bc) = 1,

which give the first sum in the statement of Lemma 4.9.

It is equally true that

r(θ+λ , θ
+
χ , bc) + r(θ−λ , θ

+
χ , bc) = 1,

and

r(θ+λ , θ
−
χ , bc) + r(θ−λ , θ

−
χ , bc) = 1,

which gives the second sum in the statement of Lemma 4.9.

Similar results for Ãn and Ãm can be proven in an almost identical
fashion, by standard Clifford theory. It is done in full in [15]. �

Theorem ([10, Theorem 2.5]). Let u be an idempotent of (cOGbc).
Then, for any character ϕ ∈ Irr(G, b),∑

ψ∈Irr(H,c)

r(ϕ, ψ, u) ≥ mH,D(uOGu),

and, for any character ψ ∈ Irr(H, c) we have∑
ϕ∈Irr(G,b)

r(ϕ, ψ, u) ≥ mH,D(uOGu).
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Further, if | Irr(H, c)| = | Irr(G, b)|, and if∑
ψ∈Irr(H,c)
ϕ∈Irr(G,b)

r(ϕ, ψ, u) ≤ mH,D(uOGu)| Irr(H, c)|,

then, for any primitive idempotent i of (uOGu), the image BrD(i) is
non-zero and the map OHc→ iOGi given by x 7→ ix is an isomorphism
of interior H-algebras. In particular, if the above holds, then OGb and
OHc are source algebra equivalent.

Since it is assumed that (ν, µ) is a w-compatible pair, the situation
of the second part of the theorem is now addressed. We have already
calculated the sum in Lemma 4.9. In order to complete the proof, we
need the next lemma, inspired by an unpublished result by Kessar from
an early version of [13].

Lemma 4.10. With the notation above,

• if α is odd, mH,D(OGbc) = 2α−1/2β.

• If α is even, mH,D(OGbc) = 2α/2β.

Proof. By Brauer’s main theorem, see, for example, [1], the image
BrD(b) of the block idempotent b in FCG(D) is the NG(D) conjugacy
class sum of block idempotents of blocks whose image under the
projection π : FCG(D) → FCG(D)/Z(D) is of defect 0. Let b be
π ◦ BrD, and define c in a similar fashion for H.

In order to apply [10, Theorem 2.5] in the proof of our main theorem,
we must first calculate the quantitymH,D(cOGbc), which is the number
of primitive idempotents in an idempotent decomposition of (cOGbc)H ,
non-zero under the action of π ◦ BrD. By [10, Proposition 2.6], this
is the same as the number of idempotents in a primitive idempotent
decomposition of the algebra

(cF (CG(D)/Z(D)bc)NH(D),

where NH(D) acts on FCG(D) through the inclusion of H in G. This
number is the product of the degree of the defect 0 block, times the
length of the orbit under the action of NH(D).
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According to the local structure of blocks of the double covers
of the symmetric groups given in Cabanes [6], the defect group is

isomorphic to the defect group of S̃|pw|. There is a subgroup, S̃|pw|S̃|ν|

of S̃n lifting a Young subgroup of Sn isomorphic to S|pw| × S|ν| such

that CG(D)/Z(D) ∼= S̃|ν|. The inclusion of H in G and the defect

group D can be chosen such that CH(D)/Z(D) ∼= S̃|µ|, where the

induced embedding of S̃|µ| in S̃|ν| is the standard embedding, and

NH(D) ∼= S̃|µ|NS̃|pw|
(D). Let Λ(b) be the set of ordinary irreducible

characters of S̃|ν| corresponding to the partition ν which is either {θ+ν }
or {θ+ν , θ−ν }, depending on parity. Similarly, let Λ(c) be the set of

ordinary irreducible characters of S̃|µ| corresponding to the partition µ.

Groups S̃|pw| and S̃|ν| do not centralize each other, even though the

sets on which their images in S̃n act are disjoint, because commuting
transpositions multiplies the product by the central involution z (which

acts in spin representations as −1). However, group Ã|pw| centralizes

S̃|ν| since all of its elements are even products of transpositions; hence,

(cF (CG(D)/Z(D))bc)NH(D) = (cF S̃|ν|bc)
⟨S̃|µ|,σ⟩,

where σ in S̃|pw| − Ã|pw| is the lifting of a transposition, so that σ2

is central. Also, since σ normalizes S̃|µ|, σ acts on (cF S̃|ν|bc)
S̃|µ| , and

thus, we can compute

(cF (CG(D)/Z(D))bc)NH(D)

by first computing the algebra (cF S̃|ν|bc)
S̃|µ| and then taking fixed

points under σ.

The bimodule W = (cF S̃|ν|bc)
S̃|µ| is isomorphic to

End
F (S̃|ν|×S̃op

|µ|)
(FS̃|ν|bc),

the algebra of F (S̃|ν| × S̃op
|µ|) invariant endomorphisms of the F (S̃|ν| ×

S̃op
|µ|)-module FS̃|ν|bc. The map taking bc to v ∈ W is obviously a

homomorphism of left modules, and it is a homomorphism for the right

action as well because v is fixed under conjugation by elements of S̃|µ|.
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Since b and c are of defect 0, F (S̃|ν|×S̃op
|µ|)-modules are sums of tensor

products of the form V ⊗ U , where V is an irreducible left module for

FS̃|ν|, and U is an irreducible right module for FS̃|µ|. Furthermore, for

the bimodule FS̃|ν|bc, which is actually an (FS̃|ν|b × FS̃op
|µ|c)-module,

the factors must be such that V is a composition factor in the module
induced up from U .

In general, the bimodules over a pair of semisimple algebras are
direct sums of tensor products V ⊗W of irreducibles. Thus, in fact,

FS̃|ν|bc is isomorphic to ⊕
ϕ∈Λ(b)
ψ∈Λ(c)

(Vϕ ⊗ Uψ)
⊕dϕ,ψ ,

where Vϕ and Uψ are simple projective modules for FS̃|ν| and FS̃|µ|
corresponding to the ordinary irreducible characters ϕ and ψ, respec-

tively, and where dϕ,ψ is the multiplicity of ϕ in Ind
S̃|ν|

S̃|µ|
(ψ). Thus,

(cF S̃|ν|bc)
S̃|µ| is isomorphic to the semi-simple algebra∏

ϕ∈Λ(b)
ψ∈Λ(c)

Mat
dϕ,ψ

(F ).

(i) α is odd. Let us consider the case ϵ(ν) = 0, ϵ(µ) = 0. Here, Λ(b)

consists of the unique irreducible character θ+ν of S̃|ν| corresponding

to ν, and Λ(c) consists of the unique irreducible character θ+µ , of S̃|µ|

corresponding to µ. The multiplicity of θ+ν in Ind
S̃|ν|

S̃|µ|
(θ+µ ) is 2α−1/2β;

thus, (cF S̃|ν|bc)
S̃|µ| is a matrix algebra of size 2α−1/2β.

In particular, σ acts as an inner automorphism on (cF S̃|ν|bc)
S̃|µ| .

Since σ2 is central and thus acts as the identity and, since p is of
odd characteristic, we may assume that the action of σ is through a
diagonal matrix with 1s and −1s on the diagonal. Thus, the fixed
points of this action are block diagonal matrices corresponding to the
decomposition into eigenspaces of σ. The total number of primitive
idempotents remains the same, equal to the total degree of the block
diagonal matrix. It follows that the number of idempotents in any

primitive idempotent decomposition of (cF S̃|ν|bc)
⟨S̃|µ|,σ⟩ is 2α−1/2β.
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Now let us consider the case ϵ(ν) = 1, ϵ(µ) = 1. Each of Λ(b) and
Λ(c) consists of two characters.

(a) α > 1: The multiplicity of any irreducible character in Λ(b) in
the induced character of any irreducible character in Λ(c) is 2α−3/2β.

Thus, (cF S̃|ν|bc)
S̃|µ| is a direct product of four matrix algebras, each

of size 2α−3/2β. Then σ permutes these matrix factors in pairs so

that (cF S̃|ν|bc)
⟨S̃|µ|,σ⟩ is isomorphic to a direct product of two matrix

algebras, each of size 2α−3/2β. Thus, the number of idempotents in a

primitive idempotent decomposition of (cF S̃|ν|bc)
⟨S̃|µ|,σ⟩ is 2α−1/2β.

(b) α = 1: In this case, β = 1, and there is a pairing between
the elements of Λ(b) and Λ(c) such that the number of constituents is
either 0 or 1. We may assume that, in this special case, θ+µ lifts to θ+ν
and θ−µ lifts to θ−ν . The total number of idempotents lifting one of the

elements of Λ(c) is 1, but this is exactly equal to 2α−1/2β, as in the
case α > 1.

Thus, the number of idempotents in a primitive idempotent decompo-

sition of (cF S̃|ν|bc)
⟨S̃|µ|,σ⟩ is 2α−1/2β.

(ii) α is even. Let us consider the case ϵ(ν) = 0, ϵ(µ) = 0. Here, Λ(b)

consists of the unique irreducible character θ+ν of S̃|ν| corresponding

to ν, and Λ(c) consists of the unique irreducible character θ+µ of S̃|µ|

corresponding to µ. The multiplicity of θ+ν in Ind
S̃|ν|

S̃|µ|
(θ+µ ) is 2α/2β;

thus, (cF S̃|ν|bc)
S̃|µ| is a matrix algebra of size 2α/2β.

Now let us consider the case ϵ(ν) = 1, ϵ(µ) = 1. Then each of
Λ(b) and Λ(c) consists of two characters, and the multiplicity of any
irreducible character in Λ(b) in the induced character of any irreducible

character in Λ(c) is 2α/2−1β. Thus, (cF S̃|ν|bc)
S̃|µ| is a direct product

of four matrix algebras, each of size 2α/2−1β. Then σ permutes these

matrix factors in pairs; thus, (cF S̃|ν|bc)
⟨S̃|µ|,σ⟩ is isomorphic to a direct

product of two matrix algebras, each of size 2(α/2)−1β. Therefore, the
number of idempotents in a primitive idempotent decomposition of

(cF S̃|ν|bc)
⟨S̃|µ|,σ⟩ is 2α/2β. �

Example 4.11. We now illustrate with the case in Example 3.4, where
i = 0, w = 1, ν = (6, 1), n = 12, while µ = (4), m = 9. The difference
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α = n−m = 3 is odd, and, by Lemma 4.4,

β = |Mα(ν, µ)| = 3!/2 = 3.

The block with label ν1 has two characteristic 0 irreducibles, labeled
by (6, 3, 2, 1) and (6, 5, 2, 1), while the block algebra of c has two
characteristic 0 irreducibles, labeled by (4, 3, 2) and (5, 4). Both cores
are odd; thus, there are two irreducible characters

Λ(b) = {θ+λ , θ
−
ν },Λ(c) = {θ+χ , θ−µ }.

The decomposition number in this case, by Lemma 4.4, is 6; therefore,
we obtain ⊕

θ±ν ∈Λ(b)

θ±µ ∈Λ(c)

(Vθ±ν ⊗ Uθ±µ )
⊕6

for the bimodule. Then, (cF S̃|ν|bc)
⟨S̃|µ|,σ⟩ is isomorphic to a direct

product of two matrix algebras, each of size 6.

Theorem 4.12. Suppose that νw and µw are extremal block labels of
an i-string.

(i) If the parities are the same, Bνw is source algebra equivalent to
Bµw , and B

′
νw is source algebra equivalent to B′

µw .

(ii) If the parities are different, Bνw is source algebra equivalent to
B′
µw , and B

′
νw is source algebra equivalent to Bµw .

Proof. We have shown in Section 3 that, if ν and µ are extremal
points of an i-string, then Ki is a w-allowed action, and thus, (ν, µ) is
a w-compatible pair.

(i) Suppose that the parities of ν and µ are the same. We have shown
that mH,D(OGbc) is exactly the number calculated in Lemma 4.9.

Then we sum over Irr(S̃n, b) or Irr(S̃m, c), which have the same number

of elements, and obtain mH,D(OGbc)| Irr(S̃n, b)|. Thus, [10, Theorem

2.5] applies, and the block algebras OS̃nb and OS̃mc are source algebra
isomorphic.

(ii) Suppose the parities are different. Then, this source algebra
equivalence is obtained from [13, Lemma 5.1, Theorem 6.3]. �
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5. A sharp bound for Donovan’s conjecture.

Definition 5.1. We say that two blocks with labels ρw and σw of the
same weight are allowed equivalent if one can be obtained from the
other by a sequence of w-allowed actions.

Now we wish to find properties which will indicate that a block is
allowed-equivalent to a block of lower rank. This will allow us to find
a rank N0 such that every block is allowed equivalent to a block of
rank N , N ≤ N0. This was accomplished in [12]. However, by using
crossovers and tighter analysis of possible actions, we can make the
bound in [12] sharp and exhibit a block ρww which attains the bound.

Lemma 5.2. Let ρw be a block with the p-core

c(ρ) = ((ℓ1, ϵ1), . . . , (ℓt, ϵt))

such that, for each i ∈ I = {1, . . . , t}, either ℓi ≥ w, or ℓi = 0.
Then, there is a block µw, of a lower or equal rank, with the p-core
c(µ) = ((ℓ′1, 0), . . . , (ℓ

′
r, 0), (0, 1), . . . , (0, 1)), that is allowed equivalent,

by w-allowed actions, to block ρw, and such that the values of ℓ′j form
a permutation of those values of ℓi with ℓi ≥ w.

Proof. Let ρw be a block with the p-core c(ρ) = ((ℓ1, ϵ1), . . . , (ℓt, ϵt)),
satisfying, for each i ∈ I, either ℓi ≥ w or ℓi = 0. (Note that, for ℓi = 0,
by definition, ϵi = 1.)

Step 1: If all ϵi = 0, then ρ is already in the desired form. If not, let
k be the first place in the p-core ρ satisfying ϵk = 1, and let j be the
first place in the p-core ρ, after k, satisfying ϵj = 0, if such exists (i.e.,
all runners from runner k to runner j − 1 are empty and ℓj ̸= 0, i.e.,
ℓj ≥ w). We shall run a recursion on k in order to show that we can
transform ρ by w-allowed actions to the form

c(ν) = ((ℓ̃1, 0), . . . , (ℓ̃r, 0)(ℓ̃r+1, 1), . . . , (ℓ̃t, 1)).

If no j exists, then we can take ν = ρ and proceed to the second step.

If j exists, we have ℓj + ℓj−1 ≥ w; thus, we can perform the w-
allowed action Kj−1 and obtain a block with the p-core such that the
pair (ℓj−1, 0), (ℓj , 1) has been swapped. Currently, the new ℓj−1 is
the old ℓj and ℓj−1 + ℓj−2 ≥ w; thus, we can perform the w-allowed
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action Kj−2, and so on. In summary, we perform the w-allowed action
Kk ◦Kk+1 ◦ · · · ◦Kj−1 until we reach the situation where all runners
from runner k + 1 to runner j are empty. If there is no j > k + 1 with
ϵj = 0, we have finished the first step. Otherwise, we replace k by k+1
and continue.

Step 2: If, in the p-core

c(ν) = ((ℓ̃1, 0), . . . , (ℓ̃r, 0)(ℓ̃r+1, 1), . . . , (ℓ̃t, 1)),

all of the ℓ̃i for i > r equal 0, then the lemma has been proved. If not,

let s be the last place in the p-core ρ satisfying ℓ̃s ̸= 0, meaning ℓ̃s ≥ w
and ϵs = 1. A backwards recursion is performed on s− r.

By Kt−1 ◦ · · · ◦ Ks+1 ◦ Ks, we can bring the pair (ℓ̃s, 1) to place t
and perform the w-allowed action Kt to invert ϵt from 1 to 0. Step 1
is repeated to obtain a new ν with r replaced by r+1. When Step 2 is
again applied, the new s′ will be no greater than the previous s because

the actions of Step 1 will return all of the pairs which came after (ℓ̃s, 1)
to their previous places.

A block µw is obtained with the p-core,

c(µ) = ((l
′

1, 0), . . . , (l
′

r, 0), (0, 1), . . . , (0, 1)),

which is allowed equivalent to the block ρw, and of a lower rank than
ρw (because of w-allowed actions which reduced the rank of the p-strict
partition). Since in Section 4 we showed that allowed equivalent blocks
have equivalent source algebras, and a block is Morita equivalent to
its source algebra, we have actually shown that the blocks are Morita
equivalent. �

Lemma 5.3. Let ρw be a block with the p-core

ρ = ((ℓ1, ϵ1), . . . , (ℓt, ϵt))

satisfying, for each i ∈ I = {1, . . . , t}, either ℓi > w or ℓi = 0. There
is an allowed equivalent block σw of lower rank with the p-core

c(σ) = ((ℓ′1 − 1, 0), . . . , (ℓ′r − 1, 0), (0, 1), . . . , (0, 1)),

where (ℓ′1, . . . , ℓ
′
r) is a permutation of the non-zero ℓi.
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Proof. Let (ℓi1 , . . . , ℓir ) be the set of all ℓi > 0. First, by Lemma 5.3,
the block ρw is allowed equivalent to a block µw with the p-core c(µ) =
((ℓ′1, 0), . . . , (ℓ

′
r, 0), (0, 1), . . . , (0, 1)), where (ℓ

′
1, . . . , ℓ

′
r) is a permutation

of (ℓi1 , . . . , ℓir ).

We next want to reduce each ℓi, 1 ≤ i ≤ r, by 1, with ϵi = 1.
In terms of the abacus this will bring all of the beads onto runners
p − r,. . . ,p − 1. In order to accomplish this a recursion is run on i,
for 1 ≤ i ≤ r. For i = 1, we perform K0. In order to reduce some ℓi
by 1, we must bring it to ℓ1, by performing K1 ◦K2 ◦ · · · ◦Ki−1 and
then K0. We know that l′i > w for 1 ≤ i ≤ r; thus, the involution K0

is a w-allowed action (l′1 − 1 ≥ w), and also Kj when ϵj ̸= ϵj+1 is a
w-allowed action since (ℓ′i + ℓ′i+1 ≥ w).

Finally, we apply Lemma 5.3 again to change all ϵi to 0. This is
possible because all ℓi − 1 ≥ w. �

Lemma 5.4. Let ρw be a block label with the p-core t-tuple given by

c(ρ) = ((ℓ1, ϵ1), . . . , (ℓt, ϵt)),

let (ℓi1 , . . . , ℓir ) be the set of all ℓi > 0, let the sequence (m1, . . . ,mr)
be a permutation which satisfies 0 < m1 ≤ m2 ≤ · · · ≤ mr, and
let mgap be the maximal gap between all mi. Choose a j such that
mgap = mj+1 −mj where mj > 0, i.e., mj+1 is the smallest of the big
mis and mj is the biggest of the small mis. If mgap ≥ w, then all ℓi
satisfying ℓi ≥ mj+1 are reducible by 1 by w-allowed actions.

Proof. Note first that mj+1 ≥ w +mj > w. Every pair (ℓi, ϵi) for
which ℓi ≥ mj+1, hereafter called a tall pair, can be commuted with
every pair (ℓk, ϵk) for which ℓk ≤ mj , hereafter called a short pair,
whether the ϵ are the same or not since we always have ℓi − ℓk ≤ w.
Thus, if we let i be the first of the tall pairs when runners are ordered
from 1 to p−1, we can move it toward the front by w-admissible actions
of type Ki′ for 0 < i′ < t. If ϵi = 1, then, when runner t+1 is reached,
the action Kt must be performed, but this is also admissible since
2ℓi + 1 ≥ w. Performing these actions recursively, we reach a situation
in which all of the tall pairs have ϵ = 0 and are in 1 through s, for some
s < r. Then they can all be lowered by 1 as in Lemma 5.3. �
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Proposition 5.5. Let ρw with c(ρ) = ((ℓ1, ϵ1), . . . , (ℓt, ϵt)) be a block
label that cannot be reduced by w-allowed actions, and let mgap be as
before. Then the following hold :

• the p-core ρ satisfies min{ℓi | 1 ≤ i ≤ r} ≤ w.
• mgap ≤ w − 1 i.e., the maximal gap is w − 1. Among these
blocks, that with the maximal rank has core t-tuple of the form
c(ρw) = ((w, 0), . . . , (w + (w − 1)(t− 1), 0)).

Proof. Let I = {1, . . . , t}. By Lemma 5.2, we obtain that every core
satisfying either ℓi ≥ w or ℓi = 0, for each i ∈ I, can be reduced by w-
allowed actions to a core of the form ((ℓ1, 0), . . . , (ℓr, 0), (0, 1), . . . , (0, 1)).

By Lemma 5.3, a core ((ℓ1, 0), . . . , (ℓr, 0), (0, 1), . . . , (0, 1)) satisfying

ℓi > w for 1 ≤ i ≤ r can be reduced to a core ((l
′

1 − 1, 0), . . . , (l
′

r −
1, 0), (0, 1), . . . , (0, 1)), i.e., in the core that cannot be reduced there is
an i satisfying 0 ̸= ℓi ≤ w.

By Lemma 5.4, if there is a gap, mgap = mj+1 − mj satisfying
mgap ≥ w then this gap can be reduced until it is less than w, i.e.,
in the core that cannot be reduced, the maximal gap is w − 1. The
maximal rank is attained when the minimum is as large as possible,
all gaps are as large as possible, and the ordering of runners gives the
largest possible rank. This gives the core ρw of the statement of the
lemma. �

Lemma 5.6. Let c(ν) = ((ℓ1, ϵ1), . . . , (ℓt, ϵt)) be a core. The rank of
this block is

N(ν) =

t∑
i=1

ℓi · i1−ϵi · (p− i)ϵi +
ℓi(ℓi − 1)

2
· p.

Proof. For every pair (ℓi, ϵi), we consider the addition made to the
rank by all beads on the ith runner. If ϵi = 0, then there are ℓi beads,
corresponding to parts of the form ap + i for a = 0, . . . , ℓi − 1, and,
if ϵi = 1, then there are ℓi beads corresponding to parts of the form
ap+ p− i for a = 0, . . . , ℓi − 1.

If ϵi = 0, then the rank will be

ℓi · i+
ℓi(ℓi − 1)

2
· p,
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and, if ϵi = 1, then that rank will be

ℓi · (p− i) +
ℓi(ℓi − 1)

2
· p.

Thus, in each case, we obtain rank

ℓi · i1−ϵi · (p− i)ϵi +
ℓi(ℓi − 1)

2
· p

for every pair (ℓi, ϵi), and we are finished. �

Theorem 5.7. Block ρww of maximal rank N(w), which does not lie at
the maximal rank end of any i-string, has rank

(5.1) N(w) = pw +

(
p(w − 1)

2
+ 1

)
·
( t∑
i=1

i2(w − 1) + i

)
.

Every block of weight w in OS̃n or OÃn is source algebra equivalent to
a block of rank ≤ N(w).

Proof. According to Lemma 5.5, the block of maximal rank has core

((w, 0), (2w − 1, 0), . . . , (tw − (t− 1), 0)).

Now we substitute these values into formula (5.1):

N(ρw) =

t∑
i=1

(iw − (i− 1))i+
(iw − (i− 1))(iw − i)p

2

=
t∑
i=1

(i2w − (i− 1)i) +
p(w − 1)

2

t∑
i=1

(i2w − (i− 1)i)

=

(
p(w − 1)

2
+ 1

)
·
( t∑
i=1

i2(w − 1) + i

)
.

Finally, adding pw for the weight of the block gives the desired formula.

Since every block of higher rank lies at the end of a maximal i-string,
it is source algebra equivalent to a lower-rank block. �

Remark 5.8. The number calculated in Theorem 5.7 is actually an
integer.
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• If w is odd, then w − 1 is even; thus, w − 1/2 is an integer.
• If w is odd, then parity of the sum depends on parity of∑t

i=1 i− i2, and each term of this sum is even.

Remark 5.9. A bound Nw is given in [12] above which every block is
source algebra equivalent to a block of lower degree. The aim there was
to prove Donovan’s conjecture by finding some bound, and no effort was
made to find a tight bound. In addition, then the problem of crossovers
was not understood, so the steps were all parity-preserving. Kessar first
defined a number

aw = 3p2(w + 1) + 3(p− 1).

The formula in [12] then becomes

Nw = aw(p− 1) + p

(
aw(aw + 1)

2

)
.

For an example which is in the range of manual computation, if
one uses the block-reduced crystal graph from [2], for p = 5 and
w = 2, there are 10 source algebra equivalence classes, of which the
ninth appears at degree 22 and the tenth at degree 38. Bound N(2)
given above in Theorem 5.7 is the exact bound 38, while the previous
bound N2 was 141,963. The sharp bound would be impossible if one
did not take crossovers into account.
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