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ON THE EXISTENCE OF CONTINUOUS SOLUTIONS
FOR NONLINEAR FOURTH-ORDER ELLIPTIC
EQUATIONS WITH STRONGLY GROWING

LOWER-ORDER TERMS

MYKHAILO V. VOITOVYCH

ABSTRACT. In this article, we consider nonlinear elliptic
fourth-order equations with the monotone principal part
satisfying the common growth and coerciveness conditions
for Sobolev space W 2,p(Ω), Ω ⊂ Rn. It is supposed that the
lower-order term of the equations admits arbitrary growth
with respect to an unknown function and is arbitrarily close
to the growth limit with respect to the derivatives of this
function. We assume that the lower-order term satisfies the
sign condition with respect to the unknown function. We
prove the existence of continuous generalized solutions for
the Dirichlet problem in the case n = 2p.

1. Introduction. Let n,m ∈ N, p ∈ R be numbers such that n ≥ 3,
m ≥ 2 and p > 1. Let Ω be a bounded open set of Rn, and letWm,p(Ω)
denote the Sobolev space with the norm

∥u∥m,p =

( ∑
|α|≤m

∫
Ω

|Dαu|pdx
)1/p

,

where the α = (α1, . . . , αn) is an n-dimensional multi-index with
nonnegative integer components αi, i = 1, . . . , n, |α| = α1 + · · · + αn,
and where the Dαu = ∂|α|u/∂xα1

1 · · · ∂xαn
n is a generalized derivative

of order |α|. We denote by Wm,p
0 (Ω) the closure of the set C∞

0 (Ω) in
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Wm,p(Ω). The norm

∥u∥Wm,p
0 (Ω) =

( ∑
|α|=m

∫
Ω

|Dαu|pdx
)1/p

is equivalent to ∥ · ∥m,p in the Banach space Wm,p
0 (Ω).

We consider the general 2mth order equation in the divergence form

(1.1)
∑

|α|≤m

(−1)|α|DαAα(x, u, . . . ,D
mu) = 0,

where x ∈ Ω, u ∈Wm,p(Ω) is an unknown function,

Dku = {Dαu : |α| = k}, k = 1, . . . ,m.

We assume that n = mp, for every multi-index α with |α| ≤ m,

Aα : Ω× RNm −→ R

is a Carathéodory function (Nm is the number of all multi-indices α
with |α| ≤ m), and for almost every x ∈ Ω and every ξ ∈ RNm the
following inequalities hold:∑

|α|=m

Aα(x, ξ)ξα ≥ c1
∑

|α|=m

|ξα|p − c2
∑

|β|<m

|ξβ |pβ − g(x),(1.2)

|Aα(x, ξ)| ≤ c2
∑

|β|≤m

|ξβ |pαβ + gα(x), |α| ≤ m.(1.3)

Here c1 and c2 are positive constants, pαβ = p − 1 if |α| = |β| = m,
pβ ≥ 1, pαβ ≥ 0 and

(1.4)
pβ < n/|β| if |β| < m,

pαβ < (n− |α|)/|β| if |α|+ |β| < 2m,

g, gα are nonnegative functions such that g ∈ Lτ (Ω), τ > 1, gα ∈
Lτα(Ω), τα > n/(n− |α|).

Under these assumptions, a generalized solution of equation (1.1) is
a function u ∈Wm,p(Ω) such that, for every function v ∈Wm,p

0 (Ω),

(1.5)

∫
Ω

{ ∑
|α|≤m

Aα(x, u, . . . , D
mu)Dαv

}
dx = 0.
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As is known, see for instance [5, Chapter 7], Wm,p
0 (Ω) ⊂ Ck(Ω) if

n < mp and 0 ≤ k < m−n/p. In the case that n = mp, the embedding

(1.6) Wm,p(Ω) ⊂ Lφ(Ω)

(Lφ(Ω) denotes the Orlicz space generated by the function φ(t) =
exp[|t|p/(p−1)]−1, t ∈ R [5, Chapter 7]) does not provide the bounded-
ness of generalized solutions of equation (1.1). In this situation, Frehse
[4] has established the boundedness of the arbitrary generalized solu-
tion u ∈Wm,p

0 (Ω) of equation (1.1), and the continuity of the solution
has been proved by Skrypnyk [11, Chapter 2]. Hölder continuity of
solutions was studied by Widman [17] and Solonnikov [12] at similar
assumptions. Finally, in the case where n > mp, there exist exam-
ples of equations in the form (1.1)–(1.3) with unbounded solutions,
see [2, 10]. We also note that the existence of a generalized solution
of equation (1.1) with growth condition (1.3), (1.4) can be set using
the theory of monotone operators and additional assumptions on the
coefficients.

If, in condition (1.4) on pβ and pαβ we replace the inequalities on the
equalities, the above-mentioned results of Frehse and Skrypnyk cease
to be valid. At the same time, using the method of [11, Chapter
2], Todorov [13] proved the continuity of every bounded generalized
solution of equation (1.1) in the case where pβ = n/|β| if |β| < m,
pαβ = (n− |α|)/|β| if |β| ̸= 0 and |α|+ |β| ≤ 2m, and for every multi-
index α with |α| ≤ m, the coefficient Aα admits an arbitrary growth
with respect to an unknown function.

Next we recall the precise formulation of the Todorov’s result [13].

Theorem 1.1. Suppose that the coefficients of equation (1.1) satisfy
the following conditions.

(1) For every multi-index α with |α| ≤ m, Aα : Ω × RNm → R is a
Carathéodory function.

(2) For almost every x ∈ Ω and for every ξ ∈ RNm the following
inequalities hold :

(a)
∑

|α|=m

Aα(x, ξ)ξα ≥ λ(|ξ0|)
∑

|α|=m

|ξα|p −C(|ξ0|)
∑

1≤|β|<m

|ξβ |n/|β| −

g(x),
(b) |Aα(x, ξ)| ≤ Cα(|ξ0|)

∑
1≤|β|≤m |ξβ |(n−|α|)/|β|+gα(x), |α| ≤ m.
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Here, p > 1, n = mp; R+ = [0,+∞) and C,Cα : R+ → R+ are
continuous nondecreasing functions, λ : R+ → (0,+∞) is a continuous
nonincreasing function; g, gα are nonnegative functions such that

g ∈ Lτ (Ω), τ > 1, gα ∈ Lτα(Ω), τα > n/(n− |α|).

Let u ∈ Wm,p(Ω) ∩ L∞(Ω) be a generalized solution of equation (1.1),
that is, for every function v ∈Wm,p

0 (Ω)∩L∞(Ω) equality (1.5) is true.
Then the solution u is continuous at every interior point of the set Ω.

The question on existence of a bounded generalized solution of
equation (1.1) under conditions (A), (B) is still open.

In this article, we consider fourth order equations (m = 2) in
the form (1.1) satisfying the condition Aα ≡ 0 if |α| = 1, and all
assumptions in [4] except for inequality (1.3) for the lower-order term
A0. Instead of this, we suppose a more general condition admitting,
unlike [4, 11, 12, 17], an arbitrary growth of the term A0 with
respect to the function u (even stronger than the growth of the function
φ(u) = exp[|u|p/(p−1)] − 1) and a growth of A0 with respect to the
derivatives Dαu, |α| = 1, 2, which is arbitrarily close to the limiting
growth. This means that

|A0(x, u,Du,D
2u)| ≤ a(|u|)

{
1+

∑
|α|=1,2

|Dαu|n/|α| ψ(|Dαu|)
}
+ g0(x),

where a, ψ : R+ → R+ are continuous functions, limt→+∞ ψ(t) = 0.
At the same time, it is supposed that the lower-order term A0 satisfies
the sign condition A0(x, u,Du,D

2u)u ≥ 0. The main result of this
article is a theorem on the existence and L∞-estimate of continuous
generalized solutions of the Dirichlet problem for the equations under
investigation.

We remark that, in the situation n > mp results on the existence
of bounded generalized solutions for nonlinear elliptic equations with
natural growth lower-order terms were established, for instance, in
[1, 3] (the case of second-order equations, m = 1) and in [14, 15, 16]
(the case of high-order equations with strengthened coercivity, m ≥ 2).

2. Statement of the main result. Let n ∈ N, n ≥ 3, and let Ω
be a bounded open set of Rn.
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We shall use the following notation: C(Ω) is the set of continuous
functions on Ω, Λ is the set of all n dimensional multi-indices α such
that |α| ≤ 2, N1 (correspondingly N2) is the number of all multi-indices
α with |α| ≤ 1 (|α| ≤ 2), N = N2 − N1. If τ ∈ [1,+∞], then ∥ · ∥τ is
the norm in Lτ (Ω). For every measurable set E ⊂ Ω we denote by |E|
(or by measE) n-dimensional Lebesgue measure of the set E.

We set p = n/2 and note that, by (1.6) (m = 2) and Sobolev
inequality, see for instance, [5, Theorem 7.10], for every λ ≥ 1 and

for every function u ∈W 2,p
0 (Ω),

(2.1)

cλ,n,Ω

(∫
Ω

|u|λdx
)1/λ

≤
( ∑

|α|=1

∫
Ω

|Dαu|ndx
)1/n

≤ cn

( ∑
|α|=2

∫
Ω

|Dαu|pdx
)1/p

,

where cλ,n,Ω is a positive constant depending only on λ, n and |Ω|, and
cn is a positive constant depending only on n.

Next, let c1, c2 > 0, let g1 and g2 be nonnegative summable functions
on Ω, and let p0, p1, p̃ be arbitrary numbers satisfying the inequalities
p0 ≥ 0,

0 ≤ p1 < n,(2.2)

1 ≤ p̃ < p.(2.3)

For every α ∈ Λ with |α| = 2, let Aα : Ω×RN2 → R be a Carathéodory
function. We assume that, for almost every x ∈ Ω and for every
ξ ∈ RN2 , the following inequalities hold:

(2.4)
∑
|α|=2

Aα(x, ξ)ξα ≥ c1
∑
|α|=2

|ξα|p − c2
∑
|α|≤1

|ξα|p̃ − g1(x),

(2.5)
∑
|α|=2

|Aα(x, ξ)|p/(p−1)

≤ c2

{
|ξ0|p0 +

∑
|α|=1

|ξα|p1 +
∑
|α|=2

|ξα|p
}
+ g2(x).
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Next, let g3 and g4 be nonnegative summable functions on Ω, let
b : R+ → R+ and ψ : R+ → R+ be continuous functions,

(2.6) lim
t→+∞

ψ(t) = 0,

and let B : Ω × RN2 → R be a Carathéodory function such that, for
almost every x ∈ Ω and for every ξ ∈ RN2 , the following inequalities
hold:

(2.7) |B(x, ξ)| ≤ b(|ξ0|)
{
1 +

∑
|α|=1,2

|ξα|n/|α|ψ(|ξα|)
}
+ g3(x),

(2.8) B(x, ξ)ξ0 ≥ −g4(x).

Further, let τ > 1 and

(2.9) f ∈ Lτ (Ω).

We consider the Dirichlet problem

(2.10)
∑
|α|=2

DαAα(x, u,Du,D
2u) +B(x, u,Du,D2u) = f in Ω,

(2.11) Dαu = 0, |α| = 0, 1, on ∂Ω.

The following remark provides correctness of the definition of a
generalized solution to problem (2.10), (2.11).

Remark 2.1. By (2.1), (2.2), (2.5) and imbedding (1.6), for ev-

ery u, v ∈ W 2,p
0 (Ω) and every α ∈ Λ with |α| = 2, the function

Aα(x, u,Du,D
2u)Dαv is summable on Ω, and by (2.1) and (2.7), for

every u, v ∈W 2,p
0 (Ω) ∩L∞(Ω), the function B(x, u,Du,D2u)v is sum-

mable on Ω. Moreover, it follows from (1.6) and (2.9) that, for every

v ∈W 2,p
0 (Ω), the function fv is summable on Ω.

Definition 2.2. A generalized solution of problem (2.10), (2.11) is

a function u ∈ W 2,p
0 (Ω) ∩ L∞(Ω) such that, for every function v ∈
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W 2,p
0 (Ω) ∩ L∞(Ω),

(2.12)
∑
|α|=2

∫
Ω

Aα(x, u,Du,D
2u)Dαv dx

+

∫
Ω

B(x, u,Du,D2u)v dx =

∫
Ω

fv dx.

The next theorem is the main result of the present article.

Theorem 2.3. Suppose Ω ⊂ Rn is open and bounded, with n ≥ 3.
Suppose also that the assumptions in (2.2)–(2.9) hold with p = n/2,
and with the functions g1, g2, g3, g4 and f belonging to Lτ (Ω), τ > 1.
Let M be a majorant for the norms ∥g1∥τ , ∥g2∥τ , ∥g4∥τ and ∥f∥τ , and
let, for almost every x ∈ Ω and for every η ∈ RN1 and ζ, ζ ′ ∈ RN ,
ζ ̸= ζ ′, the following inequality holds:

(2.13)
∑
|α|=2

[Aα(x, η, ζ)−Aα(x, η, ζ
′)](ζα − ζ ′α) > 0.

Then there exists a generalized solution u0 ∈ C(Ω) of problem (2.10),
(2.11) such that ∥u0∥∞ ≤ C1 where C1 is a positive constant depending
only on n, p̃, p0, p1, |Ω|, c1, c2, τ and M .

We will prove Theorem 2.3 in Section 3. First, we give some remarks
and an example of functions satisfying conditions (2.4)–(2.8) and (2.13).

Remark 2.4. The proof of the existence of the solution u0 is based on
the consideration of a sequence of approximate problems for equations
with bounded lower-order terms, obtaining the uniform boundedness
of their solutions {ui} and the subsequent limit passage. At the
same time, solvability of the approximate problems is established using
the results of [9] on solvability of equations with pseudomonotone
operators. By virtue of condition (2.8) the proof of the uniform
boundedness of the solutions {ui} follows the proof of the boundedness
of arbitrary generalized solution u ∈ Wm,p

0 (Ω) for equation (1.1) in
[4]. So we omit this proof here. The limit passage in the approximate
problems is justified using ideas of [7, 8].
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Remark 2.5. Suppose that conditions (2.2)–(2.7) and (2.9) hold with
p = n/2 and with the functions g1, g2, g3, f ∈ Lτ (Ω), τ > 1. Let
u ∈W 2,p(Ω)∩L∞(Ω) be a generalized solution of equation (2.10), that

is, for every function v ∈ W 2,p
0 (Ω) ∩ L∞(Ω) equality (2.12) is true.

Then, by Theorem 1.1, we have the inclusion u ∈ C(Ω).

Example 2.6. Let, for every α ∈ Λ with |α| = 2, Aα : Ω × RN2 → R
be the function defined by

Aα(x, ξ) =

( ∑
|β|=2

ξ2β

)(p−2)/2

ξα +
∑
|β|≤1

|ξβ |p̃−1.

Then the functions {Aα : |α| = 2} satisfy inequalities (2.4) and (2.5)
(with the exponents p0 = p1 = (p̃− 1)p/(p− 1)) and (2.13). Next, for
every (x, ξ) ∈ Ω× RN2 , we set

B(x, ξ) = ξ0b1(|ξ0|)

×
{
1 +

∑
|α|=1

|ξα|n [ ln(2 + |ξα|) ]−1 +
∑
|α|=2

|ξα|p [ ln ln(3 + |ξα|) ]−1

}

where b1 is an arbitrary nonnegative continuous function on R+, for
example b1(t) = exp(tλ), λ > 0. Then the function B satisfies
inequalities (2.7), (2.8) and ψ(t) = [ ln ln(3 + t) ]−1, t ∈ R+.

3. Proof of Theorem 2.3. Step 1. Suppose that conditions (2.2)–
(2.9) and (2.13) are satisfied with p = n/2 and with the functions g1,
g2, g3, g4, f ∈ Lτ (Ω), τ > 1. Let M be a majorant for ∥g1∥τ , ∥g2∥τ ,
∥g4∥τ and ∥f∥τ .

By ci, i = 3, 4, . . ., we shall denote positive constants, depending
only on n, p̃, p0, p1, |Ω|, c1, c2, τ and M .

For every i ∈ N, we define the function Bi : Ω× RN2 → R by

Bi(x, ξ) =
B(x, ξ)

1 + |B(x, ξ)|/i
, (x, ξ) ∈ Ω× RN2 .
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Obviously, for every i ∈ N and for every (x, ξ) ∈ Ω× RN2 ,

|Bi(x, ξ)| ≤ i,(3.1)

Bi(x, ξ)ξ0 ≥ −g4(x),(3.2)

(3.3) |Bi(x, ξ)| ≤ b(|ξ0|)
{
1 +

∑
|α|=1,2

|ξα|n/|α| ψ(|ξα|)
}
+ g3(x).

From (2.1)–(2.5), (2.13), (3.1) and embedding (2.9) and the results
of [9] on solvability of equations with pseudomonotone operators, it

follows that, if i ∈ N, then there exists a function ui ∈ W 2,p
0 (Ω) such

that, for every function v ∈W 2,p
0 (Ω),

(3.4)
∑
|α|=2

∫
Ω

Aα(x, ui, Dui, D
2ui)D

αv dx

+

∫
Ω

Bi(x, ui, Dui, D
2ui)v dx =

∫
Ω

fv dx.

Observe that, for every i ∈ N,

(3.5) ∥ui∥W 2,p
0 (Ω) ≤ c3.

In fact, fixing an arbitrary i ∈ N and putting into (3.4) the function ui
instead of v, we obtain∑

|α|=2

∫
Ω

Aα(x, ui, Dui, D
2ui)D

αuidx

+

∫
Ω

Bi(x, ui, Dui, D
2ui)uidx =

∫
Ω

fuidx.

This, along with (2.4) and (3.2), implies that

c1

∫
Ω

{ ∑
|α|=2

|Dαui|p
}
dx

≤ c2

∫
Ω

{ ∑
|α|≤1

|Dαui|p̃
}
dx

+

∫
Ω

fuidx+

∫
Ω

(g1 + g4) dx.
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From this inequality, estimating the first addend on the right-hand side
by means of Hölder’s and Young’s inequalities and (2.1), (2.3), and the
second addend by means of Hölder’s, Young’s inequalities and (2.1), we
deduce (3.5).

Taking into account inequalities (3.1), (3.2) and (3.5), inclusions g1,
g2, g4, f ∈ Lτ (Ω), τ > 1, and using the reasoning of [4], we establish
that, for every i ∈ N,

(3.6) ∥ui∥∞ ≤ c4.

By virtue of (3.5) and the compactness of the embeddingW 2,p
0 (Ω) ⊂

W 1,λ
0 (Ω) with λ < n, there exist an increasing sequence {ij} ⊂ N and

a function u0 ∈W 2,p
0 (Ω) such that

uij −→ u0 weakly in W 2,p
0 (Ω),(3.7)

uij −→ u0 almost everywhere in Ω,(3.8)

Dαuij −→ Dαu0 almost everywhere in Ω, if |α| = 1.(3.9)

Now, from (3.6) and (3.8) we deduce the estimate

(3.10) ∥u0∥∞ ≤ c4.

Step 2. For every i ∈ N, we set

Φi=
∑
|α|=2

[
Aα(x, ui, Dui, D

2ui)−Aα(x, ui, Dui, D
2u0)

]
(Dαui−Dαu0).

Let us demonstrate that

(3.11) lim
j→∞

∫
Ω

Φijdx = 0.

Let j ∈ N. Since uij − u0 ∈W 2,p
0 (Ω), by virtue of (3.4), we have

(3.12)

∫
Ω

Φijdx =

∫
Ω

f(uij − u0) dx

−
∫
Ω

Bij (x, uij , Duij , D
2uij )(uij − u0) dx

−
∫
Ω

{ ∑
|α|=2

Aα(x, uij , Duij , D
2u0)(D

αuij −Dαu0)

}
dx.
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The integrals on the right-hand side of (3.12) tend to zero as j → ∞.
In fact, by (3.6) and (3.8), we have

(3.13) lim
j→∞

∫
Ω

f(uij − u0) dx = 0.

Next, we fix an arbitrary ε > 0. By virtue of (2.6) and the
non-negativeness of the function ψ, there exists the number K > 1
depending only on ψ and ε such that

(3.14) 0 ≤ ψ(t) < ε if t > K.

We set b̃ = maxs∈[0, c4] b(s). By (3.3) and (3.6), we have

(3.15)

∣∣∣∣ ∫
Ω

Bij (x, uij , Duij , D
2uij )(uij − u0) dx

∣∣∣∣
≤

∫
Ω

|Bij (x, uij , Duij , D
2uij )||uij − u0| dx

≤ b̃
∑

|α|=1,2

∫
Ω

|Dαuij |n/|α|ψ(|Dαuij |)|uij − u0| dx

+

∫
Ω

(g3 + b̃)|uij − u0| dx.

Let α ∈ Λ, |α| = 1, 2 and ψK = maxt∈[−K,K] ψ(t). Using (3.6), (3.10)
and (3.14), we obtain

(3.16)

∫
Ω

|Dαuij |n/|α| ψ(|Dαuij |)|uij − u0| dx

=

∫{
|Dαuij

|≤K
} |Dαuij |n/|α| ψ(|Dαuij |)|uij − u0| dx

+

∫{
|Dαuij

|>K
} |Dαuij |n/|α| ψ(|Dαuij |)|uij − u0| dx

≤ KnψK

∫
Ω

|uij − u0| dx+ 2c4ε

∫
Ω

|Dαuij |n/|α| dx.

From (3.15), (3.16), (3.5) and (2.1) we deduce the inequality∣∣∣∣ ∫
Ω

Bij (x, uij , Duij , D
2uij )(uij − u0)dx

∣∣∣∣
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≤
∫
Ω

(g3 + b̃+ b̃ψKK
nN2)|uij − u0| dx+ 2c4c5b̃ ε.

From this and (3.6), (3.8) and an arbitrary choice of ε, it follows that

(3.17) lim
j→∞

∫
Ω

Bij (x, uij , Duij , D
2uij )(uij − u0) dx = 0.

By virtue of (3.8) and (3.9), for every α ∈ Λ with |α| = 2, we have

(3.18) Aα(x, uij , Duij , D
2u0) −→ Aα(x, u0, Du0, D

2u0) a.e. in Ω.

From (2.2), (2.5) and (3.7), the property of absolute continuity of the

Lebesgue integral and the compact embeddings W 2,p
0 (Ω) ⊂ W 1,λ

0 (Ω)

with λ < n and W 2,p
0 (Ω) ⊂ Lκ(Ω) with 1 ≤ κ < +∞, it follows that

(3.19) lim
|E|→0

sup
j∈N

∫
E

{ ∑
|α|=2

|Aα(x, uij , Duij , D
2u0)|p/(p−1)

}
dx = 0,

E ⊂ Ω. Using (3.18), (3.19) and the convergence theorem of Vitali, we
establish the following assertion:

if, α ∈ Λ and |α| = 2, then

Aα(x, uij , Duij , D
2u0) −→

Aα(x, u0, Du0, D
2u0) strongly in Lp/(p−1)(Ω).

From this and (3.7), it follows that

(3.20) lim
j→∞

∫
Ω

{ ∑
|α|=2

Aα(x, uij , Duij , D
2u0)(D

αuij−Dαu0)

}
dx = 0.

Now, the validity of equality (3.11) follows from (3.12), (3.13), (3.17)
and (3.20).

Step 3. We now demonstrate that, for every α ∈ Λ with |α| = 2,

(3.21) Dαuij −→ Dαu0 in measure.

For this purpose, we introduce some auxiliary functions and sets.

Let Φ : Ω → R be the function defined by Φ(x) = infj∈N Φij (x).
Then Φ is an infimum of countably many measurable functions, and
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hence measurable (see [6, Section 20]); moreover, by virtue of (2.5), we
have

(3.22) Φ ∈ L1(Ω).

Further, let for every x ∈ Ω, Ax : RN1 × RN × RN → R be the
function such that, for every triplet (η, ζ, ζ ′) ∈ RN1 × RN × RN ,

Ax(η, ζ, ζ
′) =

∑
|α|=2

[
Aα(x, η, ζ)−Aα(x, η, ζ

′)
]
(ζα − ζ ′α).

Since, for every α ∈ Λ with |α| = 2, Aα is a Carathéodory function and
for almost every x ∈ Ω and for every η ∈ RN1 and ζ, ζ ′ ∈ RN , ζ ̸= ζ ′,
inequality (2.13) holds, there exists a set E ⊂ Ω of measure zero such
that

(i) for every x ∈ Ω\E the functionAx is continuous in RN1×RN×RN ;
(ii) for every x ∈ Ω \ E, η ∈ RN1 and ζ, ζ ′ ∈ RN , ζ ̸= ζ ′, we have

Ax(η, ζ, ζ
′) > 0.

For every θ > 0, σ > 0 and for every ν > σ, we set

Gθ,σ,ν =

{
(η, ζ, ζ ′) ∈ RN1 × RN × RN :∑

|α|=2

|ζα − ζ ′α| ≥ σ,
∑
|α|=2

|ζα| ≤ ν,
∑
|α|=2

|ζ ′α| ≤ ν,
∑
|α|≤1

|ηα| ≤ θ

}
.

Evidently, for every θ > 0, σ > 0 and for every ν > σ, the set Gθ,σ,ν is
nonempty, closed and bounded in RN1 × RN × RN .

Let, for every θ > 0, σ > 0 and for every ν > σ, µθ,σ,ν : Ω → R be
the function such that

µθ,σ,ν(x) =

 min
Gθ,σ,ν

Ax if x ∈ Ω \ E,

0 if x ∈ E.

Using properties (i) and (ii), we establish that, if θ > 0, σ > 0 and
ν > σ, then

(3.23) µθ,σ,ν(x) > 0 for every x ∈ Ω \ E.
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Now, we pass to the immediate proof of assertion (3.21). We fix
σ > 0 and ε > 0. Using (2.1) and (3.5), we obtain that, for every
θ > 0, ν > 0 and for every i ∈ N,

θmeas

{ ∑
|α|≤1

|Dαui| ≥ θ

}
≤

∫
{

∑
|α|≤1

|Dαui|≥θ
} ( ∑

|α|≤1

|Dαui|
)
dx ≤ c6,

νmeas

{ ∑
|α|=2

|Dαui| ≥ ν

}
≤

∫
{

∑
|α|=2

|Dαui|≥ν}

( ∑
|α|=2

|Dαui|
)
dx ≤ c7.

Therefore, there exist θ > 0 and ν > max(1, σ) such that

sup
j∈N

meas

{ ∑
|α|≤1

|Dαuij | ≥ θ

}
≤ ε,

sup
j∈N

meas

{ ∑
|α|=2

|Dαuij | ≥ ν

}
≤ ε,(3.24)

meas

{ ∑
|α|=2

|Dαu0| ≥ ν

}
≤ ε.

For every j ∈ N, we set

Ej =

{ ∑
|α|≤1

|Dαuij | ≤ θ,

∑
|α|=2

|Dαuij | ≤ ν,
∑
|α|=2

|Dαu0| ≤ ν,

∑
|α|=2

|Dαuij −Dαu0| ≥ σ

}
.

Let j ∈ N and x ∈ Ej \ E. We have∑
|α|≤1

|Dαuij | ≤ θ,
∑
|α|=2

|Dαuij | ≤ ν,

∑
|α|=2

|Dαu0| ≤ ν,
∑
|α|=2

|Dαuij −Dαu0| ≥ σ.



THE EXISTENCE OF CONTINUOUS SOLUTIONS 681

Hence, (uij (x), Duij (x), D
2uij (x), D

2u0(x)) ∈ Gθ,σ,ν . Then, by virtue
of the definition of µθ,σ,ν and Ax, we have µθ,σ,ν(x) ≤ Φij (x), and
hence, µθ,σ,ν(x) ≤ Φ(x), which together with (3.23) yields

(3.25) Φ > 0 almost everywhere in

∞∪
j=1

Ej \ E.

Now, taking into account (2.13), we conclude that for every j ∈ N,∫
Ej

Φ dx ≤
∫
Ej

Φijdx ≤
∫
Ω

Φijdx.

This and (3.11) imply that

lim
j→∞

∫
Ej

Φ dx = 0.

Hence, taking into account (3.22) and (3.25) and applying [7, Lemma
5], we deduce that

(3.26) lim
j→∞

measEj = 0.

Obviously, for every j ∈ N,

meas

{ ∑
|α|=2

|Dαuij −Dαu0| ≥ σ

}
≤ meas

{ ∑
|α|≤1

|Dαuij | > θ

}

+meas

{ ∑
|α|=2

|Dαuij | > ν

}

+meas

{ ∑
|α|=2

|Dαu0| > ν

}
+measEj .

From this and (3.24) and (3.26), we infer (3.21).

We remark that, in the proof of assertion (3.21) we used some ideas
of [7, 8].

Step 4. We now prove that the following assertions hold:

(iii) for every function v ∈W 2,p
0 (Ω),

lim
|E|→0

sup
j∈N

∫
E

∣∣∣∣ ∑
|α|=2

Aα(x, uij , Duij , D
2uij )D

αv

∣∣∣∣ dx = 0, E ⊂ Ω;
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(iv) for every function v ∈W 2,p
0 (Ω) ∩ L∞(Ω),

lim
|E|→0

sup
j∈N

∫
E

|Bij (x, uij , Duij , D
2uij )v| dx = 0, E ⊂ Ω.

In fact, let j ∈ N, v ∈ W 2,p
0 (Ω), and let E ⊂ Ω be an arbitrary

measurable set. Using Hölder’s inequality for sums and integrals along
with (2.1), (2.2), (2.5) and (3.5), we obtain∫

E

∣∣∣∣ ∑
|α|=2

Aα(x, uij , Duij , D
2uij )D

αv

∣∣∣∣ dx
≤

[ ∫
E

{ ∑
|α|=2

|Aα(x, uij , Duij , D
2uij )|p/(p−1)

}
dx

](p−1)/p

×
[ ∫

E

{ ∑
|α|=2

|Dαv|p
}
dx

]1/p

≤ c8

[ ∫
E

{ ∑
|α|=2

|Dαv|p
}
dx

]1/p
.

This and the property of absolute continuity of Lebesgue integral imply
that assertion (iii) holds.

Now, let v ∈ W 2,p
0 (Ω) ∩ L∞(Ω) and ε > 0. By analogy with (3.15)

and (3.16), we establish that∫
E

|Bij (x, uij , Duij , D
2uij )v|dx

≤ b̃
∑

|α|=1,2

∫
E

|Dαuij |n/|α| ψ(|Dαuij |)|v| dx

+

∫
E

(g3 + b̃)|v| dx,

∫
E

|Dαuij |n/|α| ψ(|Dαuij |)|v| dx

≤ KnψK

∫
E

|v| dx

+ ε∥v∥∞
∫
Ω

|Dαuij |n/|α|dx, |α| = 1, 2.
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From the last two inequalities and (2.1) and (3.5), it follows that∫
E

|Bij (x, uij , Duij , D
2uij )v| dx

≤
∫
E

(g3 + b̃+ b̃ ψKK
nN2)|v| dx+ εc5b̃∥v∥∞.

This and the property of absolute continuity of the Lebesgue integral
and an arbitrary choice of ε imply that assertion (iv) holds.

Using (3.8), (3.9), (3.21), assertions (iii) and (iv) and the convergence

theorem of Vitali, we establish that, for every function v ∈W 2,p
0 (Ω),

lim
j→∞

∫
Ω

{ ∑
|α|=2

Aα(x, uij , Duij , D
2uij )D

αv

}
dx

=

∫
Ω

{ ∑
|α|=2

Aα(x, u0, Du0, D
2u0)D

αv

}
dx,

and, for every function v ∈W 2,p
0 (Ω) ∩ L∞(Ω),

lim
j→∞

∫
Ω

Bij (x, uij , Duij , D
2uij )v dx =

∫
Ω

B(x, u0, Du0, D
2u0)v dx.

From this and (3.4), it follows that, for every function v ∈ W 2,p
0 (Ω) ∩

L∞(Ω),

∑
|α|=2

∫
Ω

Aα(x, u0, Du0, D
2u0)D

αv dx

+

∫
Ω

B(x, u0, Du0, D
2u0)v dx =

∫
Ω

fv dx.

The properties obtained of the function u0 allow us to conclude that
u0 is a generalized solution of problem (2.10), (2.11). By Remark 2.5,
this solution is continuous at every interior point of the set Ω.

Theorem 2.3 is proved. �

Acknowledgments. I wish to thank the Referee for useful sugges-
tions.
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