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R-DUALITY IN G-FRAMES

FARKHONDEH TAKHTEH AND AMIR KHOSRAVI

ABSTRACT. Recently, the concept of g-Riesz dual se-
quences for g-Bessel sequences has been introduced. In this
paper, we investigate under what conditions a g-Riesz se-
quence Φ = {Φj ∈ L(H,Hj) : j ∈ I} is the g-Riesz dual
sequence of a given g-frame Λ = {Λi ∈ L(H,Hi) : i ∈ I}.

1. Introduction and preliminaries. Frames for Hilbert spaces
were first introduced by Duffin and Schaeffer [6] in 1952 to study some
deep questions in non-harmonic Fourier series, reintroduced in 1986 by
Daubechies, Grossmann and Meyer [5], and popularized from then on.
Frames are generalizations of bases in Hilbert spaces. A frame such
as an orthonormal basis allows each element in the underlying Hilbert
space to be written as an unconditionally convergent linear combination
of the frame elements; however, in contrast to a basis, the coefficients
might not be unique. Frames have been used in signal processing,
image processing, data compression, filter bank theory, sigma-delta
quantization, and wireless communications.

G-frame, introduced by Sun [14], is a generalization of a frame which
covers many extensions of frames, e.g., pseudo-frames, outer frames,
oblique frames, continuous frames, fusion frames, and a class of time-
frequency localization operators.

The concept of Riesz dual sequences (R-dual sequences) for Bessel
sequences in a separable Hilbert space was introduced by Casazza,
Kutyniok and Lammers [2], in order to obtain a generalization of the
Ron-Shen duality principle [12] and the Wexler-Raz biorthogonality
relations [15] to abstract frame theory.

Let (ei)i∈I , (hi)i∈I be orthonormal bases for H, and let (fi)i∈I be a
Bessel sequence in H. The Riesz dual sequence (the R-dual sequence)
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of (fi)i∈I with respect to the orthonormal bases (ei)i∈I and (hi)i∈I is
the sequence (wj)j∈I , such that, for every j ∈ I,

wj =
∑
i∈I

⟨fi, ej⟩hi.

R-duality has been favored by many authors. R-duality with respect
to orthonormal bases has been discussed in [2, 3, 4]. In [13], the au-
thors introduced various alternative R-duals and showed their relations
with Gabor frames. In [7], the authors proved that the duality prin-
ciple extends to any dual pairs of projective unitary representations of
countable groups.

In [11], the authors introduced the concept of g-Riesz dual sequences
(g-R-dual sequences) for g-Bessel sequences. In this paper, for a given
g-frame Λ = {Λi ∈ L(H,Hi) : i ∈ I}, a given g-Riesz sequence
Φ = {Φi ∈ L(H,Hi) : i ∈ I}, and a given g-orthonormal basis
Γ = {Γi ∈ L(H,Hi) : i ∈ I}, we introduce a new sequence

(Πi)i∈I ∈ (L(H,Hi))i∈I

that can be used to check whether or not Φ is the g-Riesz dual of Λ.
Then we study the relation between (Πi)i∈I and (Λi)i∈I . Also, we show
how Parseval g-frame sequences can be dilated to g-orthonormal bases
for H. Then, we investigate under what conditions Φ is the g-Riesz
dual sequence of Λ. Throughout this paper, H denotes a separable
Hilbert space with inner product ⟨·, ·⟩, I denotes a countable index set
and {Hi : i ∈ I} is a sequence of separable Hilbert spaces. Also, for
every i ∈ I, L(H,Hi) is the set of all bounded, linear operators from
H to Hi.

In the rest of this section we review several well-known definitions
and results. The new results are stated in Section 2.

For every sequence {Hi}i∈I , the space(∑
i∈I

⊕
Hi

)
ℓ2

=

{
(fi)i∈I : fi ∈ Hi, i ∈ I,

∑
i∈I

∥fi∥2 < ∞
}

with pointwise operations and the following inner product is a Hilbert
space

⟨(fi)i∈I , (gi)i∈I⟩ =
∑
i∈I

⟨fi, gi⟩.
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A sequence
Λ = {Λi ∈ L(H,Hi) : i ∈ I}

is called a g-frame for H with respect to {Hi : i ∈ I}, if there exist
0 < A ≤ B < ∞ such that, for every f ∈ H,

A∥f∥2 ≤
∑
i∈I

∥Λif∥2 ≤ B∥f∥2,

A,B are called g-frame bounds. We call Λ a tight g-frame if A = B
and a Parseval g-frame if A = B = 1. If only the right-hand inequality
is required, Λ is called a g-Bessel sequence. We simply call Λ a g-frame
for H whenever the space sequence {Hi : i ∈ I} is clear.

We say that
Λ = {Λi ∈ L(H,Hi) : i ∈ I}

is a g-frame sequence, if it is a g-frame for

span{Λ∗
i (Hi)}i∈I .

If Λ is a g-Bessel sequence, then the synthesis operator for Λ is the
linear operator,

TΛ :

(∑
i∈I

⊕
Hi

)
ℓ2

7−→ H, TΛ(fi)i∈I =
∑
i∈I

Λ∗
i fi.

We call the adjoint of the synthesis operator the analysis operator.
The analysis operator is the linear operator,

T ∗
Λ : H 7−→

(∑
i∈I

⊕
Hi

)
ℓ2
, T ∗

Λf = (Λif)i∈I .

We call SΛ = TΛT
∗
Λ the g-frame operator of Λ. If Λ = (Λi)i∈I is a

g-frame with lower and upper g-frame bounds A and B, respectively,
then the g-frame operator of Λ is a bounded, positive, and invertible
operator on H, and

SΛf =
∑
i∈I

Λ∗
iΛif,

A⟨f, f⟩ ≤ ⟨SΛf, f⟩ ≤ B⟨f, f⟩, f ∈ H,

so
AI ≤ SΛ ≤ BI.
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The canonical dual g-frame for (Λi)i∈I is defined by (Λ̃i)i∈I =
(ΛiS

−1
Λ )i∈I , which is also a g-frame for H with 1/B and 1/A as its

lower and upper frame bounds, respectively. Also, for every f ∈ H, we
have

f =
∑
i∈I

Λ∗
i Λ̃if =

∑
i∈I

Λ̃i

∗
Λif.

All of the g-frames

Γ = {Γi ∈ L(H,Hi) : i ∈ I},

which satisfy ∑
i∈I

Λ∗
iΓif = f, for all f ∈ H,

are called dual g-frames of Λ.

A sequence Λ = {Λi ∈ L(H,Hi) : i ∈ I} is g-complete, if {f : Λif =
0, for all i ∈ I} = {0} and we call it a g-orthonormal basis for H, if

⟨Λ∗
i fi,Λ

∗
jfj⟩ = δi,j⟨fi, fj⟩,

for all fi ∈ Hi, fj ∈ Hj , i, j ∈ I and∑
i∈I

∥Λif∥2 = ∥f∥2 for all f ∈ H.

A sequence Λ = {Λi ∈ L(H,Hi) : i ∈ I} is a g-Riesz sequence if
there exist 0 < A ≤ B < ∞ such that, for every finite subset F ⊂ I,
fi ∈ Hi, and i ∈ F ,

A
∑
i∈F

∥gi∥2 ≤
∥∥∥∥∑

i∈F

Λ∗
i gi

∥∥∥∥2 ≤ B
∑
i∈F

∥gi∥2.

The g-Riesz sequence

Λ = {Λi ∈ L(H,Hi) : i ∈ I}

is called a g-Riesz basis, if it is g-complete, too.

Let

Λ = {Λi ∈ L(H,Hi) : i ∈ I}
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and

Γ = {Γi ∈ L(H,Hi) : i ∈ I}

be g-Bessel sequences with g-Bessel bounds B and C, respectively. The
operator SΛΓ : H 7→ H defined by

SΛΓf =
∑
i∈I

Λ∗
iΓif, f ∈ H,

is a bounded operator, ∥SΛΓ∥ ≤
√
BC, S∗

ΛΓ = SΓΛ and SΛΛ = SΛ.

For more details about g-frames, see [8, 14].

2. Main results. In [11], the authors introduced the concept of
g-Riesz dual sequences for g-Bessel sequences as follows.

Definition 2.1 ([11]). Let

Λ = {Λi ∈ L(H,Hi) : i ∈ I}

be a g-Bessel sequence for H, and let

Γ = {Γi ∈ L(H,Hi) : i ∈ I},
Υ = {Υi ∈ L(H,Hi) : i ∈ I}

be g-orthonormal bases for H. For every j ∈ I, define

Φjf =
∑
i∈I

ΓjΛ
∗
iΥif = ΓjSΛΥf, f ∈ H,

where Λ∗
i is the adjoint operator of Λi, for every i ∈ I. (Φj)j∈I is called

the g-Riesz dual sequence of Λ with respect to g-orthonormal bases Γ
and Υ.

Lemma 2.2 ([11]). Let Λ = {Λi ∈ L(H,Hi) : i ∈ I} be a g-Bessel
sequence, and let Φ = {Φj ∈ L(H,Hj) : j ∈ I} be the g-Riesz dual
sequence of Λ with respect to g-orthonormal bases

Γ = {Γi ∈ L(H,Hi) : i ∈ I},
Υ = {Υi ∈ L(H,Hi) : i ∈ I}.
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Then, for every i ∈ I,

(2.1) Λif =
∑
j∈I

ΥiΦj
∗Γjf = ΥiSΦΓf, f ∈ H,

that is, Λ is the g-Riesz dual sequence of Φ with respect to Υ and Γ.

Note that, with the assumptions of Lemma 2.2, we can easily
conclude that Φ is the g-Riesz dual of Λ with respect to Γ and Υ if
and only if Λ is the g-Riesz dual of Φ with respect to Υ and Γ.

Our first aim is to characterize the g-Riesz duals of a given g-Bessel
sequence Λ = {Λi ∈ L(H,Hi) : i ∈ I}. By Lemma 2.2, the g-Riesz
duals are precisely the sequences Φ = {Φj ∈ L(H,Hj) : j ∈ I} for
which we can find two g-orthonormal bases Γ = {Γi ∈ L(H,Hi) : i ∈
I}, Υ = {Υi ∈ L(H,Hi) : i ∈ I} bases for H such that (2.1) holds.
On the other hand, by [11, Proposition 3.7], Λ is a g-frame for H with
bounds A, B if and only if Φ is a g-Riesz sequence for H with bounds
A, B. Thus we arrive at the following question:

Let Λ = {Λi ∈ L(H,Hi) : i ∈ I} be a g-frame for
H and Φ = {Φj ∈ L(H,Hj) : j ∈ I} be a g-Riesz
sequence for H. Under what conditions can we find
g-orthonormal bases Γ = {Γi ∈ L(H,Hi) : i ∈ I},
Υ = {Υi ∈ L(H,Hi) : i ∈ I} for H such that (2.1)
holds?

We first show that, for a given g-Riesz sequence Φ = {Φj ∈
L(H,Hj) : j ∈ I}, a given sequence Λ = {Λj ∈ L(H,Hj) : j ∈ I},
and a given g-orthonormal basis Γ = {Γj ∈ L(H,Hj) : j ∈ I}, we can
characterize the sequences Υ = {Υj ∈ L(H,Hj) : j ∈ I} such that
(2.1) holds. Then we investigate under what conditions at least one of
these sequences forms a g-orthonormal basis for H.

Let Φ = {Φj ∈ L(H,Hj) : j ∈ I} be a g-Riesz sequence in
H. Since Φ is a g-Riesz sequence, then it is a g-Riesz basis for

W = spanj∈I Φ∗
j (Hj). Let Φ̃ = {Φ̃j ∈ L(W,Hj) : j ∈ I} be the

canonical dual of Φ. It is well known that Φ̃ is the unique dual g-frame

of Φ, and Φ̃ is a g-Riesz basis for W .

Since H is a Hilbert space and W is a closed subspace of H, by [9,
Corollary 1.0.4], for every j ∈ I, there exists a Ψj ∈ L(H,Hj) such
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that Ψj(f) = Φ̃j(f) for every f ∈ W and ||Ψj || = ||Φ̃j ||. Replacing Φ̃j

by Ψj , we can suppose that Φ̃j ∈ L(H,Hj), for every j ∈ I.
Let Λ = {Λi ∈ L(H,Hi) : i ∈ I} be a sequence. For every i ∈ I, we

define:

(2.2) Πif = ΛiSΓΦ̃f, f ∈ H.

It is easy to check that Πi is a well-defined operator and Πi ∈
L(H,Hi), for every i ∈ I.

Theorem 2.3. Let Φ = {Φj ∈ L(H,Hj) : j ∈ I} be a g-Riesz basis

for W = spani∈I Φ∗
i (Hi) and with the canonical dual Φ̃j = {Φ̃j ∈

L(H,Hj) : j ∈ I}. Let Γ = {Γj ∈ L(H,Hj) : j ∈ I} be a g-
orthonormal basis for H, and let Λ = {Λi ∈ L(H,Hi) : i ∈ I} be a
sequence. Then the following statements hold.

(a) There exists a sequence Υ = {Υi ∈ L(H,Hi) : i ∈ I} such that

(2.3) Λi = ΥiSΦΓ, for all i ∈ I.

(b) The sequences satisfying (2.3) are characterized by

(2.4) Υi = Πi +Θi,

where (Πi)i∈I is given by (2.2), Θi ∈ L(H,Hi), and W =

spanj∈I Φ∗
j (Hj) ⊆ ker(Θi), for every i ∈ I.

(c) If Φ is a g-Riesz basis for H, then (2.3) has the unique solution

Υi = Πi, for all i ∈ I.

Proof.

(a) Since Φ is a g-Riesz basis, then ⟨Φ̃j

∗
gj ,Φ

∗
kgk⟩ = δjk⟨gj , gk⟩, for

every gj ∈ Hj , gk ∈ Hk and j, k ∈ I. For every f ∈ H, gi ∈ Hi, and
i ∈ I, we have

⟨ΠiSΦΓf, gi⟩ =
⟨∑

j∈I
Φ∗

jΓjf,Π
∗
i gi

⟩
=

⟨∑
j∈I

Φ∗
jΓjf,

∑
k∈I

Φ̃k

∗
ΓkΛ

∗
i gi

⟩
=

∑
j∈I

∑
k∈I

⟨Φ∗
jΓjf, Φ̃k

∗
ΓkΛ

∗
i gi⟩ =

∑
j∈I

⟨Γjf,ΓjΛ
∗
i gi⟩
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=

⟨
f,
∑
j∈I

Γ∗
jΓjΛ

∗
i gi

⟩
= ⟨f,Λ∗

i gi⟩ = ⟨Λif, gi⟩.

Therefore, ΠiSΦΓ = Λi, for every i ∈ I. Hence, Υi = Πi satisfies (2.3),
for every i ∈ I.

(b) Suppose that the sequence Υ = {Υi ∈ L(H,Hi) : i ∈ I} satisfies
(2.3). We can write, Υi = Πi +Θi with Θi = Υi −Πi, for every i ∈ I.
Therefore, Θi ∈ L(H,Hi), for every i ∈ I. By Lemma 2.2, for every
i ∈ I,

Λi = ΥiSΦΓ = ΠiSΦΓ.

This implies that, for every i ∈ I,

SΓΦ(Υ
∗
i −Π∗

i ) = 0.

Since Γ is a g-orthonormal basis, the above relation implies that
Φj(Υ

∗
i − Π∗

i ) = 0, which is equivalent to (Υi − Πi)Φ
∗
jgj = 0, for every

gj ∈ Hj , and i, j ∈ I.
Suppose that x ∈ spanj∈I Φ∗

j (Hj). By definition of spanj∈I Φ∗
j (Hj),

there exist a finite subset F ⊂ I and {gj ∈ Hj : j ∈ F} such that
x =

∑
j∈F Φ∗

jgj . For every i ∈ I, we have

Θi(x) = (Υi −Πi)x = (Υi −Πi)
∑
j∈F

Φ∗
jgj

=
∑
j∈F

(Υi −Πi)Φ
∗
jgj = 0.

Since spanj∈I Φ∗
j (Hj) = W and Θi is continuous, then Θi(x) = 0, for

every x ∈ W . Thus, W ⊆ kerΘi, for every i ∈ I.
(c) If (Φj)j∈I is a g-Riesz basis for H, then W = H. Therefore,

Θi = 0 and Υi = Πi for every i ∈ I. �

In the next proposition, we study the relation between (Πi)i∈I and
(Λi)i∈I .

Proposition 2.4. Let Γ = {Γj ∈ L(H,Hj) : j ∈ I} be a g-orthonormal
basis for H, and let Φ = {Φj ∈ L(H,Hj) : j ∈ I} be a g-Riesz basis

for W = spanj∈I Φ∗
j (Hj) with g-Riesz bounds A1, B1, and with the

canonical dual {Φ̃j ∈ L(H,Hj) : j ∈ I}. Let Λ = {Λi ∈ L(H,Hi) :
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i ∈ I} be a sequence and (Πi)i∈I = (ΛiSΓΦ̃)i∈I . Then the following
statements hold.

(a) If Λ is a g-Bessel sequence for H with g-Bessel bound B, then
(Πi)i∈I is a g-Bessel sequence for W with g-Bessel bound B/A1.

(b) If Λ is a g-frame for H with g-frame bounds A and B, then (Πi)i∈I
is a g-frame for W with g-frame bounds A/B1, B/A1.

(c) If Λ is a g-Bessel sequence for H, then for every (gi)i∈I ∈
(
∑

i∈I ⊕Hi)ℓ2 , we have∥∥∥∥∑
j∈I

Π∗
jg

∥∥∥∥2 ≤ 1

A1

∥∥∥∥∑
j∈I

Λ∗
jgj

∥∥∥∥2,∥∥∥∥∑
j∈I

Λ∗
jgj

∥∥∥∥2 ≤ B1

∥∥∥∥∑
j∈I

Π∗
jgj

∥∥∥∥2.
(d) If Λ is a g-Riesz basis for H with g-Riesz bounds A and B, then

(Πi)i∈I is a g-Riesz for W with g-Riesz bounds A/B1, B/A1.

Proof.

(a) Let Λ be a g-Bessel sequence for H with g-Bessel bound B. Since

Φ is a g-Riesz basis for W with g-Riesz bounds A1 and B1, then Φ̃ is
a g-Riesz basis W with g-Riesz bounds 1/B1 and 1/A1. Consequently,

Φ̃ is a g-frame for W with bounds 1/B1 and 1/A1. For every f ∈ W ,
we have∑

i∈I

∥Πif∥2 =
∑
i∈I

∥ΛiSΓΦ̃f∥
2 ≤ B∥SΓΦ̃f∥

2

= B

∥∥∥∥∑
j∈I

Γ∗
j Φ̃jf

∥∥∥∥2 = B
∑
j∈I

∥Φ̃jf∥2 ≤ B

A1
∥f∥2.

Therefore, (Πi)i∈I is a g-Bessel sequence for W with g-Bessel bound
B/A1.

(b) Let Λ be a g-frame for H with g-frame bounds A and B. Using
(a) implies that (Πi)i∈I is a g-Bessel sequence for W with g-Bessel
bound B/A1. In order to complete the proof of (b) it is enough to prove
that (Πi)i∈I satisfies the lower bound condition. For every f ∈ W , we
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have ∑
i∈I

∥Πif∥2 =
∑
i∈I

∥ΛiSΓΦ̃f∥
2 ≥ A∥SΓΦ̃f∥

2

= A

∥∥∥∥∑
j∈I

Γ∗
j Φ̃jf

∥∥∥∥2
= A

∑
j∈I

∥Φ̃jf∥2 ≥ A

B1
∥f∥2.

Therefore, (Πi)i∈I is a g-frame for W with bounds A/B1 and B/A1.

(c) Let (gi)i∈I ∈ (
∑

i∈I ⊕Hi)ℓ2 . We have∥∥∥∥∑
j∈I

Π∗
jgj

∥∥∥∥2 =

∥∥∥∥∑
j∈I

SΦ̃ΓΛ
∗
jgj∥2 =

∥∥∥∥SΦ̃Γ

∑
j∈I

Λ∗
jgj

∥∥∥∥2

=

∥∥∥∥∑
k∈I

Φ̃k

∗
Γk

∑
j∈I

Λ∗
jgj

∥∥∥∥2

≤ 1

A1

∑
k∈I

∥∥∥∥Γk

∑
j∈I

Λ∗
jgj

∥∥∥∥2 ≤ 1

A1

∥∥∥∥∑
j∈I

Λ∗
jgj

∥∥∥∥2.
By the proof of Theorem 2.3 (a), Λi = ΠiSΦΓ, for every i ∈ I. For
every (gi)i∈I ∈ (

∑
i∈I ⊕Hi)ℓ2 , we have∥∥∥∥∑

j∈I
Λ∗
jgj

∥∥∥∥2 =

∥∥∥∥∑
j∈I

SΓΦΠ
∗
jgj

∥∥∥∥2 =

∥∥∥∥SΓΦ

∑
j∈I

Π∗
jgj

∥∥∥∥2

=

∥∥∥∥∑
k∈I

Γ∗
kΦk

∑
j∈I

Π∗
jgj

∥∥∥∥2 =
∑
k∈I

∥∥∥∥Φk

∑
j∈I

Π∗
jgj

∥∥∥∥2

≤ B1

∥∥∥∥∑
j∈I

Π∗
jgj

∥∥∥∥2.
(d) Using (b) and (c), the claim is obvious. �

Proposition 2.5. Let Φ = {Φj ∈ L(H,Hj) : j ∈ I} be a g-

Riesz basis for W = spanj∈I Φ∗
j (Hj) with g-Riesz bounds A1 and

B1, and with the canonical dual {Φ̃j ∈ L(H,Hj) : j ∈ I}. Let
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Γ = {Γj ∈ L(H,Hj) : j ∈ I} be a g-orthonormal basis for H, and let
Λ = {Λi ∈ L(H,Hi) : i ∈ I} be a sequence and (Πi)i∈I = (ΛiSΓΦ̃)i∈I .
Then the following statements hold.

(a) If (Πi)i∈I is a g-Bessel sequence for W with g-Bessel bound B,
then Λ is a g-Bessel sequence for H with g-Bessel bound BB1.

(b) If (Πi)i∈I is a g-frame for W with g-frame bounds A and B, then
Λ is a g-frame for H with g-frame bounds AA1, BB1.

(c) If (Πi)i∈I is a g-Riesz basis for W with g-Riesz bounds A and B,
then Λ is a g-Riesz for H with g-Riesz bounds AA1, BB1.

Proof. By the proof of Theorem 2.3 (a), for every f ∈ H and i ∈ I,
we have

Λif = ΠiSΦΓf.

Now, the proof is similar to that of Proposition 2.4. Therefore, we omit
it. �

Proposition 2.6. Let Λ = {Λi ∈ L(H,Hi) : i ∈ I} be a g-frame
for H, and let Φ = {Φj ∈ L(H,Hj) : j ∈ I} be a g-Riesz basis for

W = spanj∈I Φ∗
j (Hj), with the canonical dual {Φ̃j ∈ L(H,Hj) : j ∈ I}.

Then there exists a g-orthonormal basis Γ = {Γi ∈ L(H,Hi) : i ∈ I}
for H such that (Πi)i∈I = (ΛiSΓΦ̃)i∈I is a Parseval g-frame for W
if and only if there exists a unitary operator M : H → W such that
SΦ = MSΛM

∗, where SΛ and SΦ are the g-frame operators for Λ and
Φ, respectively.

Proof. Suppose that there exists a g-orthonormal basis Γ = {Γi ∈
L(H,Hi) : i ∈ I} for H such that (Πi)i∈I = (ΛiSΓΦ̃)i∈I is a Parseval
g-frame for W . Then, for every f ∈ W , we have∑

i∈I
∥Πif∥2 = ∥f∥2.

Since (Φ̃j)j∈I is a g-Riesz basis for W , then (Υj)j∈I = (Φ̃jS
−1/2

Φ̃
)j∈I

is a g-orthonormal basis for W . Consider

M : H −→ W
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by

Mf = SΥΓf =
∑
i∈I

Υ∗
iΓif, f ∈ H.

Then M∗ = SΓΥ and M is a unitary operator. By the definition of M∗

we have
M∗S

1/2

Φ̃
= SΓΦ̃.

For every f ∈ W , we have∑
i∈I

∥Πif∥2 =
∑
i∈I

∥ΛiSΓΦ̃f∥
2 =

∑
i∈I

⟨ΛiSΓΦ̃f,ΛiSΓΦ̃f⟩

=
∑
i∈I

⟨Λ∗
iΛiSΓΦ̃f, SΓΦ̃f⟩ = ⟨SΛSΓΦ̃f, SΓΦ̃f⟩

= ⟨SΛM
∗S

1/2

Φ̃
f,M∗S

1/2

Φ̃
f⟩ = ⟨S1/2

Φ̃
MSΛM

∗S
1/2

Φ̃
f, f⟩.

Since (Πi)i∈I ia a Parseval g-frame, then, for every f ∈ W ,∑
i∈I

∥Πif∥2 = ∥f∥2.

Thus, for every f ∈ W ,∑
i∈I

∥Πif∥2 = ⟨S1/2

Φ̃
MSΛM

∗S
1/2

Φ̃
f, f⟩ = ⟨f, f⟩.

So S
1/2

Φ̃
MSΛM

∗S
1/2

Φ̃
= I implies that MSΛM

∗ = S−1

Φ̃
. On the other

hand, S−1

Φ̃
= SΦ; therefore, SΦ = MSΛM

∗.

Conversely, suppose that there exists a unitary operatorM : H → W

such that SΦ = MSΛM
∗. Define Γi = Φ̃iS

−1/2

Φ̃
M , for every i ∈ I.

Since (Φ̃i)i∈I is a g-Riesz basis for W , then (Φ̃iS
−1/2

Φ̃
)i∈I is a g-

orthonormal basis for W . On the other hand, M is a unitary operator;
therefore, (Γi)i∈I is a g-orthonormal basis forH. We can easily see that

SΓΦ̃ = M∗SΦ̃
1/2. A calculation similar to the above relations implies

that, for every f ∈ W ,∑
i∈I

∥Πif∥2 =
∑
i∈I

∥ΛiSΓΦ̃f∥
2 = ⟨SΛSΓΦ̃f, SΓΦ̃f⟩

= ⟨S1/2

Φ̃
MSΛM

∗S
1/2

Φ̃
f, f⟩ = ⟨S1/2

Φ̃
SΦS

1/2

Φ̃
f, f⟩
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= ⟨S1/2

Φ̃
S−1

Φ̃
S
1/2

Φ̃
f, f⟩ = ⟨f, f⟩ = ∥f∥2.

Therefore, (Πi)i∈I is a Parseval g-frame for W . �

In the next proposition, we show under what conditions a Parseval
g-frame sequence can be dilated to a g-orthonormal basis for H.

Proposition 2.7. Let Λ = {Λi ∈ L(H,Hi) : i ∈ I} be a Parseval

g-frame for W = spani∈I Λ∗
i (Hi). Then there exists a g-orthonormal

basis Γ = {Γi ∈ L(H,Hi) : i ∈ I} for H such that Λi = ΓiP , for every
i ∈ I, if and only if

dimKerTΛ = dim(W⊥),

where P is the orthogonal projection of H onto W and TΛ is the
synthesis operator of Λ.

Proof. Let dimKerTΛ = dim(W⊥). Suppose that {ejk : k ∈ Kj}
is an orthonormal basis for Hj , where Kj is a subset of Z, j ∈ I and
ujk = Λ∗

jejk. By [14, Theorem 3.1],

Λif =
∑
k∈Ki

⟨f, uik⟩eik,

where (uik)k∈Ki,i∈I is a Parseval frame for W = spani∈I Λ∗
i (Hi). Let

T be a the synthesis operator for (uik)k∈Ki,i∈I . Then

dimKerT = dimKerTΛ,

see [1, Theorem 2.3]. Therefore,

dimKerT = dimKerTΛ = dim(W⊥).

By [4, Theorem 2], there exists an orthonormal basis (θik)k∈Ki,i∈I
for H such that uik = Pθik, where P is the orthogonal projection of H
onto W . Let Γif =

∑
k∈Ki

⟨f, θik⟩eik, for every i ∈ I. Then (Γi)i∈I is
a g-orthonormal basis for H and

ΓiPf =
∑
k∈Ki

⟨Pf, θik⟩eik =
∑
k∈Ki

⟨f, uik⟩eik = Λif.
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Conversely, suppose that there exists a g-orthonormal basis Γ =
{Γi ∈ L(H,Hi) : i ∈ I} for H such that Λi = ΓiP . For every
(gi)i∈I ∈ (

∑
i∈I ⊕Hi)ℓ2 we have∑

i∈I
Λ∗
i gi =

∑
i∈I

PΓ∗
i gi = P

∑
i∈I

Γ∗
i gi.

Then (gi)i∈I ∈ KerTΛ if and only if
∑

i∈I Γ∗
i gi ∈ W⊥. It follows easily

that dimKerTΛ = dim(W⊥) �

In the next theorem, for a given g-frame Λ = {Λi ∈ L(H,Hi) : i ∈
I}, a given g-Riesz sequence Φ = {Φi ∈ L(H,Hi) : i ∈ I} and a given
g-orthonormal basis Γ = {Γi ∈ L(H,Hi) : i ∈ I}, we characterize the
existence of a g-orthonormal basis Υ = {Υi ∈ L(H,Hi) : i ∈ I} such
that Φ is the g-Riesz dual sequence of Λ with respect to Γ and Υ.

Theorem 2.8. Let Λ = {Λi ∈ L(H,Hi) : i ∈ I} be a g-frame for H,
and let Γ = {Γi ∈ L(H,Hi) : i ∈ I} be a g-orthonormal basis for H. Let

Φ = {Φj ∈ L(H,Hj) : j ∈ I} be a Riesz basis for W = spanj∈I Φ∗
j (Hj),

with the canonical dual {Φ̃j ∈ L(H,Hj) : j ∈ I}. Then Φ is the g-Riesz
dual sequence of Λ with respect to Γ and some g-orthonormal basis
Υ = {Υi ∈ L(H,Hi) : i ∈ I} if and only if the following statements
hold.

(a) (Πi)i∈I = (ΛiSΓΦ̃)i∈I is a Parseval g-frame for W .

(b) dimKerTΛ = dim(W⊥), where TΛ denotes the synthesis operator
of Λ.

Proof. Suppose that there is a g-orthonormal basis Υ = {Υi ∈
L(H,Hi) : i ∈ I} for H such that Φ is the g-Riesz dual sequence
of Λ with respect to Γ and Υ. Then, by Lemma 2.2,

Λif = ΥiSΦΓf, for all i ∈ I, for all f ∈ H.

By Theorem 2.3, (Υj)j∈I is characterized by

Υi = Πi +Θi,

where

Πi = (ΛiSΓΦ̃)i∈I , Θi ∈ L(H,Hi) and W ⊆ ker(Θi),
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for every i ∈ I. If P is the orthogonal projection of H onto W , then
ΥiP = ΠiP , for every i ∈ I. Since Υ is a g-orthonormal basis for H,
for every f ∈ W , we have∑

i∈I

∥Πif∥2 =
∑
i∈I

∥ΠiPf∥2 =
∑
i∈I

∥ΥiPf∥2 = ∥f∥2

Therefore, Π is a Parseval g-frame for W .

Let

(gi)i∈I ∈
(∑

i∈I

⊕Hi

)
ℓ2
.

By [11, Lemma 3.6], (gi)i∈I ∈ KerTΛ if and only if
∑

i∈I Υ∗
i gi ∈

spanj∈I Φ∗
j (Hj)

⊥
= spanj∈I Φ∗

j (Hj)
⊥

= W⊥. From this, it follows
easily that

dimKerTΛ = dim(W⊥).

Conversely, suppose that (a) and (b) hold. Since (Πi)i∈I is a Par-
seval g-frame for W , by Proposition 2.7, there exists a g-orthonormal
basis Υ = {Υi ∈ L(H,Hi) : i ∈ I} for H such that Πi = ΥiP , where P
is the orthogonal projection of H onto W . We can write Υi = Πi+Θi,
with Θi = Υi −Πi, for every i ∈ I. For every x ∈ W , we have

Θi(x) = ΥiP (x)−Πi(x) = Πi(x)−Πi(x) = 0.

Thus, by Theorem 2.3, we have

Λif = ΥiSΦΓf, for all i ∈ I, for all f ∈ H,

that is, Λ is the g-Riesz dual sequence of Φ with respect to Υ and Γ.
Now, by Lemma 2.2, Φ is the g-Riesz dual sequence of Λ with respect
to Γ and Υ. �

Corollary 2.9. Let

Λ = {Λi ∈ L(H,Hi) : i ∈ I}

be a g-frame for H, and let

Φ = {Φj ∈ L(H,Hj) : j ∈ I}
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be a Riesz basis for W = spanj∈I Φ∗
j (Hj). Then there exist g-

orthonormal bases

Γ = {Γi ∈ L(H,Hi) : i ∈ I}

and

Υ = {Υi ∈ L(H,Hi) : i ∈ I}

for H such that Φ is the g-Riesz dual sequence of Λ with respect to Γ
and Υ if and only if the following statements hold.

(a) There exists a unitary operator M such that SΦ = MSΛM
∗.

(b) dimKerTΛ = dim(W⊥).

Proof. By Proposition 2.6, there exists a unitary operator M such
that SΦ = MSΛM

∗ if and only if there exists a g-orthonormal basis
Γ = {Γi ∈ L(H,Hi) : i ∈ I} for H such that (Πi)i∈I = (ΛiSΓΦ̃)i∈I is a
Parseval g-frame forW . Now, by Theorem 2.8, the claim is obvious. �
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