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JORDAN σ-DERIVATIONS OF PRIME RINGS

TSIU-KWEN LEE

ABSTRACT. Let R be a noncommutative prime ring
with extended centroid C and with Qmr(R) its maximal
right ring of quotients. From the viewpoint of functional
identities, we give a complete characterization of Jordan σ-
derivations of R with σ an epimorphism. Precisely, given
such a Jordan σ-derivation δ : R → Qmr(R), it is proved that
either δ is a σ-derivation or a derivation d : R → Qmr(R) and
a unit u ∈ Qmr(R) exist such that δ(x) = ud(x) + µ(x)u for
all x ∈ R, where µ : R → C is an additive map satisfying
µ(x2) = 0 for all x ∈ R. In addition, if σ is an X-outer
automorphism, then δ is always a σ-derivation.

1. Introduction. Throughout this paper, R is always a prime ring
with Qmr(R) the maximal right ring of quotients of R and with Qs(R)
the symmetric Martindale ring of quotients of R. It is known that
R ⊆ Qs(R) ⊆ Qmr(R). The overrings Qs(R) and Qmr(R) of R are still
prime rings with the same center, denoted by C, which is a field and is
called the extended centroid of R. We refer the reader to [3] for details.

An additive map d : R → R is called a derivation, respectively Jordan
derivation, if d(xy) = d(x)y+xd(y) for all x, y ∈ R, respectively d(x2) =
d(x)x + xd(x) for all x ∈ R. In 1957, Herstein proved that, if R is a
prime ring of characteristic not 2, then every Jordan derivation of R is a
derivation, see [6]. We refer the reader to the references given in [8] for
more related results. In a recent paper [9] the author and Lin studied
a slightly generalized definition concerning (Jordan) derivations. Let
R ⊆ S be rings. An additive map δ : R → S is called a derivation,
respectively Jordan derivation, if δ(xy) = δ(x)y+xδ(y) for all x, y ∈ R,
respectively δ(x2) = δ(x)x + xδ(x) for all x ∈ R. It follows from [6,
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Theorem 3.1], [4, Corollary 6.9] and [9, Theorems 1.2, 2.1] that Jordan
derivations of a given prime ring are completely characterized as, see
[9, Theorem 2.2]: If an additive map δ : R → Qmr(R) is a Jordan
derivation, then a derivation d : R → Qmr(R) and an additive map
µ : R → C exist such that δ = d+ µ and µ(x2) = 0 for all x ∈ R. The
converse is true if the characteristic of R is 2.

Motivated by [5, 6, 9], in [8], the author studied “Jordan σ-
derivations” and “Jordan semiderivations” of prime rings from the
viewpoint of functional identities. Clearly, the key point of these results
is to determine the structure of Jordan σ-derivations.

Definition. Let σ be an endomorphism of R. An additive map δ : R →
Qmr(R) is called a σ-derivation, respectively Jordan σ-derivation, with
associated endomorphism σ if δ(xy) = δ(x)y+σ(x)δ(y) for all x, y ∈ R,
respectively δ(x2) = δ(x)x+ σ(x)δ(x) for all x ∈ R.

A Jordan σ-derivation δ : R → Qmr(R) is called X-inner if there
exists an element a ∈ Qmr(R) such that δ(x) = ax − σ(x)a for all
x ∈ R. Otherwise, δ is called X-outer. When σ = 1R, the identity map
of R, a (Jordan) σ-derivation is merely a (Jordan) derivation. Hence,
Jordan 1R-derivations of R have been completely characterized, see [6,
Theorem 3.1], [9, Theorem 1.1] if charR ̸= 2 and [9, Theorem 2.2]
if charR = 2. In [8], the author characterize Jordan σ-derivations
δ : R → Qmr(R) with σ an epimorphism if R is not a GPI-ring. In this
paper, we will obtain the same conclusion without the extra assumption
that R is not a GPI-ring, see [8, Question 2.8]. As a consequence, if
σ is an X-outer automorphism, then every Jordan σ-derivation is a
σ-derivation. The key point is to solve certain functional identities of
prime non-PI rings. Recall that an automorphsim σ of R is called X-
inner if there exists a unit u ∈ Qs(R) such that σ(x) = uxu−1 for all
x ∈ R. Otherwise, it is called X-outer.

2. Main results. Our goal of the paper is to characterize Jordan
σ-derivations of prime rings. The main result is the following.

Theorem 2.1. Let R be a noncommutative prime ring with an epi-
morphism σ, and let δ : R → Qmr(R) be a Jordan σ-derivation. Then,
either δ is a σ-derivation or a derivation d : R → Qmr(R) and a unit
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u ∈ Qs(R) exist such that δ(x) = ud(x) + µ(x)u for all x ∈ R, where
µ : R → C is an additive map satisfying µ(x2) = 0 for all x ∈ R.

First, we deal with the case of prime PI-rings. For a prime PI-ring
R, it is known that Qmr(R) = RC.

Theorem 2.2. Let R be a noncommutative prime PI-ring with an
epimorphism σ, and let δ : R → RC be a Jordan σ-derivation. Then,
either δ is a σ-derivation or a derivation d : R → RC and a unit
u ∈ RC exist such that δ(x) = ud(x) + µ(x)u for all x ∈ R, where
µ : R → C is an additive map satisfying µ(x2) = 0 for all x ∈ R.

Proof. By [8, Corollary 2.3], if charR ̸= 2 then δ is a σ-derivation.
Suppose that charR = 2. Let x, y ∈ R. Then xy + yx = [x, y].
Linearizing δ(x2) = δ(x)x+ σ(x)δ(x), we see that

(2.1) δ([x, y]) = δ(x)y + δ(y)x+ σ(x)δ(y) + σ(y)δ(x).

Since R is a prime PI-ring, it follows from [13, Theorem 2] that Z(R),
the center of R, is nonzero. Let 0 ̸= β ∈ Z(R). Replacing y by β in
(2.1), we see that

(β + σ(β))δ(x) = δ(β)x+ σ(x)δ(β).

Case 1. There is a β ∈ Z(R) such that σ(β) ̸= β. Since σ is an
epimorphism, σ(β) ∈ Z(R). Set a := (β + σ(β))−1δ(β) ∈ RC. Then
δ(x) = ax− σ(x)a for all x ∈ R, that is, δ is an X-inner σ-derivation.

Case 2. σ(β) = β for all β ∈ Z(R). Then σ can be uniquely extended
to an epimorphism of RC, denoted by σ̃, defined by σ̃(x/β) = (σ(x))/β
for x ∈ R and 0 ̸= β ∈ Z(R). Since RC is a finite-dimensional central
simple C-algebra, see [13], and σ̃(α) = α for all α ∈ C, σ̃ is a C-
linear automorphsim of RC. The Noether-Skolem theorem asserts that
there exists a unit u ∈ RC such that σ̃(x) = uxu−1 for x ∈ RC. Hence,
δ(x2) = δ(x)x+uxu−1δ(x) for all x ∈ R. Clearly, the map x 7→ u−1δ(x)
for x ∈ R is a Jordan derivation of R into RC. In view of [9, Theorem
2.2], a derivation d : R → RC and an additive map µ : R → C exist
such that u−1δ(x) = d(x) + µ(x) for all x ∈ R, where µ(x2) = 0 for all
x ∈ R. So δ(x) = ud(x) + µ(x)u for all x ∈ R, as asserted. �
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By Theorem 2.2 together with [8, Theorem 2.7], in order to prove
Theorem 2.1, we have to handle the case where R is a prime GPI-ring
but is not a PI-ring. To prove the case, we need a result concerning
functional identities.

We first introduce some notation. For any maps f : Rr−1 → Qmr(R)
and g : Rr−2 → Qmr(R) we write

f i(xr) = f(x1, . . . , xi−1, xi+1, . . . , xr)

and

gij(xr) = gji(xr) = g(x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xr),

where xr = (x1, . . . , xr) ∈ Rr and 1 ≤ i < j ≤ r.

We are now ready to state the key result, which will be used in the
proof of Theorem 2.1 and is also interesting in itself. Although it has
a more general form, we prove only the following for our purpose.

Theorem 2.3. Let R be a prime ring, which is not a PI-ring,
and let σ be an X-outer automorphism of R. Further, suppose that
Ei1, Fℓs : R

r−1 → Qmr(R) are (r − 1)-additive maps, where 1 ≤ i,
ℓ ≤ r and s = 1, 2. Suppose that

(2.2)

r∑
i=1

Ei
i1(xr)xi +

r∑
ℓ=1

xℓF
ℓ
ℓ1(xr) +

r∑
ℓ=1

xσ
ℓ F

ℓ
ℓ2(xr) ∈ C

for all xr ∈ Rr. Then there exist a nonzero ideal I of R, (r−2)-additive
maps pi1ℓs : I

r−2 → Qmr(R) and (r− 1)-additive maps λi1 : I
r−1 → C,

where 1 ≤ i, ℓ ≤ r and s = 1, 2, such that

Ei
i1(xr) =

∑
1≤ℓ≤r
ℓ̸=i

xℓp
iℓ
i1ℓ1(xr) +

∑
1≤ℓ≤r
ℓ̸=i

xσ
ℓ p

iℓ
i1ℓ2(xr) + λi

i1(xr),

F ℓ
ℓ1(xr) = −

∑
1≤i≤r
i ̸=ℓ

piℓi1ℓ1(xr)xi − λℓ
ℓ1(xr)

and
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F ℓ
ℓ2(xr) = −

∑
1≤i≤r
i ̸=ℓ

piℓi1ℓ2(xr)xi

for all xr ∈ Ir, where 1 ≤ i, ℓ ≤ r.

The proof of Theorem 2.3 will be given in the next section. A right
ideal ρ of R is called dense if ρ is a dense submodule of RR, that is,
given x, y ∈ R with y ̸= 0, there exists an element r ∈ R such that
xr ∈ ρ and yr ̸= 0.

Lemma 2.4. Let σ be an automorphism of R. Suppose that δ : R →
Qmr(R) is a σ-derivation. Then δ can be uniquely extended to a σ-
derivation from Qmr(R) to itself.

Proof. It is known that σ can be uniquely extended to an automor-
phism of Qmr(R), denoted by σ also. Let q ∈ Qmr(R). Choose a dense
right ideal ρ of R such that qρ ⊆ R. Let f : ρ → Qmr(R) be the map
defined by f(x) = δ(qx) − σ(q)δ(x) for x ∈ ρ. We claim that f is a
right R-module map. Indeed, let x ∈ ρ and r ∈ R. Then

f(xr) = δ(qxr)− σ(q)δ(xr)
=

(
δ(qx)r + σ(qx)δ(r)

)
− σ(q)

(
δ(x)r + σ(x)δ(r)

)
=

(
δ(qx)− σ(q)δ(x)

)
r

= f(x)r,

as claimed. Note that ρQmr(R) is a dense right ideal of Qmr(R) by
the fact that ρ is a dense right ideal of R. Moreover, R is also a dense
submodule of Qmr(R)R. Thus, f can be uniquely extended to a right

Qmr(R)-module map from ρQmr(R) into Qmr(R), denoted by f̃ . Since

Qmr(Qmr(R)) = Qmr(R), f̃ : ρQmr(R) → Qmr(R) can be realized as

an element of Qmr(R). We define such an element as δ̃(q), that is,

f̃(y) = δ̃(q)y for y ∈ ρQmr(R). Thus, δ̃ : Qmr(R) → Qmr(R) and

δ̃(x) = δ(x) for x ∈ R. It is routine to check that δ̃ is a σ-derivation.
Clearly, such an extension is unique. �

Lemma 2.5 ([8, Lemma 2.6]). Suppose that R is not a PI-ring,
charR = 2, and let σ be an endomorphism of R. Let δ,A,B : R →
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Qmr(R) be additive maps satisfying

δ(xy) + σ(x)δ(y) = A(y)x+B(x)y

for all x, y ∈ R. Then B is a σ-derivation. In addition, if σ is an
X-outer automorphism, then A = 0.

For the next lemma, we refer the reader to the proof of [8, Case 2,
Theorem 2.7].

Lemma 2.6. Let R be a noncommutative prime ring with σ an X-outer
automorphism. If R is not a GPI-ring, then every Jordan σ-derivation
from R into Qmr(R) is a σ-derivation.

Theorem 2.7. Let R be a noncommutative prime ring with σ an X-
outer automorphism. Then, every Jordan σ-derivation from R into
Qmr(R) is a σ-derivation.

Proof. By Theorem 2.2 and Lemma 2.6, we may assume that R
is a prime GPI-ring but is not a PI-ring. By [8, Corollary 2.3], we
may assume further that charR = 2. Let x, y, z ∈ R. Then, by
the identity [xy, z] + [zx, y] + [yz, x] = 0 and using (2.1) to expand
δ([xy, z]) + δ([zx, y]) + δ([yz, x]), we see that

(2.3)

(
δ(yz) + δ(y)z

)
x+

(
δ(zx) + δ(z)x

)
y +

(
δ(xy) + δ(x)y

)
z

= σ(x)
(
δ(yz) + σ(y)δ(z)

)
+ σ(y)

(
δ(zx) + σ(z)δ(x)

)
+ σ(z)

(
δ(xy) + σ(x)δ(y)

)
for all x, y, z ∈ R. In view of Theorem 2.3, a nonzero ideal I of R and
additive maps A,B : I → Qmr(R) exist such that

(2.4) δ(xy) + σ(x)δ(y) = A(y)x+B(x)y

for all x, y ∈ I. Note that Qmr(I) = Qmr(R). It follows from
Lemma 2.5 that A = 0 on I and B is a σ-derivation on I.

Replacing y with x in (2.4) and noting that δ is a Jordan σ-
derivation, we see that

δ(x)x = δ(x2) + σ(x)δ(x) = B(x)x,
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and so, (
B(x) + δ(x)

)
x = 0 for all x ∈ I.

Set h := B + δ. Then h(x)y = h(y)x for all x, y ∈ I. Thus,
h(x)yz = h(y)xz = h(xz)y for all x, y, z ∈ I. Since R is not
commutative, neither is I. Thus, a z ∈ I exists such that 1 and z
are linearly independent over C. It follows from [11, Theorem 2(a)]
that h(x) = 0 for all x ∈ I, that is, B = δ on I. Since B is a σ-derivation
on I, so is δ on I. Note that Qmr(I) = Qmr(R). In view of Lemma 2.4,

B can be uniquely extended to a σ-derivation B̃ : R → Qmr(R).

We claim that δ = B̃ on R. This implies that δ is itself a σ-

derivation. Let g := δ − B̃. Then g : R → Qmr(R) is also a Jordan
σ-derivation and g(I) = 0. Our aim is to show that g = 0. Let x ∈ R
and w ∈ I. Then,

g(xw + wx) = g(x)w + g(w)x+ σ(x)g(w) + σ(w)g(x)

= g(x)w + σ(w)g(x),

implying that g(x)w = σ(w)g(x) as g(xw + wx) = 0 = g(w). Since σ
is X-outer, it follows that g(x) = 0 for all x ∈ R, as asserted. �

Proof of Theorem 2.1. By [8, Theorem 2.4], if σ is not injective,
then δ is an X-inner σ-derivation. Thus, we may assume further that
σ is an automorphism since σ is an epimorphism of R and, moreover,
charR = 2, see [8, Corollary 2.3].

In view of Theorem 2.7 we are done if σ is an X-outer automorphism
of R. Thus, we may assume that σ is X-inner. There exists a unit
u ∈ Qs(R) such that σ(x) = uxu−1 for all x ∈ R. As in the proof
of Theorem 2.2, a derivation d : R → Qmr(R) and an additive map
µ : R → C exist such that u−1δ(x) = d(x) + µ(x) for x ∈ R, where
µ(x2) = 0 for x ∈ R, that is, δ(x) = ud(x) + µ(x)u for all x ∈ R, as
asserted. �

3. Proof of Theorem 2.3. In order to prove Theorem 2.3 we need
the following result, which is a special case of [1, Theorem 1.2].

Theorem 3.1. Let R be a prime ring, which is not a GPI-ring,
and let σ be an X-outer automorphism of R. Further, suppose that
Eij , Fℓs : R

r−1 → Qmr(R) are (r − 1)-additive maps, where 1 ≤ i,
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ℓ ≤ r and 1 ≤ j, s ≤ 2. Suppose that

r∑
i=1

Ei
i1(xr)xi +

r∑
i=1

Ei
i2(xr)x

σ
i +

r∑
ℓ=1

xℓF
ℓ
ℓ1(xr) +

r∑
ℓ=1

xσ
ℓ F

ℓ
ℓ2(xr) ∈ V

for all xr ∈ Rr, where V is a finite dimensional C-subspace of Qmr(R).
Then, there exist unique (r − 2)-additive maps pijℓs : R

r−2 → Qmr(R)
and (r − 1)-additive maps λij : R

r−1 → C, where 1 ≤ i, ℓ ≤ r and
1 ≤ j, s ≤ 2, such that

Ei
ij(xr) =

∑
1≤ℓ≤r
ℓ ̸=i

xℓp
iℓ
ijℓ1(xr) +

∑
1≤ℓ≤r
ℓ̸=i

xσ
ℓ p

iℓ
ijℓ2(xr) + λi

ij(xr)

and

F ℓ
ℓs(xr) = −

∑
1≤i≤r
i ̸=ℓ

piℓi1ℓs(xr)xi −
∑

1≤i≤r
i ̸=ℓ

piℓi2ℓs(xr)x
σ
i − λℓ

ℓs(xr)

for all xr ∈ Rr, where 1 ≤ i, ℓ ≤ r and 1 ≤ j, s ≤ 2.

From now on, we assume that R is a prime ring, which is not a
PI-ring, and let σ : R → R be an X-outer automorphism. By I ▹ R, we
mean that I is an ideal of R.

To begin, we need the following, see [7, Proof of Proposition 2], [12,
Theorem 3.13] or [10, Theorem 1.1].

Theorem 3.2 ([7], Kharchenko). Let R be a prime GPI-ring, and let
τ be an automorphism of R. Suppose that τ(β) = β for all β ∈ C.
Then τ is X-inner.

For x ∈ R, we define deg(x) to be the minimal algebraic degree
over C if x is algebraic over C and deg(x) = ∞ otherwise. For a subset
T of R, we define deg(T ) = sup{deg(t) | t ∈ T}. It is known that
deg(R) = ∞ if R is not a PI-ring. For any map f : Rr−1 → Qmr(R)
and t ̸= i, we let

f i(xr; {y}t) = f(z1, . . . , zi−1, zi+1, . . . , zr),

where zj = xj if j ̸= t and zt = y.
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Lemma 3.3. Suppose that Ei, Fℓ : R
r−1 → Qmr(R) are (r−1)-additive

maps satisfying

(3.1)
r∑

i=1

xiE
i
i(xr) +

r∑
ℓ=1

xσ
ℓ F

ℓ
ℓ (xr) ∈ C

for all xr ∈ Rr. Then there exists a nonzero ideal I of R such that
Ei

i = 0 = F ℓ
ℓ on Ir for 1 ≤ i, ℓ ≤ r.

Proof. If R is not a GPI-ring, it follows from Theorem 3.1 that
Ei

i = 0 = F ℓ
ℓ on Rr for 1 ≤ i, ℓ ≤ r. The lemma is proved.

Suppose now that R is a GPI-ring but not a PI-ring. Let A :=
{1, 2, . . . , r} and

L := {ℓ ∈ A | there exists 0 ̸= J ▹ R such that F ℓ
ℓ = 0 on Jr}.

We proceed with the proof by induction on r−|L|. First, suppose that
L = A. Then, F ℓ

ℓ = 0 on Jr for 1 ≤ ℓ ≤ r, where J is a nonzero ideal
of R. Thus,

r∑
i=1

xiE
i
i(xr) ∈ C

for all xr ∈ Jr. Note that Qmr(J) = Qmr(R) and deg(R) = ∞. In
view of [2, Theorem 2.4], Ei

i = 0 on Jr for 1 ≤ i ≤ r, as asserted.

Next, suppose that r − |L| ≥ 1. We may assume without loss of
generality that r /∈ L, that is, F r

r ̸= 0 on Ur for any nonzero ideal
U of R. Since σ is X-outer and R is a GPI-ring, it follows from
Theorem 3.2 that σ(β) ̸= β for some β ∈ C. Choose a nonzero ideal K
satisfying βK ⊆ R. Then, by (3.1), we have

(3.2)
r−1∑
i=1

xi

(
Ei

i(xr; {βxr}r)− βEi
i(xr)

)
+

r−1∑
ℓ=1

xσ
ℓ

(
F ℓ
ℓ (xr; {βxr}r)− βF ℓ

ℓ (xr)
)

+ xσ
r (σ(β)− β)F r

r (xr) ∈ C

for all xr ∈ Kr. Choose a nonzero ideal K1 of R contained in K such
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that Kσ−1

1 ⊆ K. Then, by (3.2), we have

(3.3)

r−1∑
i=1

xiẼ
i
i(xr) + xrF

r
r (xr) +

r−1∑
ℓ=1

xσ
ℓ F̃

ℓ
ℓ (xr) ∈ C

for all xr ∈ Kr
1 , where

Ẽi
i(xr) = (σ(β)− β)

−1(
Ei

i(xr; {βxσ−1

r }r)− βEi
i(xr; {xσ−1

r }r)
)

and

F̃ ℓ
ℓ (xr) = (σ(β)− β)

−1(
F ℓ
ℓ (xr; {βxσ−1

r }r)− βF ℓ
ℓ (xr; {xσ−1

r }r)
)
.

Set

L1 := {ℓ | 1 ≤ ℓ ≤ r−1 there exists 0 ̸= J ▹ R such that F̃ ℓ
ℓ = 0 on Jr}.

Let ℓ ∈ {1, . . . , r− 1} be such that ℓ ∈ L. Then, there exists a nonzero
ideal N of R such that F ℓ

ℓ = 0 on Nr. Clearly, there exists a nonzero

ideal M of R contained in N such that F̃ ℓ
ℓ = 0 on Mr, that is, ℓ ∈ L1.

Since r /∈ L, we have |L| ≤ |L1|, and so, r−|L| ≥ r−|L1| > r−1−|L1|.
By the inductive hypothesis, it follows from (3.2) that F r

r = 0 on W r,
where W is a nonzero ideal of R. This is a contradiction. �

Proof of Theorem 2.3. We divide the proof into two cases.

Case 1. R is not a GPI-ring. We let Ei2 = 0 for 1 ≤ i ≤ r, where
Ei2 : R

r−1 → Qmr(R) and rewrite (2.2) as

(3.4)
r∑

i=1

Ei
i1(xr)xi +

r∑
i=1

Ei
i2(xr)x

σ
i +

r∑
ℓ=1

xℓF
ℓ
ℓ1(xr)

+
r∑

ℓ=1

xσ
ℓ F

ℓ
ℓ2(xr) ∈ C

for all xr ∈ Rr. By Theorem 3.1, there exist unique additive maps
pijℓs : R

r−2 → Qmr(R) and λis : R
r−1 → C, 1 ≤ i, ℓ ≤ r and s = 1, 2,

such that

(3.5) Ei
ij(xr) =

∑
1≤ℓ≤r
ℓ ̸=i

xℓp
iℓ
ijℓ1(xr) +

∑
1≤ℓ≤r
ℓ̸=i

xσ
ℓ p

iℓ
ijℓ2(xr) + λi

ij(xr)
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and

(3.6) F ℓ
ℓs(xr) = −

∑
1≤i≤r
i ̸=ℓ

piℓi1ℓs(xr)xi −
∑

1≤i≤r
i ̸=ℓ

piℓi2ℓs(xr)x
σ
i − λℓ

ℓs(xr)

for all xr ∈ Rr, where 1 ≤ i, ℓ ≤ r and 1 ≤ j, s ≤ 2. Since Ei2 = 0 for
1 ≤ i ≤ r, it follows from (3.5) with j = 2 that∑

1≤ℓ≤r
ℓ̸=i

xℓp
iℓ
i2ℓ1(xr) +

∑
1≤ℓ≤r
ℓ ̸=i

xσ
ℓ p

iℓ
i2ℓ2(xr) + λi

i2(xr) = 0.

But, R is not a PI-ring. By Lemma 3.3, there exists a nonzero ideal I
of R such that

piℓi2ℓ1 = 0 = piℓi2ℓ2 and λi
i2 = 0 on Ir,

where 1 ≤ i, ℓ ≤ r with i ̸= ℓ. Hence, (3.6) is reduced to

F ℓ
ℓs(xr) = −

∑
1≤i≤r
i ̸=ℓ

piℓi1ℓs(xr)xi − λℓ
ℓs(xr)

for all xr ∈ Ir, where 1 ≤ ℓ ≤ r and 1 ≤ s ≤ 2, as asserted.

Case 2. R is a GPI-ring. Let A := {1, 2, . . . , r} and

L := {ℓ ∈ A | there exists 0 ̸= J ▹ R such that F ℓ
ℓ2 = 0 on Jr}.

We proceed with the proof by induction on r − |L|. Suppose first that
L = A. Then, F ℓ

ℓ2(xr) = 0 for all xr ∈ Ur for 1 ≤ ℓ ≤ r, where U is a
nonzero ideal of R. Thus, (2.2) is reduced to

r∑
i=1

Ei
i1(xr)xi +

r∑
ℓ=1

xℓF
ℓ
ℓ1(xr) ∈ C

for all xr ∈ Ur. Note that Qmr(U) = Qmr(R). Since R is not a PI-ring,
deg(R) = ∞. In view of [2, Corollary 2.11], there exist additive maps
pi1ℓ1 : R

r−2 → Qmr(R) and λi1 : R
r−1 → C, 1 ≤ i, ℓ ≤ r, such that

Ei
i1(xr) =

∑
1≤ℓ≤r
ℓ̸=i

xℓp
iℓ
i1ℓ1(xr) + λi

i1(xr)
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and

F ℓ
ℓ1(xr) = −

∑
1≤i≤r
i ̸=ℓ

piℓi1ℓ1(xr)xi − λℓ
ℓ1(xr)

for all xr ∈ Rr, where 1 ≤ i, ℓ ≤ r, as asserted.

Suppose next that r − |L| ≥ 1. We may assume without loss
of generality that r /∈ L, that is, F r

r2 ̸= 0 on Ur for any nonzero
ideal U of R. Since σ is X-outer and R is a GPI-ring, it follows from
Theorem 3.2 that σ(β) ̸= β for some β ∈ C. Choose a nonzero ideal J
of R such that βJ ⊆ R. By (2.2), we have

r−1∑
i=1

xi

(
Ei

i(xr; {βxr}r)− βEi
i(xr)

)
+

r−1∑
ℓ=1

xℓ

(
F ℓ
ℓ1(xr; {βxr}r)− βF ℓ

ℓ1(xr)
)

+
r−1∑
ℓ=1

xσ
ℓ

(
F ℓ
ℓ2(xr; {βxr}r)− βF ℓ

ℓ2(xr)
)

+ xσ
r (σ(β)− β)F r

r2(xr) ∈ C

for all xr ∈ Jr. Then,

(3.7)

r−1∑
i=1

xiẼ
i
i(xr) +

r−1∑
ℓ=1

xℓF̃
ℓ
ℓ1(xr) +

r−1∑
ℓ=1

xσ
ℓ F̃

ℓ
ℓ2(xr) + xσ

rF
r
r2(xr) ∈ C

for all xr ∈ Jr, where

Ẽi
i1(xr) = (σ(β)− β)

−1(
Ei

i(xr; {βxr}r)− βEi
i(xr)

)
,

F̃ ℓ
ℓ1(xr) = (σ(β)− β)

−1(
F ℓ
ℓ1(xr; {βxr}r)− βF ℓ

ℓ1(xr)
)
,

and

F̃ ℓ
ℓ2(xr) = (σ(β)− β)

−1(
F ℓ
ℓ2(xr; {βxr}r)− βF ℓ

ℓ2(xr)
)
.

Choose a nonzero ideal J1 of R contained in J such that Jσ−1

1 ⊆ J . It
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follows from (3.7) that

r−1∑
i=1

xiẼ
i
i(xr; {xσ−1

r }r) +
r−1∑
ℓ=1

xℓF̃
ℓ
ℓ1(xr; {xσ−1

r }r) + xrF
r
r2(xr)(3.8)

+

r−1∑
ℓ=1

xσ
ℓ F̃

ℓ
ℓ2(xr; {xσ−1

r }r) ∈ C

for all xr ∈ Jr
1 . Set Hℓ

ℓ2(xr) := F̃ ℓ
ℓ2(xr; {xσ−1

r }r) for xr ∈ Jr
1 ,

1 ≤ ℓ ≤ r − 1 and

L1 :={ℓ |1≤ℓ ≤ r−1, there exists 0 ̸=J ▹ R such that Hℓ
ℓ2= 0 on Jr}.

Let ℓ ∈ {1, . . . , r− 1} be such that ℓ ∈ L. Then, there exists a nonzero
ideal N of R such that F ℓ

ℓ = 0 on Nr. Clearly, there exists a nonzero
ideal M of R contained in N such that Hℓ

ℓ2 = 0 on Mr, that is, ℓ ∈ L1.
Since r /∈ L, we have |L| ≤ |L1|, and so, r−|L| ≥ r−|L1| > r−1−|L1|.

By the inductive hypothesis, the F r
r2 in (3.8) can be solved, that is,

there exists a nonzero ideal J2 of R contained in J1, (r − 2)-additive
maps pi1ℓ2 : J

r−2
2 → Qmr(R) such that

(3.9) F r
r2(xr) = −

∑
1≤i≤r
i ̸=r

piri1r2(xr)xi

for all xr ∈ Jr
2 . It follows from (2.2) together with (3.9) that

(3.10)

r−1∑
i=1

(
Ei

i1(xr)− xσ
r p

ir
i1r2(xr)

)
xi + Er

r1(xr)xr

+

r∑
ℓ=1

xℓF
ℓ
ℓ1(xr) +

r−1∑
ℓ=1

xσ
ℓ F

ℓ
ℓ2(xr) ∈ C

for all xr ∈ Jr
2 . By induction, these F ℓ

ℓ2 in (3.10) can be solved as
follows:

(3.11) F ℓ
ℓ2(xr) = −

∑
1≤i≤r
i ̸=ℓ

piℓi1ℓ2(xr)xi

for all xr ∈ Ir and 1 ≤ ℓ ≤ r − 1, where I is a nonzero ideal of R
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contained in J2. By (2.2), (3.9) and (3.11), we have

(3.12)
r∑

i=1

(
Ei

i1(xr)−
∑

1≤ℓ≤r
ℓ̸=i

xσ
ℓ p

iℓ
i1ℓ2(xr)

)
xi +

r∑
ℓ=1

xℓF
ℓ
ℓ1(xr) ∈ C

for all xr ∈ Ir. Note that Qmr(I) = Qmr(R). We now apply [2, Corol-
lary 2.11] to solve (3.10). Then (r − 2)-additive maps pi1ℓ1 : I

r−2 →
Qmr(R) and additive maps λi1 : I

r−1 → C exist such that

(3.13) Ei
i1(xr)−

∑
1≤ℓ≤r
ℓ ̸=i

xσ
ℓ p

iℓ
i1ℓ2(xr) =

∑
1≤ℓ≤r
ℓ ̸=i

xℓp
iℓ
i1ℓ1(xr) + λi

i1(xr)

and

(3.14) F ℓ
ℓ1(xr) = −

∑
1≤i≤r
i ̸=ℓ

piℓi1ℓ1(xr)xi − λℓ
ℓ1(xr)

for all xr ∈ Ir, where 1 ≤ i, ℓ ≤ r. The theorem is now proved by
(3.9), (3.11), (3.13) and (3.14). �
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