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PROPER RESOLUTIONS AND GORENSTEINNESS
IN TRIANGULATED CATEGORIES

XIAOYAN YANG AND ZHICHENG WANG

ABSTRACT. Let T be a triangulated category with
triangulation ∆, ξ ⊆ ∆ a proper class of triangles and C
an additive full subcategory of T . We provide a method for
constructing a proper C(ξ)-resolution (respectively, coproper
C(ξ)-coresolution) of one term in a triangle in ξ from those
of the other two terms. By using this construction, we show
the stability of the Gorenstein category GC(ξ) in triangulated
categories. Some applications are given.

Introduction. Triangulated categories were introduced by Grothen-
dieck and Verdier in the early 1960s as the proper framework for
homological algebra in an abelian category. Since then, triangulated
categories have found important applications in algebraic geometry,
stable homotopy theory and representation theory. Examples for this
may be found in duality theory, Hartshorne [9] and Iversen [12], or
in the fundamental work on perverse sheaves, Beilinson, Bernstein and
Deligne [3].

Relative homological algebra has been formulated by Hochschild in
categories of modules and later by Heller and Butler and Horrocks in
more general categories with a relative abelian structure. Let T be a
triangulated category with triangulation ∆. Beligiannis [4] developed a
homological algebra in T which parallels the homological algebra in an
exact category in the sense of Quillen. To develop the homology, a class
of triangles ξ ⊆ ∆, called proper class of triangles, is specified. This
class is closed under translations and satisfies the analogous formal
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properties of a proper class of short exact sequences. Moreover, ξ-
projective objects, ξ-projective resolution, ξ-projective dimension and
their duals are introduced [4, Section 4].

In the category of modules, there is a natural generalization of the
class of finitely generated projective modules over a commutative Noe-
therian ring, due to Auslander and Bridger [2], that is the notion of
modules in Auslander’s G-class (modules of Gorenstein dimension 0).
To complete the analogy, Enochs and Jenda [7] introduced Gorenstein
projective modules that generalize the notion of modules of Gorenstein
dimension 0 to the class of not necessarily finitely generated modules.
Using this class, they developed a relative homological algebra in the
category of modules. Motivated by this, Beligiannis [5] defined the
concept of an X -Gorenstein object induced by a pair (A,X ) consisting
of an additive category A and a contravariantly finite subcategory X
of A, assuming that any X -epic has a kernel in A. This notion is a
natural generalization of a module of Gorenstein dimension 0 in the
sense of Auslander and Bridger [2]. Based on the works of Auslander
and Bridger [2], Enochs and Jenda [7] and Beligiannis [5], Asadollahi
and Salarian [1] developed the above-mentioned relative homological
algebra in triangulated categories with enough ξ-projectives. They in-
troduced and studied ξ-Gorenstein projective objects and ξ-Gorenstein
projective dimensions with respect to a proper class of triangles ξ.

Let A be an abelian category and C an additive full subcategory
of A. Sather-Wagstaff, Sharif and White [15] introduced the Goren-
stein category G(C) which unifies the notions: modules of Gorenstein
dimension 0 [2], Gorenstein projective modules, Gorenstein injective
modules [7], V -Gorenstein projective modules, V -Gorenstein injective
modules [8], and so on. Huang [10] provided a method for construct-
ing a proper C-resolution (respectively, coproper C-coresolution) of one
term in a short exact sequence in A from those of the other two terms.
By using these, he affirmatively answered an open question on the sta-
bility of the Gorenstein category G(C) posed by Sather-Wagstaff, Sharif
and White [15] and also proved that G(C) is closed under direct sum-
mands.

Let T = (T ,Σ,∆) be a triangulated category with Σ the suspension
functor and ∆ the triangulation, ξ ⊆ ∆ a proper class of triangles and
C an additive full subcategory of T closed under isomorphisms and
Σ-stable, i.e., Σ(C) = C.
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In this paper, we make a general study of relative homological
algebra on triangulated categories which may not have enough ξ-
projectives or enough ξ-injectives. Section 1 gives some notions and
basic consequences of the proper class ξ. Section 2 provides a method
for constructing a proper C(ξ)-resolution (respectively, coproper C(ξ)-
coresolution) of one term in a triangle in ξ from those of the other two
terms. Section 3 is devoted to establishing the stability of the Goren-
stein category GC(ξ) in triangulated categories, and some applications
are given.

1. Definitions and basic facts. This section is devoted to dis-
cussing the axioms of a proper class of triangles and drawing some
basic consequences for use throughout this paper. The basic reference
for triangulated categories is the monograph of Neeman [14]. For ter-
minology, we shall follow [4, 16].

Triangulated categories. Let T be an additive category and Σ :
T → T an additive functor. Let Diag(T ,Σ) denote the category whose

objects are diagrams in T of the form X
µ→ Y

ν→ Z
ω→ ΣX, and

morphisms between two objects Xi
µi→ Yi

νi→ Zi
ωi→ ΣXi, i = 1, 2, are

triples of morphisms f : X1 → X2, g : Y1 → Y2 and h : Z1 → Z2, such
that the following diagram commutes:

X1

f
��

µ1 // Y1

g

��

ν1 // Z1

h
��

ω1 // ΣX1

Σf
��

X2
µ2 // Y2

ν2 // Z2
ω2 // ΣX2.

Such a morphism is called an isomorphism if f, g, h are isomorphisms
in T .

A triple (T ,Σ,∆) is called a triangulated category, where T is
an additive category, Σ is an autoequivalence of T and ∆ is a full
subcategory of Diag(T ,Σ) which satisfies the following axioms. The
elements of ∆ are then called triangles.

(TR1) Every diagram isomorphic to a triangle is a triangle. For

every object X in T , the diagram X
1→ X → 0 → ΣX is a triangle.

Every morphism µ : X → Y in T can be embedded into a triangle

X
µ→ Y → Z → ΣX.
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(TR2) X
µ→ Y

ν→ Z
ω→ ΣX is a triangle if and only if Y

ν→ Z
ω→

ΣX
−Σµ→ ΣY is so.

(TR3) Given triangles X
µ→ Y

ν→ Z
ω→ ΣX and X ′ µ′

→ Y ′ ν′

→ Z ′ ω′

→
ΣX ′, each commutative diagram

X

f
��

µ // Y

g
��

ν // Z
ω // ΣX

Σf
��

X ′ µ′
// Y ′ ν′

// Z ′ ω′
// ΣX ′

can be completed to a morphism of triangles (but not necessarily
uniquely).

(TR4) The octahedral axiom. For this formulation, we refer the
reader to Proposition 1.1.

Proposition 1.1 ([4, Proposition 2.1]). Let T be an additive category
equipped with an autoequivalence Σ : T → T and a class of diagrams
∆ ⊆ Diag(T ,Σ). Suppose that the triple (T ,Σ,∆) satisfies all the
axioms of a triangulated category except possibly of the octahedral
axiom. Then the following are equivalent :

(1) Base change. For any diagram X
µ→ Y

ν→ Z
ω→ ΣX ∈ ∆ and

any morphism α : Z ′ → Z, there exists a commutative diagram

0

��

// X ′

β′

��

X ′

β
��

// 0

��
X

µ′
// Y ′

α′

��

ν′
// Z ′

α
��

ω′
// ΣX

X

��

µ // Y

γ′

��

ν // Z

γ
��

ω // ΣX

��
0 // ΣX ′ ΣX ′ // 0

in which all horizontal and vertical diagrams are triangles in ∆.
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(2) Cobase change. For any diagram X
µ→ Y

ν→ Z
ω→ ΣX ∈ ∆

and any morphism β : X → X ′, there exists a commutative diagram

0

��

// Σ−1Z ′

−Σ−1γ
��

Σ−1Z ′

−Σ−1γ′

��

// 0

��
Σ−1Z

−Σ−1ω // X

β
��

µ // Y

β′

��

ν // Z

Σ−1Z

��

−Σ−1ω′
// X ′

α
��

µ′
// Y ′

α′

��

ν′
// Z

��
0 // Z ′ Z ′ // 0

in which all horizontal and vertical diagrams are triangles in ∆.

(3) Octahedral axiom. For any two morphisms µ : X → Y and
ν : Y → Z, there exists a commutative diagram

X
µ // Y

ν
��

µ′
// Z ′

α
��

µ′′
// ΣX

X

µ
��

νµ // Z
ω // Y ′

β
��

ω′
// ΣX

Σµ
��

Y

��

ν // Z

0
��

ν′
// X ′

(Σµ′)ν′′

��

ν′′
// ΣY

��
0 // ΣZ ′ ΣZ ′ // 0

in which all horizontal and the third vertical diagrams are triangles
in ∆.

Proper class of triangles. Let T = (T ,Σ,∆) be a triangulated
category, where Σ is the suspension functor and ∆ is the triangulation.

A triangle (T ) : X
µ→ Y

ν→ Z
ω→ ΣX is called split if it is isomorphic

to the triangle X
( 10 )→ X ⊕ Z

(0,1)→ Z
0→ ΣX. It is easy to see that (T )

is split if and only if µ is a section, ν is a retraction or ω = 0. The
full subcategory of ∆ consisting of the split triangles will be denoted
by ∆0. A class of triangles ξ is closed under base change if, for any
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triangle X
µ→ Y

ν→ Z
ω→ ΣX ∈ ξ and any morphism α : Z ′ → Z as in

Proposition 1.1 (1), the triangle X
µ′

→ Y ′ ν′

→ Z ′ ω′

→ ΣX is in ξ.

Dually, a class of triangles ξ is closed under cobase change if, for

any triangle X
µ→ Y

ν→ Z
ω→ ΣX ∈ ξ and any morphism β : X → X ′

as in Proposition 1.1 (2), the triangle X ′ µ′

→ Y ′ ν′

→ Z
ω′

→ ΣX ′ is in ξ.
A class of triangles ξ is closed under suspensions if, for any triangle

X
µ→ Y

ν→ Z
ω→ ΣX ∈ ξ and any i ∈ Z, the triangle

ΣiX
(−1)iΣiµ // ΣiY

(−1)iΣiν // ΣiZ
(−1)iΣiω// Σi+1X

is in ξ. A class of triangles ξ is called saturated if, in the situation of base
change in Proposition 1.1, whenever the third vertical and the second

horizontal triangles are in ξ, then the triangle X
µ→ Y

ν→ Z
ω→ ΣX is

in ξ.

The next concept is inspired by the definition of an exact category
[6].

A full subcategory ξ ⊆ Diag(T ,Σ) is called a proper class of triangles
if the following conditions hold:

(i) ξ is closed under isomorphisms, finite coproducts and ∆0 ⊆ ξ
⊆ ∆.

(ii) ξ is closed under suspensions and is saturated.

(iii) ξ is closed under base and cobase change.

For example, the class ∆0 of split triangles and the class ∆ of all
triangles in T are proper classes of triangles.

From now on, we fix a triangulated category T = (T ,Σ,∆) and a
proper class of triangles ξ in T , where Σ is the suspension functor and
∆ is the triangulation.

An object P ∈ T (respectively, I ∈ T ) is called ξ-projective
(respectively, ξ-injective) if, for any triangle X → Y → Z → ΣX
in ξ, the induced sequence

0 → T (P,X) → T (P, Y ) → T (P,Z) → 0,

respectively,

0 → T (Z, I) → T (Y, I) → T (X, I) → 0,
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is exact in the category Ab of abelian groups. We say that T has
enough ξ-projectives if, for any object X ∈ T , there exists a triangle
K → P → X → ΣK in ξ with P a ξ-projective object.

Dually, we define when T has enough ξ-injectives. In this case, a
triangle X → Y → Z → ΣX is in ξ if and only if, for any ξ-projective
object P , the induced sequence

0 → T (P,X) → T (P, Y ) → T (P,Z) → 0

is exact in Ab if and only if, for any ξ-injective object I, the induced
sequence

0 → T (Z, I) → T (Y, I) → T (X, I) → 0

is exact in Ab (see [4, Lemma 4.2] and its dual).

LetX
µ→ Y

ν→ Z
ω→ ΣX be a triangle in ξ. The morphism ν : Y → Z

is called a ξ-proper epic, and µ : X → Y is called a ξ-proper monic, see
[4]; µ is called the hokernel of ν and ν is called the hocokernel of µ,
see [13].

Proposition 1.2 ([16]). The class of ξ-proper monics is closed under
compositions. Dually, the class of ξ-proper epics is closed under
compositions.

Proposition 1.3 ([16]). Consider morphisms µ : X → Y and ν : Y →
Z.

(1) If νµ is a ξ-proper monic, then µ is a ξ-proper monic.

(2) If νµ is a ξ-proper epic, then ν is a ξ-proper epic.

Proposition 1.4 ([16]). Given a commutative diagram:

0

��

// Z ′

α′

��

Z ′

α
��

// 0

��
Σ−1Z

−Σ−1ω′
// X ′

β′

��

µ′
// Y ′

β
��

ν′
// Z

Σ−1Z

��

−Σ−1ω // X

γ′

��

µ // Y

γ
��

ν // Z

��
0 // ΣZ ′ ΣZ ′ // 0
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in which all horizontal and vertical diagrams are in ∆.

(1) If the third vertical triangle and the triangle X
µ→ Y

ν→ Z
ω→ ΣX

are in ξ, then the triangle X ′ µ′

→ Y ′ ν′

→ Z
ω′

→ ΣX ′ is also in ξ.

(2) If the second vertical triangle and the triangle X ′ µ′

→ Y ′ ν′

→ Z
ω′

→
ΣX ′ are in ξ, then the third vertical triangle is also in ξ.

Definition 1.5. Let C be an additive full subcategory of the tri-
angulated category T closed under isomorphisms and Σ-stable, i.e.,
Σ(C) = C.

A ξ-exact complex X is a diagram

· · · −→ Xn+1
dn+1−→ Xn

dn−→ Xn−1 −→ · · ·

in T such that, for all integers n, there exist triangles Kn+1
gn→ Xn

fn→
Kn

hn→ ΣKn+1 in ξ and the differential dn is defined as dn = gn−1fn for
any n.

A triangle X → Y → Z → ΣX in ξ is called T (C,−)-exact if, for
any C ∈ C, the induced complex

0 −→ T (C,X) −→ T (C, Y ) −→ T (C,Z) −→ 0

is exact in Ab.

A ξ-exact complex X : · · · → Xn+1
dn+1→ Xn

dn→ Xn−1 → · · · is

called T (C,−)-exact if there are T (C,−)-exact trianglesKn+1
gn→ Xn

fn→
Kn

hn→ ΣKn+1 in ξ, where the differential dn is defined as dn = gn−1fn
for any n.

LetX be an object of T . A C(ξ)-resolution ofX is a ξ-exact complex

· · · −→ C1
d1−→ C0

d0−→ X −→ 0

with all Ci ∈ C such that there are triangles Kn+1
gn→ Cn

fn→ Kn
hn→

ΣKn+1 in ξ and the differentials dn = gn−1fn for n ≥ 0, where
K0 = X and d0 = f0. The above ξ-exact complex is called a proper
C(ξ)-resolution of X if it is T (C,−)-exact.
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Dually, the notions of a T (−, C)-exact triangle in ξ, a T (−, C)-exact
ξ-exact complex, a C(ξ)-coresolution and a coproper C(ξ)-coresolution
are defined.

We say that C is closed under hokernels of ξ-proper epics if, whenever
the triangle

X
µ−→ Y

ν−→ Z
ω−→ ΣX

is in ξ with Y, Z ∈ C, then X is in C. Dually, we say that C is closed
under hocokernels of ξ-proper monics if, whenever the triangle

X
µ−→ Y

ν−→ Z
ω−→ ΣX

is in ξ with X,Y ∈ C, then Z is in C.

2. Proper resolutions and coproper coresolutions. In this
section, we provide a method for constructing a proper C(ξ)-resolution
(respectively, coproper C(ξ)-coresolution) of the first (respectively, last)
term in a triangle in ξ from those of the other two terms, and a method
for constructing a proper C(ξ)-resolution (respectively, coproper C(ξ)-
coresolution) of the last (respectively, first) term in a triangle in ξ from
those of the other two terms.

We first give the following easy observations.

Lemma 2.1. Let C be an object in T . Consider the commutative
diagram:

0

��

// X ′

��

X ′

��

// 0

��
X // Y

g′

��

f // Z

g
��

// ΣX

X

��

// Y ′

��

f ′
// Z ′

��

// ΣX

��
0 // ΣX ′ ΣX ′ // 0

in which all horizontal and vertical diagrams are in ∆. If T (C, g) is
epic, then T (C, g′) is also epic. If T (f, C) is epic, then T (f ′, C) is also
epic.
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Proof. We prove the first statement since the second follows by
duality.

Assume that T (C, g) is epic. Let α ∈ T (C, Y ′). There exists a
β ∈ T (C,Z) such that f ′α = T (C, g)(β) = gβ. Thus, [11, Axiom
D’] and [13, Lemma 27] imply that there is a γ ∈ T (C, Y ) such that
g′γ = α, and hence, T (C, g′) is epic. �

Lemma 2.2. Let X
µ→ Y

ν→ Z
ω→ ΣX be a triangle in ∆.

(1) If there exist morphisms α ∈ T (C,X), γ ∈ T (C ′′, Z) and
f ∈ T (C ′′, Y ) such that γ = νf , then we have the next morphism
of triangles:

C

α
��

( 10 ) // C ⊕ C ′′

β
��

(0,1) // C ′′

γ
��

0 // ΣC

Σα
��

X
µ // Y

ν // Z
ω // ΣX.

(2) If there exist morphisms α′ ∈ T (X,D), γ′ ∈ T (Z,D′′) and
g ∈ T (Y,D) such that α′ = gµ, then we have the next morphism of
triangles:

X

α′

��

µ // Y

β′

��

ν // Z

γ′

��

ω // ΣX

Σα′

��
D

( 10 ) // D ⊕D′′ (0,1) // D′′ 0 // ΣD.

Proof. Straightforward. �

The next result provides a method for constructing a proper C(ξ)-
resolution of the first term in a triangle in ξ from those of the last two
terms.

Theorem 2.3. Given a triangle in ξ,

(2.0) X −→ X0 −→ X1 −→ ΣX.

Assume that C is closed under hokernels of ξ-proper epics and

(2.1) · · · −→ C0
i

d0
i−→ · · · −→ C0

1

d0
1−→ C0

0

d0
0−→ X0 −→ 0,
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(2.2) · · · −→ C1
i

d1
i−→ · · · −→ C1

1

d1
1−→ C1

0

d1
0−→ X1 −→ 0

are proper C(ξ)-resolutions of X0 and X1, respectively.

(1) We obtain the following proper C(ξ)-resolution of X

(2.3) · · · −→ C1
i+1 ⊕ C0

i −→ · · · −→ C1
2 ⊕ C0

1 −→ C −→ X −→ 0

and the following triangle in ξ

(2.4) C −→ C1
1 ⊕ C0

0 −→ C1
0 −→ ΣC.

(2) If both ξ-exact complexes (2.1), (2.2) and the triangle (2.0) are
T (−, C)-exact, then so is the ξ-exact complex (2.3).

Proof.

(1) By assumption, there exist T (C,−)-exact triangles

K0
i+1

g0
i−→ C0

i

f0
i−→ K0

i

h0
i−→ ΣK0

i+1,

K1
i+1

g1
i−→ C1

i

f1
i−→ K1

i

h1
i−→ ΣK1

i+1

in ξ with the differentials d0i = g0i−1f
0
i and d1i = g1i−1f

1
i for all i ≥ 0,

where K0
0 = X0, d00 = f0

0 and K1
0 = X1, d10 = f1

0 . Applying the
base change for the triangle (2.0) along f1

0 , we obtain the following
commutative diagram:

(2.5) 0

��

// K1
1

��

K1
1

��

// 0

��
X // M

��

// C1
0

��

// ΣX

X

��

// X0

��

// X1

��

// ΣX

��
0 // ΣK1

1 ΣK1
1

// 0

in which the second horizontal and the second vertical triangles are in
ξ. Since the third vertical triangle in diagram (2.5) is T (C,−)-exact,
so is the second vertical triangle by Lemma 2.1. Thus, Lemma 2.2 (1)
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yields the following morphism of triangles:

C1
1

��

// C1
1 ⊕ C0

0

��

// C0
0

��

0 // ΣC1
1

��
K1

1
// M // X0 // ΣK1

1 .

Using that Σ is an automorphism and the 3×3 lemma, the commutative
square on the top left corner below is embedded in a diagram:

Σ−1C0
0

Σ−1f0
0

��

0 // C1
1

f1
1

��

( 10 ) // C1
1 ⊕ C0

0

f

��

(0,1) // C0
0

f0
0

��
Σ−1X0

Σ−1h0
0

��

−Σ−1h0 // K1
1

h1
1

��

g0 // M

h
��

f0 // X0

h0
0

��
K0

1

g0
0

��

h1 // ΣK1
2

−Σg1
1

��

Σg1 // ΣW1

−Σg
��

Σf1 // ΣK0
1

−Σg0
0

��
C0

0
0 // ΣC1

1

( 10 ) // Σ(C1
1 ⊕ C0

0 )
(0,−1) // ΣC0

0

which is commutative except for the lower right square which anticom-
mutes and where all the rows and columns are in ∆. Then, we have
the following commutative diagram:

K1
2

g1
1

��

g1 // W1

g

��

f1 // K0
1

g0
0

��

h1 // ΣK1
2

−Σg1
1

��
C1

1

f1
1

��

( 10 ) // C1
1 ⊕ C0

0

f

��

(0,1) // C0
0

f0
0

��

0 // ΣC1
1

Σf1
1

��
K1

1

h1
1

��

g0 // M

h
��

f0 // X0

h0
0

��

h0 // ΣK1
1

Σh1
1

��
ΣK1

2

Σg1 // ΣW1
Σf1 // ΣK0

1

−Σh1 // Σ2K1
2

(2.6)

in which both the first and third vertical triangles and the second and
third horizontal triangles are in ξ.
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We now show that the first horizontal and the second vertical
triangles in diagram (2.6) are in ξ. First, Proposition 1.2 implies that

gg1 =
(

g1
1
0

)
is a ξ-proper monic. It follows from Proposition 1.3 that

g1 is a ξ-proper monic and the first horizontal triangle in diagram (2.6)
is in ξ.

Next, by the proof of the 3 × 3 lemma, see [13, Corollary 32], we
have the following commutative diagram:

0

��

// K1
2

g1
1

��

K1
2

c
��

// 0

��
Σ−1C0

0
0 // C1

1

f1
1

��

( 10 ) // C1
1 ⊕ C0

0

a
��

(0,1) // C0
0

Σ−1C0
0

��

0 // K1
1

h1
1

��

( 10 ) // K1
1 ⊕ C0

0

b
��

(0,1) // C0
0

��
0 // ΣK1

2 ΣK1
2

// 0

in which all horizontal and vertical diagrams are in ∆. Hence, Propo-
sition 1.4 implies that the third vertical triangle is in ξ. We also have
the following commutative diagram:

0

��

// Σ−1M

−Σ−1f0
��

Σ−1M

−Σ−1i
��

// 0

��
Σ−1C0

0

Σ−1f0
0 // Σ−1X0

−Σ−1h0

��

Σ−1h0
0 // K0

1

d
��

g0
0 // C0

0

Σ−1C0
0

��

0 // K1
1

g0

��

( 10 ) // K1
1 ⊕ C0

0

e

��

(0,1) // C0
0

��
0 // M M // 0

in which all horizontal and vertical diagrams are in ∆. Note that
(0, 1)d = g00 is a ξ-proper monic. Then, Proposition 1.3 shows that
d is a ξ-proper monic.
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Finally, by the proof of the 3×3 lemma again, we have the following
commutative diagram:

K0
1

d // K1
1 ⊕ C0

0

b
��

e // M

h
��

i // ΣK0
1

K0
1

h1 // ΣK1
2

−Σc
��

Σg1 // ΣW1

−Σg
��

Σf1 // ΣK0
1

Σd
��

Σ(C1
1 ⊕ C0

0 )

−Σa
��

Σ(C1
1 ⊕ C0

0 )

−Σf

��

−Σa // Σ(K1
1 ⊕ C0

0 )

Σ(K1
1 ⊕ C0

0 )
Σe // ΣM

in which the first horizontal triangle is in ξ. Also, we have the following
commutative diagram:

0

��

// K1
2

g1

��

K1
2

c
��

// 0

��
Σ−1M

−Σ−1h // W1

f1
��

g // C1
1 ⊕ C0

0

a
��

f // M

Σ−1M

��

−Σ−1i // K0
1

h1

��

d // K1
1 ⊕ C0

0

b
��

e // M

��
0 // ΣK1

2 ΣK1
2

// 0

in which all horizontal and vertical diagrams are in ∆. Hence, Proposi-
tion 1.4 implies that the second vertical triangle in diagram (2.6) is in
ξ. Since both the first and third vertical triangles and the second and
third horizontal triangles in the diagram are T (C,−)-exact, so are the
second vertical and the first horizontal triangles in this diagram.

On one hand, applying the base change for the triangle Σ−1C1
0 →

X → M → C1
0 along C1

1⊕C0
0 → M , we have the following commutative
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diagram:

0

��

// W1

��

W1

��

// 0

��
Σ−1C1

0
// C

��

// C1
1 ⊕ C0

0

��

// C1
0

Σ−1C1
0

��

// X

��

// M

��

// C1
0

��
0 // ΣW1 ΣW1

// 0

(2.7)

in which the second vertical triangle is in ξ. Then, Proposition 1.4
shows that the triangle C → C1

1 ⊕ C0
0 → C1

0 → ΣC is in ξ and C ∈ C
by assumption. Since the third vertical triangle is T (C,−)-exact, it
follows from Lemma 2.1 that the second vertical triangle is so.

On the other hand, Lemma 2.2 (1) again yields the following mor-
phism of triangles:

C1
2

��

// C1
2 ⊕ C0

1

��

// C0
1

��

0 // ΣC1
2

��
K1

2
// W1

// K0
1

// ΣK1
2 .

Using that Σ is an automorphism and the 3×3 lemma, the commutative
square on the top left corner is embedded in a diagram:

Σ−1C0
1

��

0 // C1
2

��

// C1
2 ⊕ C0

1

��

// C0
1

��
Σ−1K0

1

��

− // K1
2

��

// W1

��

// K0
1

��
K0

2

��

// ΣK1
3

−
��

// ΣW2

−
��

// ΣK0
2

−
��

C0
1

// ΣC1
2

// Σ(C1
2 ⊕ C0

1 )
− // ΣC0

1

which is commutative except for the lower right square which anticom-
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mutes and where all the rows and columns are in ∆. Then, we have
the following commutative diagram:

K1
3

��

// W2

��

// K0
2

��

// ΣK1
3

−
��

C1
2

��

// C1
2 ⊕ C0

1

��

// C0
1

��

0 // ΣC1
2

��
K1

2
//

��

W1

��

// K0
1

��

// ΣK1
2

��
ΣK1

3
// ΣW2

// ΣK0
2

− // Σ2K1
3

(2.8)

in which the second vertical and the first horizontal triangles are in ξ
by analogy with the preceding proof. Since both the first and third
vertical triangles and the second and third horizontal triangles in the
above diagram are T (C,−)-exact, so are the second vertical and the
first horizontal triangles in this diagram. Continuing this process, we
obtain the desired proper C(ξ)-resolution (2.3) and triangle (2.4).

(2) Note that the third vertical and the third horizontal triangles
in diagram (2.5) are T (−, C)-exact, so the second vertical and the
second horizontal triangles in this diagram are also T (−, C)-exact.
Since both the first and third vertical triangles and the second and
third horizontal triangles in diagram (2.6) are T (−, C)-exact, a simple
diagram chasing argument shows that the first horizontal and the
second vertical triangles in this diagram are also T (−, C)-exact. Thus,
the second vertical triangle in diagram (2.7) is T (−, C)-exact. Also, by
assumption, both the first and third vertical triangles and the second
and third horizontal triangles in diagram (2.8) are T (−, C)-exact. Thus,
the second vertical and the first horizontal triangles in this diagram are
also T (−, C)-exact. Finally, we deduce that the ξ-exact sequence (2.3)
is T (−, C)-exact. �

Based on Theorem 2.3, by using induction on n, it is not difficult to
obtain:

Corollary 2.4. Given a ξ-exact complex

(2.9) 0 −→ X −→ X0 −→ X1 −→ · · · −→ Xn −→ 0.
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Assume that C is closed under hokernels of ξ-proper epics, and

(2.10 (j)) · · · −→ Cj
i −→ · · · −→ Cj

1 −→ Cj
0 −→ Xj −→ 0

is a proper C(ξ)-resolution of Xj for 0 ≤ j ≤ n. Then,
(2.11)

· · · −→
n⊕

i=0

Ci
i+3 −→

n⊕
i=0

Ci
i+2 −→

n⊕
i=0

Ci
i+1 −→ C −→ X −→ 0

is a proper C(ξ)-resolution of X, and there exists a ξ-exact complex

0 −→ C −→
n⊕

i=0

Ci
i −→

n⊕
i=1

Ci
i−1 −→

n⊕
i=2

Ci
i−2 −→ · · ·

−→ Cn−1
0 ⊕ Cn

1 −→ Cn
0 −→ 0.

If the ξ-exact complex (2.9) and all C(ξ)-resolutions (2.10 (j)) are
T (−, C)-exact, then so is the ξ-exact complex (2.11).

The next two results, which are due to Theorem 2.3 and Corol-
lary 2.4, respectively, provide a method for constructing a coproper
C(ξ)-coresolution of the last term in a triangle in ξ from those of the
first two terms.

Theorem 2.5. Given a triangle in ξ,

(2.12) Y1 −→ Y0 −→ Y −→ ΣY1.

Assume that C is closed under hocokernels of ξ-proper monics and

(2.13) 0 −→ Y0
d0
0−→ C0

0

d1
0−→ C1

0 −→ · · · −→ Ci
0

di+1
0−→ · · · ,

(2.14) 0 −→ Y1
d0
1−→ C0

1

d1
1−→ C1

1 −→ · · · −→ Ci
1

di+1
1−→ · · ·

are coproper C(ξ)-coresolutions of Y0 and Y1, respectively.

(1) We get the following coproper C(ξ)-coresolution of Y

(2.15) 0 −→ Y −→ C −→ C1
0 ⊕ C2

1 −→ · · · −→ Ci
0 ⊕ Ci+1

1 −→ · · ·

and the following triangle in ξ

(2.16) C0
1 −→ C0

0 ⊕ C1
1 −→ C −→ ΣC0

1 .
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(2) If both of the ξ-exact complexes (2.13), (2.14) and the triangle
(2.12) are T (C,−)-exact, then so is the ξ-exact complex (2.15).

Proof. By assumption, there exist T (−, C)-exact triangles

Ki
0

gi
0−→ Ci

0

fi
0−→ Ki+1

0

hi
0−→ ΣKi

0, Ki
1

gi
1−→ Ci

1

fi
1−→ Ki+1

1

hi
1−→ ΣKi

1

in ξ with differentials di0 = gi0f
i−1
0 and di1 = gi1f

i−1
1 for all i ≥ 0, where

K0
0 = Y0, d

0
0 = g00 and K0

1 = Y1, d
0
1 = g01 . Applying the cobase change

for the triangle Σ−1K1
1 → Y1 → C0

1 → K1
1 along Y1 → Y0, we have the

following commutative diagram:

0

��

// Σ−1Y

��

Σ−1Y

��

// 0

��
Σ−1K1

1
// Y1

��

// C0
1

��

// K1
1

Σ−1K1
1

� �

// Y0

��

// N

��

// K1
1

��
0 // Y Y // 0

(2.17)

in which the triangles C0
1 → N → Y → ΣC0

1 and Y0 → N → K1
1 →

ΣY0 are in ξ. Since the triangle Y1 → C0
1 → K1

1 → ΣY1 is T (−, C)-
exact, so is the triangle Y0 → N → K1

1 → ΣY0 by Lemma 2.1. Thus,
Lemma 2.2 (2) yields the following morphism of triangles:

Y0

��

// N

��

// K1
1

��

// ΣY0

��
C0

0
// C0

0 ⊕ C1
1

// C1
1

0 // ΣC0
0 .

Using that Σ is an automorphism and the 3×3 lemma, the commutative
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square on the top left corner is embedded in a diagram:

Σ−1K1
1

Σ−1g1
1

��

−Σ−1h0 // Y0

g0
0

��

g0 // N

g

��

f0 // K1
1

g1
1

��
Σ−1C1

1

Σ−1f1
1

��

0 // C0
0

f0
0

��

( 10 ) // C0
0 ⊕ C1

1

f
��

(0,1) // C1
1

f1
1

��
Σ−1K2

1

−Σ−1h1
1

��

−Σ−1h1 // K1
0

h0
0

��

g1 // W 1

h
��

f1 // K2
1

h1
1

��
K1

1

−h0 // ΣY0
Σg0 // ΣN

−Σf0 // ΣK1
1

which is commutative except for the lower right square which anticom-
mutes and where all the rows and columns are in ∆. Then, we have
the following commutative diagram:

Y0

g0
0

��

g0 // N

g

��

f0 // K1
1

g1
1

��

h0 // ΣY0

−Σg0
0

��
C0

0

f0
0

��

( 10 ) // C0
0 ⊕ C1

1

f
��

(0,1) // C1
1

f1
1

��

0 // ΣC0
0

Σf0
0

��
K1

0

h0
0

��

g1 // W 1

h
��

f1 // K2
1

h1
1

��

h1 // ΣK1
0

Σh0
0

��
ΣY0

Σg0 // ΣN
Σf0 // ΣK1

1

−Σh0 // Σ2Y0

(2.18)

in which both the first and third vertical triangles and the first and
second horizontal triangles are in ξ.

We now show that the third horizontal and the second vertical
triangles in diagram (2.18) are in ξ. First, Proposition 1.2 implies that
f1f = (0, f1

1 ) is a ξ-proper epic. It follows from Proposition 1.3 that f1
is a ξ-proper epic, and the third horizontal triangle in diagram (2.6) is
in ξ.

Next, by the proof of the 3 × 3 lemma, see [13, Corollary 32], we
have the following commutative diagram:
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0

��

// Σ−1K0
1

−Σ−1h0
0

��

Σ−1K1
0

−Σ−1c
��

// 0

��
Σ−1K1

1

−Σ−1h0 // Y0

g0
0

��

g0 // N

a
��

f0 // K1
1

Σ−1K1
1

��

0 // C0
0

f0
0

��

( 10 ) // C0
0 ⊕K1

1

b
��

(0,1) // K1
1

��
0 // K1

0 K1
0

// 0

in which all horizontal and vertical diagrams are in ∆. Thus, the cobase

change implies that the triangle N
a→ C0

0 ⊕K1
1

b→ K1
0

c→ ΣN is in ξ.
We also have the following commutative diagram:

0

��

// Σ−1(C0
0 ⊕ C1

1 )

(0,−1)
��

Σ−1(C0
0 ⊕ C1

1 )

−Σ−1i
��

// 0

��
Σ−1K1

1

Σ−1g1
1 // Σ−1C1

1

0
��

Σ−1f1
1 // Σ−1K2

1

−Σ−1d
��

−Σ−1h1
1 // K1

1

Σ−1K1
1

��

0 // C0
0

( 10 )��

( 10 ) // C0
0 ⊕K1

1

e
��

(0,1) // K1
1

��
0 // C0

0 ⊕ C1
1 C0

0 ⊕ C1
1

// 0

in which all horizontal and vertical diagrams are in ∆. Then, Propo-
sition 1.2 shows that Σ−1i = (Σ−1f1

1 )(0, 1) is a ξ-proper epic and the

triangle C0
0 ⊕K1

1
e→ C0

0 ⊕ C1
1

i→ K2
1

d→ Σ(C0
0 ⊕K1

1 ) is in ξ.
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Finally, we have the following commutative diagram:

0

��

// N

a
��

N

g
��

// 0

��
Σ−1K2

1

−Σ−1d // C0
0 ⊕K1

1

b
��

e // C0
0 ⊕ C1

1

f
��

i // K2
1

Σ−1K2
1

��

−Σ−1h1 // K1
0

c
��

g1 // W 1

h
��

f1 // K2
1

��
0 // ΣN ΣN // 0

in which all horizontal and vertical diagrams are in ∆. Hence, Propo-
sition 1.4 implies that the second vertical triangle in diagram (2.18) is
in ξ. Since both the first and third vertical triangles and the first and
second horizontal triangles in diagram (2.18) are T (−, C)-exact, so are
the third horizontal and the second vertical triangles in this diagram.

On one hand, applying the cobase change for the triangle Σ−1W 1 →
N → C0

0 ⊕ C1
1 → W 1 along N → Y , we have a commutative diagram:

0

��

// C0
1

��

C0
1

��

// 0

��
Σ−1W 1 // N

��

// C0
0 ⊕ C1

1

��

// W 1

Σ−1W 1

��

// Y

��

// C

��

// W 1

��
0 // ΣC0

1 ΣC0
1

// 0

(2.19)

in which the triangle Y → C → W 1 → ΣY is in ξ. Then, Proposi-
tion 1.4 shows that the third vertical triangle is in ξ and C ∈ C by
assumption. Since the triangle N → C0

0 ⊕C1
1 → W 1 → ΣN is T (−, C)-

exact, it follows from Lemma 2.1 that the triangle Y → C → W 1 → ΣY
is so. On the other hand, again Lemma 2.2 (2) yields the following mor-
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phism of triangles:

K1
0

��

// W 1

��

// K2
1

��

// ΣK1
0

��
C1

0
// C1

0 ⊕ C2
1

// C2
1

0 // ΣC1
0 .

Using that Σ is an automorphism and the 3×3 lemma, the commutative
square on the top left corner below is embedded in a diagram:

Σ−1K2
1

� �

− // K1
0

��

// W 1

��

// K2
1

��
Σ−1C2

1

��

0 // C1
0

��

// C1
0 ⊕ C2

1

��

// C2
1

��
Σ−1K3

1

−
��

− // K2
0

��

// W 2

��

// K3
1

��
K2

1

− // ΣK1
0

// ΣW 1 − // ΣK2
1

which is commutative except the lower right square which anticom-
mutes and where all the rows and columns are in ∆. Then we have the
following commutative diagram:

K1
0

��

// W 1

��

// K2
1

��

// ΣK1
0

−
��

C1
0

��

// C1
0 ⊕ C2

1

��

// C2
1

��

0 // ΣC1
0

��
K2

0

��

// W 2

��

// K3
1

��

// ΣK2
0

��
ΣK1

0
// ΣW 1 // ΣK2

1

− // Σ2K1
0

(2.20)

in which the third horizontal and the second vertical triangles are
in ξ by analogy with the preceding proof. Since both the first and
third vertical triangles and the first and second horizontal triangles in
diagram (2.20) are T (−, C)-exact, so are the third horizontal and the



PROPER RESOLUTIONS AND GORENSTEINNESS 1035

second vertical triangles in this diagram. Continuing this process, we
obtain the desired coproper C(ξ)-coresolution (2.15) and triangle (2.16).

(2) Note that the triangle (2.12) and the triangle Y1 → C0
1 →

K1
1 → ΣY1 in the diagram (2.17) are T (C,−)-exact; thus, the triangles

Y0 → N → K1
1 → ΣY0 and C0

1 → N → Y → ΣC0
1 in this diagram are

also T (C,−)-exact. Since both the first and third vertical triangles
and the first and second horizontal triangles in diagram (2.18) are
T (C,−)-exact, a simple diagram chasing argument shows that the
third horizontal and the second vertical triangles in this diagram are
also T (C,−)-exact. Thus, the triangle Y → C → W 1 → ΣY in
diagram (2.19) is T (C,−)-exact.

Also by assumption, both the first and third vertical triangles and
the first and second horizontal triangles in diagram (2.20) are T (C,−)-
exact. Thus, the second vertical and the third horizontal triangles in
this diagram are also T (C,−)-exact. Finally, we deduce that the ξ-
exact sequence (2.15) is T (C,−)-exact. �

Based on Theorem 2.5, by using induction on n, it is not difficult to
obtain:

Corollary 2.6. Given a ξ-exact complex

(2.21) 0 −→ Yn −→ · · · −→ Y1 −→ Y0 −→ Y −→ 0,

assume that C is closed under hocokernels of ξ-proper monics and

(2.22 (j)) 0 −→ Yj −→ C0
j −→ C1

j −→ · · · −→ Ci
j −→ · · ·

is a coproper C(ξ)-coresolution of Yj for 0 ≤ j ≤ n. Then,
(2.23)

0 −→ Y −→ C −→
n⊕

i=0

Ci+1
i −→

n⊕
i=0

Ci+2
i −→

n⊕
i=0

Ci+3
i −→ · · ·

is a coproper C(ξ)-coresolution of Y , and there exists a ξ-exact complex

0 −→ C0
n −→ C0

n−1 ⊕ C1
n −→ · · · −→

n⊕
i=2

Ci−2
i

−→
n⊕

i=1

Ci−1
i −→

n⊕
i=0

Ci
i −→ C −→ 0.
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If the ξ-exact complex (2.21) and all C(ξ)-coresolutions (2.22 (j)) are
T (C,−)-exact, then so is the ξ-exact complex (2.23).

The next result provides a method for constructing a proper C(ξ)-
resolution of the last term in a triangle in ξ from those of the first two
terms.

Theorem 2.7. Given a triangle

(2.24) X1 −→ X0 −→ X −→ ΣX1

in ξ, assume that

(2.25) Cn
0

dn
0−→ · · · −→ C1

0

d1
0−→ C0

0

d0
0−→ X0 −→ 0,

(2.26) Cn−1
1

dn−1
1−→ · · · −→ C1

1

d1
1−→ C0

1

d0
1−→ X1 −→ 0

are proper C(ξ)-resolutions of X0 and X1, respectively.

(1) If the triangle (2.24) is T (C,−)-exact, then we get a proper C(ξ)-
resolution of X

(2.27) Cn
0 ⊕ Cn−1

1 −→ · · · −→ C2
0 ⊕ C1

1

−→ C1
0 ⊕ C0

1 −→ C0
0 −→ X −→ 0.

(2) If both the ξ-exact complexes (2.25), (2.26) and the triangle (2.24)
are T (−, C)-exact, then so is the ξ-exact complex (2.27).

Proof.

(1) By assumption, there exist T (C,−)-exact triangles

Ki+1
0

gi
0−→ Ci

0

fi
0−→ Ki

0

hi
0−→ ΣKi+1

0 ,

Ki+1
1

gi
1−→ Ci

1

fi
1−→ Ki

1

hi
1−→ ΣKi+1

1

in ξ with the differentials di0 = gi−1
0 f i

0 for 0 ≤ i ≤ n − 1, where

K0
0 = X0, d

0
0 = f0

0 , and the differentials di1 = gi−1
1 f i

1 for 0 ≤ i ≤ n− 2,
where K0

1 = X1, d
0
1 = f0

1 . Applying the base change for the triangle
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Σ−1X → X1 → X0 → X along f0
0 , we have a commutative diagram:

0

��

// K1
0

��

K1
0

��

// 0

��
Σ−1X // W 1

��

// C0
0

��

// X

Σ−1X

��

// X1

��

// X0

��

// X

��
0 // ΣK1

0 ΣK1
0

// 0.

(2.28)

Then Proposition 1.4 implies that the triangle W 1 → C0
0 → X → ΣW 1

is in ξ. Since the triangle (2.24) and the third vertical triangle in
diagram (2.28) are T (C,−)-exact, it follows from Lemma 2.1 that the
triangle W 1 → C0

0 → X → ΣW 1 and the second vertical triangle in
this diagram are also T (C,−)-exact. Thus, Lemma 2.2 (1) yields a
morphism of triangles:

C1
0

��

// C1
0 ⊕ C0

1

��

// C0
1

��

0 // ΣC1
0

��
K1

0
// W 1 // X1

// ΣK1
0 .

Using that Σ is an automorphism and the 3×3 lemma, the commutative
square on the top left corner is embedded in a diagram:

Σ−1C0
1

��

0 // C1
0

��

// C1
0 ⊕ C0

1

��

// C0
1

��
Σ−1X1

��

− // K1
0

��

// W 1

��

// X1

��
K1

1

��

// ΣK2
0

−
��

// ΣW 2

−
��

// ΣK1
1

−
��

C0
1

// ΣC1
0

// Σ(C1
0 ⊕ C0

1 )
− // ΣC0

1

which is commutative except for the lower right square which anticom-
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mutes and where all the rows and columns are in ∆. Then, we have
the following commutative diagram:

K2
0

��

// W 2

��

// K1
1

��

// ΣK2
0

−
��

C1
0

��

// C1
0 ⊕ C0

1

��

// C0
1

��

0 // ΣC1
0

��
K1

0
//

��

W 1

��

// X1

��

// ΣK1
0

��
ΣK2

0
// ΣW 2 // ΣK1

1

− // Σ2K2
0

(2.29)

in which both the first and third vertical triangles and the second
and third horizontal triangles are in ξ. By analogy with the proof
of Theorem 2.3, we see that the first horizontal and the second vertical
triangles in diagram (2.29) are in ξ. Since both the first and third
vertical triangles and the second and third horizontal triangles in the
above diagram are T (C,−)-exact, so are the first horizontal and the
second vertical triangles in this diagram. Finally, repeated applications
of Lemma 2.2 (1) yields the proper C(ξ)-resolution (2.27).

(2) Since the triangle (2.24) and the third vertical triangle in the
diagram (2.28) are T (−, C)-exact, the second vertical triangle and the
triangle W 1 → C0

0 → X → ΣW 1 in this diagram are also T (−, C)-
exact. Also, by assumption, both the first and third vertical triangles
and the second and third horizontal triangles in diagram (2.29) are
T (−, C)-exact. Thus, the second vertical and the first horizontal
triangles in this diagram are also T (−, C)-exact. Finally, we deduce
that the ξ-exact sequence (2.27) is T (−, C)-exact. �

Corollary 2.8. Given a ξ-exact complex

(2.30) Xn −→ · · · −→ X1 −→ X0 −→ X −→ 0,

assume that

(2.31 (j)) Cn−j
j −→ · · · −→ C1

j −→ C0
j −→ Xj −→ 0

is a proper C(ξ)-resolution of Xj for 0 ≤ j ≤ n. If the ξ-exact complex
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(2.30) is T (C,−)-exact, then
(2.32)

n⊕
i=0

Cn−i
i −→

n−1⊕
i=0

C
(n−1)−i
i −→ · · · −→ C1

0 ⊕ C0
1 −→ C0

0 −→ X −→ 0

is a proper C(ξ)-resolution of X. Furthermore, if the ξ-exact complex
(2.30) and all C(ξ)-resolutions (2.31 (j)) are T (−, C)-exact, then so is
the ξ-exact complex (2.32).

Proof. By assumption, there exist a ξ-proper epic Xn → Kn and
triangles Ki+1 → Xi → Ki → ΣKi+1 in ξ for 0 ≤ i ≤ n − 1,
where K0 = X. Also, there is a ξ-proper epic C0

n → Xn. Thus,
Proposition 1.2 implies that C0

n → Kn is a ξ-proper epic. Now, using
Theorem 2.7 and induction on n, we obtain the desired ξ-exact complex
(2.32). �

The next two results which are dual to Theorem 2.7 and Corol-
lary 2.8, respectively, provide a method for constructing a coproper
C(ξ)-coresolution of the first term in a triangle in ξ from those of the
last two terms.

Theorem 2.9. Given a triangle

(2.33) Y −→ Y 0 −→ Y 1 −→ ΣY

in ξ, assume that

0 −→ Y 0 d0
0−→ C0

0

d0
1−→ C0

1 −→ · · · d0
n−→ C0

n,(2.34)

0 −→ Y 1 d1
0−→ C1

0

d1
1−→ C1

1 −→ · · ·
d1
n−1−→ C1

n−1(2.35)

are coproper C(ξ)-coresolutions of Y 0 and Y 1, respectively.

(1) If the triangle (2.33) is T (−, C)-exact, then we get a coproper
C(ξ)-coresolution of Y
(2.36)
0 −→ Y −→ C0

0 −→ C1
0 ⊕ C0

1 −→ C1
1 ⊕ C0

2 −→ · · · −→ C1
n−1 ⊕ C0

n.

(2) If both of the ξ-exact complexes (2.34), (2.35) and the trian-
gle (2.33) are T (C,−)-exact, then so is the ξ-exact complex (2.36).
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Proof. By assumption, there exist T (−, C)-exact triangles

K0
i

g0
i−→ C0

i

f0
i−→ K0

i+1

h0
i−→ ΣK0

i ,

K1
i

g1
i−→ C1

i

f1
i−→ K1

i+1

h1
i−→ ΣK1

i

in ξ with the differentials d0i = g0i f
0
i−1 for 0 ≤ i ≤ n − 1, where

K0
0 = Y 0, d00 = g00 , and the differentials d1i = g1i f

1
i−1 for 0 ≤ i ≤ n− 2,

where K1
0 = Y 1, d10 = g10 . Applying the cobase change for the triangle

Σ−1K0
1 → Y 0 → C0

0 → K0
1 along Y 0 → Y 1, we have the following

commutative diagram:

0

��

// Y

��

Y

��

// 0

��
Σ−1K0

1
// Y 0

��

// C0
0

��

// K0
1

Σ−1K0
1

��

// Y 1

��

// W1

��

// K0
1

��
0 // ΣY ΣY // 0.

(2.37)

Then Proposition 1.4 implies that the third vertical triangle is in ξ.
Since the triangle (2.33) and the triangle Y 0 → C0

0 → K0
1 → ΣY 0

in diagram (2.37) are T (−, C)-exact, it follows from Lemma 2.1 that
the third vertical triangle and the triangle Y 1 → W1 → K0

1 → ΣY 1

in this diagram are also T (−, C)-exact. Thus, Lemma 2.2 (2) yields a
morphism of triangles:

Y 1

��

// W1

��

// K0
1

��

// ΣY 1

��
C1

0
// C1

0 ⊕ C0
1

// C0
1

0 // ΣC1
0 .

Using that Σ is an automorphism and the 3×3 lemma, the commutative
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square on the top left corner below is embedded in a diagram:

Σ−1K0
1

��

− // Y 1

��

// W1

��

// K0
1

��
Σ−1C0

1

��

0 // C1
0

��

// C1
0 ⊕ C0

1

��

// C0
1

��
Σ−1K0

2

−
��

− // K1
1

��

// W2

��

// K0
2

��
K0

1

− // ΣY 1 // ΣW1
− // ΣK0

1

which is commutative except for the lower right square which anticom-
mutes and where all the rows and columns are in ∆. Then, we have
the following commutative diagram:

Y 1

��

// W1

��

// K0
1

��

// ΣY 1

−
��

C1
0

��

// C1
0 ⊕ C0

1

��

// C0
1

��

0 // ΣC1
0

��
K1

1

��

// W2

��

// K0
2

��

// ΣK1
1

��
ΣY 1 // ΣW1

// ΣK0
1

− // Σ2Y 1

(2.38)

in which both the first and third vertical triangles and the first and
second horizontal triangles are in ξ. By analogy with the proof of
Theorem 2.5, we have the third horizontal and the second vertical
triangles in diagram (2.38) are in ξ. Since both the first and third
vertical triangles and the first and second horizontal triangles in the
diagram are T (−, C)-exact, so are the third horizontal and the second
vertical triangles in this diagram. Finally repeated applications of
Lemma 2.2 (2) yields the coproper C(ξ)-coresolution (2.36).

(2) Since the triangle (2.33) and triangle Y 0 → C0
0 → K0

1 → ΣY 0

in diagram (2.37) are T (C,−)-exact, the third vertical triangle and the
triangle Y 1 → W1 → K0

1 → ΣY 1 in this diagram are also T (C,−)-
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exact. Also, by assumption, both the first and third vertical triangles
and the first and second horizontal triangles in the diagram (2.38)
are T (C,−)-exact. Thus, the second vertical and the third horizontal
triangles in this diagram are also T (C,−)-exact. Finally, we deduce
that the ξ-exact sequence (2.36) is T (C,−)-exact. �

Corollary 2.10. Given a ξ-exact complex

(2.39) 0 −→ Y −→ Y 0 −→ Y 1 −→ · · · −→ Y n.

Assume that

(2.40 (j)) 0 −→ Y j −→ Cj
0 −→ Cj

1 −→ · · · −→ Cj
n−j

is a coproper C(ξ)-coresolution of Y j for 0 ≤ j ≤ n. If the ξ-exact
complex (2.39) is T (−, C)-exact, then

0 −→ Y −→ C0
0 −→ C0

1 ⊕ C1
0 −→ · · ·(2.41)

−→
n−1⊕
i=0

Ci
(n−1)−i −→

n⊕
i=0

Ci
n−i

is a coproper C(ξ)-coresolution of Y . Furthermore, if the ξ-exact
complex (2.39) and all C(ξ)-coresolutions (2.40 (j)) are T (C,−)-exact,
then so is the ξ-exact complex (2.41).

Proof. By assumption, there exist a ξ-proper monic Ln → Y n and
triangles Li → Y i → Li+1 → ΣLi in ξ for 0 ≤ i ≤ n−1, where L0 = Y .
Also, there is a ξ-proper monic Y n → Cn

0 . Thus, Proposition 1.2
implies that Ln → Cn

0 is a ξ-proper monic. Now, using Theorem 2.9
and induction on n, we obtain the desired ξ-exact complex (2.41). �

3. Gorensteinness in triangulated categories. In this section,
some applications of the results in Section 2 are given. We introduce
the Gorenstein category GC(ξ) in triangulated categories and show the
stability of GC(ξ).

We begin with the next definition.

Definition 3.1. Let X be an object of T . A complete C(ξ)-resolution
of X is both T (C,−)-exact and T (−, C)-exact ξ-exact complex

· · · −→ C1 −→ C0 −→ C0 −→ C1 −→ · · ·
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in C such that X1 → C0 → X → ΣX1 and X → C0 → X1 → ΣX are
corresponding triangles in ξ.

The Gorenstein subcategory GC(ξ) of T is defined as

GC(ξ) = {X ∈ T | X admits a complete C(ξ)-resolution}.

Set GC1(ξ) = GC(ξ), and inductively set GCn+1(ξ) = G(GCn(ξ)) for any
n ≥ 1.

Remark 3.2. Let T be a triangulated category and P(ξ) (respectively,
I(ξ)) the full subcategory of ξ-projective (respectively, ξ-injective)
objects of T . Then, GP(ξ) (respectively, GI(ξ)) coincides with the
subcategory of T consisting of ξ-Gorenstein projective (respectively,
injective) objects [1].

As a main application of the results in Section 2, we obtain the
following result.

Theorem 3.3. Let T be a triangulated category with countable coprod-
ucts. If C is closed under countable coproducts, then

(1) GCn(ξ) = GC(ξ) for any n ≥ 1.

(2) GC(ξ) is closed under direct summands.

Proof.

(1) Let G ∈ GCn(ξ). Note that the triangles G
1→ G → 0 → ΣG and

0 → G
1→ G → 0 are in ξ. It is easy to check that

· · · −→ 0 −→ G −→ G −→ 0 −→ · · ·

is a complete GCn(ξ)-resolution of G, and thus, G ∈ GCn+1(ξ). It
follows that

C ⊆ GC(ξ) ⊆ GC2(ξ) ⊆ GC3(ξ) ⊆ · · ·

is an ascending chain of additive subcategories of T .

Let X be an object in GC2(ξ) and

· · · −→ G1 −→ G0 −→ G0 −→ G1 −→ · · ·
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a complete GC(ξ)-resolution of X such that

· · · −→ G1 −→ G0 −→ X −→

and
0 −→ X −→ G0 −→ G1 −→ · · ·

are both T (GC(ξ),−)-exact and T (−,GC(ξ))-exact ξ-exact complexes.
Then, for any j ≥ 0, there exist both T (C,−)-exact and T (−, C)-exact
ξ-exact complexes:

· · · −→ Ci
j −→ · · · −→ C1

j −→ C0
j −→ Gj −→ 0,

0 −→ Gj −→ Bj
0 −→ Bj

1 −→ · · · −→ Bj
i −→ · · ·

with all Ci
j and Bj

i in C. Thus, Corollaries 2.8 and 2.10 yield the
following ξ-exact complexes:

· · · −→
n⊕

i=0

Cn−i
i −→ · · · −→ C1

0 ⊕ C0
1 −→ C0

0 −→ X −→ 0,

0 −→ X −→ B0
0 −→ B0

1 ⊕B1
0 −→ · · · −→

n⊕
i=0

Bi
n−i −→ · · ·

which are both T (C,−)-exact and T (−, C)-exact. It follows that

· · · −→
n⊕

i=0

Cn−i
i −→ · · ·

−→ C1
0 ⊕ C0

1 −→ C0
0 −→ B0

0 −→ B0
1 ⊕B1

0 −→ · · ·

−→
n⊕

i=0

Bi
n−i −→ · · ·

is a complete C(ξ)-resolution of X, and thus, X ∈ GC(ξ). By using
induction on n we easily obtain the assertion.

(2) Let
X1 ⊕X2 = X ∈ GC(ξ)

and
· · · −→ C1 −→ C0 −→ C0 −→ C1 −→ · · ·

be a complete C(ξ)-resolution of X with K1 → C0 → X → ΣK1 and
X → C0 → K1 → ΣX the corresponding triangles in ξ. Applying the
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base change for the triangle Σ−1X1 → X2 → X → X1 along C0 → X,
we have the following commutative diagram:

0

��

// K1

��

K1

��

// 0

��
Σ−1X1

// D

��

// C0

��

// X1

Σ−1X1

��

0 // X2

��

// X

��

// X1

��
0 // ΣK1 ΣK1

// 0.

Then Proposition 1.4 implies that the triangle D → C0 → X1 → ΣD
is in ξ. Applying to the above diagram the homological functors
T (C,−), T (−, C) for any C ∈ C, it is straightforward to show that
the triangle D → C0 → X1 → ΣD is both T (C,−)-exact and T (−, C)-
exact.

Similarly, we have a triangle D′ → C0 → X2 → ΣD′ in ξ which is
both T (C,−)-exact and T (−, C)-exact. Consider the triangle

Xi −→ X −→ Xj
0−→ ΣXi for i, j = 1, 2.

Theorem 2.7 yields both T (C,−)-exact and T (−, C)-exact ξ-exact com-
plexes C0⊕C1 → C0 → X1 → 0 and C0⊕C1 → C0 → X2 → 0. Again,
by Theorem 2.7, we obtain both T (C,−)-exact and T (−, C)-exact ξ-
exact complexes C0 ⊕ C1 ⊕ C2 → C0 ⊕ C1 → C0 → X1 → 0 and
C0⊕C1⊕C2 → C0⊕C1 → C0 → X2 → 0. Continuing this process, we
obtain both of the following T (C,−)-exact and T (−, C)-exact ξ-exact
complexes

· · · →
n−1⊕
i=0

Ci → · · · → C0 ⊕ C1 ⊕ C2 → C0 ⊕ C1 → C0 → X1 → 0,

· · · →
n−1⊕
i=0

Ci → · · · → C0 ⊕ C1 ⊕ C2 → C0 ⊕ C1 → C0 → X2 → 0.

Dually, repeated applications of Theorem 2.9 yields both of the follow-
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ing T (C,−)-exact and T (−, C)-exact ξ-exact complexes

0 −→ X1 −→ C0 −→ C0 ⊕ C1 −→ C0 ⊕ C1 ⊕ C2 −→ · · ·

−→
n−1⊕
i=0

Ci −→ · · · ,

0 −→ X2 −→ C0 −→ C0 ⊕ C1 −→ C0 ⊕ C1 ⊕ C2 −→ · · ·

−→
n−1⊕
i=0

Ci −→ · · · .

Consequently, X1 and X2 are in GC(ξ). �

Proposition 3.4. Given both T (C,−)-exact and T (−, C)-exact triangle
X → Y → Z → ΣX in ξ, if any two of X, Y and Z are objects in
GC(ξ), then so is the third.

Proof. First, assume that X,Z ∈ GC(ξ). There exist complete C(ξ)-
resolutions

· · · −→ C1 −→ C0 −→ C0 −→ C1 −→ · · · ,
· · · −→ B1 −→ B0 −→ B0 −→ B1 −→ · · ·

of X and Z, respectively. Consider both T (C,−)-exact and T (−, C)-
exact triangles X1 → C0 → X → ΣX1 and Z1 → B0 → Z → ΣZ1. By
assumption and Lemma 2.2 (1), we obtain the following morphism of
triangles:

C0

��

// C0 ⊕B0

��

// B0

��

0 // ΣC0

��
X // Y // Z // ΣX.

Using that Σ is an automorphism and the 3×3 lemma, the commutative
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square on the top left corner below is embedded in a diagram:

Σ−1B0

��

0 // C0

��

// C0 ⊕B0

��

// B0

��
Σ−1Z

��

− // X

��

// Y

��

// Z

��
Z1

��

// ΣX1

−
��

// ΣY1

−
��

// ΣZ1

−
��

B0
// ΣC0

// Σ(C0 ⊕B0)
− // ΣB0

which is commutative except for the lower right square which anticom-
mutes and where all the rows and columns are in ∆. Then, we have
the following commutative diagram:

X1

��

// Y1

��

// Z1

��

// ΣX1

−
��

C0

��

// C0 ⊕B0

��

// B0

��

0 // ΣC0

��
X

��

// Y

��

// Z

��

// ΣX

��
ΣX1

// ΣY1
// ΣZ1

− // Σ2X1

in which both the first and third vertical triangles and the second
and third horizontal triangles are in ξ. By analogy with the proof
of Theorem 2.3, we see that the first horizontal and the second vertical
triangles in the above diagram are in ξ. Since both the first and third
vertical triangles and the second and third horizontal triangles in the
above diagram are both T (C,−)-exact and T (−, C)-exact, so are the
second vertical and the first horizontal triangles in this diagram.

On the other hand, consider both T (C,−)-exact and T (−, C)-exact
triangles X → C0 → X1 → ΣX and Z → B0 → Z1 → ΣZ. By
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assumption and Lemma 2.2 (2), we obtain a morphism of triangles:

X

��

// Y

��

// Z

��

// ΣX

��
C0 // C0 ⊕B0 // B0 0 // ΣC0.

Using that Σ is an automorphism and the 3×3 lemma, the commutative
square on the top left corner is embedded in a diagram:

Σ−1Z

��

− // X

��

// Y

��

// Z

��
Σ−1B0

��

0 // C0

��

// C0 ⊕B0

��

// B0

��
Σ−1Z1

−
��

− // X1

��

// Y 1

��

// Z1

��
Z

− // ΣX // ΣY
− // ΣZ

which is commutative except for the lower right square which anticom-
mutes and where all the rows and columns are in ∆. Then, we have
the following commutative diagram:

X

��

// Y

��

// Z

��

// ΣX

−
��

C0

��

// C0 ⊕B0

��

// B0

��

0 // ΣC0

��
X1

��

// Y 1

��

// Z1

��

// ΣX1

��
ΣX // ΣY // ΣZ

− // Σ2X

in which both the first and third vertical triangles and the first and
second horizontal triangles are in ξ. By analogy with the proof of
Theorem 2.5, we see that the third horizontal and the second vertical
triangles in the above diagram are in ξ. Since both the first and
third vertical triangles and the first and second horizontal triangles
in the above diagram are both T (C,−)-exact and T (−, C)-exact, so are
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the second vertical and the third horizontal triangles in this diagram.
Continuing this process, we obtain that

· · · −→ C1 ⊕B1 −→ C0 ⊕B0 −→ C0 ⊕B0 −→ C1 ⊕B1 −→ · · ·

is a complete C(ξ)-resolution of Y , as desired.

Next, assume that Y, Z ∈ GC(ξ). Then Theorem 2.9 implies that X
has a coproper C(ξ)-coresolution which is T (C,−)-exact. Consider both
T (C,−)-exact and T (−, C)-exact triangles Y1 → C0 → Y → ΣY1 in ξ
with C0 ∈ C. Applying the base change for the triangle Σ−1Z → X →
Y → Z along C0 → Y , we have the following commutative diagram:

0

��

// Y1

��

Y1

��

// 0

��
Σ−1Z // Z ′

��

// C0

��

// Z

Σ−1Z

��

// X

��

// Y

��

// Z

��
0 // ΣY1 ΣY1

// 0.

Then Proposition 1.4 implies that the triangle Z ′ → C0 → Z → ΣZ ′ is
in ξ. Applying to the above diagram the homological functors T (C,−)
and T (−, C) for any C ∈ C, a simple diagram chasing argument shows
that the second vertical triangle and the triangle Z ′ → C0 → Z → ΣZ ′

are both T (C,−)-exact and T (−, C)-exact.
Consider both T (C,−)-exact and T (−, C)-exact triangles Z1 →

B0 → Z → ΣZ1 in ξ with B0 ∈ C; [11, Axioms B’ and E] yields
the following morphism of triangles:

Z1

��

// B0

��

// Z // ΣZ1

��
Z ′ // C0

// Z // ΣZ ′

such that the triangle Z1 → Z ′ ⊕ B0 → C0 → ΣZ1 is in ξ and
both T (C,−)-exact and T (−, C)-exact. Then, Z ′ ⊕ B0 has a proper
C(ξ)-resolution which is T (−, C)-exact, and so Z ′ has a proper C(ξ)-
resolution that is T (−, C)-exact by the preceding proof. Now, applying
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Theorem 2.7 for the triangle Y1 → Z ′ → X → ΣY1, we obtain that
X has a proper C(ξ)-resolution which is T (−, C)-exact. It follows that
X ∈ GC(ξ).

Finally, assume that X,Y ∈ GC(ξ). Then Theorem 2.7 implies that
Z has a proper C(ξ)-resolution which is T (−, C)-exact. Consider both
T (C,−)-exact and T (−, C)-exact triangles Y → B0 → Y 1 → ΣY
in ξ with B0 ∈ C. Applying the cobase change for the triangle
Σ−1Y 1 → Y → B0 → Y 1 along Y → Z, we have the following
commutative diagram:

0

��

// X

��

X

��

// 0

��
Σ−1Y 1 // Y

��

// B0

��

// Y 1

Σ−1Y 1

��

// Z

��

// X ′

��

// Y 1

��
0 // ΣX ΣX // 0.

Then Proposition 1.4 implies that the third vertical triangle is in ξ.
Applying to the above diagram the homological functors T (C,−) and
T (−, C) for any C ∈ C, a simple diagram chasing argument shows that
the third vertical triangle and the triangle Z → X ′ → Y 1 → ΣZ are
both T (C,−)-exact and T (−, C)-exact. Consider both T (C,−)-exact
and T (−, C)-exact triangle X → C0 → X1 → ΣX in ξ with C0 ∈ C;
[11, Axioms B and E] yields the following morphism of triangles:

X // B0

��

// X ′

��

// ΣX

X // C0 // X1 // ΣX

such that B0 → X ′ ⊕C0 → X1 → ΣB0 is in ξ and both T (C,−)-exact
and T (−, C)-exact. Then, X ′ ⊕ C0 has a coproper C(ξ)-coresolution
which is T (C,−)-exact, and thus, X ′ has a coproper C(ξ)-coresolution
that is T (C,−)-exact by the preceding proof.

Now, applying Theorem 2.9 for the triangle Z → X ′ → Y 1 → ΣZ,
we obtain that Z has a coproper C(ξ)-coresolution which is T (C,−)-
exact. It follows that Z ∈ GC(ξ). �
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Let X,Z be two objects of T , and consider the class ξ∗(Z,X) of all

triangles X
µ→ Y

ν→ Z
ω→ ΣX in ξ. We define a relation in ξ∗(Z,X)

as follows. If (T )i : X
µi→ Yi

νi→ Z
ωi→ ΣX, i = 1, 2, are elements of

ξ∗(Z,X), then we define (T )1 ∼ (T )2 if there exists a morphism of
triangles:

(T )1 : X
µ1 // Y1

g

��

ν1 // Z
ω1 // ΣX

(T )2 : X
µ2 // Y2

ν2 // Z
ω2 // ΣX.

Obviously, g is an isomorphism and ∼ is an equivalence relation on the
class ξ∗(Z,X). Using base and cobase changes, it is easy to see that we
can define (as in the case of the classical Baer’s theory in an abelian
category) a sum in the class ξ(Z,X) := ξ∗(Z,X)/ ∼ in such a way that
ξ(Z,X) becomes an abelian group and ξ(−,−) : T op × T → Ab an
additive bifunctor.

Lemma 3.5. Given a triangle

(3.1) X −→ Y −→ Z −→ ΣX

in ξ, assume ξ(C,C ′) = 0 for any C,C ′ ∈ C.
(1) If Z ∈ GC(ξ), then the triangle (3.1) is T (−, C)-exact.
(2) If X ∈ GC(ξ), then the triangle (3.1) is T (C,−)-exact.

Proof. We only need to prove (1) since (2) follows by duality.

Since Z ∈ GC(ξ), there exists a T (−, C)-exact triangle Z1 → C →
Z → ΣZ1 in ξ with C ∈ C. Let C ′ ∈ C. Then, we have a long exact
sequence

0 −→ T (Z,C ′) −→ T (C,C ′) −→ T (Z1, C
′)

f−→ ξ(Z,C ′) −→ 0.

Since the triangle Z1 → C → Z → ΣZ1 is T (−, C)-exact, f = 0,
and thus, ξ(Z,C ′) = 0. It follows that the triangle (3.1) is T (−, C)-
exact. �

Corollary 3.6. Given a triangle

(3.2) X −→ Y −→ Z −→ ΣX
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in ξ, assume ξ(C,C ′) = 0 for any C,C ′ ∈ C.
(1) If X,Z ∈ GC(ξ), then Y ∈ GC(ξ).
(2) If the triangle (3.2) is T (C,−)-exact and Z ∈ GC(ξ), then

X ∈ GC(ξ) if and only if Y ∈ GC(ξ).
(3) If the triangle (3.2) is T (−, C)-exact and X ∈ GC(ξ), then

Y ∈ GC(ξ) if and only if Z ∈ GC(ξ).

As an immediate consequence of Corollary 3.6, we obtain the next
result which was obtained under the assumption that the triangulated
category has enough ξ-projectives (respectively, ξ-injectives), see [1,
Theorem 3.11] and its dual.

Corollary 3.7. Let X → Y → Z → ΣX be a triangle in ξ.

(1) If Z ∈ GP(ξ), then X ∈ GP(ξ) if and only if Y ∈ GP(ξ).

(2) If X ∈ GI(ξ), then Y ∈ GI(ξ) if and only if Z ∈ GI(ξ).

Acknowledgments. We wish to thank the referee for the very
helpful suggestions which have been incorporated herein.
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