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PROLONGATION OF SYMMETRIC KILLING
TENSORS AND COMMUTING SYMMETRIES

OF THE LAPLACE OPERATOR

JEAN-PHILIPPE MICHEL, PETR SOMBERG AND JOSEF ŠILHAN

ABSTRACT. We determine the space of commuting sym-
metries of the Laplace operator on pseudo-Riemannian man-
ifolds of constant curvature and derive its algebra structure.
Our construction is based on Riemannian tractor calculus,
allowing us to construct a prolongation of the differential
system for symmetric Killing tensors. We also discuss some
aspects of its relation to projective differential geometry.

1. Introduction. The Laplace operator is one of the cornerstones
of geometrical analysis on pseudo-Riemannian manifolds. There exists
a close relationship between spectral properties of the Laplace oper-
ator and local as well as global invariants of the underlying pseudo-
Riemannian manifold.

The question of conformal symmetries of the Yamabe-Laplace oper-
ator ∆Y on conformally flat spaces has been solved [8]. A differential
operator D is a conformal symmetry of ∆Y , provided [∆Y , D] ∈ (∆Y ),
where (∆Y ) is the left ideal generated by ∆Y in the algebra of differ-
ential operators. These D operators are called conformal symmetries
because they preserve the kernel of ∆Y . On a given flat conformal
manifoldM , there is a bijection between the vector space of symmetric
conformal Killing tensors and the quotient of the space of conformal
symmetries by (∆Y ). Note that the space of symmetric conformal
Killing tensors is the solution space of a conformally invariant system

2010 AMS Mathematics subject classification. Primary 35J05, 35R01, 53A20,
58J70.

Keywords and phrases. Killing tensors, prolongation of PDEs, commuting sym-
metries of Laplace operator.

The first author was supported by the Belgian Interuniversity Attraction Pole
(IAP) within the “Dynamics, Geometry and Statistical Physics” (DYGEST) frame-
work. The second and third authors were supported by the grant agency of the
Czech Republic, grant No. P201/12/G028.

Received by the editors on April 23, 2015.
DOI:10.1216/RMJ-2017-47-2-587 Copyright c⃝2017 Rocky Mountain Mathematics Consortium

587



588 J.-P. MICHEL, P. SOMBERG AND J. ŠILHAN

of overdetermined partial differential equations, which is locally finite-
dimensional.

In the present paper, we classify the commuting symmetries of
the Laplace operator ∆ on pseudo-Riemannian manifolds of constant
curvature, i.e., manifolds locally isometric to a space form. In fact,
the Laplace operator differs from the Yamabe-Laplace operator by a
multiple of the identity operator; therefore, both operators share the
same commuting symmetries. The eigenspaces of the Laplace operator
are preserved by commuting symmetries, i.e., by linear differential
operators D commuting with the Laplace operator:

[∆, D] = 0.

The vector space of commuting symmetries is generated by Killing
vector fields and their far reaching generalization called symmetric
Killing tensors, or Killing tensors for short. Their composition as
differential operators provides an algebraic structure that we shall
determine.

Killing 2-tensors on pseudo-Riemannian manifolds are the most
studied among Killing tensors, and they play a key role in the sep-
aration of variables of the Laplace equation. The construction of com-
muting symmetries out of Killing 2-tensors is well known in a number
of geometrical situations [7], particularly on constant curvature man-
ifolds. Higher Killing tensors give integrals of motion for the geodesic
equation and contribute to its integrability. They can be regarded
as hidden symmetries of the underlying pseudo-Riemannian manifold.
Killing tensors themselves are solutions of an invariant system of PDEs,
and trace-free Killing tensors are special examples of conformal Killing
tensors.

As a technical tool, we introduce, and to a certain extent develop, the
Riemannian tractor calculus, focusing mainly on manifolds of constant
curvature. This allows a uniform description of the prolongation of the
invariant system of PDEs for Killing tensors and plays a key role in
our analysis of the correspondence between commuting symmetries of
the Laplace operator and Killing tensors. In particular, we obtain an
explicit version of the identification in [15], see also [17], of the space of
fixed valence Killing tensors with a representation of the general linear
group.
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The Riemannian tractor calculus can be interpreted as the tractor
calculus for projective parabolic geometry in a scale corresponding
to a metric connection in the projective class of affine connections.
Restricting to locally flat special affine connections, Einstein metric
connections in the projective class correspond to manifolds of constant
curvature [11]. Since the Killing equations on symmetric tensor fields
are projectively invariant [9], we may use invariant tractor calculus
in projective parabolic geometry to construct commuting symmetries.
Projective invariance explains that the space of Killing tensors carries
a representation of the general linear group.

As for the style of presentation and exposition, we have attempted
to make the paper accessible to a broad audience with basic knowledge
in Riemannian geometry. Following this perspective, the structure of
our paper follows. After setting the conventions in Section 2, we intro-
duce the rudiments of Riemannian tractor calculus in Section 3. The
core of the article is in Section 4, where we construct the prolonga-
tion of the differential system for Killing tensors and derive the space
of differential operators preserving the spectrum of the Laplace opera-
tor. Afterwards, we determine the underlying structure of associative
algebra on this space, induced by the composition of differential opera-
tors. We compute explicit formulas for commuting symmetries of order
at most 3. In special cases, we compare commuting symmetries with
conformal symmetries constructed in [8]. In Section 5, we interpret
our results in terms of the holonomy reduction of a Cartan connection
in projective parabolic geometry and its restriction on a curved orbit
equipped with an Einstein metric.

2. Notation and conventions. Let (M, g) be a smooth pseudo-
Riemannian manifold. Throughout the paper, we employ Penrose’s
abstract index notation and use Ea to denote the space of smooth
sections of the tangent bundle TM on M , and Ea for the space of
smooth sections of the cotangent bundle T ∗M . We also use E for the
space of smooth functions. All tensors considered are assumed to be
smooth. With abuse of notation, we will often use the same symbols
for the bundles and their spaces of sections. The metric gab will be
used to identify TM with T ∗M . We shall assume that the manifold M
has dimension n ≥ 2.
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An index which appears twice, once raised and once lowered, in-
dicates the contraction. Square brackets [· · · ] will denote skew-
symmetrization of enclosed indices, while round brackets (· · · ) will in-
dicate symmetrization.

We set ∇ for the Levi-Civita connection corresponding to gab. Then,
the Laplacian ∆ is given by

∆ = gab∇a∇b = ∇b∇b.

Since the Levi-Civita connection is torsion-free, the Riemannian cur-
vature Rab

c
d is given by

[∇a,∇b]v
c = Rab

c
dv

d,

where [·, ·] indicates the commutator bracket. The Riemannian curva-
ture can be decomposed in terms of the totally trace-free Weyl curva-
ture Cabcd, and the symmetric Schouten tensor Pab,

(2.1) Rabcd = Cabcd + 2gc[aPb]d + 2gd[bPa]c.

We will refer to Pab as a Riemannian Schouten tensor to distinguish
from the projective Schouten tensor which will be introduced later in
this paper. We define J := Pa

a, such that

J =
Sc

2(n− 1)
,

with Sc the scalar curvature.

Throughout the paper, we work (if not stated otherwise) on mani-
folds of constant curvature, i.e., locally symmetric spaces with parallel
curvature

Rabcd =
4

n
Jgc[agb] d,

cf., [18]. Thus, the function J is constant. In signature (p, q),M is then
locally isomorphic to G/H, where G = SO(p+1, q) andH = SO(p, q) if
J > 0, G = SO(p, q+1), H = SO(p−1, q+1) if J < 0, G = E(p, q) and
H = SO(p, q) if J = 0. Here, we denote the group of pseudo-Euclidean
motions on Rp,q by E(p, q).

3. Tractor calculus in Riemannian geometry. The notion of
associated tractor bundles is well known in the category of parabolic
geometries. We refer to [5] for a review with many applications. In
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this section, we introduce and develop rudiments of a class of tractor
bundles in the category of pseudo-Riemannian manifolds, in close
analogy with tractor calculi in parabolic geometries.

We assume M has constant curvature, i.e.,

Rabcd =
4

n
Jgc[agb]d,

with J constant. We define the Riemannian standard tractor bundle or
standard tractor bundle, for short,

T := L ⊕ TM

where L denotes the trivial bundle over M .

The Levi-Civita connection ∇a induces a connection on T , which is
trivial on L. The tractor connection is another connection on T , also
denoted (with an abuse of notation) by ∇a, and defined by

∇a

(
f
µb

)
=

(
∇af − µa

∇aµ
b + 2

nJfδ
b
a

)
,(3.1)

where f ∈ E , µb ∈ Eb. In the first line, we use the isomorphism
TM ∼= T ∗M . The dual connection on the dual bundle:

T ∗ := T ∗M ⊕ L,

also denoted by ∇a, is given by

∇a

(
νb
f

)
=

(
∇aνb + fgab
∇af − 2

nJνa

)
,(3.2)

where νb ∈ Eb and f ∈ E . Direct computation shows that the curvature
of the tractor connection ∇ is trivial, i.e., the tractor connection ∇ is
flat. Note that this connection differs from that induced by the Cartan
connection [5, subsection 1.5].

The bundle T is equipped with the symmetric bilinear form ⟨ , ⟩,

(3.3)
⟨( f

µb

)
,

(
f
µ b

)⟩
=

2

n
Jff + µb µb

which is invariant with respect to the tractor connection ∇. For J ̸= 0,
this form is non-degenerate and called the tractor metric. Then, it
yields an isomorphism T ∼= T ∗.
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We define

A :=
2∧
T = TM ⊕

2∧
TM

as the adjoint tractor bundle, and we extend the tractor connection
from T to A by the Leibniz rule. Similarly, we obtain an induced
tractor connection on

A∗ =
2∧
T ∗M ⊕ T ∗M.

Explicitly, these connections are given by the formulas

∇a

(
φb

ψbc

)
=

(
∇aφ

b − 2ψa
b

∇aψ
bc + 2

nJδ
[b
aφc]

)
(3.4)

and

∇a

(
µbc

ωb

)
=

(
∇aµbc + 2ga[bωc]

∇aωb − 4
nJµab

)
,

where (φb, ψbc) ∈ Γ(A), i.e., φb ∈ Eb and ψbc ∈ E [bc], and (µbc, ωb) ∈
Γ(A∗), i.e., µbc ∈ E[bc] and ωb ∈ Eb.

We extend the tractor connection to the tensor product bundle(⊗
T
)
⊗
(⊗

T ∗
)

by the Leibniz rule. The resulting connection is again flat, denoted by
∇ and called the tractor connection. Further, the tractor and Levi-
Civita connections induce the connection

(3.5) ∇a : Eb···d ⊗ Γ(W ) −→ Eab···d ⊗ Γ(W )

for any tractor subbundle

W ⊆
(⊗

T
)
⊗
(⊗

T ∗
)
,

i.e., any subbundle preserved by the tractor connection. This coupled
Levi-Civita tractor connection allows for extending all natural opera-
tors, e.g., the Laplace operator ∆, to tensor-tractor bundles.
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The invariant pairing on A induced by equation (3.3) is given by the
formula

(3.6)
⟨(φb

ψbc

)
,

(
φ b

ψ bc

)⟩
=

1

n
Jφaφa + ψabψab.

For J ̸= 0, this defines a metric on A and A ∼= A∗. Moreover, there is
a Lie algebra structure

[·, ·] : A⊗A −→ A,

given by

(3.7)

[(
φb

ψbc

)
,

(
φ b

ψ bc

)]
=

(
φrψ

ra − φrψ
ra

−2ψr[bψr
c] − 1

nJφ
[bφc]

)
,

which is also invariant under the tractor connection.

Remark 3.1. Tractor connections can be defined on any Riemannian
manifold. For example, we can define ∇ on A by

∇a

(
φb

ψbc

)
=

(
∇aφ

b − 2ψa
b

∇aψ
bc + 1

2R
bc

asφ
s

)
for φb ∈ Eb and ψbc ∈ E [bc]. This definition originates in the work of
Kostant [14]. We observe that, for a Killing vector field ka ∈ Ea, its
prolongation

(3.8) K =

(
ka

1
2∇

[akb]

)
∈ Γ(A)

is parallel for the tractor connection. Hence, any isometry is locally
determined by its first jet.

We shall use abstract index notation for the adjoint tractor bundle
as follows: Γ(T ) will be denoted by EA and Γ(A) will be denoted by
EA where A = [A1A2]. Similarly, EA = Γ(A∗) and EA = Γ(A∗), that
is, we use boldface capital indices for an adjoint tractor bundle and its
dual.

There is a convenient way to treat the bundles T and T ∗, based
on the so-called injectors, or tensor-tractor frame, denoted by Y A, ZA

a



594 J.-P. MICHEL, P. SOMBERG AND J. ŠILHAN

for T and denoted by YA, Z
a
A for T ∗. These are defined by

(3.9)

(
f
µb

)
= Y Af + ZA

b µ
b ,

(
νb
f

)
= Zb

Aνb + YAf,

and their contractions are

Y AYA = 1, ZA
a Z

b
A = δ b

a and Y AZb
A = ZA

a YA = 0.

The covariant derivatives in equations (3.1) and (3.2) are then encoded
in covariant derivatives of these injectors:

∇cY
A =

2

n
JZA

a δ
a
c , ∇cZ

A
a = −Y Agac,

∇cZ
a
A = − 2

n
JYAδ

a
c , ∇cYA = Za

Agca.

(3.10)

We denote tractor pairing equation (3.3) by hAB ∈ E(AB), which has
the explicit form:

(3.11) hAB =
2

n
JYAYB + Za

AZ
b
Bgab.

Injectors for the adjoint tractor bundle EA are

YA
a = Y [A1

ZA2]
a and ZA

a = Z
[A1

a1 Z
A2]
a2 ;

injectors for the dual bundle EA are

Ya
A = Y[A1Za

A2] and Z a
A = Za1

[A1Z a2

A2],

that is,

(3.12)

(
φb

ψa

)
= φbYA

b + ψaZA
a ,

(
µa

ωb

)
= µaZ a

A + ωbY b
A,

where a = [a1a2]. The only nonzero contractions are

YA
a Yb

A =
1

2
δ b
a and ZA

aZ c
A = δ c1

[a1 δ c2

a2].

The covariant derivatives (3.4) are then equivalent to

∇cYA
b =

2J

n
ZA
ab δ

a
c , ∇cZA

a = −2YA
[a2ga1]c,

∇cZ a
A = −4J

n
Y[a2

A δ a1]
c , ∇cYb

A = Zab
A gca,

(3.13)
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and the pairing (3.6) on EA can be written:

(3.14) hAB =
4

n
JYa

AYb
Bgab + Z a

AZb
Bga1b1ga2b2 .

A crucial component of our construction is the differential operator

(3.15) DA : Eb1···bs ⊗ Γ(W ) −→ Eb1···bs ⊗ Γ
(
A∗ ⊗W

)
for a tractor subbundle

W ⊆
(⊗

T
)
⊗
(⊗

T ∗
)
.

This operator is closely related to the so-called fundamental deriva-
tive [5]. It is defined as follows: for f ∈ Γ(W ), we set

(3.16) DAf =

(
0

2∇af

)
∈ Γ(A∗ ⊗W ),

and, for φb ∈ Eb, we set

(3.17) DAφb =

(
2gb[a1φa2]

2∇aφb

)
∈ Eb ⊗ Γ(A∗).

Then, we extend DA to all tensor-tractor bundles by the Leibniz rule.
Using injectors (3.12), formulas (3.16) and (3.17) are given by

DAf = 2Ya
A∇af,(3.18)

DAφb = 2Ya
A∇aφb + Z a

A2gb[a0φa1]

where a = [a1a2].

Theorem 3.2. Let M be a manifold of constant curvature. The oper-
ator DA commutes with the coupled Levi-Civita tractor connection ∇c,

∇cDA = DA∇c : Eb1···bs ⊗ Γ(W ) −→ Ecb1···bsA ⊗ Γ(W ).

Proof. Since the tractor connection is flat, it is sufficient to prove
the statement for W equal to the trivial line bundle. We present two
versions of the proof.

First, one can easily show by direct computation using equations
(3.13) and (3.18) that the explicit formulas for the compositions ∇cDA

and DA∇c are the same when acting on f ∈ E and φb ∈ Eb. Hence, the
formulas agree on any tensor bundle.
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Alternatively, recall that, for a Killing vector field ka ∈ Ea, its
prolongation KA ∈ Γ(A) is parallel, see equation (3.8). We further
observe that Lk = KADA is the Lie derivative along ka when acting on
tensor bundles. Since Lk commutes with the covariant derivative, and
the space of Killing vector fields on manifolds with constant curvature
has dimension equal to

dim(A) = n+
1

2
n(n− 1),

the statement follows. �

As a consequence of Theorem 3.2, DA also commutes with Laplace
operator ∆ on functions, forms, etc. We will now make this result more
general and precise. Assume that

F : Γ(U1) −→ Γ(U2)

is a Riemannian invariant linear differential operator, acting between
tensor bundles U1 and U2. It can be written in terms of the metric,
the Levi-Civita connection ∇ and the curvature J. Replacing ∇ in the
formula for F by the coupled Levi-Civita tractor connection, we obtain
the operator

F∇ : Γ(U1 ⊗W ) −→ Γ(U2 ⊗W )

for any tractor subbundle

W ⊆
(⊗

T
)
⊗
(⊗

T ∗
)
.

Note that, since the tractor connection is flat, the curvature of the
coupled Levi-Civita tractor connection agrees with the curvature of
the Levi-Civita connection. Using Theorem 3.2 and ∇aJ = ∇ag = 0,
we obtain the following.

Corollary 3.3. Let
F : Γ(U1) −→ Γ(U2)

be a Riemannian invariant linear differential operator on the mani-
fold M . Then, DA commutes with F∇, i.e.,

DA ◦ F∇ = F∇ ◦ DA : Γ(U1 ⊗W ) −→ Γ(U2 ⊗A∗ ⊗W ).
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4. Commuting symmetries of the Laplace operator.

Definition 4.1. Let U be a tensor bundle, and let

F : Γ(U) −→ Γ(U)

be a linear differential operator on M . A commuting symmetry of
operator F is a linear differential operator D fulfilling DF = FD.

We are interested in commuting symmetries of the Laplace operator
F = ∆ on functions. They form a subalgebra of the associative algebra
of linear differential operators acting on E . The exposition in the rest of
this section closely follows that given in [8] for conformal symmetries.
For a comparison of both types of symmetries, see Remark 4.16.

Let ℓ be a non-negative integer. A linear ℓth order differential
operator acting on functions can be written:

(4.1) D = V a1···aℓ∇a1 · · ·∇aℓ
+ LOTS,

where LOTS stands for lower order terms in D, and its principal symbol
V a1···aℓ is symmetric in its indices V a1···aℓ = V (a1···aℓ).

Definition 4.2. A Killing tensor on M is a symmetric tensor field
V a1···aℓ , fulfilling the first order differential equation

(4.2) ∇(a0V a1···aℓ) = 0.

The vector space of all Killing tensors of valence ℓ will be denoted
by Kℓ.

Since differential equation (4.2) is overdetermined, the space Kℓ is
finite-dimensional. Note that the symmetric product of two Killing
tensors is again a Killing tensor, such that

⊕
ℓ≤0Kℓ is a commutative

graded algebra.

Theorem 4.3. Let D be an ℓth order commuting symmetry of the
Laplace operator. Then, the principal symbol V a1···aℓ of D is a Killing
tensor of valence ℓ.
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Proof. When D is of the form (4.1), we compute

(4.3) ∆D −D∆ = 2(∇bV a1···aℓ)∇b∇a1 · · ·∇aℓ
+ LOTS,

and the claim follows. �

The converse of this statement is covered in the next theorem.

Theorem 4.4. There exists a linear map:

V a1···aℓ 7−→ DV ,

from symmetric tensor fields to differential operators, such that the
principal symbol of DV is V a1···aℓ and DV ∆ = ∆DV if V is a Killing
tensor.

The proof of Theorem 4.4 is postponed to the next section, where
the Riemannian prolongation connection for symmetric powers of the
adjoint tractor bundle is constructed. This allows explicit computation
of the symmetry operators DV .

Combining both theorems, we deduce a linear bijection between
the space of Killing tensors and the space of commuting symmetries
of ∆. More explicitly, the space of 0th order commuting symmetries is
the space of constants, the space of first order commuting symmetries
contains in addition the Killing vector fields, and by induction, the
space of ℓth order commuting symmetries contains the space of (ℓ−1)th
order commuting symmetries together with a copy of the space Kℓ of
Killing tensors of valence ℓ. In particular, the dimension of the vector
space of ℓth order symmetry operators is finite and equal to

dimK0 + dimK1 + · · ·+ dimKℓ.

4.1. Prolongation for Killing tensors. Let ka ∈ Ea be a Killing
vector field. In Remark 3.1, we observed that its prolongation

K =
(
ka,

1

2
∇[akb]

)
∈ Γ(A)

is parallel for the tractor connection. Our aim is to construct analogous
prolongation for Killing tensors.
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Lemma 4.5. If ka1···aℓ ∈ E(a1···aℓ) is a Killing tensor, then

(4.4) ∇(a1∇|[ckd]|a2···aℓ) = −2(ℓ+ 1)

n
J g(a1|[ckd]|a2···aℓ),

where the notation | · · · | means that the enclosed indices c, d are
excluded from the symmetrization.

Proof. Straightforward computation. �

The prolongation of ka1···aℓ is a section K ∈ Γ(⊗ℓA). First, we
observe the following:

Lemma 4.6. The differential operator

Π : E(a1···aℓ) −→ E(a1···aℓ−1) ⊗ Γ(A),(4.5)

(Πσ)a1···aℓ−1B =

(
σca1···aℓ−1

1
ℓ+1∇

[cσd]a1···aℓ−1

)
∈ E(a1···aℓ−1) ⊗ Γ(A)

satisfies, for all σa1···aℓ ∈ E(a1···aℓ),

(4.6) ∇(a0σa1···aℓ) = 0⇐⇒ ∇(a0(Πσ)a1···aℓ−1)B = 0.

Proof. Using equation (3.4), we compute

∇b(Πσ)a1···aℓ−1B =

(
∇bσca1···aℓ−1 − 2

ℓ+1∇
[bσc]a1···aℓ−1

1
ℓ+1∇

b∇[cσd]a1···aℓ−1 + 2
nJ g

b[cσd]a1···aℓ−1

)
.

Observe the “top slot” on the right side is equal to

ℓ

ℓ+ 1
∇bσca1···aℓ−1 +

1

ℓ+ 1
∇cσba1···aℓ−1 ,

which, after symmetrization (ba1 · · · aℓ−1), yields exactly∇(cσba1···aℓ−1).
This proves implication ⇐ of equation (4.6), and also that if

∇(a0σa1···aℓ) = 0,

then the “top slot” of ∇(a0(Πσ)a1···aℓ−1) vanishes. Since the bottom
slot vanishes by Lemma 4.5, implication ⇒ in equation (4.6) follows as
well. �
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Considering ∇ in formula (4.5) as the coupled Levi-Civita tractor
connection, we obtain the operator

Π : E(a1···aℓ) ⊗ Γ(W ) −→ E(a1···aℓ−1) ⊗ Γ(A⊗W ),

where
W ⊆

(⊗
T
)
⊗

(⊗
T ∗

)
is a tractor subbundle. Its iteration

(4.7) Π(ℓ) : E(a1···aℓ) −→ Γ(⊗ℓA),

yields the prolongation for Killing tensors.

Proposition 4.7. Let σa1···aℓ ∈ E(a1···aℓ). The operator Π(ℓ) satisfies

∇(a0σa1···aℓ) = 0⇐⇒ ∇(Π(ℓ)σ) = 0.(4.8)

Proof. Since the tractor connection is flat, we have the analogue of
equation (4.6):

∇(a0σa1···aℓ)• = 0⇐⇒ ∇(a0(Πσ)a1···aℓ−1)• = 0,

for all
σa1···aℓ• ∈ E(a1···aℓ) ⊗ Γ(W ),

where • denotes an unspecified tractor index. By iteration, we obtain
equation (4.8). �

The symmetries of tractor Π(ℓ)σ are best understood in the language

of Young diagrams. Setting T = , we have A = and we set

(4.9) �ℓA :=

ℓ︷ ︸︸ ︷
· · ·
· · · ⊆ SℓA,

where SℓA ⊂
⊗ℓA is the subspace of symmetric tensors. For instance,

we have

S2A =
⊕

,
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or in other words,

(4.10)
1

2

(
V ⊗W +W ⊗ V

)
= V �W + V ∧W,

for any V,W ∈ A, with ∧ the wedge product in
∧
T .

Proposition 4.8. The map Π(ℓ), defined in equation (4.7), is valued
in Γ(�ℓA).

Proof. Let σa1···aℓ ∈ E(a1···aℓ). Using abstract indices Bi = [B1
iB

2
i ],

we have
(Π(ℓ)σ)B

1
1B

2
1 ···B

1
ℓB

2
ℓ ∈ EB1···Bℓ = Γ(⊗ℓA).

First, we prove that (Π(ℓ)σ)B1···Bℓ is symmetric in indices B1, . . . ,
Bℓ, i.e, Π

(ℓ)σ ∈ Γ(SℓA). In fact, it is sufficient to show the symmetry
in two neighboring indices Bi and Bi+1. To do this, we show that, for
all σa1···aℓ• ∈ E(a1···aℓ)• with ℓ ≥ 2, (Π(2)σ)a1···aℓ−2B1B2• is symmetric
in B1 and B2 . This follows from the explicit formula

(Π(2)σ)a1···aℓ−2BC• = YB
b YC

c σ
a1···aℓ−2bc•

(4.11)

+
1

ℓ+ 1

[
YB

b ZC
c∇c1σa1···aℓ−2bc

2• + ZB
bYC

c ∇b1σa1···aℓ−2b
2c•

]
+

1

ℓ
ZB

bZC
c

[
1

ℓ+ 1
∇b1∇c1σa1···aℓ−2b

2c2• +
2

n
Jgb

1c1σa1···aℓ−2b
2c2•

]
,

obtained from equation (4.5) after short computation. Here,

B = [B1B2], C = [C1C2],

b = [b1b2] and c = [c1c2].

It suffices to prove that

(Π(ℓ)σ)B
1
1B

2
1 ···B

1
ℓB

2
ℓ ∈ EB1···Bℓ

vanishes after skew-symmetrization over any triple of indices Bj
i . Since

(Π(ℓ)σ)B1···Bℓ is symmetric in tractor form indices Bi, it is sufficient
to consider only two triples of indices: either B1

1 , B
2
1 , B

1
2 or B1

1 , B
1
2 ,

B1
3 . Elementary representation theory shows that the third symmetric
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power of A has the decomposition

(4.12) S3

( )
= ⊕ 2 ⊕ .

Hence, if we skew over three factors of the standard tractor bundle in
S3EA, the result will in fact be skew symmetric in at least four factors
of the standard tractor bundle. As a result, it is sufficient to consider
only skew symmetrization over indices B1

1 , B
2
1 , B

1
2 of

(Π(ℓ)σ)B
1
1B

2
1 ···B

1
ℓB

2
ℓ .

Using equation (4.11) with ℓ = 2, straightforward computation shows
that

(Π(ℓ)σ)[B
1
1B

2
1B

1
2 ]B

2
2 ···B

1
ℓB

2
ℓ = 0. �

The proposition can also be proved using invariant techniques in
parabolic geometries, known as “BGG machinery,” applied to the case
of projective parabolic geometry. We refer to the next section for
further discussion on this relation.

Next, we obtain the main result of this section.

Theorem 4.9. The map Π(ℓ) induces a bijective correspondence be-
tween the space Kℓ of Killing ℓ-tensors and the space of parallel sections
of the tractor bundle �ℓA.

Proof. If σℓ is a Killing ℓ-tensor, then Π(ℓ)σℓ is a parallel section of
�ℓA, by Propositions 4.7 and 4.8. It remains to prove that, if F is a
non-vanishing parallel section of �ℓA, then F = Π(ℓ)σℓ for some Killing
ℓ-tensor σℓ.

As a section of Γ(SℓA), F has the form

(4.13) FA1···Aℓ =

ℓ∑
i=0

Y(A1
a1
· · ·YAi

ai
ZAi+1

ci+1
· · ·ZAℓ)

cℓ
(σi)

a1···aici+1···cℓ ,

where (A1 · · ·Aℓ) denotes the symmetrization over the form tractor
indices, and not over the standard tractor indices. Here,

(σi)
a1···aici+1···cℓ ∈ Ea1···aici+1···cℓ ,
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where ai are indices of the tangent bundle whereas ci = [c1i c
2
i ] are form

indices. Since F ∈ Γ(�ℓA), the skew symmetrization over any triple of
indices of

(σi)
a1···ai[c

1
i+1c

2
i+1]···[c

1
ℓc

2
ℓ ]

vanishes.

First, we show that σℓ = 0 implies F = 0. To do this, we assume
that

σi0+1 = · · · = σℓ = 0,

and prove that σi0 = 0, with 0 ≤ i0 < ℓ. The tractor form ∇bFA1···Aℓ

can be written as in equation (4.13), and it follows from equation (3.13)
that

∇bFA1···Aℓ = 2(ℓ− i0)Y(A1
a1
· · ·YAi0+1

ai0+1 Z
Ai0+2
ci0+2 · · ·ZAℓ)

cℓ

· (σi0)(a1···ai0ai0+1)bci0+2···cℓ

+ terms with at most i0 of Y’s.

Thus,
(σi0)

(a1···ai0ai0+1)bci0+2···cℓ = 0.

On the other hand, symmetries of F imply that symmetries of
(σi0)

a1···ai0ci0+1···cℓ correspond to the Young diagram:

i0︷ ︸︸ ︷
· · ·
· · ·

ℓ−i0︷ ︸︸ ︷
· · · .

Hence,
(σi0)

(a1···ai0ai0+1)bci0+2···cℓ = 0

means
(σi0)

a1···ai0ci0+1···cℓ = 0,

as intended.

Next, we show that the tensor field (σℓ)
a1···aℓ is Killing. Similarly

as above, computing the Y(A1
a1 · · ·Y

Aℓ)
aℓ -summand of ∇bFA1···Aℓ (which

is 0), one easily concludes that ∇(b(σℓ)
a1···aℓ) = 0. Details are left to

the reader. Finally, since the difference F −Π(ℓ)σℓ ∈ Γ(�ℓA) is parallel
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and the Y(A1
a1 · · ·Y

Aℓ)
aℓ -summand of F −Π(ℓ)σℓ vanishes, it follows from

the first part of the proof that F −Π(ℓ)σℓ = 0. �

4.2. Construction of commuting symmetries. Let

V a1···aℓ ∈ E(a1···aℓ)

be a symmetric tensor and let Π(ℓ) be the map defined in equation (4.7).
We define the differential operator DV of order ℓ by

(4.14) DV := ⟨Π(ℓ)V,D(ℓ)⟩ : Γ(U) −→ Γ(U),

where

D(ℓ) : Γ(U) −→
ℓ⊗

Γ(A∗)⊗ Γ(U)

is the ℓth iteration of operator (3.15).

Lemma 4.10. Differential operator DV has principal symbol V a1···aℓ .

Proof. Extending vertical notation for elements in

Γ(A) =
Ea⊕
E [ab]

and Γ(A∗) =
E[ab]⊕
Ea

to sections in the tensor products SℓA and SℓA∗, we obtain

Π(ℓ)V =

V a1...aℓ⊕
...

∈
Ea1...aℓ⊕

...

and

D(ℓ)u =

...⊕
∇a1 . . .∇aℓ

u

∈
...⊕

Ea1...aℓ

⊗
Γ(U).

Thus, the contraction ⟨Π(ℓ)V,D(ℓ)u⟩ has the leading term

V a1···aℓ∇a1 · · · ∇aℓ
u. �
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We consider a Riemannian invariant linear differential operator

F : Γ(U) −→ Γ(U),

acting on a tensor bundle U .

Theorem 4.11. Let ka1···aℓ ∈ E(a1···aℓ) be a Killing tensor. Then, the
differential operator Dk is a commuting symmetry of F with principal
symbol ka1···aℓ .

Proof. By Lemma 4.10, Dk has principal symbol ka1···aℓ .

Let u ∈ Γ(U), and let

K := Π(ℓ)k ∈ Γ
( ℓ⊗

A
)

be the prolongation of the Killing ℓ-tensor k. Then, we obtain

F D ku = F ⟨K,D(ℓ)u⟩ = ⟨K,F∇D(ℓ)u⟩ = ⟨K,D(ℓ)Fu⟩ = D kFu,

where we have used Proposition 4.7 (which implies ∇K = 0) in the
second equality and Corollary 3.3 in the third equality. Recall that the
operator F∇ is given by the same formula as F , but ∇ is interpreted
as the coupled Levi-Civita tractor connection in F∇. �

Corollary 4.12. Assume that ka1···aℓ ∈ E(a1···aℓ) is a Killing tensor.
Then, Dk is a commuting symmetry of the Laplacian ∆ : E → E with
principal symbol ka1···aℓ .

4.3. Algebraic structure on the space of commuting symme-
tries of the Laplace operator ∆ : E → E. Let B be the algebra of
commuting symmetries of ∆. Theorems 4.3 and 4.4 allow us to identify
the vector space of commuting symmetries of ∆,

(4.15) B ≃
∞⊕
ℓ=0

Kℓ.

In order to study the algebra structure on B, some basic notation
is needed. Depending on the curvature, the Lie group of isometries
is G = SO(p + 1, q), G = SO(p, q + 1) or G = E(p, q). For all
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possibilities, the Lie algebra of isometries is denoted by g = Lie(G),
and the identifications

so(p+ 1, q) ≃ ∧2Rp+1,q,

so(p, q + 1) ≃ ∧2Rp,q+1,

and

Lie(E(p, q)) ≃ ∧2(Rp,q +
�� R)

are used. In the last case, the identification is deduced from the
representation of E(p, q) on Rp,q ⊕ R, induced by the standard group
morphism

GL(n,R)nRn −→ GL(n+ 1,R).

The space of parallel sections of A is isomorphic to g, and it is easy
to verify that the Lie bracket on g is isomorphic to bracket (3.7). Via
the induced identification of the symmetric product Sℓg with parallel
sections of SℓA, we define the subspace �ℓg ⊆ Sℓg as follows:

�ℓg ∼= {parallel sections of �ℓ A},

where �ℓA is defined in equation (4.9). According to equation (4.10),
we have

V �W =
1

2

(
V ⊗W +W ⊗ V

)
− V ∧W,

for any V,W ∈ g. From Theorem 4.9, we deduce that�ℓg is isomorphic,
as a g-module, to the space Kℓ of Killing ℓ-tensors. Hence, we have the
g-module isomorphism

B ≃
∞⊕
ℓ=0

�ℓg.

Theorem 4.13. The symmetry algebra B is isomorphic to the tensor
algebra

(4.16)
∞⊕
i=0

⊗ig

modulo the two-sided ideal I, generated by

(4.17) V ⊗W − V �W − 1

2
[V,W ], V,W ∈ g.
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Proof. First we compute the compositions DkDǩ, where ka, ǩa ∈
Γ(TM) are Killing vector fields. Set K = Πka and Ǩ = Πǩa where
K, Ǩ ∈ g. Since ∇Ǩ = 0, definition (3.18) of DB acting on functions
yields

DkDǩ = KBDBǨ
CDC

=

[
1

2
(KBǨC +KCǨB) +

1

2
(KBǨC −KCǨB)

]
DBDC

= (K � Ǩ)BCDBDC +
1

2
[K, Ǩ]BDB.

In the last equality, to deal with the symmetrized term, we use de-
composition (4.10) and the identity D[B1B2DC1C2] = 0, which can be
easily verified. To deal with the skew-symmetrized term, we use equa-
tion (3.7).

The computation of DkDǩ shows that all elements of the form (4.17)
are in the ideal. Since there is a vector space isomorphism( ∞⊕

ℓ=0

⊗ℓg

)
/I ∼=

∞⊕
ℓ=0

�ℓg,

it remains to show that elements in �ℓg ∼= Kℓ indeed give rise to non-
zero ℓth order symmetries. This follows from Corollary 4.12. The proof
is complete. �

Passage from tensor algebra to the universal enveloping algebra U(g)
means to substitute

V ⊗W =
1

2

(
V ⊗W +W ⊗ V

)
− 1

2

(
V ⊗W −W ⊗ V

)
and quotient through the two-sided ideal generated by

V ⊗W −W ⊗ V = [V,W ], V,W ∈ g.

Accordingly, we obtain the following.

Corollary 4.14. The symmetry algebra B is isomorphic to the uni-
versal enveloping algebra U(g) modulo the two-sided ideal generated by
V ∧W for V,W ∈ g, or equivalently, by

(4.18) V ⊗W +W ⊗ V − 2V �W, V,W ∈ g.
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4.4. Examples of commuting symmetries. The recursion tractor
formula (4.14) for commuting symmetries Dk can be transformed into
an explicit formula for Dk, expressed in terms of the Levi-Civita
connection ∇ and the curvature J, by equations (3.18) and (4.6). In
what follows, we compute the explicit commuting symmetries up to
order 3 acting on E .

We use tractor form indices

A = [A1A2], B = [B1B2], C = [C1C2],

and form indices

a = [a1a2], b = [b1b2], c = [c1c2].

For a Killing vector field ka ∈ Ea, we have

(4.19) KA = (Πk)A = YA
a k

a +
1

2
ZA

a∇[a1

ka
2], DAf = 2Ya

A∇af.

Hence, the symmetry Dkf = KADAf = ka∇af coincides with the Lie
derivative along the Killing vector field ka.

For a Killing 2-tensor kbc ∈ E(bc), we obtain from equation (4.11),

KAB = (Π(2)k)BC = YB
b YC

c k
bc +

1

3

(
YB

b ZC
c + YC

b ZB
c

)
∇c1kc

2b(4.20)

+
1

2
ZB

bZC
c

[
1

3
∇b1∇c1kb

2c2 +
2

n
Jgb

1c1kb
2c2

]
.

Since
DBDCf = 4Yb

BZ c
Cgbc0∇c1f + 4Yb

BYc
C∇b∇cf,

by equation (3.18), we obtain

Dk = KBCDBDCf = kbc∇b∇cf + (∇rk
rc)∇cf.

Note that KBChBC is a constant, and, using ∇akrr = −2∇rk
ar, which

follows from
3gbc∇(akbc) = ∇akrr + 2∇rk

ar = 0,

a short computation reveals its value

KBChBC =
1

4

[
−∇r∇sσ

rs +
2(n+ 1)

n
Jkrr

]
.



PROLONGATION OF SYMMETRIC KILLING TENSORS 609

Thus, the modification of Dk by any multiple of

∇r∇sk
rs − 2(n+ 1)

n
Jkrr,

is again a symmetry of ∆. This means that there is no unique formula,
written in terms of kab, for a symmetry. This is in contrast with the
case of conformal symmetries [8].

Now, we consider Killing 3-tensors kabc ∈ E(abc). Then,

gcd∇(akbcd) = 3∇rk
rab + 3∇akbrr = 0,

and, applying ∇a, we obtain ∇r∇sk
rsa+∆karr = 0. Summarizing, we

obtain

∇rk
rab = −∇akbrr, ∇r∇sk

rsa = −∆karr and ∇rk
rs

s = 0,

where the last equality is the trace of ∇rk
rab + ∇akbrr = 0. Now,

computing Π(3)k, which requires the application of Π in equation (4.5)
to equation (4.11), results in

KABC =
(
Π(3)k

)ABC
= YA

a YB
b YC

c k
abc

+
1

4

(
YA

a YB
b ZC

c + YC
a YA

b ZB
c + YB

a YC
b ZA

c

)
∇c1kc

2ab

+
1

3

(
YA

a ZB
bZC

c + YC
a ZA

bZB
c + YB

a ZC
bZA

c

)
×
[
1

4
∇b1∇c1kb

2c2a +
2

n
Jgb

1c1kb
2c2a

]
+ ZA

aZB
bZC

cψabc

for some ψabc, which we do not need to compute. Furthermore,

DADBDCf = 8Ya
AZb

BZ c
Cgab1gb2c1∇c2f

+ 16Ya
AYb

BZ c
Cgc1(a∇b)∇c2f(4.21)

+ 8Ya
AZb

BYc
Cgab1∇c∇b2f

+ 8Ya
AYb

BYc
C

[
∇a∇b∇cf −

4

n
Jgb[a∇c]f

]
,
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by equation (3.18). Combining the previous two displays yields

Dk = KABCDADBDCf = kabc∇a∇b∇cf(4.22)

+
3

2
(∇rk

rbc)∇b∇cf

+
1

4
(∇r∇sk

rsc)∇cf −
n− 1

2n
Jkcrr∇cf.

By construction, the vector field (Π(2)k)aBChBC is Killing. Using
equations (3.14), (4.11) and (4.21), one easily computes

(Π(2)k)aBChBC = − 1

12

[
∇r∇sk

rsa − 4(n+ 2)

n
Jkarr

]
.

Thus, symmetry Dk can be modified by a multiple of the operator[
∇r∇sk

rsa − 4(n+ 2)

n
Jkarr

]
∇af.

Remark 4.15. Let ℓ ∈ N and k ∈ Kℓ. If the curvature of metric g
vanishes, i.e., M is locally isomorphic to the pseudo-Euclidean space
Rp,q, straightforward computation shows that

Dk =
ℓ∑

i=0

1

2i

(
ℓ

i

)
(∇a1 · · · ∇aik

a1···aℓ)∇ai+1 · · ·∇aℓ

is a commuting symmetry of ∆. This can also be deduced from
properties of the Weyl quantization of T ∗Rp,q, namely, Dk coincides
with the Weyl quantization of k, and the symplectic equivariance of
the Weyl quantization, see, e.g., [10], yields the equalities [∆,Dk] =
[g, k]S = 0. Here, [·, ·]S denotes the Schouten bracket of symmetric
tensors and D[g,k]S = 0 is equivalent to the Killing equation.

Remark 4.16. Let ℓ ∈ N and k ∈ Kℓ. If k is trace-free, then
straightforward computation shows that

Dk = ka1···aℓ∇a1 · · · ∇aℓ

is a commuting symmetry of ∆. The trace-free Killing tensors are
those which are also conformal, and this allows for comparison of
our results with the work of Eastwood [8]. Out of conformal Killing
tensors V , he explicitly built conformal symmetries of the Laplacian,
i.e., differential operators DV

1 and DV
2 with principal symbol V such



PROLONGATION OF SYMMETRIC KILLING TENSORS 611

that DV
2 ∆ = ∆DV

1 . The lower order terms involve divergences and
contractions of V with the trace-free Ricci tensor. On a space of
constant curvature, with V = k a trace-free Killing tensor, both
divergences and contractions vanish, see, e.g., equation (4.21), and we
obtain Dk

1 = Dk
2 = Dk. In [8], the symmetries built out of trace-

free Killing tensors are commuting symmetries of the Laplacian and
coincide with the symmetries constructed in our article. Note that
trace components correspond to trivial conformal symmetries in the
sense of [8]. This prevents comparison of our results with those of [8]
for general Killing tensors.

5. Riemannian geometry via projective geometry. Overdeter-
mined equations for Killing tensors are projectively invariant [9], so it
is natural to consider their prolongation within the framework of pro-
jective geometry. As this is an example of parabolic geometry, we can
employ the general invariant theory for this class of structures, [5]. We
shall observe that several results obtained in the previous section then
follow immediately.

Recall that we are interested in manifolds of constant curvature.
These are conformally flat, and thus, projectively flat as well, see
equation (5.1), that is, we will consider locally flat projective structures.

5.1. Tractor calculus in projective geometry. We shall briefly
recall invariant calculus on projective manifolds, see [1] for more
details. A projective structure on a manifoldM is given by a class [∇] of
special affine connections with the same geodesics as unparametrized
curves, where special indicates that there is a parallel volume form
for every connection in [∇]. These connections are parametrized by
nowhere vanishing sections of projective density bundles E(1). We shall
also assume orientability, characterized by a compatible volume form

ϵa1···an ∈ E[a1···an](n+ 1) ∼= E ,

parallel for every affine connection in [∇]. The decomposition of the
curvature of ∇ is

(5.1) Rab
c
d = Cab

c
d + 2δ c

[aPb]d,

where Pab is the projective Schouten tensor and Cab
c
d = Cab

c
d, that

is, conformal and projective Weyl tensors coincide. Note that, for the
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Levi-Civita connection ∇ of an Einstein metric g, the curvature is also
of the form (2.1), and the relation between projective and Riemannian
Schouten tensors is Pab = 2Pab, see [11].

We define the standard tractor bundle and its dual by their spaces

of sections EA and EA, respectively, as

EA =
Ea(−1)

+
��
E(−1)

and EA =
E(1)
+
��
Ea(1)

;

see [1] for the meaning of the semi-direct product +
��

. The choice of
a connection in the class [∇] turns the previous display into the direct
sum decomposition. These bundles are equipped with the projectively
invariant tractor connection which we denote by ∇. Choosing ∇ in the
projective class, ∇ is explicitly given by the formulas

∇a

(
νb

ρ

)
=

(
∇aν

b + δ b
aρ

∇aρ− Pabν
b

)
and ∇a

(
σ
µb

)
=

(
∇aσ − µa

∇aµb + Pabσ

)
;

(5.2)

see [1] for details. Here, νa ∈ Ea(−1), ρ ∈ E(−1), σ ∈ E(1) and

µa ∈ Ea(1). We extend the connection ∇ to the tensor products of EA

by the Leibniz rule. Also note that the structure of the tractor bundle

E [AB]
and of its dual is given by

(5.3) E [AB]
=
E [ab](−2)

+
��

Ea(−2)
and E [AB] =

Ea(2)
+
��

E[ab](2).

In what follows, we shall use the tractor bundle

E B

A = EA ⊗ E
B
=

Ea
+
��

E b
a ⊕ E
+
��
Ea

,(5.4)

where the trace-free part of E B

A is isomorphic to the projective adjoint
tractor bundle. Analogously to equation (3.15), we define the projec-
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tively invariant differential operator

(5.5)

DA
B : Eb1···bs(w)⊗EC···D

E···F −→ Eb1···bs(w)⊗EAB ⊗EC···D
E···F ,

as follows. Acting on f ∈ E(w) and φa ∈ Ea, DA
B is given by

DA
Bf =

 0
0 |wf
∇af

 , DA
Bφc =

 0
δ b
cφa | − φc

∇aφc

 ,(5.6)

for an affine connection ∇ in the projective class. The formula for
DA

Bf , f ∈ EC···D
E···F , is formally the same as for f ∈ E(0), where we

interpret ∇ as the coupled affine-tractor connection. Then, we extend
DA

B to the general case by the Leibniz rule.

Henceforth, we assume the manifold M is projectively flat, i.e., the
projective Weyl tensor vanishes. In particular, this means that the
tractor connection ∇ is flat.

Let F : Γ(U1)→ Γ(U2) be a projectively invariant linear differential
operator, acting between tensor bundles U1 and U2. Then, F can be
written in terms of an affine connection ∇. Regarding ∇ in the formula
for F as the coupled affine tractor connection, we obtain the operator

F∇ : Γ(A∗ ⊗ U1) −→ Γ(A∗ ⊗ U2).

Adapting the proof of Theorem 3.2 to the projective setting, we obtain
the analogue of Corollary 3.3.

Theorem 5.1. Let F : Γ(U1) → Γ(U2) be a projectively invariant
linear differential operator over a projectively flat manifold. Then, DA

B

commutes with F , i.e.,

D ◦ F = F∇ ◦ D : Γ(U1) −→ EAB ⊗ Γ(U2).

As an example, consider the projectively invariant differential oper-
ator

(5.7) ∇(a∇b) + Pab : E(1) −→ E(ab)(1),
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see e.g., [4]. Projective invariance and Theorem 5.1 imply

D B1

A1
· · ·D Bℓ

Aℓ

(
∇(a∇b) + Pab

)
(5.8)

=
(
∇(a∇b) + Pab

)
D B1

A1
· · ·D Bℓ

Aℓ
,

where ∇ on the right side denotes the coupled affine tractor connection.

5.2. Killing tensors in projective geometry. Let ℓ ∈ N. We shall
focus on the PDE

∇(a0
ka1···aℓ) = 0, ka1···aℓ

∈ E(a1···aℓ)(2ℓ),(5.9)

which is projectively invariant [9].

Setting EA = , we have E [AB] = , and we set

�ℓE [AB] :=

ℓ︷ ︸︸ ︷
· · ·
· · · SℓE [AB].

There exists a linear map

Π
(ℓ)

: Ea1···aℓ
(2ℓ) −→ �ℓ E [AB],

characterized by curved Casimir operators, see [6], which takes the
form

(5.10) Π
(ℓ)

: ka1···aℓ
7−→ K [A1B1]···[AℓBℓ] =

ka1···aℓ

+
��
...

∈
Ea1···aℓ

(2ℓ)
+
��
...

and such that ka1···aℓ
is a solution of equation (5.9) if and only if

K [A1B1]···[AℓBℓ] is ∇-parallel. Note that the unspecified terms (indi-

cated by vertical dots) of K [A1B1]···[AℓBℓ] are differential in ka1···aℓ
, i.e.,

the map Π
(ℓ)

is given by a differential operator. In fact, this is an
example of a splitting operator, see e.g., [6] for details. It yields an
analog of Theorem 4.9.
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Proposition 5.2. [2]. Let (M, [∇]) be a projectively flat manifold.

The map Π
(ℓ)

induces a bijective correspondence

(5.11) {solutions ka1···aℓ
of equation (5.9)}
1−1←→ {∇− parallel sections of �ℓ E [AB]}.

If the Levi-Civita connection of a metric g pertains to the projective
class [∇], the latter proposition gives a description of Killing tensors
for the metric g via the map

(5.12) V (a1···aℓ) 7−→ ga1b1 · · · ga1b1V
(a1···aℓ) ∈ E(b1···bℓ)(2ℓ).

Indeed, this map gives a bijection between Killing ℓ-tensors and solu-
tions of equation (5.9).

5.3. Construction of symmetries. Now, assume that there is a
Levi-Civita connection ∇ in the projective class [∇], such that the
associated metric gab has constant curvature, i.e.,

Rabcd =
4

n
Jgc[agb]d

with J parallel. Then, a short computation based on equations (3.4)

and (5.2) shows that ∇ on E [AB]
, respectively, E [AB], agrees with the

Riemannian tractor connection ∇ on EA, respectively, EA. Moreover,
the tractor section

(5.13) hAB =

gab0
2
nJ

 ∈ E(AB)
=

E(ab)(−2)
+
��

Ea(−2)
+
��
E(−2)

∼=

E(ab)
⊕
Ea
⊕
E

is parallel, cf., [11]. The isomorphism ∼= corresponds to the choice
of connection ∇ ∈ [∇], and in particular, trivializes density bundles.
Here, gab is the inverse of gab and

J = gabPab =
1

2
gabPab.

Summarizing, we shall consider the Riemannian manifold (M, g) as the
corresponding locally flat projective manifold (M, [∇]) with the distin-
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guished parallel section hAB . This is an example of holonomy reduction
of Cartan connections [3] for the projective Cartan connection associ-
ated to (M, [∇]).

For J ̸= 0, note that hAB is non-degenerate, hence, a tractor metric.
A direct computation gives the next display and Lemma 5.3:

(5.14) hP [ADP
B]gab = hP [ADP

B]gab = 0.

Lemma 5.3. The explicit formula for the differential operator

hP [ADP
B] : E(w) −→ E [AB](w),

written in terms of the Levi-Civita connection ∇, does not depend on
w ∈ R.

We are now ready to construct the commuting symmetries of the
Laplace operator. The metric g allows for identification of a tensor
V a1···aℓ ∈ E(a1···aℓ) with an element in E(a1···aℓ)(2ℓ), see equation (5.12),

and we denote by V ∈ �ℓ E [AB] the corresponding tractor, obtained via

the map Π ℓ, see equation (5.10). We consider the operators

DV
:= hA1C1 · · ·hAℓCℓV A1B1···AℓBℓ

DC1

B1 · · ·DCℓ

Bℓ ,(5.15)

acting on any tensor-tractor bundle U .

Lemma 5.4. The principal symbol of the differential operator D V
is

the symmetric ℓ-tensor V .

Proof. The proof is analogous to the proof of Theorem 4.11. Writing
tractor sections in vertical notation, see equation (5.3), we can refer
to their “top” or “bottom” parts. The “top” part of V A1B1···AℓBℓ

is
ga1b1 · · · ga1b1V

(a1···aℓ), cf., equations (5.10) and (5.12). On the other
hand, elementary computation using equations (5.6) and (5.13) shows
that the bottom part (and the leading term) of hC[ADC

B]f is equal to
gab∇bf for any section f of a tensor bundle. Therefore, the bottom
part of the composition

hC1[A1DC1

B1] · · ·hCℓ[AℓDCℓ

Bℓ]f

is equal to
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ga1b1∇b1 · · · gaℓbℓ∇bℓf.

This completes the proof of Lemma 5.4. �

Theorem 5.5. Let (M, g) be a pseudo-Riemannian manifold of con-
stant curvature, with Levi-Civita connection ∇, and let (M, [∇]) be the
corresponding locally flat projective manifold. Then, if k is a Killing
ℓ-tensor, the operator

Dk
: E −→ E ,

defined by equation (5.15), is a commuting symmetry of the Laplace
operator ∆ = gab∇a∇b.

Proof. Let K ∈ �ℓE [AB] be the parallel tractor associated to k via
the composition of maps (5.11) and (5.12). Since the tractor metric h
is also parallel with respect to the projective tractor connection ∇, it
follows from equations (5.8) and (5.14) that

Dk(
gab(∇(a∇b) + Pab)

)
=

(
gab(∇(a∇b) + Pab)

)
Dk

: E(+1) −→ E(−1),

where we consider gab ∈ E(ab)(−2). The operator

Dk
: E(w) −→ E(w),

expressed in terms of ∇, does not depend on w ∈ R by Lemma 5.3.
Observing that gabPab is parallel for ∇, the theorem follows. �

Remark 5.6. Projectively invariant overdetermined operators, as the
operator defined in equation (5.7), are discussed in [9]. They allow
for analogous construction of symmetries for other Riemannian linear
differential operators

F : Γ(U) −→ Γ(U).
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