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K-FAMILIES AND CPD-H-EXTENDABLE FAMILIES

SANTANU DEY AND HARSH TRIVEDI

ABSTRACT. We introduce, for any set S, the concept of
a K-family between two Hilbert C∗-modules over two C∗-
algebras, for a given completely positive definite (CPD-) ker-
nel K over S between those C∗-algebras, and we obtain a fac-
torization theorem for such K-families. If K is a CPD-kernel
and E is a full Hilbert C∗-module, then any K-family which
is covariant with respect to a dynamical system (G, η,E) on

E, extends to a K̃-family on the crossed product E ×η G,

where K̃ is a CPD-kernel. Several characterizations of K-
families, under the assumption that E is full, are obtained,
and covariant versions of these results are also given. One
of these characterizations says that such K-families extend
as CPD-kernels, between associated (extended) linking alge-
bras, whose (2, 2)-corner is a homomorphism and vice versa.
We discuss a dilation theory of CPD-kernels in relation to
K-families.

1. Introduction. Let B be a C∗-algebra and E a vector space which
is a right B-module satisfying α(xb) = (αx)b = x(αb) for x ∈ E, b ∈ B,
α ∈ C. The space E is called an inner-product B-module if there exists
a mapping ⟨·, ·⟩ : E × E → B such that

(i) ⟨x, x⟩ ≥ 0 for x ∈ E and ⟨x, x⟩ = 0 if and only if x = 0,
(ii) ⟨x, yb⟩ = ⟨x, y⟩b for x, y ∈ E and for b ∈ B,
(iii) ⟨x, y⟩ = ⟨y, x⟩∗ for x, y ∈ E,
(iv) ⟨x, µy + νz⟩ = µ⟨x, y⟩+ ν⟨x, z⟩ for x, y, z ∈ E and for µ, ν ∈ C.

An inner-product B-module E which is complete with respect to the
norm

∥x∥ := ∥⟨x, x⟩∥1/2 for x ∈ E,
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is called a Hilbert B-module or Hilbert C∗-module over B. It is said to
be full if the closure of the linear span of {⟨x, y⟩ : x, y ∈ E} = B. Also,
for each x ∈ E, we use the term |x| to denote ⟨x, x⟩1/2. Paschke
and Rieffel, cf., [10, 11], contributed immensely to the theory of
Hilbert C∗-modules in the early 1970s. Applications may be found
in the classification of C∗-algebras, the dilation theory of semigroups
of completely positive maps, the theory of quantum groups, etc.

Apart from the notion of the Hilbert C∗-module, the property of
complete positivity is a key concept needed in this article. A linear
mapping τ from a C∗-algebra B to a C∗-algebra C is called completely
positive if, for each n ∈ N,

n∑
i,j=1

c∗jτ(b
∗
j bi)ci ≥ 0

where b1, b2, . . . , bn are from B and c1, c2, . . . , cn are from C. The theory
of completely positive maps plays an important role in operator alge-
bras, quantum statistical mechanics, quantum information theory, etc.
Completely positive maps between unital C∗-algebras are characterized
by Paschke’s GNS construction, cf., [10, Theorem 5.2].

Let E be a Hilbert B-module, F a Hilbert C-module and τ a linear
map from B to C. A map T : E → F is called a τ -map if

⟨T (x), T (y)⟩ = τ(⟨x, y⟩) for all x, y ∈ E.

Skeide [14] developed a factorization theorem for τ -maps when τ is
completely positive based on Paschke’s GNS construction. This theo-
rem generalizes the Stinespring type theorem for Hilbert C∗-modules
due to Bhat, Ramesh and Sumesh, cf., [3]. Certain related covariant
versions of this theorem have been explored in [5, 6].

The next definition of completely positive definite (CPD-) kernels
on arbitrary set S plays a crucial role in exploring the theory of CPD-
semigroups over S [2].

Definition 1.1. Let B and C be C∗-algebras. By B(B, C), we denote
the set of all bounded linear maps from B to C. For a set S, we say
that a mapping K : S × S → B(B, C) is a completely positive definite
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kernel or a CPD-kernel over S from B to C if∑
i,j

c∗iK
σi,σj (b∗i bj)cj ≥ 0

for all finite choices of σi ∈ S, bi ∈ B, ci ∈ C.

The notion of a completely multi-positive map, introduced in [5], is
an example of a CPD-kernel over the finite set S = {1, . . . , n}. CPD-
kernels over the set S = {0, 1} and semigroups of CPD-kernels were first
studied by Accardi and Kozyrev [1]. Motivated by the definition of a
τ -map, we define the K-family, where K is a CPD-kernel, in Section 2.
Some of the results concerning τ -maps from [14, 15] are extended to
K-families in this article.

In Section 2, for a CPD-kernel K, we show that any K-family
{Kσ}σ∈S factorizes in terms of a C∗-correspondence F , a mapping
from the set S to F and an isometry, if the corresponding C∗-algebras
are assumed to be unital. The factorization result is a Stinespring-type
theorem. Further, we prove a covariant version of this theorem in terms
of the following notions. Let G be a locally compact group, and let B
be a C∗-algebra. We call a group homomorphism α : G → Aut(B) an
action of G on B and use symbol αt for the image of t ∈ G under α.
If t 7→ αt(b) is continuous for all b ∈ B, then we call (G,α,B) a C∗-
dynamical system. We denote by UB the group of all unitary elements
of the C∗-algebra B.

Definition 1.2. Let S be a set, and let K : S × S → B(B, C) be a
kernel over S with values in the set of bounded linear maps from a
C∗-algebra B to a unital C∗-algebra C. Let u : G → UC be a unitary
representation of a locally compact group G. The kernel K is called
u-covariant with respect to the (G,α,B) if, for all σ, σ′ ∈ S,

Kσ,σ′
(αt(b)) = utK

σ,σ′
(b)u∗t for b ∈ B, t ∈ G.

Let E and F be Hilbert C∗-modules over a C∗-algebra B. A map
T : E → F is called adjointable if there exists a map T ′ : F → E such
that

⟨T (x), y⟩ = ⟨x, T ′(y)⟩ for all x ∈ E, y ∈ F.
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The map T ′ is unique for each T , and we denote it by T ∗. We denote
the set of all adjointable maps from E to F by Ba(E,F ), and, if E = F ,
then we denote by Ba(E) the space Ba(E,E). The set of all bounded
right linear maps from E into F will be denoted by Br(E,F ). Let
E be a Hilbert B-module, and let F be a Hilbert C-module. A map
Ψ : E → F is said to be a morphism of Hilbert C∗-modules if a C∗-
algebra homomorphism ψ : B → C exists such that

⟨Ψ(x),Ψ(y)⟩ = ψ(⟨x, y⟩) for all x, y ∈ E.

If E is full, then ψ is unique for Ψ. A bijective map Ψ : E → F is called
an isomorphism of Hilbert C∗-modules if Ψ and Ψ−1 are morphisms
of Hilbert C∗-modules. We denote the group of all isomorphisms of
Hilbert C∗-modules from E to itself by Aut(E).

Definition 1.3. Let G be a locally compact group, and let B be a C∗-
algebra. Let E be a full Hilbert B-module. A group homomorphism
t 7→ ηt from G to Aut(E) is called a continuous action of G on E if
t 7→ ηt(x) from G to E is continuous for each x ∈ E. In this case, we
call the triple (G, η,E) a dynamical system on the Hilbert B-module E.

Any C∗-dynamical system (G,α,B) may be regarded as a dynamical
system on the Hilbert B-module B. In Section 2, we also examine the
extendability of covariant K-families with respect to any dynamical
system (G, η,E) on a Hilbert C∗-module E to the crossed product
Hilbert C∗-module E ×η G. For any Hilbert C∗-module E on B let
E∗ := {x∗ : x ∈ E} ⊂ Ba(E,B) where x∗y := ⟨x, y⟩ for all x, y ∈ E.
Then K(E) := span{xy : x ∈ E, y ∈ E∗} is a C∗-subalgebra of Ba(E).
Indeed, E∗ is a Hilbert K(E)-module where ⟨x∗, y∗⟩ := xy∗ for all
x, y ∈ E. The (extended) linking algebra of E is defined by

LE :=

(
B E∗

E Ba(E)

)
⊂ Ba(B ⊕ E),

cf., [12].

It is shown in Section 3 that, for any CPD-kernel K, the K-family
on full Hilbert C∗-modules is the same as the set of maps defined on
the Hilbert C∗-modules which extend as a CPD-kernel between their
linking algebras. A characterization of such K-families is obtained
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in terms of completely bounded maps between certain Hilbert C∗-
modules. We derive the covariant versions of the above results as well.

In Section 4, as an application of our theory, we propose and explore
a new dilation theory of any CPD-kernel K associated to a family of
maps between certain Hilbert C∗-modules. This dilation is called a
CPDH-dilation and, under additional assumptions, the family of maps
between the Hilbert C∗-modules becomes a K-family.

2. K-families and crossed products of Hilbert C∗-modules.

Definition 2.1. Let E and F be Hilbert C∗-modules over C∗-algebras
B and C, respectively. Let S be a set, and let K : S × S → B(B, C) be
a kernel. Let Kσ be a map from E to F for each σ ∈ S. The family
{Kσ}σ∈S is called a K-family if

⟨Kσ(x),Kσ′
(x′)⟩ = Kσ,σ′

(⟨x, x′⟩), for x, x′ ∈ E; σ, σ′ ∈ S.

Let A and B be C∗-algebras. A C∗-correspondence from A to B is
defined as a right Hilbert B-module E together with a ∗-homomorphism
ϕ : A → Ba(E), where Ba(E) is the set of all adjointable operators on
E. The left action of A on E given by ϕ is defined as

ay := ϕ(a)y for all a ∈ A, y ∈ E.

The next theorem deals with the factorization of K-families:

Theorem 2.2. Let B and C be C∗-algebras where B is unital. Let E
and F be Hilbert C∗-modules over B and C, respectively, and let S be
a set. If Kσ is a map from E to F for each σ ∈ S, then the following
conditions are equivalent :

(i) {Kσ}σ∈S is a K-family where K : S × S → B(B, C) is a CPD-
kernel.

(ii) There exists a pair (F , i) consisting of a C∗-correspondence F
from B to C and a map i : S → F , and there exists an isometry
ν : E

⊗
B F → F such that

(2.1) ν(x⊗ i(σ)) = Kσ(x), for all x ∈ E, σ ∈ S.

(E
⊗

B F denotes the interior tensor product of E and F .)
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Proof. Suppose (ii) is given. For each σ, σ′ ∈ S, we define Kσ,σ′
:

B → C by Kσ,σ′
(b) := ⟨i(σ), bi(σ′)⟩ for b ∈ B. The mapping K is a

CPD-kernel, for∑
i,j

c∗iK
σi,σj (b∗i bj)cj =

∑
i,j

c∗i ⟨i(σi), b∗i bj i(σj)⟩cj

=

⟨∑
i

bii(σi)ci,
∑
j

bj i(σj)cj

⟩
≥ 0,

for all finite choices of σi ∈ S, bi ∈ B and ci ∈ C. Further, for x, x′ ∈ E;
σ, σ′ ∈ S, we have

⟨Kσ(x),Kσ′
(x′)⟩ = ⟨ν(x⊗ i(σ)), ν(x′ ⊗ i(σ′))⟩ = Kσ,σ′

(⟨x, x′⟩).

Thus, {Kσ}σ∈S is a K-family, i.e., (i) holds.

Conversely, suppose (i) is given. By Kolmogorov decomposition for
K, cf., [2, Theorem 3.2.3] and [13, Theorem 4.2], we obtain a pair (F , i)
consisting of a C∗-correspondence F from B to C and a map i : S → F
such that F = span{bi(σ)c : b ∈ B, c ∈ C, σ ∈ S} satisfying

Kσ,σ′
(b) = ⟨i(σ), bi(σ′)⟩ for b ∈ B; σ, σ′ ∈ S.

Define a linear map ν : E
⊗

B F → F by ν(x ⊗ bi(σ)c) := Kσ(xb)c for
all x ∈ E, b ∈ B, c ∈ C and σ ∈ S. We have

⟨ν(x⊗ bi(σ)c), ν(x′ ⊗ b′i(σ′)c′)⟩ = ⟨Kσ(xb)c,Kσ′
(x′b′)c′⟩

= c∗Kσ,σ′
(⟨xb, x′b′⟩)c′

= ⟨i(σ)c, (⟨xb, x′b′⟩)i(σ′)c′⟩
= ⟨x⊗ bi(σ)c, x′ ⊗ b′i(σ′)c′⟩,

for all x, x′ ∈ E; b, b′ ∈ B; c, c′ ∈ C and σ, σ′ ∈ S. Hence, ν is an
isometry satisfying equation (2.1). This proves (i) ⇒ (ii). �

We now examine the covariant version of the above theorem. If
(G, η,E) is a dynamical system on a full Hilbert B-module E, then
there exists a unique C∗-dynamical system (G,αη,B), cf., [6, page
806]) such that

αη
t (⟨x, y⟩) = ⟨ηt(x), ηt(y)⟩ for all x, y ∈ E and t ∈ G.
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Moreover, for all x ∈ E and b ∈ B, we have ηt(xb) = ηt(x)α
η
t (b).

Definition 2.3. Let C andD be unital C∗-algebras, and let u : G→ UC
and u′ : G → UD be unitary representations on a locally compact
group G. Let E be a full Hilbert C∗-module over a C∗-algebra B,
and let F be a C∗-correspondence from D to C. Let S be a set and
(G, η,E) be a dynamical system on E. Consider the bounded linear
maps Kσ : E → F for σ ∈ S. Then, the family {Kσ}σ∈S is called
(u′, u)-covariant with respect to the dynamical system (G, η,E) if

Kσ(ηt(x)) = u′tK
σ(x)u∗t for each t ∈ G, σ ∈ S and x ∈ E.

Theorem 2.4. Let u : G → UC and u′ : G → UD be unitary
representations of a locally compact group G on unital C∗-algebras C
and D, respectively. Let E be a full Hilbert C∗-module over a unital
C∗-algebra B, F a C∗-correspondence from D to C and S a set. Let
Kσ be a map from E to F for each σ ∈ S. If (G, η,E) is a dynamical
system on E, then the following conditions are equivalent :

(i) {Kσ}σ∈S is a (u′, u)-covariant K-family with respect to the dynam-
ical system (G, η,E) where K : S×S → B(B, C) is a CPD-kernel.

(ii) There exists a pair (F , i) consisting of a C∗-correspondence F
from B to C with the left action π and a map i : S → F , an
isometry ν : E

⊗
B F → F such that

ν(x⊗ i(σ)) = Kσ(x) for all x ∈ E, σ ∈ S,

and unitary representations v : G → UBa(F) and w′ : G →
UBa(E

⊗
B F) such that

(a) π(αη
t (b)) = vtπ(b)v

∗
t for all b ∈ B, t ∈ G,

(b) vti(σ) = i(σ)ut for all t ∈ G and σ ∈ S,
(c) w′

t(x⊗bi(σ)c) := ηt(x)⊗vt(bi(σ)c) for all b ∈ B, c ∈ C, x ∈ E,
σ ∈ S and t ∈ G,

(d) νw′
t = u′tν for all t ∈ G.

Proof. Suppose that statement (ii) is given. The collection {Kσ}σ∈S

is a K-family where Kσ,σ′
: B → C is defined by Kσ,σ′

(b) := ⟨i(σ), bi(σ′)⟩
for b ∈ B and σ, σ′ ∈ S. Also,

Kσ(ηt(x)) = ν(ηt(x)⊗ i(σ))

= ν(ηt(x)⊗ vtvt−1 i(σ)) = νw′
t(x⊗ vt−1 i(σ))



796 SANTANU DEY AND HARSH TRIVEDI

= u′tν(x⊗ vt−1 i(σ)) = u′tν(x⊗ i(σ)ut−1)

= u′tν(x⊗ i(σ))ut−1 = u′tK
σ(x)ut−1

for all x ∈ E, σ ∈ S and t ∈ G. Hence, statement (i) holds.

Conversely, let us assume that (i) holds. The kernel K is u-covariant
because, for σ, σ′ ∈ S; x, x′ ∈ E, t ∈ G,

Kσ,σ′
(αη

t (⟨x, x′⟩)) = Kσ,σ′
(⟨ηt(x), ηt(x′)⟩)

= ⟨Kσ(ηt(x)),K
σ′
(ηt(x

′))⟩

= ⟨u′tKσ(x)u∗t , u
′
tK

σ′
(x′)u∗t ⟩

= ut⟨Kσ(x),Kσ′
(x′)⟩u∗t

= utK
σ,σ′

(⟨x, x′⟩)u∗t .

By Theorem 2.2 or Kolmogorov decomposition we get a pair (F , i)
consisting of a C∗-correspondence F from B to C where the left action
is given by a ∗-homomorphism π : B → Ba(F) and a map i : S → F
such that span{bi(σ)c : b ∈ B, c ∈ C, σ ∈ S} = F , satisfying

Kσ,σ′
(b) = ⟨i(σ), bi(σ′)⟩ for b ∈ B; σ, σ′ ∈ S.

Further, we have an isometry ν : E
⊗

B F → F defined by

ν(x⊗ bi(σ)c) := Kσ(xb)c for all x ∈ E, b ∈ B, c ∈ C, σ ∈ S.

For each t ∈ G, set vt(bi(σ)c) := αη
t (b)i(σ)utc for all t ∈ G, b ∈ B, c ∈ C

and σ ∈ S. Observe that

⟨vt(bi(σ)c), vt(b′i(σ′)c′)⟩
= ⟨αη

t (b)i(σ)utc, α
η
t (b

′)i(σ′)utc
′⟩

= (utc)
∗Kσ,σ′

(αη
t (b)

∗αη
t (b

′))utc
′

= c∗u∗tutK
σ,σ′

(b∗b′)u∗tutc
′

= ⟨bi(σ)c, b′i(σ′)c′⟩

for all b, b′ ∈ B; σ, σ′ ∈ S and c, c′ ∈ C. Since αη
t is an automorphism

and ut is unitary for each t ∈ G, it is immediate that vt uniquely
extends to a unitary vt : F → F for each t ∈ G. Because of the
continuity of t 7→ αη

t (b) for each b ∈ B, the continuity of u and the fact
that vt is unitary for each t ∈ G, it follows that t 7→ vtf is continuous
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for each f ∈ F . Hence, v : G → UBa(F) is a unitary representation.
For all b, b′ ∈ B; t ∈ G and c ∈ C we get

π(αη
t (b

′))(bi(σ)c) = (αη
t (b

′)b)i(σ)c

= vt(b
′αη

t−1(b)i(σ)ut−1c)

= vtπ(b
′)(αη

t−1(b)i(σ)ut−1c)

= vtπ(b
′)vt−1(bi(σ)c).

Thus, v satisfies conditions (a) and (b).

For each t ∈ G, define w′
t : E

⊗
B F → E

⊗
B F by

w′
t(x⊗ bi(σ)c) := ηt(x)⊗ vtbi(σ)c

for all b ∈ B, c ∈ C, σ ∈ S, x ∈ E. We get

⟨w′
t(x⊗ bi(σ)c), w′

t(x
′ ⊗ b′i(σ′)c′)⟩

= ⟨vt(bi(σ)c), ⟨ηt(x), ηt(x′)⟩vt(b′i(σ′)c′)⟩
= ⟨vt(bi(σ)c), αη

t (⟨x, x′⟩)vt(b′i(σ′)c′)⟩
= ⟨vt(bi(σ)c), vt(⟨x, x′⟩)b′i(σ′)c′)⟩
= ⟨bi(σ)c, ⟨x, x′⟩b′i(σ′)c′⟩
= ⟨x⊗ bi(σ)c, x′ ⊗ b′i(σ′)c′⟩

for all b, b′ ∈ B; c, c′ ∈ C; x, x′ ∈ E and σ, σ ∈ S. Using the strict
continuity of v and the continuity of t 7→ ηt(x) for all x ∈ E we obtain
that the map t 7→ w′

tz is continuous on finite sums of elementary tensors
z ∈ E

⊗
B F . Now ∥w′

t∥ ≤ 1 implies w′ is strictly continuous and
therefore a unitary representation. Moreover, we have

νw′
t(x⊗ bi(σ)c) = ν(ηt(x)⊗ vt(bi(σ)c))

= ν(ηt(x)⊗ αη
t (b)i(σ)utc)

= Kσ(ηt(x)α
η
t (b))utc

= Kσ(ηt(xb))utc

= u′tK
σ(xb)u∗tutc

= u′tK
σ(xb)c

= u′tν(x⊗ bi(σ)c)

for all b ∈ B, c ∈ C, x ∈ E, σ ∈ S and t ∈ G. �
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The next corollary proves the uniqueness of Theorem 2.4.

Corollary 2.5. Let E be another C∗-correspondence from D to C. For
σ ∈ S, let µ̃σ : E → E be maps such that span{µ̃σ(E)C : σ ∈ S} = E,
and let ν̃ : E → F be an isometry such that ν̃µ̃σ = Kσ. Then there
exists a unitary representation w′′

t : G→ UBa(E), defined by

w′′
t (µ̃

σ(x)c) = µ̃σ(ηt(x))utc

for x ∈ E, t ∈ G, σ ∈ S and c ∈ C

and a unitary u : E → E
⊗

B F defined by u : µ̃σ(x) 7→ x⊗ i(σ), where
σ ∈ S and (F , i) is the Kolmogorov decomposition for kernel K such
that

(a) νu = ν̃, uw′′
t = w′

tu for all t ∈ G and
(b) uµ̃σ = µσ where, for σ ∈ S, the mapping µσ : E → E

⊗
B F is

defined by x 7→ x⊗ i(σ).

Proof. For all x, x′ ∈ E; c, c′ ∈ C and σ, σ′ ∈ S, we have

⟨µ̃σ(ηt(x))utc, µ̃
σ′
(ηt(x

′))utc
′⟩

= ⟨Kσ(ηt(x))utc,K
σ′
(ηt(x

′))utc
′⟩

= ⟨utc,Kσ,σ′
(αt(⟨x, x′⟩))utc′⟩

= ⟨Kσ(x)c,Kσ′
(x′)c′⟩

= ⟨µ̃σ(x)c, µ̃σ′
(x′)c′⟩.

Therefore, w′′ is a unitary representation. �

Let B be a C∗-algebra, and let G be a locally compact group. Let
(G, η,E) be a dynamical system on a full Hilbert B-module E. The
crossed product E ×η G, cf., [4, 7], is the completion of an inner-
product B ×αη G-module Cc(G,E), where the module action and the
B ×αη G-valued inner product are given by

lg(s) =

∫
G

l(t)αη
t (g(t

−1s)) dt,

⟨l,m⟩B×αηG(s) =

∫
G

αη
t−1(⟨l(t),m(ts)⟩) dt,
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respectively, for g ∈ Cc(G,B) and l,m ∈ Cc(G,E). We derive, for any
CPD-kernel K, the extendability of a covariant K-family to that on the
crossed product of the Hilbert C∗-module corresponding to the given
dynamical system.

Proposition 2.6. Let S be a set, and let K : S × S → B(B, C) be a
CPD-kernel over S from a unital C∗-algebra B to a unital C∗-algebra
C. Let D be a unital C∗-algebra, and let u : G→ UC and u′ : G→ UD
be unitary representations of a locally compact group G. Suppose that
E is a full Hilbert B-module, F is a C∗-correspondence from D to C
and Kσ is a map from E to F for each σ ∈ S. If {Kσ}σ∈S is a (u′, u)
covariant K-family with respect to the dynamical system (G, η,E), then

there exists a family of maps K̃σ : E ×η G→ F such that

K̃σ(l) =

∫
G

Kσ(l(t))ut dt for all l ∈ Cc(G,E), σ ∈ S,

and there exists a CPD-kernel K̃σ,σ′
: B ×αη G→ C, which satisfies

K̃σ,σ′
(f) =

∫
G

Kσ,σ′
(f(t))ut dt for all f ∈ Cc(G,B), σ, σ′ ∈ S,

such that {K̃σ}σ∈S is a K̃-family.

Proof. Let (F , i) be the covariant Kolmogorov decomposition as-
sociated with the CPD-kernel K : S × S → B(B, C) described in
Theorem 2.4, and denote the left action associated with the C∗-

correspondence F by π. Consider maps K̃σ,σ′
: B ×αη G → C defined

by

K̃σ,σ′
(f) := ⟨i(σ), (π × v)(f)i(σ′)⟩

for all f ∈ Cc(G,B), σ, σ′ ∈ S.

Similar computations as in Theorem 2.2 prove that K̃ is a CPD-kernel
on S from B ×αη G to C. For σ, σ′ ∈ S,

K̃σ,σ′
(f) = ⟨i(σ), (π × v)(f)i(σ′)⟩(2.2)

= ⟨i(σ),
∫
G

π(f(t))vti(σ
′) dt⟩

=

∫
G

⟨i(σ), π(f(t))vti(σ′)⟩ dt
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=

∫
G

⟨i(σ), π(f(t))i(σ′)ut⟩ dt

=

∫
G

⟨i(σ), π(f(t))i(σ′)⟩ut dt

=

∫
G

Kσ,σ′
(f(t))ut dt,

for all f ∈ Cc(G,B). The third equality in array (2.2) follows by
applying [16, Lemma 1.91] for a bounded linear map L : Ba(F) → C,
which is defined as L(T ) := ⟨i(σ), T i(σ′)⟩ for all T ∈ Ba(F). Define

K̃σ : E ×η G→ F by

K̃σ(l) :=

∫
G

Kσ(l(t))ut dt for all σ ∈ S, l ∈ Cc(G,E).

From Theorem 2.4, we obtain an isometry ν : E
⊗

B F → F such that

ν(x⊗ i(σ)) = Kσ(x) for all x ∈ E, σ ∈ S,

and unitary representations v : G → UBa(F) and w′ : G →
UBa(E

⊗
B F) satisfying conditions (a)–(d) of the theorem. For all

l ∈ Cc(G,E) and σ ∈ S, we obtain

K̃σ(l) =

∫
G

Kσ(l(t))ut dt =

∫
G

ν(l(t)⊗i(σ))ut dt =

∫
G

ν(l(t)⊗vti(σ)) dt.

Finally, it follows that {K̃σ}σ∈S is a K̃-family because, for σ, σ′ ∈ S
and l,m ∈ Cc(G,E), we have

⟨K̃σ(l), K̃σ′
(m)⟩ =

⟨∫
G

ν(l(t)⊗ vti(σ)) dt,

∫
G

ν(m(s)⊗ vsi(σ
′)) ds

⟩
=

∫
G

∫
G

⟨vti(σ), π(⟨l(t),m(ts)⟩)vtsi(σ′)⟩ dt ds

=

⟨
i(σ),

∫
G

∫
G

vt−1π(⟨l(t),m(ts)⟩)vtsi(σ′) dt ds

⟩
=
⟨
i(σ),

∫
G

∫
G

π(αη
t−1(⟨l(t),m(ts)⟩))vsi(σ′) dt ds

⟩
=
⟨
i(σ),

∫
G

π(⟨l,m⟩(s))vsi(σ′) ds
⟩

= K̃σ,σ′
(⟨l,m⟩). �
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3. Characterizations of K-families. Let E be a Hilbert C∗-
module over a C∗-algebra B. ByMn(E), we denote the HilbertMn(B)-
module where the Mn(B)-valued inner product is defined by

⟨[xij ]ni,j=1, [x
′
ij ]

n
i,j=1⟩ :=

[ n∑
k=1

⟨xki, x′kj⟩
]n
i,j=1

for all [xij ]
n
i,j=1, [x

′
ij ]

n
i,j=1 ∈Mn(E).

Definition 3.1. Let F be a Hilbert C∗-module over a C∗-algebra C,
and let T : E → F be a linear map. For each positive integer n, define
Tn :Mn(E) →Mn(F ) by

Tn([xij ]
n
i,j=1) := [T (xij)]

n
i,j=1 for all [xij ]

n
i,j=1 ∈Mn(E).

We say that T is completely bounded if, for each positive integer n, Tn
is bounded and ∥T∥cb := supn ∥Tn∥ <∞.

We show in this section that K-families, where K is a CPD-kernel,
are the same as certain completely bounded maps between the Hilbert
C∗-modules. We need the following Hilbert C∗-modules in order to
inspect the extendability of K- families to CPD-kernels between the
(extended) linking algebras of the Hilbert C∗-modules:

The vector space En consists of elements (x1, x2, . . . , xn) with xi ∈ E
for 1 ≤ i ≤ n, where the operations are coordinate-wise. It becomes a
Hilbert Mn(B)-module with respect to the inner product whose (i, j)-
entry is given by

⟨(x1, x2, . . . , xn), (x′1, x′2, . . . , x′n)⟩ij := ⟨xi, x′j⟩

for (x1, x2, . . . , xn), (x
′
1, x

′
2, . . . , x

′
n) ∈ En. The symbol En denotes the

Hilbert B-module whose elements are (x1, x2, . . . , xn)
t with xi ∈ E for

1 ≤ i ≤ n, where t denotes the transpose. The inner product in En is
defined by

⟨(x1, x2, . . . , xn)t, (x′1, x′2, . . . , x′n)t⟩ :=
n∑

i=1

⟨xi, x′i⟩

for (x1, x2, . . . , xn)
t, (x′1, x

′
2, . . . , x

′
n)

t ∈ En.

From [2, Lemma 3.2.1], we know that K is a CPD-kernel over S
from B to C if and only if, for all σ1, σ2, . . . , σn, n ∈ N, the map
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[Kσi,σj ]ni,j=1 :Mn(B) →Mn(C) defined by

[Kσi,σj ][bij ] := [Kσi,σj (bij)]
n
i,j=1 for all [bij ]

n
i,j=1 ∈Mn(B)

is (completely) positive. This realization of CPD-kernels comes in
handy in the proof of the next theorem.

Theorem 3.2. Let E be a full Hilbert C∗-module over a C∗-algebra
B, and let F be a Hilbert C∗-module over a C∗-algebra C. Let S be
a set, and let Kσ be a linear map from E to F for each σ ∈ S. Let
FK := span{Kσ(x)c : x ∈ E, c ∈ C, σ ∈ S}. Then the following
statements are equivalent :

(a) there exists a unique CPD-kernel K : S × S → B(B, C) such that
{Kσ}σ∈S is a K-family.

(b) {Kσ}σ∈S extends to block-wise bounded linear maps
(

Kσ,σ′
Kσ∗

Kσ′
ϑ

)
,

from LE to LFK
, forming a CPD-kernel over S from LE to LFK

,
where ϑ is a ∗-homomorphism. In such a case, we call {Kσ}σ∈S a
CPD-H-extendable family.

(c) For each finite choice σ1, . . . , σn ∈ S the map from En to Fn defined
by

x 7−→ (Kσ1(x1),K
σ2(x2), . . . ,K

σn(xn)),

for x = (x1, x2 . . . , xn) ∈ En, is completely bounded. Moreover, FK

can be made into a C∗-correspondence from Ba(E) to C such that
the action of Ba(E) on FK is non-degenerate and, for each σ ∈ S,
Kσ is a left Ba(E)-linear map.

(d) For each finite choice σ1, . . . , σn ∈ S the map from En to Fn defined
by

x 7−→ (Kσ1(x1),K
σ2(x2), . . . ,K

σn(xn)),

for x = (x1, x2 . . . , xn) ∈ En, is completely bounded, and {Kσ}σ∈S

satisfies

⟨Kσ(y),Kσ′
(x⟨x′, y′⟩)⟩ = ⟨Kσ(x′⟨x, y⟩),Kσ′

(y′)⟩

for x, y, x′, y′ ∈ E.

Proof.

(a) ⇒ (b). Suppose B is unital. Using Theorem 2.2, we obtain a
pair (F , i) consisting of a C∗-correspondence F from B to C and a map
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i : S → F such that span{bi(σ)c : b ∈ B, c ∈ C, σ ∈ S} = F , and an
isometry ν : E

⊗
B F → F , defined by

ν(x⊗ bi(σ)c) := Kσ(xb)c for all x ∈ E, b ∈ B, c ∈ C, σ ∈ S.

We again denote the unitary obtained from ν, by restricting its
codomain to FK, with ν. With this unitary ν, define a ∗-homomorphism
ϑ : Ba(E) → Ba(FK) by ϑ : a 7→ ν(a ⊗ idF )ν

∗. Identify F with
Ba(C,F) using f 7→ Lf , where Lf : c 7→ fc, and identify B

⊗
B F with

F using b⊗ f 7→ bf . For each x, x′ ∈ E, f and f ′ ∈ F , and b ∈ B, we
obtain

⟨(x⊗ idF )
∗(x′ ⊗ f), b⊗ f ′⟩ = ⟨x′ ⊗ f, xb⊗ f ′⟩

= ⟨f, ⟨x′, xb⟩f ′⟩ = ⟨f, ⟨x′, x⟩bf ′⟩
= ⟨x∗x′f, bf ′⟩ = ⟨x∗x′ ⊗ f, b⊗ f ′⟩
= ⟨(x∗ ⊗ idF )(x

′ ⊗ f), b⊗ f ′⟩.

Therefore, (x⊗ idF )
∗ = (x∗ ⊗ idF ), for x ∈ E.

For each σ ∈ S, the element(
i(σ) 0
0 ν∗

)
∈ Ba

((
C
FK

)
,

(
B
E

)⊗
B

F

)
.

We have (
i(σ)∗ 0
0 ν

)((
b x∗

y a

)⊗
idF

)(
i(σ′) 0
0 ν∗

)
=

(
i(σ)∗ 0
0 ν

)(
b⊗ i(σ′) (x∗ ⊗ idF )ν

∗

y ⊗ i(σ′) (a⊗ idF )ν
∗

)
=

(
i(σ)∗(b⊗ i(σ′)) i(σ)∗(x⊗ idF )

∗ν∗

ν(y ⊗ i(σ′)) ν(a⊗ idF )ν
∗

)
for all b ∈ B, x, y ∈ E, a ∈ Ba(E), σ and σ′ ∈ S. Thus, we obtain a
CPD-kernel on S from LE to LFK

formed by maps(
Kσ,σ′

Kσ∗

Kσ′
ϑ

)
:=

(
i(σ) 0
0 ν∗

)∗

(• ⊗ idF )

(
i(σ′) 0
0 ν∗

)
,

where Kσ∗
(x∗) := Kσ(x)∗ for σ ∈ S, x ∈ E.

Assume that B is not unital. Let B̃ and C̃ be the unitalizations
of B and C, respectively. Let (eλ)λ∈Λ be a contractive approximate
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unit for B. Let δ : B̃ → C be the unique character vanishing on

B. For each σ, σ′, define K̃σ,σ′
: B̃ → C̃ by K̃σ,σ′

(b) := Kσ,σ′
(b)

for all b ∈ B and K̃σ,σ′
(1B̃) := ∥Kσ,σ′∥1C̃ . For each λ ∈ Λ, define

Kσ,σ′

λ := Kσ,σ′
(e∗λ • eλ) + (∥Kσ,σ′∥1C̃ −Kσ,σ′

(e∗λeλ))δ. Mappings Kλs are

CPD-kernels, and (Kσ,σ′

λ )λ∈Λ converges pointwise to K̃σ,σ′
. We conclude

that K̃ is a CPD-kernel.

Note that {Kσ}σ∈S is also a K̃-family, and E and F are also Hilbert

C∗-modules over B̃ and C̃, respectively.

Extend {Kσ}σ∈S to a CPD-kernel over S from
(

B̃ E∗

E Ba(E)

)
to LFK

,

as above. Restricting this CPD-kernel to
(

B E∗

E Ba(E)

)
yields the required

CPD-kernel.

(b) ⇒ (c). Let n ∈ N. For σ1, . . . , σn ∈ S, define a linear map K
from En to Fn by

x 7−→ (Kσ1(x1),K
σ2(x2), . . . ,K

σn(xn))

for x = (x1, x2 . . . , xn) ∈ En.

Fix l ∈ N, and let [xms]
l
m,s=1 ∈Ml(En) where

xms = (xms,1, xms,2, . . . , xms,n) ∈ En.

Set

A :=


(

0 0
a1 0

) (
0 0
a2 0

)
· · ·

(
0 0
an 0

)(
0 0
0 0

) (
0 0
0 0

)
· · ·

(
0 0
0 0

)
...

...
...(

0 0
0 0

) (
0 0
0 0

)
· · ·

(
0 0
0 0

)
 ,

which is an n × n block matrix consisting of blocks of 2 × 2 matrices.
Define Bmk as the matrix A where ai = Kσi(xmk,i) so that blocks of
2 × 2 matrices are elements of LFK

, and thus, Bmk is identified with
an element of Mn(LFK

). Similarly, define Cmk as the matrix A where
ai = xmk,i, and thus, Cmk is identified with an element of Mn(LE).
We have

∥Kl([xms]
l
m,s=1)∥2 = ∥[K(xms)]

l
m,s=1∥2

= ∥⟨[K(xms)]
l
m,s=1, [K(xms)]

l
m,s=1⟩∥
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=

∥∥∥∥[ l∑
k=1

⟨K(xkm),K(xks)⟩
]l
m,s=1

∥∥∥∥
=

∥∥∥∥[ l∑
k=1

[
⟨Kσi(xkm,i),K

σj (xks,j)⟩
]n
i,j=1

]l
m,s=1

∥∥∥∥
=

∥∥∥∥[ l∑
k=1

B∗
kmBks

]l
m,s=1

∥∥∥∥ = ∥[Bms]
l
m,s=1∥2

=

∥∥∥∥[[(Kσi,σj Kσ∗
i

Kσj ϑ

)]
Cms

]l
m,s=1

∥∥∥∥2
≤
∥∥∥∥[(Kσi,σj Kσ∗

i

Kσj ϑ

)]
l

∥∥∥∥2∥[xms]
l
m,s=1∥2,

where 2×2 matrices with round brackets are block-wise bounded linear
maps on the linking algebra LE . Therefore, from [2, Lemma 3.2.1], it
follows that K is completely bounded.

Let

D :=

(
0 0
0 Ba(E)

)
be a C∗-subalgebra of LE with the unit

1D :=

(
0 0
0 idE

)
.

We denote the ∗-homomorphism, which is the restriction of
(

Kσ,σ′
Kσ∗

Kσ′
ϑ

)
to D, by θ.

Without loss of generality, we assume that B is unital because, if B is
not unital, then we can unitalize it and work as in the proof of “(a) ⇒
(b).” Let (F , i) be the Kolmogorov decomposition for the CPD-kernel(

Kσ,σ′
Kσ∗

Kσ′
ϑ

)
where σ, σ′ ∈ S. For each d ∈ D and σ ∈ S,

∥di(σ)− 1Di(σ)θ(d)∥2 = ∥⟨di(σ), di(σ)⟩ − ⟨di(σ), 1Di(σ)θ(d)⟩
− ⟨1Di(σ)θ(d), di(σ)⟩
+ ⟨1Di(σ)θ(d), 1Di(σ)θ(d)⟩∥

= ∥θ(d∗d)− θ(d∗d)− θ(d∗d) + θ(d∗d)∥ = 0.
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Therefore, for each σ, σ′ ∈ S and for all x ∈ E, a ∈ Ba(E), we have(
0 0

Kσ′
(ax) 0

)
=

(
Kσ,σ′

Kσ∗

Kσ′
ϑ

)((
0 0
0 a

)(
0 0
x 0

))
=

⟨
i(σ),

(
0 0
0 a

)(
0 0
x 0

)
i(σ′)

⟩
=

⟨(
0 0
0 a

)∗

i(σ),

(
0 0
x 0

)
i(σ′)

⟩
=

⟨
1Di(σ)θ

((
0 0
0 a

)∗)
,

(
0 0
x 0

)
i(σ′)

⟩
=

(
0 0
0 ϑ(a)

)(
Kσ,σ′

Kσ∗

Kσ′
ϑ

)(
0 0
x 0

)
=

(
0 0

ϑ(a)Kσ′
(x) 0

)
.

Hence, Kσ′
is a left Ba(E)-linear map for each σ′ ∈ S, and ϑ is

non-degenerate. Observe that the Hilbert C∗-module FK is a C∗-
correspondence from Ba(E) to C with the left action given by ϑ.

(c) ⇔ (d). If Kσ is a left Ba(E)-linear map for each σ ∈ S, then

⟨Kσ(y),Kσ′
(x⟨x′, y′⟩) = ⟨Kσ(y),Kσ′

(x x′∗y′)⟩

= ⟨(x x′∗)∗Kσ(y),Kσ′
(y′)⟩

= ⟨Kσ(x′x∗y),Kσ′
(y′)⟩

= ⟨Kσ(x′⟨x, y⟩),Kσ′
(y′)⟩,

for all x, y, x′, y′ ∈ E and σ, σ′ ∈ S.

Conversely, using the equation in condition (d), we define an action
ϑ on FK, of the algebra F(E) of all finite rank operators on E, by

ϑ(x′x∗)Kσ(y) := Kσ(x′x∗y) for all x, x′, y ∈ E.

Since ϑ is bounded on F(E), it naturally extends as an adjointable ac-
tion of K(E) on FK. Since E is full, we can obtain an approximate unit

(
∑kλ

n=1⟨xλn, yλn⟩)λ∈Λ for B where xλn, y
λ
n ∈ E. Using this approximate

unit, it follows that ϑ is non-degenerate.
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We can further extend this action to an action of Ba(E) on FK, cf.,
[8, Proposition 2.1]).

(c) ⇒ (a). Let n ∈ N. The algebraic tensor product En
∗⊗

algEn =

span⟨En, En⟩, cf., [8, Proposition 4.5]). Note that En
∗⊗

algEn is a

dense subset of Mn(B). Set σ1, . . . , σn ∈ S, and let K be defined as
above. For each k ∈ N, we define Kk : (En)

k → (Fn)
k by

Kk(xk) := (K(x1),K(x2), . . . ,K(xk))
t,

where xk = (x1,x2, . . . ,xk)
t ∈ (En)

k. Define a linear map [Kσi,σj ]ni,j=1 :

En
∗⊗

algEn →Mn(C) by

[Kσi,σj ]

(
k∑

l=1

⟨xl,yl⟩

)
:= ⟨Kk(xk),Kk(yk)⟩,

where xk = (x1,x2, . . . ,xk)
t, yk = (y1,y2, . . . ,yk)

t ∈ (En)
k, i.e.,

⟨xk,yk⟩ =
∑k

i=1⟨xi,yi⟩.

First, we prove that [Kσi,σj ] is bounded. We have∥∥∥∥[Kσi,σj ]

( k∑
l=1

⟨xl,yl⟩
)∥∥∥∥ = ∥⟨Kk(xk),Kk(yk)⟩∥ ≤ ∥K∥2cb∥xk∥∥yk∥.

For 0 < α < 1, we decompose xk∗ as wk
α|xk∗|α (cf. [8, Lemma 4.4];

[15, Lemma 2.9]), where wk
α := |xk∗|1−α. So, as α→ 1, we have∥∥∥∥ k∑

l=1

⟨xl,yl⟩
∥∥∥∥ = ∥⟨xk,yk⟩∥ = ∥xk∗ ⊗ yk∥

= ∥wk
α|xk∗|α ⊗ yk∥ = ∥wk

α ⊗ |xk∗|αyk∥

≤ ∥wk
α∥∥|xk∗|αyk∥ −→ ∥|xk∗|yk∥ = ∥⟨xk,yk⟩∥.

In the above equation array, we have used the facts that ∥wk
α∥ =

supλ∈σ(|xk∗|) λ
1−α = ∥xk∗∥1−α → 1, and |xk∗|α converges in norm to

|xk∗|. We deduce that, for each ϵ > 0, there exists an α such that

∥wk
α∥∥|xk∗|αyk∥ ≤

∥∥∥∥ k∑
l=1

⟨xl,yl⟩
∥∥∥∥+ ϵ.
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Let x′k := wk∗
α ∈ (En)

k and y′k = |xk∗|αyk ∈ (En)
k. Then

∥⟨x′k,y′k⟩∥ ≤ ∥x′k∥∥y′k∥ ≤
∥∥∥∥ k∑

l=1

⟨xl,yl⟩
∥∥∥∥+ ϵ,

and

⟨x′k,y′k⟩ = x′k∗ ⊗ y′k = x′k∗ ⊗ y′k

= wk
α ⊗ |xk∗|αyk = wk

α|xk∗|α ⊗ yk = ⟨xk,yk⟩.

Therefore, [Kσi,σj ] is bounded.

Because En is full, as in the case (c) ⇔ (d), we can obtain the
approximate unit eλ = ⟨Xλ,Yλ⟩ for Mn(B), where

Xλ = (xλ
1 ,x

λ
2 , . . . ,x

λ
kλ
)t,Yλ = (yλ

1 ,y
λ
2 , . . . ,y

λ
kλ
)t ∈ (En)

kλ .

Let B be a positive element in Mn(B), and let tλ be the positive
square root of the rank 1 operator XλBX∗

λ in K((En)
kλ). Finally,

using e∗λBeλ
λ→ B in norm and

[Kσi,σj ](e∗λBeλ) = [Kσi,σj ](Y∗
λXλBX∗

λYλ)

= [Kσi,σj ](⟨tλYλ, tλYλ⟩)

= ⟨Kkλ(tλYλ),K
kλ(tλXλ)⟩ ≥ 0,

we infer that [Kσi,σj ](B) ≥ 0. �

Let G be a locally compact group. Suppose that E is a full Hilbert
C∗-module over a unital C∗-algebra B and that (G, η,E) is a dynamical
system on E. We define a C∗-dynamical system on the linking algebra
LE as follows. For each s ∈ G, let us define Ad ηs(a) := ηsaηs−1 for
a ∈ Ba(E), and define η∗s (x

∗) := ηs(x)
∗
for x ∈ E. Denote by θ the

action of G on LE , which is given by

θs

(
b x∗

y a

)
:=

(
αη
s(b) η∗s (x

∗)
ηs(y) Ad ηsa

)
for all s ∈ G, a ∈ Ba(E), b ∈ B and x, y ∈ E. It is easy to check that
we obtain a C∗-dynamical system (G, θ,LE).

Theorem 3.3. Let E be a full Hilbert C∗-module over a unital C∗-
algebra B, and let F be a C∗-correspondence from D to C where C and
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D are unital C∗-algebras. Let u : G→ UC and u′ : G→ UD be unitary
representations of a locally compact group G, and let (G, η,E) be a
dynamical system on E. Assume S to be a set and Kσ to be a linear
map from E to F for each σ ∈ S. Let FK := span{Kσ(x)c : x ∈ E, c ∈
C, σ ∈ S}. Then the following statements are equivalent :

(a) there exists a unique CPD-kernel K : S × S → B(B, C) such
that {Kσ}σ∈S is a (u′, u)-covariant K-family with respect to the
dynamical system (G, η,E).

(b) {Kσ}σ∈S extends to block-wise bounded linear maps
(

Kσ,σ′
Kσ∗

Kσ′
ϑ

)
from LE to LFK

forming a CPD-kernel over S from LE to
LFK

, where ϑ is a ∗-homomorphism, i.e., {Kσ}σ∈S is a CPD-

H-extendable family. The kernel
(

Kσ,σ′
Kσ∗

Kσ′
ϑ

)
is ω-covariant with

respect to (G, θ,LE) where ω : G→ ULFK
is a unitary representa-

tion.
(c) For each finite choice σ1, . . . , σn ∈ S the map from En to Fn defined

by
x 7−→ (Kσ1(x1),K

σ2(x2), . . . ,K
σn(xn))

for x = (x1, x2 . . . , xn) ∈ En, is completely bounded. Moreover,
{Kσ}σ∈S is (u′, u)-covariant with respect to (G, η,E), FK is a
correspondence from Ba(E) to C such that the action of Ba(E)
on FK is non-degenerate and, for each σ ∈ S, Kσ is a left Ba(E)-
linear map.

(d) For each finite choice σ1, . . . , σn ∈ S the map from En to Fn defined
by

x 7−→ (Kσ1(x1),K
σ2(x2), . . . ,K

σn(xn))

for x = (x1, x2 . . . , xn) ∈ En, is completely bounded, and {Kσ}σ∈S

is (u′, u)-covariant with respect to (G, η,E) satisfying, for x, y, x′, y′

∈ E,

⟨Kσ(y),Kσ′
(x⟨x′, y′⟩)⟩ = ⟨Kσ(x′⟨x, y⟩),Kσ′

(y′)⟩.

Proof. We use the same notation as in the proof of part (a) ⇒ (b)
of Theorem 3.2. For each s ∈ G, define a map ωs : LF → LF by

ωs

(
c x∗

y a

)
:=

(
usc usx

∗

u′sy u′sa

)
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for all c ∈ C, x, y ∈ F and a ∈ Ba(F ). The mapping ω : G → ULF

is a unitary representation. Using Theorem 2.4, we obtain a unitary
representation w′ : G→ UBa(E

⊗
B F) defined by

w′
t(x⊗ bi(σ)c) := ηt(x)⊗ vt(bi(σ)c)

for all b ∈ B, c ∈ C, x ∈ E, σ ∈ S and t ∈ G. Further, it satisfies
νw′

t = u′tν for all t ∈ G. Thus, we have

ϑ(ηsaηs−1) = ν((ηsaηs−1)⊗idF )ν
∗ = νw′

s(a⊗idF )w
′
s−1ν∗ = u′sϑ(a)u

′
s−1

for all s ∈ G and a ∈ Ba(E). Therefore,(
Kσ,σ′

Kσ∗

Kσ′
ϑ

)
θs

(
b x∗

y a

)
=

(
Kσ,σ′

(αη
s(b)) Kσ∗

(η∗s (x
∗))

Kσ′
(ηs(y)) ϑ(Adηsa)

)
= ωs

(
Kσ,σ′

Kσ∗

Kσ′
ϑ

)(
b x∗

y a

)
ω∗
s

for all s ∈ G, a ∈ Ba(E), b ∈ B, σ, σ′ ∈ S and x, y ∈ E. �

4. Application to the dilation theory of CPD-kernels. Sup-
pose E and F are Hilbert C∗-modules over C∗-algebras B and C, re-
spectively. Let S be a set, and let K : S×S → B(B, C) be a CPD-kernel.
Let {Kσ}σ∈S be a K-family where Kσ is a map from E to F for each
σ ∈ S. Recall that there exists a Kolmogorov decomposition (F , i) of K.
From Theorem 2.2, it follows that there is an isometry ν : E

⊗
B F → F

such that

ν(x⊗ i(σ)) = Kσ(x) for all x ∈ E, σ ∈ S.

If FK is complemented in F , then we obtain a ∗-homomorphism ϑ from
Ba(E) to Ba(F ) defined by ν(• ⊗ idF )ν

∗. Also, if ξ is a unit vector in
E, i.e., ⟨ξ, ξ⟩ = 1, then the next diagram commutes.

(4.1) B Kσ,σ′
//

ξ•ξ∗

��

COO
⟨ν(ξ⊗i(σ)),•ν(ξ⊗i(σ′))⟩

Ba(E)
ϑ

// Ba(F )

Here, b 7→ ξbξ∗ is a representation of B on E. In fact, to obtain the
above commuting diagram, it is sufficient to assume that there exist
a C∗-correspondence F from B to C, a map i : S → F , a Hilbert
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B-module E, an adjointable isometry ν : E
⊗

B F → F and a unit

vector ξ ∈ E. For this, we set Kσ,σ′
:= ⟨i(σ), •i(σ′)⟩ for σ, σ′ ∈ S and

ϑ := ν(• ⊗ idF )ν
∗.

If i(σ)s are also unit vectors, then Kσ,σ′
is a unital map for each

σ, σ′ ∈ S, and, in this case, we say that kernel K is Markov and
the dilation ϑ of K is a weak dilation. Change the map ξ • ξ∗ by
the map ⟨ξ, •ξ⟩ and reverse the arrow of this map. Now substitute
Kσ(ξ) = ν(ξ ⊗ i(σ)) in the above diagram to obtain the commuting
diagram:

(4.2) B Kσ,σ′
//

OO

⟨ξ,•ξ⟩

COO
⟨Kσ(ξ),•Kσ′

(ξ)⟩

Ba(E)
ϑ

// Ba(F )

This motivates us to introduce a notion of dilation of a CPD-kernel
K over S whenever there is a family of maps {Kσ}σ∈S between some
Hilbert C∗-modules and a commuting diagram similar to (4.2).

Definition 4.1. Let E and F be Hilbert C∗-modules over C∗-algebras
B and C, respectively. Let S be a set, and let K : S × S → B(B, C) be
a CPD-kernel. A ∗-homomorphism ϑ : Ba(E) → Ba(F ) is a CPDH-
quasi-dilation of K if there is a linear map Kσ from E to F for each
σ ∈ S such that

(4.3) B Kσ,σ′
//

OO

⟨x,•x′⟩

COO
⟨Kσ(x),•Kσ′

(x′)⟩

Ba(E)
ϑ

// Ba(F )

commutes for all x, x′ ∈ E. A CPDH-quasi-dilation ϑ is called

(a) a CPDH-dilation if E is full.
(b) strict if the ∗-homomorphism ϑ is strict.

A CPDH-(quasi-)dilation ϑ is called a CPDH0-(quasi-)dilation if ϑ is a
unital ∗-homomorphism.
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Proposition 4.2. Let ϑ be a CPDH0-quasi-dilation of a CPD-kernel
K : S×S → B(B, C). If {Kσ}σ∈S is a family of maps from E to F such
that the diagram (4.3) commutes, then {Kσ}σ∈S is a K-family where

Kσ(ax) = ϑ(a)Kσ(x) for x ∈ E, a ∈ Ba(E), σ ∈ S.

Proof. Since diagram (4.3) commutes, for x ∈ E, a ∈ Ba(E) and
σ, σ′ ∈ S, we get

(4.4) ⟨Kσ(x), ϑ(a)Kσ′
(x′)⟩ = ⟨Kσ(x),Kσ′

(ax′)⟩.

As ϑ is unital, {Kσ}σ∈S is a K-family. Thus, by setting FK :=
span{Kσ(e)c : e ∈ E, c ∈ C, σ ∈ S} and using equation 4.4 we
get a ∗-homomorphism ϑK : Ba(E) → Ba(FK) which is defined by
ϑK(a)Kσ(x) = Kσ(ax) for x ∈ E, a ∈ Ba(E), σ, σ′ ∈ S. We obtain

⟨y, ϑK(a)y′⟩ = ⟨y, ϑ(a)y′⟩ for all a ∈ Ba(E) and y, y′ ∈ FK.

Thus, ϑ(a)y = ϑK(a)y for all y ∈ FK and a ∈ Ba(E). �

Definition 4.3. A family of maps {Kσ}σ∈S from E to F is called
(strict) CPDH0-family, if it extends to block-wise bounded linear maps
from LE to LF forming a CPD-kernel over S whose (2, 2)-corner is a
unital (strict) ∗-homomorphism.

We remark that the acronym CPDH is used instead of CPD-H
extendable if we have the Hilbert C∗-module F instead of FK in the
statement of Theorem 3.2 (b).

Proposition 4.4. Let B be unital. If ϑ is a strict CPDH0-dilation of
a CPD-kernel K : S × S → B(B, C) and {Kσ}σ∈S is a family of maps
from E to F such that diagram (4.3) commutes, then {Kσ}σ∈S is a
strict CPDH0-family.

Proof. Let (FK, i) be the Kolmogorov decomposition of the CPD-
kernel K : S×S → B(B, C). Because ϑ is a strict unital homomorphism
from Ba(E) to Ba(F ), using the representation theorem [9, Theorem
1.4], we obtain a C∗-correspondence Fϑ := E∗⊗

ϑ F (another notation
for E∗⊗

Ba(E) F ) from B to C and a unitary ν : E
⊗

B Fϑ → F , defined
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by

ν(x′ ⊗ (x∗ ⊗ y)) := ϑ(x′x∗)y for all x, x′ ∈ E and y ∈ F

such that we obtain ϑ = ν(• ⊗ idFϑ
)ν∗. It is immediate from Propo-

sition 4.2 that the map from FK onto E∗⊗
ϑ FK ⊂ Fϑ defined by

⟨x, x′⟩i(σ) 7→ x∗ ⊗Kσ(x′) for all x, x′ ∈ E and σ ∈ S, is a bilinear uni-
tary. Now we identify FK ⊂ Fϑ, and we have i(σ) ∈ Fϑ for all σ ∈ S.
Further, we obtain

ν(x⊗⟨x′, x′′⟩i(σ))=ν(x⊗(x′∗⊗Kσ(x′′)))=ϑ(xx′∗)Kσ(x′′)=Kσ(x⟨x′, x′′⟩)

for all x, x′, x′′ ∈ E, where the last equality follows from Proposi-
tion 4.2. Since E is full and B is unital, we get Kσ(x) = ν(x⊗ i(σ)) for
x ∈ E.

For each σ ∈ S, we have(
i(σ) 0
0 ν∗

)
∈ Br

((
C
F

)
,

(
B
E

)⊗
B Fϑ

)
.

Since((
b x∗

x′ a

)
⊗ idFϑ

)(
i(σ) 0
0 ν∗

)(
c
y

)
=

(
bi(σ)c+ (x∗ ⊗ idFϑ

)ν∗y
x′ ⊗ i(σ)c+ (a⊗ idFϑ

)ν∗y

)
,

we have⟨((
b1 x∗1
x′1 a1

)
⊗ idFϑ

)(
i(σ) 0
0 ν∗

)(
c1
y1

)
,((

b2 x∗2
x′2 a2

)
⊗ idFϑ

)(
i(σ′) 0
0 ν∗

)(
c2
y2

)⟩
= c∗1⟨i(σ), b∗1b2ζj⟩c2 + c∗1⟨i(σ), b∗1(x∗2 ⊗ idFϑ

)ν∗y2⟩
+ ⟨(x∗1 ⊗ idFϑ

)ν∗y1, b2i(σ
′)⟩c2

+ ⟨(x∗1 ⊗ idFϑ
)ν∗y1, (x

∗
2 ⊗ idFϑ

)ν∗y2⟩
+ c∗1⟨x′1 ⊗ i(σ), x′2 ⊗ i(σ′)⟩c2 + c∗1⟨x′1 ⊗ i(σ), (a2 ⊗ idFϑ

)ν∗y2⟩
+ ⟨(a1 ⊗ idFϑ

)ν∗y1, x
′
2 ⊗ i(σ′)⟩c2

+ ⟨(a1 ⊗ idFϑ
)ν∗y1, (a2 ⊗ idFϑ

)ν∗y2⟩

= c∗1K
σ,σ′

(b∗1b2)c2 + c∗1⟨Kσ(x2b1), y2⟩+ ⟨y1,Kσ′
(x1b2)⟩c2

+ ⟨y1, ϑ(x1x∗2)y2⟩+ c∗1K
σ,σ′

(⟨x′1, x′2⟩)c2
+ c∗1⟨Kσ(a∗2x

′
1), y2⟩+ ⟨y1,Kσ′

(a∗1x
′
2)⟩c2 + ⟨y1, ϑ(a∗1a2)y2⟩
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=

⟨(
c1
y1

)
,

(
Kσ,σ′

Kσ∗

Kσ′
ϑ

)((
b1 x∗1
x′1 a1

)∗(
b2 x∗2
x′2 a2

))(
c2
y2

)⟩
for all x1, x2, x

′
1, x

′
2 ∈ E; b1, b2 ∈ B; c1, c2 ∈ C; y1, y2 ∈ F and

a1, a2 ∈ Ba(E). Therefore,
(

Kσ,σ′
Kσ∗

Kσ′
ϑ

)
forms a CPD-kernel, and

hence, {Kσ}σ∈S is a strictly CPDH0-family. �

We further generalize the notion of CPDH-dilation as follows:

Definition 4.5. Suppose E and F are Hilbert C∗-modules over C∗-
algebras B and C, respectively. Let K : S × S → B(B, C) be a CPD-
kernel. Let P be a CPD-kernel over the set E from Ba(E) to B, and
let L be a CPD-kernel over the set {Kσ(x) : σ ∈ S, x ∈ E} from Ba(F )
to C. A homomorphism ϑ : Ba(E) → Ba(F ) is called a generalized
CPDH-quasi-dilation of K if {Kσ}σ∈S is a collection of linear maps
from E to F such that the next diagram commutes for all x, x′ ∈ E
and σ, σ′ ∈ S:

(4.5) B Kσ,σ′
//

OO

Px,x′

COO

LKσ(x),Kσ′
(x′)

Ba(E)
ϑ

// Ba(F )

A generalized CPDH-quasi-dilation θ is called a generalized CPDH-
dilation if E is full.

Let L be a CPD-kernel over the set S′ = {Kσ(x) : σ ∈ S, x ∈ E}
from a unital C∗-algebra Ba(F ) to a C∗-algebra C. We get the
Kolmogorov decomposition (F , i) such that

⟨i(y), ai(y′)⟩ = Ly,y′
(a) for all y, y′ ∈ S′, a ∈ Ba(F )

and
F = span{ai(y)c : a ∈ Ba(F ), y ∈ S′, c ∈ C}.

Hence, we get

Kσ,σ′
(Px,x′

(a)) = ⟨i(Kσ(x)), ϑ(a)i(Kσ′
(x′))⟩

for each σ, σ′ ∈ S, x, x′ ∈ E and a ∈ Ba(F ). We denote the
homomorphism which gives the left action on F by θ : Ba(F ) → Ba(F).
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Observe that the next diagram commutes for all x, x′ ∈ E and σ, σ′ ∈ S:

B Kσ,σ′
//

OO

Px,x′

COO
⟨i(Kσ(x)),•i(Kσ′

(x′))⟩

Ba(E)
θ◦ϑ

// Ba(F)

Proposition 4.6. Suppose E and F are Hilbert C∗-modules over C∗-
algebras B and C, respectively. Let K : S × S → B(B, C) be a CPD-
kernel. Let P be a CPD-kernel over the set E from Ba(E) to B defined

by Px,x′
:= ⟨x, •x′⟩, where x, x′ ∈ E, and let L be a CPD-kernel over

the set {Kσ(x) : σ ∈ S, x ∈ E} from Ba(F ) to C. If ϑ : Ba(E) → Ba(F )
is a generalized CPDH-quasi-dilation of K with respect to CPD-kernels
P and L, then θ ◦ ϑ : Ba(E) → Ba(F) is a CPDH-quasi-dilation
of K with respect to maps {i ◦ Kσ : E → F}σ∈S where (F , i) is
the Kolmogorov decomposition of L and θ : Ba(F ) → Ba(F) is a
homomorphism which gives the left action on F .
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