PROPER RESOLUTIONS AND GORENSTEINNESS IN TRIANGULATED CATEGORIES

XIAOYAN YANG AND ZHICHENG WANG

Abstract

Let \mathcal{T} be a triangulated category with triangulation $\Delta, \xi \subseteq \Delta$ a proper class of triangles and \mathcal{C} an additive full subcategory of \mathcal{T}. We provide a method for constructing a proper $\mathcal{C}(\xi)$-resolution (respectively, coproper $\mathcal{C}(\xi)$-coresolution) of one term in a triangle in ξ from those of the other two terms. By using this construction, we show the stability of the Gorenstein category $\mathcal{G C}(\xi)$ in triangulated categories. Some applications are given.

Introduction. Triangulated categories were introduced by Grothendieck and Verdier in the early 1960s as the proper framework for homological algebra in an abelian category. Since then, triangulated categories have found important applications in algebraic geometry, stable homotopy theory and representation theory. Examples for this may be found in duality theory, Hartshorne [9] and Iversen [12], or in the fundamental work on perverse sheaves, Beilinson, Bernstein and Deligne [3].

Relative homological algebra has been formulated by Hochschild in categories of modules and later by Heller and Butler and Horrocks in more general categories with a relative abelian structure. Let \mathcal{T} be a triangulated category with triangulation Δ. Beligiannis [4] developed a homological algebra in \mathcal{T} which parallels the homological algebra in an exact category in the sense of Quillen. To develop the homology, a class of triangles $\xi \subseteq \Delta$, called proper class of triangles, is specified. This class is closed under translations and satisfies the analogous formal

[^0]properties of a proper class of short exact sequences. Moreover, ξ projective objects, ξ-projective resolution, ξ-projective dimension and their duals are introduced [4, Section 4].

In the category of modules, there is a natural generalization of the class of finitely generated projective modules over a commutative Noetherian ring, due to Auslander and Bridger [2], that is the notion of modules in Auslander's G-class (modules of Gorenstein dimension 0). To complete the analogy, Enochs and Jenda [7] introduced Gorenstein projective modules that generalize the notion of modules of Gorenstein dimension 0 to the class of not necessarily finitely generated modules. Using this class, they developed a relative homological algebra in the category of modules. Motivated by this, Beligiannis [5] defined the concept of an \mathcal{X}-Gorenstein object induced by a pair $(\mathcal{A}, \mathcal{X})$ consisting of an additive category \mathcal{A} and a contravariantly finite subcategory \mathcal{X} of \mathcal{A}, assuming that any \mathcal{X}-epic has a kernel in \mathcal{A}. This notion is a natural generalization of a module of Gorenstein dimension 0 in the sense of Auslander and Bridger [2]. Based on the works of Auslander and Bridger [2], Enochs and Jenda [7] and Beligiannis [5], Asadollahi and Salarian [1] developed the above-mentioned relative homological algebra in triangulated categories with enough ξ-projectives. They introduced and studied ξ-Gorenstein projective objects and ξ-Gorenstein projective dimensions with respect to a proper class of triangles ξ.

Let \mathcal{A} be an abelian category and \mathcal{C} an additive full subcategory of \mathcal{A}. Sather-Wagstaff, Sharif and White [15] introduced the Gorenstein category $\mathcal{G}(\mathcal{C})$ which unifies the notions: modules of Gorenstein dimension 0 [2], Gorenstein projective modules, Gorenstein injective modules [7], V-Gorenstein projective modules, V-Gorenstein injective modules [8], and so on. Huang [10] provided a method for constructing a proper \mathcal{C}-resolution (respectively, coproper \mathcal{C}-coresolution) of one term in a short exact sequence in \mathcal{A} from those of the other two terms. By using these, he affirmatively answered an open question on the stability of the Gorenstein category $\mathcal{G}(\mathcal{C})$ posed by Sather-Wagstaff, Sharif and White [15] and also proved that $\mathcal{G}(\mathcal{C})$ is closed under direct summands.

Let $\mathcal{T}=(\mathcal{T}, \Sigma, \Delta)$ be a triangulated category with Σ the suspension functor and Δ the triangulation, $\xi \subseteq \Delta$ a proper class of triangles and \mathcal{C} an additive full subcategory of \mathcal{T} closed under isomorphisms and Σ-stable, i.e., $\Sigma(\mathcal{C})=\mathcal{C}$.

In this paper, we make a general study of relative homological algebra on triangulated categories which may not have enough ξ projectives or enough ξ-injectives. Section 1 gives some notions and basic consequences of the proper class ξ. Section 2 provides a method for constructing a proper $\mathcal{C}(\xi)$-resolution (respectively, coproper $\mathcal{C}(\xi)$ coresolution) of one term in a triangle in ξ from those of the other two terms. Section 3 is devoted to establishing the stability of the Gorenstein category $\mathcal{G C}(\xi)$ in triangulated categories, and some applications are given.

1. Definitions and basic facts. This section is devoted to discussing the axioms of a proper class of triangles and drawing some basic consequences for use throughout this paper. The basic reference for triangulated categories is the monograph of Neeman [14]. For terminology, we shall follow $[4,16]$.

Triangulated categories. Let \mathcal{T} be an additive category and Σ : $\mathcal{T} \rightarrow \mathcal{T}$ an additive functor. Let $\operatorname{Diag}(\mathcal{T}, \Sigma)$ denote the category whose objects are diagrams in \mathcal{T} of the form $X \xrightarrow{\mu} Y \xrightarrow{\nu} Z \xrightarrow{\omega} \Sigma X$, and morphisms between two objects $X_{i} \xrightarrow{\mu_{i}} Y_{i} \xrightarrow{\nu_{i}} Z_{i} \xrightarrow{\omega_{i}} \Sigma X_{i}, i=1,2$, are triples of morphisms $f: X_{1} \rightarrow X_{2}, g: Y_{1} \rightarrow Y_{2}$ and $h: Z_{1} \rightarrow Z_{2}$, such that the following diagram commutes:

Such a morphism is called an isomorphism if f, g, h are isomorphisms in \mathcal{T}.

A triple $(\mathcal{T}, \Sigma, \Delta)$ is called a triangulated category, where \mathcal{T} is an additive category, Σ is an autoequivalence of \mathcal{T} and Δ is a full subcategory of $\operatorname{Diag}(\mathcal{T}, \Sigma)$ which satisfies the following axioms. The elements of Δ are then called triangles.
(TR1) Every diagram isomorphic to a triangle is a triangle. For every object X in \mathcal{T}, the diagram $X \xrightarrow{1} X \rightarrow 0 \rightarrow \Sigma X$ is a triangle. Every morphism $\mu: X \rightarrow Y$ in \mathcal{T} can be embedded into a triangle $X \xrightarrow{\mu} Y \rightarrow Z \rightarrow \Sigma X$.
(TR2) $X \xrightarrow{\mu} Y \xrightarrow{\nu} Z \xrightarrow{\omega} \Sigma X$ is a triangle if and only if $Y \xrightarrow{\nu} Z \xrightarrow{\omega}$ $\Sigma X \xrightarrow{-\Sigma \mu} \Sigma Y$ is so.
(TR3) Given triangles $X \xrightarrow{\mu} Y \xrightarrow{\nu} Z \xrightarrow{\omega} \Sigma X$ and $X^{\prime} \xrightarrow{\mu^{\prime}} Y^{\prime} \xrightarrow{\nu^{\prime}} Z^{\prime} \xrightarrow{\omega^{\prime}}$ ΣX^{\prime}, each commutative diagram

can be completed to a morphism of triangles (but not necessarily uniquely).
(TR4) The octahedral axiom. For this formulation, we refer the reader to Proposition 1.1.

Proposition 1.1 ([4, Proposition 2.1]). Let \mathcal{T} be an additive category equipped with an autoequivalence $\Sigma: \mathcal{T} \rightarrow \mathcal{T}$ and a class of diagrams $\Delta \subseteq \operatorname{Diag}(\mathcal{T}, \Sigma)$. Suppose that the triple $(\mathcal{T}, \Sigma, \Delta)$ satisfies all the axioms of a triangulated category except possibly of the octahedral axiom. Then the following are equivalent:
(1) Base change. For any diagram $X \xrightarrow{\mu} Y \xrightarrow{\nu} Z \xrightarrow{\omega} \Sigma X \in \Delta$ and any morphism $\alpha: Z^{\prime} \rightarrow Z$, there exists a commutative diagram

in which all horizontal and vertical diagrams are triangles in Δ.
(2) Cobase change. For any diagram $X \xrightarrow{\mu} Y \xrightarrow{\nu} Z \xrightarrow{\omega} \Sigma X \in \Delta$ and any morphism $\beta: X \rightarrow X^{\prime}$, there exists a commutative diagram

in which all horizontal and vertical diagrams are triangles in Δ.
(3) Octahedral axiom. For any two morphisms $\mu: X \rightarrow Y$ and $\nu: Y \rightarrow Z$, there exists a commutative diagram

in which all horizontal and the third vertical diagrams are triangles in Δ.

Proper class of triangles. Let $\mathcal{T}=(\mathcal{T}, \Sigma, \Delta)$ be a triangulated category, where Σ is the suspension functor and Δ is the triangulation.

A triangle $(T): X \xrightarrow{\mu} Y \xrightarrow{\nu} Z \xrightarrow{\omega} \Sigma X$ is called split if it is isomorphic to the triangle $X \xrightarrow{\binom{1}{0}} X \oplus Z \xrightarrow{(0,1)} Z \xrightarrow{0} \Sigma X$. It is easy to see that (T) is split if and only if μ is a section, ν is a retraction or $\omega=0$. The full subcategory of Δ consisting of the split triangles will be denoted by Δ_{0}. A class of triangles ξ is closed under base change if, for any
triangle $X \xrightarrow{\mu} Y \xrightarrow{\nu} Z \xrightarrow{\omega} \Sigma X \in \xi$ and any morphism $\alpha: Z^{\prime} \rightarrow Z$ as in Proposition $1.1(1)$, the triangle $X \xrightarrow{\mu^{\prime}} Y^{\prime} \xrightarrow{\nu^{\prime}} Z^{\prime} \xrightarrow{\omega^{\prime}} \Sigma X$ is in ξ.

Dually, a class of triangles ξ is closed under cobase change if, for any triangle $X \xrightarrow{\mu} Y \xrightarrow{\nu} Z \xrightarrow{\omega} \Sigma X \in \xi$ and any morphism $\beta: X \rightarrow X^{\prime}$ as in Proposition $1.1(2)$, the triangle $X^{\prime} \xrightarrow{\mu^{\prime}} Y^{\prime} \xrightarrow{\nu^{\prime}} Z \xrightarrow{\omega^{\prime}} \Sigma X^{\prime}$ is in ξ. A class of triangles ξ is closed under suspensions if, for any triangle $X \xrightarrow{\mu} Y \xrightarrow{\nu} Z \xrightarrow{\omega} \Sigma X \in \xi$ and any $i \in \mathbb{Z}$, the triangle

$$
\Sigma^{i} X \xrightarrow{(-1)^{i} \Sigma^{i} \mu} \Sigma^{i} Y \xrightarrow{(-1)^{i} \Sigma^{i} \nu} \Sigma^{i} Z \xrightarrow{(-1)^{i} \Sigma^{i} \omega} \Sigma^{i+1} X
$$

is in ξ. A class of triangles ξ is called saturated if, in the situation of base change in Proposition 1.1, whenever the third vertical and the second horizontal triangles are in ξ, then the triangle $X \xrightarrow{\mu} Y \xrightarrow{\nu} Z \xrightarrow{\omega} \Sigma X$ is in ξ.

The next concept is inspired by the definition of an exact category [6].

A full subcategory $\xi \subseteq \operatorname{Diag}(\mathcal{T}, \Sigma)$ is called a proper class of triangles if the following conditions hold:
(i) ξ is closed under isomorphisms, finite coproducts and $\Delta_{0} \subseteq \xi$ $\subseteq \Delta$.
(ii) ξ is closed under suspensions and is saturated.
(iii) ξ is closed under base and cobase change.

For example, the class Δ_{0} of split triangles and the class Δ of all triangles in \mathcal{T} are proper classes of triangles.

From now on, we fix a triangulated category $\mathcal{T}=(\mathcal{T}, \Sigma, \Delta)$ and a proper class of triangles ξ in \mathcal{T}, where Σ is the suspension functor and Δ is the triangulation.

An object $P \in \mathcal{T}$ (respectively, $I \in \mathcal{T}$) is called ξ-projective (respectively, ξ-injective) if, for any triangle $X \rightarrow Y \rightarrow Z \rightarrow \Sigma X$ in ξ, the induced sequence

$$
0 \rightarrow \mathcal{T}(P, X) \rightarrow \mathcal{T}(P, Y) \rightarrow \mathcal{T}(P, Z) \rightarrow 0
$$

respectively,

$$
0 \rightarrow \mathcal{T}(Z, I) \rightarrow \mathcal{T}(Y, I) \rightarrow \mathcal{T}(X, I) \rightarrow 0
$$

is exact in the category $\mathcal{A} b$ of abelian groups. We say that \mathcal{T} has enough ξ-projectives if, for any object $X \in \mathcal{T}$, there exists a triangle $K \rightarrow P \rightarrow X \rightarrow \Sigma K$ in ξ with P a ξ-projective object.

Dually, we define when \mathcal{T} has enough ξ-injectives. In this case, a triangle $X \rightarrow Y \rightarrow Z \rightarrow \Sigma X$ is in ξ if and only if, for any ξ-projective object P, the induced sequence

$$
0 \rightarrow \mathcal{T}(P, X) \rightarrow \mathcal{T}(P, Y) \rightarrow \mathcal{T}(P, Z) \rightarrow 0
$$

is exact in \mathcal{A} b if and only if, for any ξ-injective object I, the induced sequence

$$
0 \rightarrow \mathcal{T}(Z, I) \rightarrow \mathcal{T}(Y, I) \rightarrow \mathcal{T}(X, I) \rightarrow 0
$$

is exact in $\mathcal{A b}$ (see [4, Lemma 4.2] and its dual).
Let $X \xrightarrow{\mu} Y \xrightarrow{\nu} Z \xrightarrow{\omega} \Sigma X$ be a triangle in ξ. The morphism $\nu: Y \rightarrow Z$ is called a ξ-proper epic, and $\mu: X \rightarrow Y$ is called a ξ-proper monic, see [4]; μ is called the hokernel of ν and ν is called the hocokernel of μ, see [13].

Proposition 1.2 ([16]). The class of ξ-proper monics is closed under compositions. Dually, the class of ξ-proper epics is closed under compositions.

Proposition 1.3 ([16]). Consider morphisms $\mu: X \rightarrow Y$ and $\nu: Y \rightarrow$ Z.
(1) If $\nu \mu$ is a ξ-proper monic, then μ is a ξ-proper monic.
(2) If $\nu \mu$ is a ξ-proper epic, then ν is a ξ-proper epic.

Proposition 1.4 ([16]). Given a commutative diagram:

in which all horizontal and vertical diagrams are in Δ.
(1) If the third vertical triangle and the triangle $X \xrightarrow{\mu} Y \xrightarrow{\nu} Z \xrightarrow{\omega} \Sigma X$ are in ξ, then the triangle $X^{\prime} \xrightarrow{\mu^{\prime}} Y^{\prime} \xrightarrow{\nu^{\prime}} Z \xrightarrow{\omega^{\prime}} \Sigma X^{\prime}$ is also in ξ.
(2) If the second vertical triangle and the triangle $X^{\prime} \xrightarrow{\mu^{\prime}} Y^{\prime} \xrightarrow{\nu^{\prime}} Z \xrightarrow{\omega^{\prime}}$ ΣX^{\prime} are in ξ, then the third vertical triangle is also in ξ.

Definition 1.5. Let \mathcal{C} be an additive full subcategory of the triangulated category \mathcal{T} closed under isomorphisms and Σ-stable, i.e., $\Sigma(\mathcal{C})=\mathcal{C}$.

A ξ-exact complex X is a diagram

$$
\cdots \longrightarrow X_{n+1} \xrightarrow{d_{n+1}} X_{n} \xrightarrow{d_{n}} X_{n-1} \longrightarrow \cdots
$$

in \mathcal{T} such that, for all integers n, there exist triangles $K_{n+1} \xrightarrow{g_{n}} X_{n} \xrightarrow{f_{n}}$ $K_{n} \xrightarrow{h_{n}} \Sigma K_{n+1}$ in ξ and the differential d_{n} is defined as $d_{n}=g_{n-1} f_{n}$ for any n.

A triangle $X \rightarrow Y \rightarrow Z \rightarrow \Sigma X$ in ξ is called $\mathcal{T}(\mathcal{C},-)$-exact if, for any $C \in \mathcal{C}$, the induced complex

$$
0 \longrightarrow \mathcal{T}(C, X) \longrightarrow \mathcal{T}(C, Y) \longrightarrow \mathcal{T}(C, Z) \longrightarrow 0
$$

is exact in $\mathcal{A b}$.
A ξ-exact complex $X: \cdots \rightarrow X_{n+1} \xrightarrow{d_{n+1}} X_{n} \xrightarrow{d_{n}} X_{n-1} \rightarrow \cdots$ is called $\mathcal{T}(\mathcal{C},-)$-exact if there are $\mathcal{T}(\mathcal{C},-)$-exact triangles $K_{n+1} \xrightarrow{g_{n}} X_{n} \xrightarrow{f_{n}}$ $K_{n} \xrightarrow{h_{n}} \Sigma K_{n+1}$ in ξ, where the differential d_{n} is defined as $d_{n}=g_{n-1} f_{n}$ for any n.

Let X be an object of \mathcal{T}. A $\mathcal{C}(\xi)$-resolution of X is a ξ-exact complex

$$
\cdots \longrightarrow C_{1} \xrightarrow{d_{1}} C_{0} \xrightarrow{d_{0}} X \longrightarrow 0
$$

with all $C_{i} \in \mathcal{C}$ such that there are triangles $K_{n+1} \xrightarrow{g_{n}} C_{n} \xrightarrow{f_{n}} K_{n} \xrightarrow{h_{n}}$ ΣK_{n+1} in ξ and the differentials $d_{n}=g_{n-1} f_{n}$ for $n \geq 0$, where $K_{0}=X$ and $d_{0}=f_{0}$. The above ξ-exact complex is called a proper $\mathcal{C}(\xi)$-resolution of X if it is $\mathcal{T}(\mathcal{C},-)$-exact.

Dually, the notions of a $\mathcal{T}(-, \mathcal{C})$-exact triangle in ξ, a $\mathcal{T}(-, \mathcal{C})$-exact ξ-exact complex, a $\mathcal{C}(\xi)$-coresolution and a coproper $\mathcal{C}(\xi)$-coresolution are defined.

We say that \mathcal{C} is closed under hokernels of ξ-proper epics if, whenever the triangle

$$
X \xrightarrow{\mu} Y \xrightarrow{\nu} Z \xrightarrow{\omega} \Sigma X
$$

is in ξ with $Y, Z \in \mathcal{C}$, then X is in \mathcal{C}. Dually, we say that \mathcal{C} is closed under hocokernels of ξ-proper monics if, whenever the triangle

$$
X \xrightarrow{\mu} Y \xrightarrow{\nu} Z \xrightarrow{\omega} \Sigma X
$$

is in ξ with $X, Y \in \mathcal{C}$, then Z is in \mathcal{C}.
2. Proper resolutions and coproper coresolutions. In this section, we provide a method for constructing a proper $\mathcal{C}(\xi)$-resolution (respectively, coproper $\mathcal{C}(\xi)$-coresolution) of the first (respectively, last) term in a triangle in ξ from those of the other two terms, and a method for constructing a proper $\mathcal{C}(\xi)$-resolution (respectively, coproper $\mathcal{C}(\xi)$ coresolution) of the last (respectively, first) term in a triangle in ξ from those of the other two terms.

We first give the following easy observations.

Lemma 2.1. Let C be an object in \mathcal{T}. Consider the commutative diagram:

in which all horizontal and vertical diagrams are in Δ. If $\mathcal{T}(C, g)$ is epic, then $\mathcal{T}\left(C, g^{\prime}\right)$ is also epic. If $\mathcal{T}(f, C)$ is epic, then $\mathcal{T}\left(f^{\prime}, C\right)$ is also epic.

Proof. We prove the first statement since the second follows by duality.

Assume that $\mathcal{T}(C, g)$ is epic. Let $\alpha \in \mathcal{T}\left(C, Y^{\prime}\right)$. There exists a $\beta \in \mathcal{T}(C, Z)$ such that $f^{\prime} \alpha=\mathcal{T}(C, g)(\beta)=g \beta$. Thus, [11, Axiom D'] and [13, Lemma 27] imply that there is a $\gamma \in \mathcal{T}(C, Y)$ such that $g^{\prime} \gamma=\alpha$, and hence, $\mathcal{T}\left(C, g^{\prime}\right)$ is epic.

Lemma 2.2. Let $X \xrightarrow{\mu} Y \xrightarrow{\nu} Z \xrightarrow{\omega} \Sigma X$ be a triangle in Δ.
(1) If there exist morphisms $\alpha \in \mathcal{T}(C, X), \gamma \in \mathcal{T}\left(C^{\prime \prime}, Z\right)$ and $f \in \mathcal{T}\left(C^{\prime \prime}, Y\right)$ such that $\gamma=\nu f$, then we have the next morphism of triangles:

(2) If there exist morphisms $\alpha^{\prime} \in \mathcal{T}(X, D), \gamma^{\prime} \in \mathcal{T}\left(Z, D^{\prime \prime}\right)$ and $g \in \mathcal{T}(Y, D)$ such that $\alpha^{\prime}=g \mu$, then we have the next morphism of triangles:

Proof. Straightforward.

The next result provides a method for constructing a proper $\mathcal{C}(\xi)$ resolution of the first term in a triangle in ξ from those of the last two terms.

Theorem 2.3. Given a triangle in ξ,

$$
\begin{equation*}
X \longrightarrow X^{0} \longrightarrow X^{1} \longrightarrow \Sigma X \tag{2.0}
\end{equation*}
$$

Assume that \mathcal{C} is closed under hokernels of ξ-proper epics and

$$
\begin{equation*}
\cdots \longrightarrow C_{i}^{0} \xrightarrow{d_{i}^{0}} \cdots \longrightarrow C_{1}^{0} \xrightarrow{{d_{1}^{0}}^{0}} C_{0}^{0} \xrightarrow{d_{0}^{0}} X^{0} \longrightarrow 0, \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
\cdots \longrightarrow C_{i}^{1} \xrightarrow{d_{i}^{1}} \cdots \longrightarrow C_{1}^{1} \xrightarrow{d_{1}^{1}} C_{0}^{1} \xrightarrow{d_{0}^{1}} X^{1} \longrightarrow 0 \tag{2.2}
\end{equation*}
$$

are proper $\mathcal{C}(\xi)$-resolutions of X^{0} and X^{1}, respectively.
(1) We obtain the following proper $\mathcal{C}(\xi)$-resolution of X

$$
\begin{equation*}
\cdots \longrightarrow C_{i+1}^{1} \oplus C_{i}^{0} \longrightarrow \cdots \longrightarrow C_{2}^{1} \oplus C_{1}^{0} \longrightarrow C \longrightarrow X \longrightarrow 0 \tag{2.3}
\end{equation*}
$$

and the following triangle in ξ

$$
\begin{equation*}
C \longrightarrow C_{1}^{1} \oplus C_{0}^{0} \longrightarrow C_{0}^{1} \longrightarrow \Sigma C . \tag{2.4}
\end{equation*}
$$

(2) If both ξ-exact complexes (2.1), (2.2) and the triangle (2.0) are $\mathcal{T}(-, \mathcal{C})$-exact, then so is the ξ-exact complex (2.3).

Proof.
(1) By assumption, there exist $\mathcal{T}(\mathcal{C},-)$-exact triangles

$$
\begin{aligned}
& K_{i+1}^{0} \xrightarrow{g_{i}^{0}} C_{i}^{0} \xrightarrow{f_{i}^{0}} K_{i}^{0} \xrightarrow{h_{i}^{0}} \Sigma K_{i+1}^{0} \\
& K_{i+1}^{1} \xrightarrow{g_{i}^{1}} C_{i}^{1} \xrightarrow{f_{i}^{1}} K_{i}^{1} \xrightarrow{h_{i}^{1}} \Sigma K_{i+1}^{1}
\end{aligned}
$$

in ξ with the differentials $d_{i}^{0}=g_{i-1}^{0} f_{i}^{0}$ and $d_{i}^{1}=g_{i-1}^{1} f_{i}^{1}$ for all $i \geq 0$, where $K_{0}^{0}=X^{0}, d_{0}^{0}=f_{0}^{0}$ and $K_{0}^{1}=X^{1}, d_{0}^{1}=f_{0}^{1}$. Applying the base change for the triangle (2.0) along f_{0}^{1}, we obtain the following commutative diagram:

in which the second horizontal and the second vertical triangles are in ξ. Since the third vertical triangle in diagram (2.5) is $\mathcal{T}(\mathcal{C},-)$-exact, so is the second vertical triangle by Lemma 2.1. Thus, Lemma 2.2 (1)
yields the following morphism of triangles:

Using that Σ is an automorphism and the 3×3 lemma, the commutative square on the top left corner below is embedded in a diagram:

which is commutative except for the lower right square which anticommutes and where all the rows and columns are in Δ. Then, we have the following commutative diagram:

in which both the first and third vertical triangles and the second and third horizontal triangles are in ξ.

We now show that the first horizontal and the second vertical triangles in diagram (2.6) are in ξ. First, Proposition 1.2 implies that $g g_{1}=\binom{g_{1}^{1}}{0}$ is a ξ-proper monic. It follows from Proposition 1.3 that g_{1} is a ξ-proper monic and the first horizontal triangle in diagram (2.6) is in ξ.

Next, by the proof of the 3×3 lemma, see [13, Corollary 32], we have the following commutative diagram:

in which all horizontal and vertical diagrams are in Δ. Hence, Proposition 1.4 implies that the third vertical triangle is in ξ. We also have the following commutative diagram:

in which all horizontal and vertical diagrams are in Δ. Note that $(0,1) d=g_{0}^{0}$ is a ξ-proper monic. Then, Proposition 1.3 shows that d is a ξ-proper monic.

Finally, by the proof of the 3×3 lemma again, we have the following commutative diagram:

in which the first horizontal triangle is in ξ. Also, we have the following commutative diagram:

in which all horizontal and vertical diagrams are in Δ. Hence, Proposition 1.4 implies that the second vertical triangle in diagram (2.6) is in ξ. Since both the first and third vertical triangles and the second and third horizontal triangles in the diagram are $\mathcal{T}(\mathcal{C},-)$-exact, so are the second vertical and the first horizontal triangles in this diagram.

On one hand, applying the base change for the triangle $\Sigma^{-1} C_{0}^{1} \rightarrow$ $X \rightarrow M \rightarrow C_{0}^{1}$ along $C_{1}^{1} \oplus C_{0}^{0} \rightarrow M$, we have the following commutative
diagram:

in which the second vertical triangle is in ξ. Then, Proposition 1.4 shows that the triangle $C \rightarrow C_{1}^{1} \oplus C_{0}^{0} \rightarrow C_{0}^{1} \rightarrow \Sigma C$ is in ξ and $C \in \mathcal{C}$ by assumption. Since the third vertical triangle is $\mathcal{T}(\mathcal{C},-)$-exact, it follows from Lemma 2.1 that the second vertical triangle is so.

On the other hand, Lemma 2.2 (1) again yields the following morphism of triangles:

Using that Σ is an automorphism and the 3×3 lemma, the commutative square on the top left corner is embedded in a diagram:

which is commutative except for the lower right square which anticom-
mutes and where all the rows and columns are in Δ. Then, we have the following commutative diagram:

in which the second vertical and the first horizontal triangles are in ξ by analogy with the preceding proof. Since both the first and third vertical triangles and the second and third horizontal triangles in the above diagram are $\mathcal{T}(\mathcal{C},-)$-exact, so are the second vertical and the first horizontal triangles in this diagram. Continuing this process, we obtain the desired proper $\mathcal{C}(\xi)$-resolution (2.3) and triangle (2.4).
(2) Note that the third vertical and the third horizontal triangles in diagram (2.5) are $\mathcal{T}(-, \mathcal{C})$-exact, so the second vertical and the second horizontal triangles in this diagram are also $\mathcal{T}(-, \mathcal{C})$-exact. Since both the first and third vertical triangles and the second and third horizontal triangles in diagram (2.6) are $\mathcal{T}(-, \mathcal{C})$-exact, a simple diagram chasing argument shows that the first horizontal and the second vertical triangles in this diagram are also $\mathcal{T}(-, \mathcal{C})$-exact. Thus, the second vertical triangle in diagram (2.7) is $\mathcal{T}(-, \mathcal{C})$-exact. Also, by assumption, both the first and third vertical triangles and the second and third horizontal triangles in diagram (2.8) are $\mathcal{T}(-, \mathcal{C})$-exact. Thus, the second vertical and the first horizontal triangles in this diagram are also $\mathcal{T}(-, \mathcal{C})$-exact. Finally, we deduce that the ξ-exact sequence (2.3) is $\mathcal{T}(-, \mathcal{C})$-exact.

Based on Theorem 2.3, by using induction on n, it is not difficult to obtain:

Corollary 2.4. Given a ξ-exact complex

$$
\begin{equation*}
0 \longrightarrow X \longrightarrow X^{0} \longrightarrow X^{1} \longrightarrow \cdots \longrightarrow X^{n} \longrightarrow 0 \tag{2.9}
\end{equation*}
$$

Assume that \mathcal{C} is closed under hokernels of ξ-proper epics, and

$$
\begin{equation*}
\cdots \longrightarrow C_{i}^{j} \longrightarrow \cdots \longrightarrow C_{1}^{j} \longrightarrow C_{0}^{j} \longrightarrow X^{j} \longrightarrow 0 \tag{j}
\end{equation*}
$$

is a proper $\mathcal{C}(\xi)$-resolution of X^{j} for $0 \leq j \leq n$. Then,

$$
\begin{equation*}
\cdots \longrightarrow \bigoplus_{i=0}^{n} C_{i+3}^{i} \longrightarrow \bigoplus_{i=0}^{n} C_{i+2}^{i} \longrightarrow \bigoplus_{i=0}^{n} C_{i+1}^{i} \longrightarrow C \longrightarrow X \longrightarrow 0 \tag{2.11}
\end{equation*}
$$

is a proper $\mathcal{C}(\xi)$-resolution of X, and there exists a ξ-exact complex

$$
\begin{aligned}
0 \longrightarrow C \longrightarrow \bigoplus_{i=0}^{n} C_{i}^{i} \longrightarrow \bigoplus_{i=1}^{n} C_{i-1}^{i} \longrightarrow & \bigoplus_{i=2}^{n} C_{i-2}^{i} \longrightarrow \cdots \\
& \longrightarrow C_{0}^{n-1} \oplus C_{1}^{n} \longrightarrow C_{0}^{n} \longrightarrow 0
\end{aligned}
$$

If the ξ-exact complex (2.9) and all $\mathcal{C}(\xi)$-resolutions (2.10 (j)) are $\mathcal{T}(-, \mathcal{C})$-exact, then so is the ξ-exact complex (2.11).

The next two results, which are due to Theorem 2.3 and Corollary 2.4 , respectively, provide a method for constructing a coproper $\mathcal{C}(\xi)$-coresolution of the last term in a triangle in ξ from those of the first two terms.

Theorem 2.5. Given a triangle in ξ,

$$
\begin{equation*}
Y_{1} \longrightarrow Y_{0} \longrightarrow Y \longrightarrow \Sigma Y_{1} . \tag{2.12}
\end{equation*}
$$

Assume that \mathcal{C} is closed under hocokernels of ξ-proper monics and

$$
\begin{gather*}
0 \longrightarrow Y_{0} \xrightarrow{d_{0}^{0}} C_{0}^{0} \xrightarrow{d_{0}^{1}} C_{0}^{1} \longrightarrow \cdots \longrightarrow C_{0}^{i} \xrightarrow{d_{0}^{i+1}} \cdots, \tag{2.13}\\
0 \longrightarrow Y_{1} \xrightarrow{d_{1}^{0}} C_{1}^{0} \xrightarrow{d_{1}^{1}} C_{1}^{1} \longrightarrow \cdots \longrightarrow C_{1}^{i} \xrightarrow{d_{1}^{i+1}} \cdots \tag{2.14}
\end{gather*}
$$

are coproper $\mathcal{C}(\xi)$-coresolutions of Y_{0} and Y_{1}, respectively.
(1) We get the following coproper $\mathcal{C}(\xi)$-coresolution of Y

$$
\begin{equation*}
0 \longrightarrow Y \longrightarrow C \longrightarrow C_{0}^{1} \oplus C_{1}^{2} \longrightarrow \cdots \longrightarrow C_{0}^{i} \oplus C_{1}^{i+1} \longrightarrow \cdots \tag{2.15}
\end{equation*}
$$

and the following triangle in ξ

$$
\begin{equation*}
C_{1}^{0} \longrightarrow C_{0}^{0} \oplus C_{1}^{1} \longrightarrow C \longrightarrow \Sigma C_{1}^{0} \tag{2.16}
\end{equation*}
$$

(2) If both of the ξ-exact complexes (2.13), (2.14) and the triangle (2.12) are $\mathcal{T}(\mathcal{C},-)$-exact, then so is the ξ-exact complex (2.15).

Proof. By assumption, there exist $\mathcal{T}(-, \mathcal{C})$-exact triangles

$$
K_{0}^{i} \xrightarrow{g_{0}^{i}} C_{0}^{i} \xrightarrow{f_{0}^{i}} K_{0}^{i+1} \xrightarrow{h_{0}^{i}} \Sigma K_{0}^{i}, \quad K_{1}^{i} \xrightarrow{g_{1}^{i}} C_{1}^{i} \xrightarrow{f_{1}^{i}} K_{1}^{i+1} \xrightarrow{h_{1}^{i}} \Sigma K_{1}^{i}
$$

in ξ with differentials $d_{0}^{i}=g_{0}^{i} f_{0}^{i-1}$ and $d_{1}^{i}=g_{1}^{i} f_{1}^{i-1}$ for all $i \geq 0$, where $K_{0}^{0}=Y_{0}, d_{0}^{0}=g_{0}^{0}$ and $K_{1}^{0}=Y_{1}, d_{1}^{0}=g_{1}^{0}$. Applying the cobase change for the triangle $\Sigma^{-1} K_{1}^{1} \rightarrow Y_{1} \rightarrow C_{1}^{0} \rightarrow K_{1}^{1}$ along $Y_{1} \rightarrow Y_{0}$, we have the following commutative diagram:

in which the triangles $C_{1}^{0} \rightarrow N \rightarrow Y \rightarrow \Sigma C_{1}^{0}$ and $Y_{0} \rightarrow N \rightarrow K_{1}^{1} \rightarrow$ ΣY_{0} are in ξ. Since the triangle $Y_{1} \rightarrow C_{1}^{0} \rightarrow K_{1}^{1} \rightarrow \Sigma Y_{1}$ is $\mathcal{T}(-, \mathcal{C})$ exact, so is the triangle $Y_{0} \rightarrow N \rightarrow K_{1}^{1} \rightarrow \Sigma Y_{0}$ by Lemma 2.1. Thus, Lemma 2.2 (2) yields the following morphism of triangles:

Using that Σ is an automorphism and the 3×3 lemma, the commutative
square on the top left corner is embedded in a diagram:

which is commutative except for the lower right square which anticommutes and where all the rows and columns are in Δ. Then, we have the following commutative diagram:

in which both the first and third vertical triangles and the first and second horizontal triangles are in ξ.

We now show that the third horizontal and the second vertical triangles in diagram (2.18) are in ξ. First, Proposition 1.2 implies that $f_{1} f=\left(0, f_{1}^{1}\right)$ is a ξ-proper epic. It follows from Proposition 1.3 that f_{1} is a ξ-proper epic, and the third horizontal triangle in diagram (2.6) is in ξ.

Next, by the proof of the 3×3 lemma, see [13, Corollary 32], we have the following commutative diagram:

in which all horizontal and vertical diagrams are in Δ. Thus, the cobase change implies that the triangle $N \xrightarrow{a} C_{0}^{0} \oplus K_{1}^{1} \xrightarrow{b} K_{0}^{1} \xrightarrow{c} \Sigma N$ is in ξ. We also have the following commutative diagram:

in which all horizontal and vertical diagrams are in Δ. Then, Proposition 1.2 shows that $\Sigma^{-1} i=\left(\Sigma^{-1} f_{1}^{1}\right)(0,1)$ is a ξ-proper epic and the triangle $C_{0}^{0} \oplus K_{1}^{1} \xrightarrow{e} C_{0}^{0} \oplus C_{1}^{1} \xrightarrow{i} K_{1}^{2} \xrightarrow{d} \Sigma\left(C_{0}^{0} \oplus K_{1}^{1}\right)$ is in ξ.

Finally, we have the following commutative diagram:

in which all horizontal and vertical diagrams are in Δ. Hence, Proposition 1.4 implies that the second vertical triangle in diagram (2.18) is in ξ. Since both the first and third vertical triangles and the first and second horizontal triangles in diagram (2.18) are $\mathcal{T}(-, \mathcal{C})$-exact, so are the third horizontal and the second vertical triangles in this diagram.

On one hand, applying the cobase change for the triangle $\Sigma^{-1} W^{1} \rightarrow$ $N \rightarrow C_{0}^{0} \oplus C_{1}^{1} \rightarrow W^{1}$ along $N \rightarrow Y$, we have a commutative diagram:

in which the triangle $Y \rightarrow C \rightarrow W^{1} \rightarrow \Sigma Y$ is in ξ. Then, Proposition 1.4 shows that the third vertical triangle is in ξ and $C \in \mathcal{C}$ by assumption. Since the triangle $N \rightarrow C_{0}^{0} \oplus C_{1}^{1} \rightarrow W^{1} \rightarrow \Sigma N$ is $\mathcal{T}(-, \mathcal{C})$ exact, it follows from Lemma 2.1 that the triangle $Y \rightarrow C \rightarrow W^{1} \rightarrow \Sigma Y$ is so. On the other hand, again Lemma 2.2 (2) yields the following mor-
phism of triangles:

Using that Σ is an automorphism and the 3×3 lemma, the commutative square on the top left corner below is embedded in a diagram:

which is commutative except the lower right square which anticommutes and where all the rows and columns are in Δ. Then we have the following commutative diagram:

in which the third horizontal and the second vertical triangles are in ξ by analogy with the preceding proof. Since both the first and third vertical triangles and the first and second horizontal triangles in diagram (2.20) are $\mathcal{T}(-, \mathcal{C})$-exact, so are the third horizontal and the
second vertical triangles in this diagram. Continuing this process, we obtain the desired coproper $\mathcal{C}(\xi)$-coresolution (2.15) and triangle (2.16).
(2) Note that the triangle (2.12) and the triangle $Y_{1} \rightarrow C_{1}^{0} \rightarrow$ $K_{1}^{1} \rightarrow \Sigma Y_{1}$ in the diagram (2.17) are $\mathcal{T}(\mathcal{C},-)$-exact; thus, the triangles $Y_{0} \rightarrow N \rightarrow K_{1}^{1} \rightarrow \Sigma Y_{0}$ and $C_{1}^{0} \rightarrow N \rightarrow Y \rightarrow \Sigma C_{1}^{0}$ in this diagram are also $\mathcal{T}(\mathcal{C},-)$-exact. Since both the first and third vertical triangles and the first and second horizontal triangles in diagram (2.18) are $\mathcal{T}(\mathcal{C},-)$-exact, a simple diagram chasing argument shows that the third horizontal and the second vertical triangles in this diagram are also $\mathcal{T}(\mathcal{C},-)$-exact. Thus, the triangle $Y \rightarrow C \rightarrow W^{1} \rightarrow \Sigma Y$ in diagram (2.19) is $\mathcal{T}(\mathcal{C},-)$-exact.

Also by assumption, both the first and third vertical triangles and the first and second horizontal triangles in diagram (2.20) are $\mathcal{T}(\mathcal{C},-)$ exact. Thus, the second vertical and the third horizontal triangles in this diagram are also $\mathcal{T}(\mathcal{C},-)$-exact. Finally, we deduce that the ξ exact sequence (2.15) is $\mathcal{T}(\mathcal{C},-)$-exact.

Based on Theorem 2.5, by using induction on n, it is not difficult to obtain:

Corollary 2.6. Given a ξ-exact complex

$$
\begin{equation*}
0 \longrightarrow Y_{n} \longrightarrow \cdots \longrightarrow Y_{1} \longrightarrow Y_{0} \longrightarrow Y \longrightarrow 0 \tag{2.21}
\end{equation*}
$$

assume that \mathcal{C} is closed under hocokernels of ξ-proper monics and

$$
\begin{equation*}
0 \longrightarrow Y_{j} \longrightarrow C_{j}^{0} \longrightarrow C_{j}^{1} \longrightarrow \cdots \longrightarrow C_{j}^{i} \longrightarrow \cdots \tag{j}
\end{equation*}
$$

is a coproper $\mathcal{C}(\xi)$-coresolution of Y_{j} for $0 \leq j \leq n$. Then,

$$
\begin{equation*}
0 \longrightarrow Y \longrightarrow C \longrightarrow \bigoplus_{i=0}^{n} C_{i}^{i+1} \longrightarrow \bigoplus_{i=0}^{n} C_{i}^{i+2} \longrightarrow \bigoplus_{i=0}^{n} C_{i}^{i+3} \longrightarrow \cdots \tag{2.23}
\end{equation*}
$$

is a coproper $\mathcal{C}(\xi)$-coresolution of Y, and there exists a ξ-exact complex

$$
\begin{aligned}
0 \longrightarrow C_{n}^{0} \longrightarrow C_{n-1}^{0} \oplus C_{n}^{1} \longrightarrow & \cdots \longrightarrow \bigoplus_{i=2}^{n} C_{i}^{i-2} \\
& \longrightarrow \bigoplus_{i=1}^{n} C_{i}^{i-1} \longrightarrow \bigoplus_{i=0}^{n} C_{i}^{i} \longrightarrow C \longrightarrow 0
\end{aligned}
$$

If the ξ-exact complex (2.21) and all $\mathcal{C}(\xi)$-coresolutions $(2.22(\mathrm{j}))$ are $\mathcal{T}(\mathcal{C},-)$-exact, then so is the ξ-exact complex (2.23).

The next result provides a method for constructing a proper $\mathcal{C}(\xi)$ resolution of the last term in a triangle in ξ from those of the first two terms.

Theorem 2.7. Given a triangle

$$
\begin{equation*}
X_{1} \longrightarrow X_{0} \longrightarrow X \longrightarrow \Sigma X_{1} \tag{2.24}
\end{equation*}
$$

in ξ, assume that

$$
\begin{equation*}
C_{0}^{n} \xrightarrow{d_{0}^{n}} \cdots \longrightarrow C_{0}^{1} \xrightarrow{d_{0}^{1}} C_{0}^{0} \xrightarrow{d_{0}^{0}} X_{0} \longrightarrow 0 \tag{2.25}
\end{equation*}
$$

$$
\begin{equation*}
C_{1}^{n-1} \xrightarrow{d_{1}^{n-1}} \cdots \longrightarrow C_{1}^{1} \xrightarrow{d_{1}^{1}} C_{1}^{0} \xrightarrow{d_{1}^{0}} X_{1} \longrightarrow 0 \tag{2.26}
\end{equation*}
$$

are proper $\mathcal{C}(\xi)$-resolutions of X_{0} and X_{1}, respectively.
(1) If the triangle (2.24) is $\mathcal{T}(\mathcal{C},-)$-exact, then we get a proper $\mathcal{C}(\xi)$ resolution of X

$$
\begin{align*}
C_{0}^{n} \oplus C_{1}^{n-1} \longrightarrow \cdots \longrightarrow & C_{0}^{2} \oplus C_{1}^{1} \tag{2.27}\\
& \longrightarrow C_{0}^{1} \oplus C_{1}^{0} \longrightarrow C_{0}^{0} \longrightarrow X \longrightarrow 0
\end{align*}
$$

(2) If both the ξ-exact complexes (2.25), (2.26) and the triangle (2.24) are $\mathcal{T}(-, \mathcal{C})$-exact, then so is the ξ-exact complex (2.27).

Proof.
(1) By assumption, there exist $\mathcal{T}(\mathcal{C},-)$-exact triangles

$$
\begin{aligned}
& K_{0}^{i+1} \xrightarrow{g_{0}^{i}} C_{0}^{i} \xrightarrow{f_{0}^{i}} K_{0}^{i} \xrightarrow{h_{0}^{i}} \Sigma K_{0}^{i+1}, \\
& K_{1}^{i+1} \xrightarrow{g_{1}^{i}} C_{1}^{i} \xrightarrow{f_{1}^{i}} K_{1}^{i} \xrightarrow{h_{1}^{i}} \Sigma K_{1}^{i+1}
\end{aligned}
$$

in ξ with the differentials $d_{0}^{i}=g_{0}^{i-1} f_{0}^{i}$ for $0 \leq i \leq n-1$, where $K_{0}^{0}=X_{0}, d_{0}^{0}=f_{0}^{0}$, and the differentials $d_{1}^{i}=g_{1}^{i-1} f_{1}^{i}$ for $0 \leq i \leq n-2$, where $K_{1}^{0}=X_{1}, d_{1}^{0}=f_{1}^{0}$. Applying the base change for the triangle
$\Sigma^{-1} X \rightarrow X_{1} \rightarrow X_{0} \rightarrow X$ along f_{0}^{0}, we have a commutative diagram:

Then Proposition 1.4 implies that the triangle $W^{1} \rightarrow C_{0}^{0} \rightarrow X \rightarrow \Sigma W^{1}$ is in ξ. Since the triangle (2.24) and the third vertical triangle in diagram (2.28) are $\mathcal{T}(\mathcal{C},-)$-exact, it follows from Lemma 2.1 that the triangle $W^{1} \rightarrow C_{0}^{0} \rightarrow X \rightarrow \Sigma W^{1}$ and the second vertical triangle in this diagram are also $\mathcal{T}(\mathcal{C},-)$-exact. Thus, Lemma 2.2 (1) yields a morphism of triangles:

Using that Σ is an automorphism and the 3×3 lemma, the commutative square on the top left corner is embedded in a diagram:

which is commutative except for the lower right square which anticom-
mutes and where all the rows and columns are in Δ. Then, we have the following commutative diagram:

in which both the first and third vertical triangles and the second and third horizontal triangles are in ξ. By analogy with the proof of Theorem 2.3, we see that the first horizontal and the second vertical triangles in diagram (2.29) are in ξ. Since both the first and third vertical triangles and the second and third horizontal triangles in the above diagram are $\mathcal{T}(\mathcal{C},-)$-exact, so are the first horizontal and the second vertical triangles in this diagram. Finally, repeated applications of Lemma 2.2 (1) yields the proper $\mathcal{C}(\xi)$-resolution (2.27).
(2) Since the triangle (2.24) and the third vertical triangle in the diagram (2.28) are $\mathcal{T}(-, \mathcal{C})$-exact, the second vertical triangle and the triangle $W^{1} \rightarrow C_{0}^{0} \rightarrow X \rightarrow \Sigma W^{1}$ in this diagram are also $\mathcal{T}(-, \mathcal{C})$ exact. Also, by assumption, both the first and third vertical triangles and the second and third horizontal triangles in diagram (2.29) are $\mathcal{T}(-, \mathcal{C})$-exact. Thus, the second vertical and the first horizontal triangles in this diagram are also $\mathcal{T}(-, \mathcal{C})$-exact. Finally, we deduce that the ξ-exact sequence (2.27) is $\mathcal{T}(-, \mathcal{C})$-exact.

Corollary 2.8. Given a ξ-exact complex

$$
\begin{equation*}
X_{n} \longrightarrow \cdots \longrightarrow X_{1} \longrightarrow X_{0} \longrightarrow X \longrightarrow 0, \tag{2.30}
\end{equation*}
$$

assume that

$$
\begin{equation*}
C_{j}^{n-j} \longrightarrow \cdots \longrightarrow C_{j}^{1} \longrightarrow C_{j}^{0} \longrightarrow X_{j} \longrightarrow 0 \tag{j}
\end{equation*}
$$

is a proper $\mathcal{C}(\xi)$-resolution of X_{j} for $0 \leq j \leq n$. If the ξ-exact complex
(2.30) is $\mathcal{T}(\mathcal{C},-)$-exact, then

$$
\begin{equation*}
\bigoplus_{i=0}^{n} C_{i}^{n-i} \longrightarrow \bigoplus_{i=0}^{n-1} C_{i}^{(n-1)-i} \longrightarrow \cdots \longrightarrow C_{0}^{1} \oplus C_{1}^{0} \longrightarrow C_{0}^{0} \longrightarrow X \longrightarrow 0 \tag{2.32}
\end{equation*}
$$

is a proper $\mathcal{C}(\xi)$-resolution of X. Furthermore, if the ξ-exact complex (2.30) and all $\mathcal{C}(\xi)$-resolutions $(2.31(\mathrm{j}))$ are $\mathcal{T}(-, \mathcal{C})$-exact, then so is the ξ-exact complex (2.32).

Proof. By assumption, there exist a ξ-proper epic $X_{n} \rightarrow K_{n}$ and triangles $K_{i+1} \rightarrow X_{i} \rightarrow K_{i} \rightarrow \Sigma K_{i+1}$ in ξ for $0 \leq i \leq n-1$, where $K_{0}=X$. Also, there is a ξ-proper epic $C_{n}^{0} \rightarrow X_{n}$. Thus, Proposition 1.2 implies that $C_{n}^{0} \rightarrow K_{n}$ is a ξ-proper epic. Now, using Theorem 2.7 and induction on n, we obtain the desired ξ-exact complex (2.32).

The next two results which are dual to Theorem 2.7 and Corollary 2.8 , respectively, provide a method for constructing a coproper $\mathcal{C}(\xi)$-coresolution of the first term in a triangle in ξ from those of the last two terms.

Theorem 2.9. Given a triangle

$$
\begin{equation*}
Y \longrightarrow Y^{0} \longrightarrow Y^{1} \longrightarrow \Sigma Y \tag{2.33}
\end{equation*}
$$

in ξ, assume that

$$
\begin{align*}
& 0 \longrightarrow Y^{0} \xrightarrow{d_{0}^{0}} C_{0}^{0} \xrightarrow{d_{1}^{0}} C_{1}^{0} \longrightarrow \cdots \xrightarrow{d_{n}^{0}} C_{n}^{0}, \tag{2.34}\\
& 0 \longrightarrow Y^{1} \xrightarrow{d_{0}^{1}} C_{0}^{1} \xrightarrow{d_{1}^{1}} C_{1}^{1} \longrightarrow \cdots \xrightarrow{d_{n-1}^{1}} C_{n-1}^{1} \tag{2.35}
\end{align*}
$$

are coproper $\mathcal{C}(\xi)$-coresolutions of Y^{0} and Y^{1}, respectively.
(1) If the triangle (2.33) is $\mathcal{T}(-, \mathcal{C})$-exact, then we get a coproper $\mathcal{C}(\xi)$-coresolution of Y
$0 \longrightarrow Y \longrightarrow C_{0}^{0} \longrightarrow C_{0}^{1} \oplus C_{1}^{0} \longrightarrow C_{1}^{1} \oplus C_{2}^{0} \longrightarrow \cdots \longrightarrow C_{n-1}^{1} \oplus C_{n}^{0}$.
(2) If both of the ξ-exact complexes (2.34), (2.35) and the triangle (2.33) are $\mathcal{T}(\mathcal{C},-)$-exact, then so is the ξ-exact complex (2.36).

Proof. By assumption, there exist $\mathcal{T}(-, \mathcal{C})$-exact triangles

$$
\begin{aligned}
& K_{i}^{0} \xrightarrow{g_{i}^{0}} C_{i}^{0} \xrightarrow{f_{i}^{0}} K_{i+1}^{0} \xrightarrow{h_{i}^{0}} \Sigma K_{i}^{0}, \\
& K_{i}^{1} \xrightarrow{g_{i}^{1}} C_{i}^{1} \xrightarrow{f_{i}^{1}} K_{i+1}^{1} \xrightarrow{h_{i}^{1}} \Sigma K_{i}^{1}
\end{aligned}
$$

in ξ with the differentials $d_{i}^{0}=g_{i}^{0} f_{i-1}^{0}$ for $0 \leq i \leq n-1$, where $K_{0}^{0}=Y^{0}, d_{0}^{0}=g_{0}^{0}$, and the differentials $d_{i}^{1}=g_{i}^{1} f_{i-1}^{1}$ for $0 \leq i \leq n-2$, where $K_{0}^{1}=Y^{1}, d_{0}^{1}=g_{0}^{1}$. Applying the cobase change for the triangle $\Sigma^{-1} K_{1}^{0} \rightarrow Y^{0} \rightarrow C_{0}^{0} \rightarrow K_{1}^{0}$ along $Y^{0} \rightarrow Y^{1}$, we have the following commutative diagram:

Then Proposition 1.4 implies that the third vertical triangle is in ξ. Since the triangle (2.33) and the triangle $Y^{0} \rightarrow C_{0}^{0} \rightarrow K_{1}^{0} \rightarrow \Sigma Y^{0}$ in diagram (2.37) are $\mathcal{T}(-, \mathcal{C})$-exact, it follows from Lemma 2.1 that the third vertical triangle and the triangle $Y^{1} \rightarrow W_{1} \rightarrow K_{1}^{0} \rightarrow \Sigma Y^{1}$ in this diagram are also $\mathcal{T}(-, \mathcal{C})$-exact. Thus, Lemma 2.2 (2) yields a morphism of triangles:

Using that Σ is an automorphism and the 3×3 lemma, the commutative
square on the top left corner below is embedded in a diagram:

which is commutative except for the lower right square which anticommutes and where all the rows and columns are in Δ. Then, we have the following commutative diagram:

in which both the first and third vertical triangles and the first and second horizontal triangles are in ξ. By analogy with the proof of Theorem 2.5, we have the third horizontal and the second vertical triangles in diagram (2.38) are in ξ. Since both the first and third vertical triangles and the first and second horizontal triangles in the diagram are $\mathcal{T}(-, \mathcal{C})$-exact, so are the third horizontal and the second vertical triangles in this diagram. Finally repeated applications of Lemma 2.2 (2) yields the coproper $\mathcal{C}(\xi)$-coresolution (2.36).
(2) Since the triangle (2.33) and triangle $Y^{0} \rightarrow C_{0}^{0} \rightarrow K_{1}^{0} \rightarrow \Sigma Y^{0}$ in diagram (2.37) are $\mathcal{T}(\mathcal{C},-)$-exact, the third vertical triangle and the triangle $Y^{1} \rightarrow W_{1} \rightarrow K_{1}^{0} \rightarrow \Sigma Y^{1}$ in this diagram are also $\mathcal{T}(\mathcal{C},-)$ -
exact. Also, by assumption, both the first and third vertical triangles and the first and second horizontal triangles in the diagram (2.38) are $\mathcal{T}(\mathcal{C},-)$-exact. Thus, the second vertical and the third horizontal triangles in this diagram are also $\mathcal{T}(\mathcal{C},-)$-exact. Finally, we deduce that the ξ-exact sequence (2.36) is $\mathcal{T}(\mathcal{C},-)$-exact.

Corollary 2.10. Given a ξ-exact complex

$$
\begin{equation*}
0 \longrightarrow Y \longrightarrow Y^{0} \longrightarrow Y^{1} \longrightarrow \cdots \longrightarrow Y^{n} \tag{2.39}
\end{equation*}
$$

Assume that

$$
\begin{equation*}
0 \longrightarrow Y^{j} \longrightarrow C_{0}^{j} \longrightarrow C_{1}^{j} \longrightarrow \cdots \longrightarrow C_{n-j}^{j} \tag{j}
\end{equation*}
$$

is a coproper $\mathcal{C}(\xi)$-coresolution of Y^{j} for $0 \leq j \leq n$. If the ξ-exact complex (2.39) is $\mathcal{T}(-, \mathcal{C})$-exact, then

$$
\begin{align*}
0 \longrightarrow Y & \longrightarrow C_{0}^{0} \longrightarrow C_{1}^{0} \oplus C_{0}^{1} \longrightarrow \cdots \tag{2.41}\\
& \longrightarrow \bigoplus_{i=0}^{n-1} C_{(n-1)-i}^{i} \longrightarrow \bigoplus_{i=0}^{n} C_{n-i}^{i}
\end{align*}
$$

is a coproper $\mathcal{C}(\xi)$-coresolution of Y. Furthermore, if the ξ-exact complex (2.39) and all $\mathcal{C}(\xi)$-coresolutions $(2.40(\mathrm{j}))$ are $\mathcal{T}(\mathcal{C},-)$-exact, then so is the ξ-exact complex (2.41).

Proof. By assumption, there exist a ξ-proper monic $L^{n} \rightarrow Y^{n}$ and triangles $L^{i} \rightarrow Y^{i} \rightarrow L^{i+1} \rightarrow \Sigma L^{i}$ in ξ for $0 \leq i \leq n-1$, where $L^{0}=Y$. Also, there is a ξ-proper monic $Y^{n} \rightarrow C_{0}^{n}$. Thus, Proposition 1.2 implies that $L^{n} \rightarrow C_{0}^{n}$ is a ξ-proper monic. Now, using Theorem 2.9 and induction on n, we obtain the desired ξ-exact complex (2.41).
3. Gorensteinness in triangulated categories. In this section, some applications of the results in Section 2 are given. We introduce the Gorenstein category $\mathcal{G C}(\xi)$ in triangulated categories and show the stability of $\mathcal{G C}(\xi)$.

We begin with the next definition.
Definition 3.1. Let X be an object of \mathcal{T}. A complete $\mathcal{C}(\xi)$-resolution of X is both $\mathcal{T}(\mathcal{C},-)$-exact and $\mathcal{T}(-, \mathcal{C})$-exact ξ-exact complex

$$
\cdots \longrightarrow C_{1} \longrightarrow C_{0} \longrightarrow C^{0} \longrightarrow C^{1} \longrightarrow \cdots
$$

in \mathcal{C} such that $X_{1} \rightarrow C_{0} \rightarrow X \rightarrow \Sigma X_{1}$ and $X \rightarrow C^{0} \rightarrow X^{1} \rightarrow \Sigma X$ are corresponding triangles in ξ.

The Gorenstein subcategory $\mathcal{G C}(\xi)$ of \mathcal{T} is defined as

$$
\mathcal{G C}(\xi)=\{X \in \mathcal{T} \mid X \text { admits a complete } \mathcal{C}(\xi) \text {-resolution }\}
$$

Set $\mathcal{G C}^{1}(\xi)=\mathcal{G C}(\xi)$, and inductively set $\mathcal{G C}{ }^{n+1}(\xi)=\mathcal{G}\left(\mathcal{G C}^{n}(\xi)\right)$ for any $n \geq 1$.

Remark 3.2. Let \mathcal{T} be a triangulated category and $\mathcal{P}(\xi)$ (respectively, $\mathcal{I}(\xi))$ the full subcategory of ξ-projective (respectively, ξ-injective) objects of \mathcal{T}. Then, $\mathcal{G} \mathcal{P}(\xi)$ (respectively, $\mathcal{G} \mathcal{I}(\xi)$) coincides with the subcategory of \mathcal{T} consisting of ξ-Gorenstein projective (respectively, injective) objects [1].

As a main application of the results in Section 2, we obtain the following result.

Theorem 3.3. Let \mathcal{T} be a triangulated category with countable coproducts. If \mathcal{C} is closed under countable coproducts, then
(1) $\mathcal{G C}^{n}(\xi)=\mathcal{G C}(\xi)$ for any $n \geq 1$.
(2) $\mathcal{G C}(\xi)$ is closed under direct summands.

Proof.
(1) Let $G \in \mathcal{G C}^{n}(\xi)$. Note that the triangles $G \xrightarrow{1} G \rightarrow 0 \rightarrow \Sigma G$ and $0 \rightarrow G \xrightarrow{1} G \rightarrow 0$ are in ξ. It is easy to check that

$$
\cdots \longrightarrow 0 \longrightarrow G \longrightarrow G \longrightarrow 0 \longrightarrow \cdots
$$

is a complete $\mathcal{G C}^{n}(\xi)$-resolution of G, and thus, $G \in \mathcal{G C}{ }^{n+1}(\xi)$. It follows that

$$
\mathcal{C} \subseteq \mathcal{G C}(\xi) \subseteq \mathcal{G C}^{2}(\xi) \subseteq \mathcal{G C}^{3}(\xi) \subseteq \cdots
$$

is an ascending chain of additive subcategories of \mathcal{T}.
Let X be an object in $\mathcal{G C}^{2}(\xi)$ and

$$
\cdots \longrightarrow G_{1} \longrightarrow G_{0} \longrightarrow G^{0} \longrightarrow G^{1} \longrightarrow \cdots
$$

a complete $\mathcal{G C}(\xi)$-resolution of X such that

$$
\cdots \longrightarrow G_{1} \longrightarrow G_{0} \longrightarrow X \longrightarrow
$$

and

$$
0 \longrightarrow X \longrightarrow G^{0} \longrightarrow G^{1} \longrightarrow \cdots
$$

are both $\mathcal{T}(\mathcal{G C}(\xi),-)$-exact and $\mathcal{T}(-, \mathcal{G C}(\xi))$-exact ξ-exact complexes. Then, for any $j \geq 0$, there exist both $\mathcal{T}(\mathcal{C},-)$-exact and $\mathcal{T}(-, \mathcal{C})$-exact ξ-exact complexes:

$$
\begin{gathered}
\cdots \longrightarrow C_{j}^{i} \longrightarrow \cdots \longrightarrow C_{j}^{1} \longrightarrow C_{j}^{0} \longrightarrow G_{j} \longrightarrow 0 \\
0 \longrightarrow G^{j} \longrightarrow B_{0}^{j} \longrightarrow B_{1}^{j} \longrightarrow \cdots \longrightarrow B_{i}^{j} \longrightarrow \cdots
\end{gathered}
$$

with all C_{j}^{i} and B_{i}^{j} in \mathcal{C}. Thus, Corollaries 2.8 and 2.10 yield the following ξ-exact complexes:

$$
\begin{aligned}
& \cdots \longrightarrow \bigoplus_{i=0}^{n} C_{i}^{n-i} \longrightarrow \cdots \longrightarrow C_{0}^{1} \oplus C_{1}^{0} \longrightarrow C_{0}^{0} \longrightarrow X \longrightarrow 0 \\
& 0 \longrightarrow X \longrightarrow B_{0}^{0} \longrightarrow B_{1}^{0} \oplus B_{0}^{1} \longrightarrow \cdots \longrightarrow \bigoplus_{i=0}^{n} B_{n-i}^{i} \longrightarrow \cdots
\end{aligned}
$$

which are both $\mathcal{T}(\mathcal{C},-)$-exact and $\mathcal{T}(-, \mathcal{C})$-exact. It follows that

$$
\begin{aligned}
\cdots \longrightarrow & \bigoplus_{i=0}^{n} C_{i}^{n-i} \longrightarrow \cdots \\
& \longrightarrow C_{0}^{1} \oplus C_{1}^{0} \longrightarrow C_{0}^{0} \longrightarrow B_{0}^{0} \longrightarrow B_{1}^{0} \oplus B_{0}^{1} \longrightarrow \cdots \\
& \longrightarrow \bigoplus_{i=0}^{n} B_{n-i}^{i} \longrightarrow \cdots
\end{aligned}
$$

is a complete $\mathcal{C}(\xi)$-resolution of X, and thus, $X \in \mathcal{G C}(\xi)$. By using induction on n we easily obtain the assertion.
(2) Let

$$
X_{1} \oplus X_{2}=X \in \mathcal{G C}(\xi)
$$

and

$$
\cdots \longrightarrow C_{1} \longrightarrow C_{0} \longrightarrow C^{0} \longrightarrow C^{1} \longrightarrow \cdots
$$

be a complete $\mathcal{C}(\xi)$-resolution of X with $K_{1} \rightarrow C_{0} \rightarrow X \rightarrow \Sigma K_{1}$ and $X \rightarrow C^{0} \rightarrow K^{1} \rightarrow \Sigma X$ the corresponding triangles in ξ. Applying the
base change for the triangle $\Sigma^{-1} X_{1} \rightarrow X_{2} \rightarrow X \rightarrow X_{1}$ along $C_{0} \rightarrow X$, we have the following commutative diagram:

Then Proposition 1.4 implies that the triangle $D \rightarrow C_{0} \rightarrow X_{1} \rightarrow \Sigma D$ is in ξ. Applying to the above diagram the homological functors $\mathcal{T}(C,-), \mathcal{T}(-, C)$ for any $C \in \mathcal{C}$, it is straightforward to show that the triangle $D \rightarrow C_{0} \rightarrow X_{1} \rightarrow \Sigma D$ is both $\mathcal{T}(\mathcal{C},-)$-exact and $\mathcal{T}(-, \mathcal{C})$ exact.

Similarly, we have a triangle $D^{\prime} \rightarrow C_{0} \rightarrow X_{2} \rightarrow \Sigma D^{\prime}$ in ξ which is both $\mathcal{T}(\mathcal{C},-)$-exact and $\mathcal{T}(-, \mathcal{C})$-exact. Consider the triangle

$$
X_{i} \longrightarrow X \longrightarrow X_{j} \xrightarrow{0} \Sigma X_{i} \quad \text { for } i, j=1,2 .
$$

Theorem 2.7 yields both $\mathcal{T}(\mathcal{C},-)$-exact and $\mathcal{T}(-, \mathcal{C})$-exact ξ-exact complexes $C_{0} \oplus C_{1} \rightarrow C_{0} \rightarrow X_{1} \rightarrow 0$ and $C_{0} \oplus C_{1} \rightarrow C_{0} \rightarrow X_{2} \rightarrow 0$. Again, by Theorem 2.7 , we obtain both $\mathcal{T}(\mathcal{C},-)$-exact and $\mathcal{T}(-, \mathcal{C})$-exact ξ exact complexes $C_{0} \oplus C_{1} \oplus C_{2} \rightarrow C_{0} \oplus C_{1} \rightarrow C_{0} \rightarrow X_{1} \rightarrow 0$ and $C_{0} \oplus C_{1} \oplus C_{2} \rightarrow C_{0} \oplus C_{1} \rightarrow C_{0} \rightarrow X_{2} \rightarrow 0$. Continuing this process, we obtain both of the following $\mathcal{T}(\mathcal{C},-)$-exact and $\mathcal{T}(-, \mathcal{C})$-exact ξ-exact complexes

$$
\begin{aligned}
& \cdots \rightarrow \bigoplus_{i=0}^{n-1} C_{i} \rightarrow \cdots \rightarrow C_{0} \oplus C_{1} \oplus C_{2} \rightarrow C_{0} \oplus C_{1} \rightarrow C_{0} \rightarrow X_{1} \rightarrow 0 \\
& \cdots \rightarrow \bigoplus_{i=0}^{n-1} C_{i} \rightarrow \cdots \rightarrow C_{0} \oplus C_{1} \oplus C_{2} \rightarrow C_{0} \oplus C_{1} \rightarrow C_{0} \rightarrow X_{2} \rightarrow 0
\end{aligned}
$$

Dually, repeated applications of Theorem 2.9 yields both of the follow-
ing $\mathcal{T}(\mathcal{C},-)$-exact and $\mathcal{T}(-, \mathcal{C})$-exact ξ-exact complexes

$$
\begin{aligned}
0 \longrightarrow X_{1} & \longrightarrow C^{0} \longrightarrow C^{0} \oplus C^{1} \longrightarrow C^{0} \oplus C^{1} \oplus C^{2} \longrightarrow \cdots \\
& \longrightarrow \bigoplus_{i=0}^{n-1} C^{i} \longrightarrow \cdots, \\
0 \longrightarrow X_{2} & \longrightarrow C^{0} \longrightarrow C^{0} \oplus C^{1} \longrightarrow C^{0} \oplus C^{1} \oplus C^{2} \longrightarrow \cdots \\
& \longrightarrow \bigoplus_{i=0}^{n-1} C^{i} \longrightarrow \cdots .
\end{aligned}
$$

Consequently, X_{1} and X_{2} are in $\mathcal{G C}(\xi)$.

Proposition 3.4. Given both $\mathcal{T}(\mathcal{C},-)$-exact and $\mathcal{T}(-, \mathcal{C})$-exact triangle $X \rightarrow Y \rightarrow Z \rightarrow \Sigma X$ in ξ, if any two of X, Y and Z are objects in $\mathcal{G C}(\xi)$, then so is the third.

Proof. First, assume that $X, Z \in \mathcal{G C}(\xi)$. There exist complete $\mathcal{C}(\xi)$ resolutions

$$
\begin{aligned}
& \cdots \longrightarrow C_{1} \longrightarrow C_{0} \longrightarrow C^{0} \longrightarrow C^{1} \longrightarrow \cdots, \\
& \cdots \longrightarrow B_{1} \longrightarrow B_{0} \longrightarrow B^{0} \longrightarrow B^{1} \longrightarrow \cdots
\end{aligned}
$$

of X and Z, respectively. Consider both $\mathcal{T}(\mathcal{C},-)$-exact and $\mathcal{T}(-, \mathcal{C})$ exact triangles $X_{1} \rightarrow C_{0} \rightarrow X \rightarrow \Sigma X_{1}$ and $Z_{1} \rightarrow B_{0} \rightarrow Z \rightarrow \Sigma Z_{1}$. By assumption and Lemma 2.2 (1), we obtain the following morphism of triangles:

Using that Σ is an automorphism and the 3×3 lemma, the commutative
square on the top left corner below is embedded in a diagram:

which is commutative except for the lower right square which anticommutes and where all the rows and columns are in Δ. Then, we have the following commutative diagram:

in which both the first and third vertical triangles and the second and third horizontal triangles are in ξ. By analogy with the proof of Theorem 2.3, we see that the first horizontal and the second vertical triangles in the above diagram are in ξ. Since both the first and third vertical triangles and the second and third horizontal triangles in the above diagram are both $\mathcal{T}(\mathcal{C},-)$-exact and $\mathcal{T}(-, \mathcal{C})$-exact, so are the second vertical and the first horizontal triangles in this diagram.

On the other hand, consider both $\mathcal{T}(\mathcal{C},-)$-exact and $\mathcal{T}(-, \mathcal{C})$-exact triangles $X \rightarrow C^{0} \rightarrow X^{1} \rightarrow \Sigma X$ and $Z \rightarrow B^{0} \rightarrow Z^{1} \rightarrow \Sigma Z$. By
assumption and Lemma 2.2 (2), we obtain a morphism of triangles:

Using that Σ is an automorphism and the 3×3 lemma, the commutative square on the top left corner is embedded in a diagram:

which is commutative except for the lower right square which anticommutes and where all the rows and columns are in Δ. Then, we have the following commutative diagram:

in which both the first and third vertical triangles and the first and second horizontal triangles are in ξ. By analogy with the proof of Theorem 2.5, we see that the third horizontal and the second vertical triangles in the above diagram are in ξ. Since both the first and third vertical triangles and the first and second horizontal triangles in the above diagram are both $\mathcal{T}(\mathcal{C},-)$-exact and $\mathcal{T}(-, \mathcal{C})$-exact, so are
the second vertical and the third horizontal triangles in this diagram. Continuing this process, we obtain that

$$
\cdots \longrightarrow C_{1} \oplus B_{1} \longrightarrow C_{0} \oplus B_{0} \longrightarrow C^{0} \oplus B^{0} \longrightarrow C^{1} \oplus B^{1} \longrightarrow \cdots
$$

is a complete $\mathcal{C}(\xi)$-resolution of Y, as desired.
Next, assume that $Y, Z \in \mathcal{G C}(\xi)$. Then Theorem 2.9 implies that X has a coproper $\mathcal{C}(\xi)$-coresolution which is $\mathcal{T}(\mathcal{C},-)$-exact. Consider both $\mathcal{T}(\mathcal{C},-)$-exact and $\mathcal{T}(-, \mathcal{C})$-exact triangles $Y_{1} \rightarrow C_{0} \rightarrow Y \rightarrow \Sigma Y_{1}$ in ξ with $C_{0} \in \mathcal{C}$. Applying the base change for the triangle $\Sigma^{-1} Z \rightarrow X \rightarrow$ $Y \rightarrow Z$ along $C_{0} \rightarrow Y$, we have the following commutative diagram:

Then Proposition 1.4 implies that the triangle $Z^{\prime} \rightarrow C_{0} \rightarrow Z \rightarrow \Sigma Z^{\prime}$ is in ξ. Applying to the above diagram the homological functors $\mathcal{T}(C,-)$ and $\mathcal{T}(-, C)$ for any $C \in \mathcal{C}$, a simple diagram chasing argument shows that the second vertical triangle and the triangle $Z^{\prime} \rightarrow C_{0} \rightarrow Z \rightarrow \Sigma Z^{\prime}$ are both $\mathcal{T}(\mathcal{C},-)$-exact and $\mathcal{T}(-, \mathcal{C})$-exact.

Consider both $\mathcal{T}(\mathcal{C},-)$-exact and $\mathcal{T}(-, \mathcal{C})$-exact triangles $Z_{1} \rightarrow$ $B_{0} \rightarrow Z \rightarrow \Sigma Z_{1}$ in ξ with $B_{0} \in \mathcal{C} ;[\mathbf{1 1}$, Axioms B' and E] yields the following morphism of triangles:

such that the triangle $Z_{1} \rightarrow Z^{\prime} \oplus B_{0} \rightarrow C_{0} \rightarrow \Sigma Z_{1}$ is in ξ and both $\mathcal{T}(\mathcal{C},-)$-exact and $\mathcal{T}(-, \mathcal{C})$-exact. Then, $Z^{\prime} \oplus B_{0}$ has a proper $\mathcal{C}(\xi)$-resolution which is $\mathcal{T}(-, \mathcal{C})$-exact, and so Z^{\prime} has a proper $\mathcal{C}(\xi)$ resolution that is $\mathcal{T}(-, \mathcal{C})$-exact by the preceding proof. Now, applying

Theorem 2.7 for the triangle $Y_{1} \rightarrow Z^{\prime} \rightarrow X \rightarrow \Sigma Y_{1}$, we obtain that X has a proper $\mathcal{C}(\xi)$-resolution which is $\mathcal{T}(-, \mathcal{C})$-exact. It follows that $X \in \mathcal{G C}(\xi)$.

Finally, assume that $X, Y \in \mathcal{G C}(\xi)$. Then Theorem 2.7 implies that Z has a proper $\mathcal{C}(\xi)$-resolution which is $\mathcal{T}(-, \mathcal{C})$-exact. Consider both $\mathcal{T}(\mathcal{C},-)$-exact and $\mathcal{T}(-, \mathcal{C})$-exact triangles $Y \rightarrow B^{0} \rightarrow Y^{1} \rightarrow \Sigma Y$ in ξ with $B^{0} \in \mathcal{C}$. Applying the cobase change for the triangle $\Sigma^{-1} Y^{1} \rightarrow Y \rightarrow B^{0} \rightarrow Y^{1}$ along $Y \rightarrow Z$, we have the following commutative diagram:

Then Proposition 1.4 implies that the third vertical triangle is in ξ. Applying to the above diagram the homological functors $\mathcal{T}(C,-)$ and $\mathcal{T}(-, C)$ for any $C \in \mathcal{C}$, a simple diagram chasing argument shows that the third vertical triangle and the triangle $Z \rightarrow X^{\prime} \rightarrow Y^{1} \rightarrow \Sigma Z$ are both $\mathcal{T}(\mathcal{C},-)$-exact and $\mathcal{T}(-, \mathcal{C})$-exact. Consider both $\mathcal{T}(\mathcal{C},-)$-exact and $\mathcal{T}(-, \mathcal{C})$-exact triangle $X \rightarrow C^{0} \rightarrow X^{1} \rightarrow \Sigma X$ in ξ with $C^{0} \in \mathcal{C}$; [11, Axioms B and E] yields the following morphism of triangles:

such that $B^{0} \rightarrow X^{\prime} \oplus C^{0} \rightarrow X^{1} \rightarrow \Sigma B^{0}$ is in ξ and both $\mathcal{T}(\mathcal{C},-)$-exact and $\mathcal{T}(-, \mathcal{C})$-exact. Then, $X^{\prime} \oplus C^{0}$ has a coproper $\mathcal{C}(\xi)$-coresolution which is $\mathcal{T}(\mathcal{C},-)$-exact, and thus, X^{\prime} has a coproper $\mathcal{C}(\xi)$-coresolution that is $\mathcal{T}(\mathcal{C},-)$-exact by the preceding proof.

Now, applying Theorem 2.9 for the triangle $Z \rightarrow X^{\prime} \rightarrow Y^{1} \rightarrow \Sigma Z$, we obtain that Z has a coproper $\mathcal{C}(\xi)$-coresolution which is $\mathcal{T}(\mathcal{C},-)$ exact. It follows that $Z \in \mathcal{G C}(\xi)$.

Let X, Z be two objects of \mathcal{T}, and consider the class $\xi^{*}(Z, X)$ of all triangles $X \xrightarrow{\mu} Y \xrightarrow{\nu} Z \xrightarrow{\omega} \Sigma X$ in ξ. We define a relation in $\xi^{*}(Z, X)$ as follows. If $(T)_{i}: X \xrightarrow{\mu_{i}} Y_{i} \xrightarrow{\nu_{i}} Z \xrightarrow{\omega_{i}} \Sigma X, i=1,2$, are elements of $\xi^{*}(Z, X)$, then we define $(T)_{1} \sim(T)_{2}$ if there exists a morphism of triangles:

Obviously, g is an isomorphism and \sim is an equivalence relation on the class $\xi^{*}(Z, X)$. Using base and cobase changes, it is easy to see that we can define (as in the case of the classical Baer's theory in an abelian category) a sum in the class $\xi(Z, X):=\xi^{*}(Z, X) / \sim$ in such a way that $\xi(Z, X)$ becomes an abelian group and $\xi(-,-): \mathcal{T}^{\mathrm{op}} \times \mathcal{T} \rightarrow \mathcal{A b}$ an additive bifunctor.

Lemma 3.5. Given a triangle

$$
\begin{equation*}
X \longrightarrow Y \longrightarrow Z \longrightarrow \Sigma X \tag{3.1}
\end{equation*}
$$

in ξ, assume $\xi\left(C, C^{\prime}\right)=0$ for any $C, C^{\prime} \in \mathcal{C}$.
(1) If $Z \in \mathcal{G C}(\xi)$, then the triangle (3.1) is $\mathcal{T}(-, \mathcal{C})$-exact.
(2) If $X \in \mathcal{G C}(\xi)$, then the triangle (3.1) is $\mathcal{T}(\mathcal{C},-)$-exact.

Proof. We only need to prove (1) since (2) follows by duality.
Since $Z \in \mathcal{G C}(\xi)$, there exists a $\mathcal{T}(-, \mathcal{C})$-exact triangle $Z_{1} \rightarrow C \rightarrow$ $Z \rightarrow \Sigma Z_{1}$ in ξ with $C \in \mathcal{C}$. Let $C^{\prime} \in \mathcal{C}$. Then, we have a long exact sequence

$$
0 \longrightarrow \mathcal{T}\left(Z, C^{\prime}\right) \longrightarrow \mathcal{T}\left(C, C^{\prime}\right) \longrightarrow \mathcal{T}\left(Z_{1}, C^{\prime}\right) \xrightarrow{f} \xi\left(Z, C^{\prime}\right) \longrightarrow 0
$$

Since the triangle $Z_{1} \rightarrow C \rightarrow Z \rightarrow \Sigma Z_{1}$ is $\mathcal{T}(-, \mathcal{C})$-exact, $f=0$, and thus, $\xi\left(Z, C^{\prime}\right)=0$. It follows that the triangle (3.1) is $\mathcal{T}(-, \mathcal{C})$ exact.

Corollary 3.6. Given a triangle

$$
\begin{equation*}
X \longrightarrow Y \longrightarrow Z \longrightarrow \Sigma X \tag{3.2}
\end{equation*}
$$

in ξ, assume $\xi\left(C, C^{\prime}\right)=0$ for any $C, C^{\prime} \in \mathcal{C}$.
(1) If $X, Z \in \mathcal{G C}(\xi)$, then $Y \in \mathcal{G C}(\xi)$.
(2) If the triangle (3.2) is $\mathcal{T}(\mathcal{C},-)$-exact and $Z \in \mathcal{G C}(\xi)$, then $X \in \mathcal{G C}(\xi)$ if and only if $Y \in \mathcal{G C}(\xi)$.
(3) If the triangle (3.2) is $\mathcal{T}(-, \mathcal{C})$-exact and $X \in \mathcal{G C}(\xi)$, then $Y \in \mathcal{G C}(\xi)$ if and only if $Z \in \mathcal{G C}(\xi)$.

As an immediate consequence of Corollary 3.6, we obtain the next result which was obtained under the assumption that the triangulated category has enough ξ-projectives (respectively, ξ-injectives), see [1, Theorem 3.11] and its dual.

Corollary 3.7. Let $X \rightarrow Y \rightarrow Z \rightarrow \Sigma X$ be a triangle in ξ.
(1) If $Z \in \mathcal{G P}(\xi)$, then $X \in \mathcal{G P}(\xi)$ if and only if $Y \in \mathcal{G P}(\xi)$.
(2) If $X \in \mathcal{G I}(\xi)$, then $Y \in \mathcal{G I}(\xi)$ if and only if $Z \in \mathcal{G I}(\xi)$.

Acknowledgments. We wish to thank the referee for the very helpful suggestions which have been incorporated herein.

REFERENCES

1. J. Asadollahi and Sh. Salarian, Gorenstein objects in triangulated categories, J. Algebra 281 (2004), 264-286.
2. M. Auslander and M. Bridger, Stable module theory, Mem. Amer. Math. Soc. 94 (1969), 59-66.
3. A.A. Beilinson, J. Bernstein and P. Deligne, Perverse sheaves, in Analysis and topology on singular spaces, I, Asterisque 100 (1982), 5-171.
4. A. Beligiannis, Relative homological algebra and purity in triangulated categories, J. Algebra 227 (2000), 268-361.
5. \qquad , The homological theory of contravariantly finite subcategories: Auslander-Buchweitz contexts, Gorenstein categories and (co-)stabilization, Comm. Algebra 28 (2000), 4547-4596.
6. T. Bühler, Exact categories, Expos. Math. 28 (2010), 1-69.
7. E.E. Enochs and O.M.G. Jenda, Gorenstein injective and projective modules, Math. Z. 220 (1995), 611-633.
8. E.E. Enochs, O.M.G. Jenda and J.A. López-Ramos, Covers and envelopes by V-Gorenstein modules, Comm. Algebra 33 (2005), 4705-4717.
9. R. Hartshorne, Residues and duality, Lect. Notes Math. 20, Springer-Verlag, Berlin, 1966.
10. Z.Y. Huang, Proper resolutions and Gorenstein categories, J. Algebra 393 (2013), 142-169.
11. A. Hubery, Notes on the octahedral axiom, available from the author's web page at http://www.maths.leeds.ac.uk/~ahubery/octahedral.pdf.
12. B. Iversen, Octahedra and braids, Bull. Soc. Math. France 114 (1986), 197213.
13. D. Murfet, Triangulated categories, Part I, Therisingsea.org/notes/ TriangulatedCategories.pdf, 2007.
14. A. Neeman, Triangulated categories, Ann. Math. Stud. 148, Princeton University Press, Princeton, 2001.
15. S. Sather-Wagstaff, T. Sharif and D. White, Stability of Gorenstein categories, J. Lond. Math. Soc. 77 (2008), 481-502.
16. X.Y. Yang, Model structure on triangulated categories, Glasgow Math. J. 57 (2015), 263-284.

Northwest Normal University, Dept. of Mathematics, Lanzhou 730070, China
Email address: yangxy@nwnu.edu.cn
Gansu Health Vocational college, Lanzhou 730000, China
Email address: zhi218512@163.com

[^0]: 2010 AMS Mathematics subject classification. Primary 18G10, 18G25, 18E30.
 Keywords and phrases. Proper resolution, coproper coresolution, triangulated category.

 This research was partially supported by the Program for New Century Excellent Talents in University, No. NCET-13-0957, NNSF of China, grant Nos. 11261050, 11361051, 11361052 and PAN for the Improvement of Young Teachers' Scientific Research Ability, grant No. NWNU-LKQN-16-5.

 Received by the editors on April 21, 2015, and in revised form on September 17, 2015.

