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ON TORSION FREE AND COTORSION
DISCRETE MODULES

EDGAR ENOCHS, J.R. GARCÍA ROZAS, LUIS OYONARTE

AND BLAS TORRECILLAS

ABSTRACT. We prove that, if F is the class of torsion
free discrete modules over a profinite group G, that is,
the class of discrete G-modules which are torsion free as
abelian groups, then (F ,F⊥) is a complete cotorsion pair.
Moreover, we find a structure theorem for torsion free
and cotorsion discrete G-modules and for finitely generated
cotorsion discrete G-modules.

1. Introduction. Recently, the flat cover conjecture in the category
of discrete G-modules for any profinite group G has been positively
answered by Enochs and Khan [6]. However, little is known about flat
discrete G-modules; thus, the information obtained from these types
of modules does not provide significant information about discrete
G-module categories. Moreover, it is not clear whether flat covers
are surjective in these categories; consequently, there has been little
progress on the development of a homology theory using flat objects.

Thus, it is of interest to find another class of objects that makes the
construction of a nice theory of homology in the category of discrete
G-modules possible for any profinite group G. In this setting, we
have found that the class of torsion free discrete G-modules (where
torsion free means abelian groups) satisfies the necessary premises to
get the nice homology theory we are pursuing; besides, it is also a very
natural class with which to work. Furthermore, whenG is finite, torsion
free (discrete) G-modules are precisely the Gorenstein flat G-modules,
which makes this theory much more attractive.
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By [5, Definition 5.1.1], given any category C and a class of objects F
closed under isomorphisms, an F-precover of an object X of C is a
morphism φ : F → X with F ∈ F such that Hom(A,F ) → Hom(A,X)
is surjective for all A ∈ F . If, in addition, any f : F → F with φ◦f = φ
is an automorphism of F , then φ is said to be an F-cover of X.

Note that:

(i) if F is the class of all injective (projective, Gorenstein injective,
etc.) objects, then F-(pre)covers are referred to as injective (pro-
jective, Gorenstein injective, etc.) (pre)covers.

(ii) F-(pre)covers may not exist, and, if they do exist, they can
be 0, for instance, the injective cover of any finite abelian group
is 0. Clearly, an F-cover of X (when it exists) is unique up to
isomorphism.

(iii) F-(pre)envelopes are defined dually.

Recall that, given a class of objects F of a category, a right F-
resolution of X is a complex

0 −→ X −→ F 0 −→ F 1 −→ · · · ,

such that the sequence

· · · −→ Hom(F 1, F ) −→ Hom(F 0, F ) −→ Hom(X,F ) −→ 0

is exact for any F of F . We label these types of complexes Hom(−,F)-
exact complexes. When I is the class of all injective objects, a right
I-resolution is simply called an injective resolution.

Note that:

(i) a right F-resolution of X is said to be minimal, provided that the
maps coker(Fn → Fn+1) → Fn+2, n ≥ −1, are all F-envelopes,
where we use F−1 = X.

(ii) Dually (minimal) left F-resolutions are defined, see [5, Defini-
tion 8.1.2].

(iii) A complete F-resolution of X is exact and a Hom(F ,−)-exact
complex

· · · −→ F1 −→ F0 −→ F 0 −→ F 1 −→ · · · ,

with each Fi, F
j ∈ F and M = ker(F 0 → F 1).
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Given any profinite group G, recall that a given G-module C is
discrete, provided that C = ∪NEOGC

N , where, for each open normal
subgroup N , the module CN denotes the fixed submodule of C under
the action of N , that is,

CN = {c ∈ C; g · c = c for all g ∈ N}.

We denote the category of discrete G-modules by DMod(G); more
information about this category may be found in [9, 11]. It is well
known that DMod(G) is a Grothendieck category so, with enough
injectives and that the set {Z[G/N ];N EO G} generates the whole
category DMod(G), [8, Proposition 4], we see that DMod(G) is actually
locally Noetherian, and then injective covers always exist, [4, Theorems
2.17, 2.18]. Moreover, the existence of Gorenstein injective covers and
envelopes has been studied [4], where it is shown that Gorenstein
injective covers and envelopes always exist whenever G has finite
virtual cohomological dimension, see [12] for a definition of the virtual
cohomological dimension of a group.

The category DMod(G) does not have enough projectives, so the
study of homological algebra must be restricted to injectives. We
then wish to find a good substitute of projectives that lead to the
development of a nice relative homological algebra in this category. As
such, a substitute we will consider is the class of torsion free discrete
modules, that is, discrete modules that are torsion free as abelian
groups. The aim of Section 2 is to prove the existence of torsion free
covers, which will be illustrated with several examples.

Section 3 is then devoted to the study of the existence of cotor-
sion envelopes (being a discrete module C cotorsion provided that
ExtDMod(G)(F,C) = 0 for every torsion free discrete F ), and the struc-
ture of cotorsion discrete modules under certain circumstances.

2. Torsion free covers. This section is devoted to proving that
torsion free covers always exist in DMod(G), where torsion free means
torsion free as an abelian group. For this, we will prove that Enochs’
reduction of the problem in the case of torsion free abelian groups, [1],
later proved in the more general case of hereditary torsion theories in R-
Mod by Teply [13], holds in our specific setting of discrete G-modules.
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Proposition 2.1. The injective envelope in DMod(G) of any torsion
free discrete G-module is torsion free.

Proof. If E(F ) were not torsion free we could find a nonzero element
x ∈ E(F ) and a nonzero integer z ∈ Z such that zx = 0. But, E(F ) is
an essential extension of F in DMod(G), so we can find r ∈ Z[G] such
that 0 ̸= rx ∈ F and then rx is torsion free. Now, zrx = rzx = 0, a
contradiction. �

Theorem 2.2. Every discrete G-module has a torsion free cover.

Proof. Direct limits of torsion free discrete modules are torsion free.
Thus, by [14, Theorem 2.2.12], it suffices to find torsion free precovers.

If we find a torsion free precover for every injective discrete module,
then every discrete module will have a torsion free precover. If we
take any discrete M , its injective envelope E(M), and a torsion free
precover F of E(M), we construct the pullback

F ′ � //

φ

��

F

��
M � // E(M)

and show that F ′ is torsion free since it is a subgroup of F . Thus, by
the pullback properties, φ is a torsion free precover of M .

However, when E is injective, to find a torsion free precover it suffices
to find an FI-precover, FI being the class of all torsion free injective
discrete modules, since, if φ : FI → E is such a precover and f : F → E
is any homomorphism with F torsion free, we can take the injective
envelope F → E(F ) and the induced homomorphism g : E(F ) → E by
the injectivity of E. Then, since E(F ) is torsion free, g factors through
h : E(F ) → FI. It is then immediate to check that the diagram

F

h

~~||
||
||
||

f

��
FI

φ
// E

is commutative and so φ is a torsion free precover.
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Thus, if E is an injective discrete module, and we let I be a set
of representatives of all indecomposable torsion free injective discrete
modules, we see that the natural map

φ :
⊕
F∈I

F (HomZ[G](F,E)) −→ E

is a torsion free precover. �

Remark 2.3. It is easy to see that, if M is a discrete Z[G]-module
with a torsion free cover F in Z[G]-Mod, then its torsion free cover in
DMod(G) is given by the discrete torsion submodule t(F ) of F .

Now we consider the abelian groups Z/(pn) (p a prime) as discrete
modules over a profinite group with the trivial action and give their tor-
sion free covers. With this purpose in mind, recall that injective mod-
ules in DMod(G) may be characterized as those E such that EN (the
fixed submodule of E under the action of N) is an injective Z[G/N ]-
module for every open normal subgroup N EO G [4, Proposition 2.1].

Proposition 2.4. If p - |G/U | for all U EO G, then the injective
envelope of Z/(pn) in DMod(G) is Zp∞ , with trivial action.

Proof. Clearly, we only need to prove that Zp∞ is injective in
DMod(G) since E(Z/(pn)) = Zp∞ as abelian groups.

The action of G on Zp∞ is trivial so (Zp∞)U = Zp∞ for all U EO G,
and then, if any Z[G/U ]-homomorphism f : I → Zp∞ can be extended
to Z[G/U ] for any ideal I ≤ Z[G/U ], Zp∞ will be injective in DMod(G)
by [4, Proposition 2.1]. However, Zp∞ is an injective abelian group, so
there is an abelian group extension h of f to Z[G/U ].

Now, p - |G/U | means that multiplication by |G/U | is an auto-
morphism of Zp∞ , so, if we let 1/|G/U | be its inverse, then the map

h : Z[G/U ] → Zp∞ given by

h(x) =
1

|G/U |

( ∑
g∈G/U

h(gx)

)
,

will clearly be a Z[G/U ]-extension of f to Z[G/U ]. �
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More generally, we have the next corollary.

Corollary 2.5. Let G = lim←i∈I G/Ni be a profinite group. Any
divisible abelian group, in which the multiplication by |G/Ni| is an
automorphism for all i ∈ I (for instance, Q) is an injective discrete
module with trivial action. Thus, the injective envelope of any abelian
group M (thought of as a discrete G-module with the trivial action)
coincides with its injective envelope in Z-Mod when the multiplication
by |G/Ni| is an automorphism of M .

Proposition 2.6. If G = lim←i∈I G/Ni is any profinite group such

that, for all i, p - |G/Ni|, then the torsion free cover φ : Ẑp → Z/(pn)
in Z-Mod is a torsion free cover in DMod(G) for every n.

Proof. Let X be any torsion free discrete G-module, and let f : X →
Z/(pn) be any Z[G]-homomorphism. Consider the submodule

T = {σ ∈ HomZ[G](Q,Zp∞); σ(1) ∈ Z/(pn)}

(both Q and Zp∞ with trivial action) and the Z[G]-homomorphism
h : T → Z/(pn) given by h(σ) = σ(1).

Since Zp∞ is the injective envelope of Z/(pn) in DMod(G), we have
the diagram

X
ψ //

f

��

X ⊗Z Q

Z/(pn) // Zp∞

(where X ⊗Z Q is a discrete G-module with the diagonal action g(a⊗
b) = ga⊗ gb and ψ(x) = x⊗1) which can be completed commutatively
by a G-morphism ϕ : X ⊗Z Q → Zp∞ .

Now, we know that

HomZ[G](X ⊗Z Q,Zp∞) ∼= HomZ[G](X,HomZ(Q,Zp∞))

are abelian groups in such a way that

ϕ 7−→ ϕ′ and ϕ′(x)(r) = ϕ(x⊗ r).
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Thus,
ϕ′(1) = ϕ(x⊗ 1) = f(x) ∈ Z/(pn),

that is, ϕ′(x) ∈ T for all x ∈ X.

Finally, (hϕ′)(x) = ϕ(x⊗ 1) = f(x), so the diagram

X

f

��

ϕ′

||xx
xx
xx
xx
x

T
h
// Z/(pn)

is commutative, and this means that h is a torsion free precover in
DMod(G).

However, by [5, Example 4.3.3], we know that T ∼= Ẑp (both as
abelian groups and as discrete G-modules since the action of G on

both is trivial), so T is indecomposable since Ẑp is a torsion free cover
as an abelian group. Thus, h : T → Z/(pn) is a torsion free cover in
DMod(G), and then in Z-Mod, since the action of G on Z/(pn) and
on T are both trivial. �

Example 2.7. We will show that the condition p - |G/Ni| for all i is
not trivial and that, indeed, it cannot be dropped in general.

Let G = {1, g}, g2 = 1, and consider Z as a discrete G-module with
the action gz = −z. Thus, the canonical projection p : Z → Z/(2) is

a G-morphism, so if φ : Ẑ2 → Z/(2) were a torsion free precover in
DMod(G), then we could complete the diagram

Z

p

��

h

||zz
zz
zz
zz
z

Ẑ2 φ
// Z/(2)

commutatively by a G-morphism h. But, then

−h(1) = h(−1) = h(g · 1) = g · h(1) = h(1),

and this means that 2h(1) = 0, which is impossible since Ẑ2 is a torsion
free abelian group.
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The next result is an easy generalization of Proposition 2.6. The
proof uses Corollary 2.5.

Proposition 2.8. Let G = lim←i∈I G/Ni be a profinite group and
ψ : F →M a torsion free cover in Z-Mod such that the multiplication
by |G/Ni| is an automorphism of M for all i ∈ I. Then, ψ : F → M
is a torsion free cover in DMod(G) (both F and M with the trivial
action).

3. Cotorsion discrete modules. Given any finite group T , it
is well known that a Gorenstein flat Z[T ]-module is nothing more
than a torsion free T -module. However, nothing is known about the
connection between Gorenstein flat and torsion free discrete modules
when the group is profinite.

The class of cotorsion Z[T ]-modules for a finite group T has been
studied and shown to have nice properties [2]. Our purpose in this
section is the translation of this problem to the category of discrete
modules over a profinite group, where the class of cotorsion discrete
modules will be understood as the right orthogonal class of that
consisting of all torsion free discrete modules. Thus, from now on,
we will let F denote the class of all torsion free discrete modules, so

F⊥ = {C ∈ DMod(G); Ext1DMod(G)(F,C) = 0 for all F ∈ F}

will be the class of cotorsion discrete modules.

Next, we prove the existence of cotorsion envelopes.

Proposition 3.1. (F ,F⊥) is a complete cotorsion pair.

Proof. Given M ∈ ⊥(F⊥), consider the exact sequence

0 −→ K −→ F −→M −→ 0,

where F → M is a torsion free cover, so K ∈ F⊥ by Wakamatsu’s
lemma, see for instance, [14, Lemma 2.1.1]. Thus, the sequence splits,
and hence, M ∈ F . Therefore, (F ,F⊥) is actually a cotorsion pair
which clearly has enough projectives.

In order to prove the existence of enough injectives we use Salce’s
lemma [10]. Let M be any discrete module, let F → E(M)/M be a
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torsion free cover and consider the pullback

X //

��

F

��
E(M) // E(M)/M

of E(M) → E(M)/M and F → E(M)/M . Then, we obtain an exact
sequence

0 −→M −→ X −→ F −→ 0,

with X ∈ F⊥ and F ∈ F . �

Now, F is closed under direct limits, so we actually have F⊥-
envelopes by [7, Theorem 3.1].

Corollary 3.2. Every discrete module has a cotorsion envelope.

We shall now provide two interesting relations between cotorsion
discrete G-modules and H-modules when H ≤ G is a closed subgroup.

Proposition 3.3. If U is any open subgroup of G, then every cotorsion
discrete G-module C is cotorsion in DMod(U).

Proof. By [12, Proposition 1.3.2], we know that the coinduction

functor CoindGU is left and right adjoint to the forgetful functor, and

it is clear that, if F is torsion free in DMod(U), then CoindGU (F ) is
torsion free in DMod(G). Hence, we have

0 = Ext1DMod(G)(Coind
G
U (F ), C)

∼= Ext1DMod(U)(F,C),

and we see that C is cotorsion in DMod(U). �

Proposition 3.4. If H is any closed subgroup of G and C is any co-
torsion discrete H-module, then CoindGH(C) is cotorsion in DMod(G).
In particular, if C is any cotorsion (and torsion free) abelian group,

then CoindG{e}(C) is cotorsion (and torsion free) in DMod(G).
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Proof. Let F be a torsion free discrete G-module. By [12, Proposi-
tion 1.3.1], we know that

HomDMod(H)(F,C) ∼= HomDMod(G)(F,Coind
G
H(C)).

But, CoindGH is exact and preserves injectives so we have

0 = Ext1DMod(H)(F,C)
∼= Ext1DMod(G)(F,Coind

G
H(C)).

Therefore, CoindGH(C) is cotorsion in DMod(G). �

It turns out that there is a nice connection between cotorsion discrete
G-modules and Gorenstein cotorsion Z[G/U ]-modules for every UEOG.
Recall that a Z[G/U ]-module N is said to be Gorenstein cotorsion if
Ext1(L,N) = 0 for all L Gorenstein flat.

Lemma 3.5. Let C be in DMod(G), and suppose that CU is Goren-
stein cotorsion in Z[G/U ]-Mod for all U EO G. Then, H1(H,C) = 0
for any closed subgroup H of G.

Proof. By [2, Proposition 2.5], CU is Gorenstein cotorsion in
Z[H/U ∩H]-Mod. Then, by [9, Proposition 6.5.5], we have

H1(H,C) = lim
→U

H1(H/H ∩ U,CU )

= lim
→U

Ext1Z[H/H∩U ](Z, CU )

= 0. �

Proposition 3.6. Let C be a discrete G-module. Then, C is cotorsion
discrete if and only if CU is Gorenstein cotorsion in Z[G/U ]-Mod for
all U EO G and

lim
←U

1 HomZ[G/U ](F
U , C) = 0 for all F ∈ F .

Proof. Let
0 −→ C −→ E(C) −→ L −→ 0

be exact in DMod(G) with E(C) the injective envelope of C. By
Proposition 3.3, we know that C is cotorsion in DMod(U) for any
U ≤O G, so by Lemma 3.5, H1(U,C) = 0 for all U EO G. Therefore,
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we have a commutative diagram with exact rows

0 // CU

��

// E(C)U

��

// LU

��

// 0

0 // C // E(C) // L // 0.

Now, for any torsion free Z[G/U ]-module (Gorenstein flat) F , we
have

HomDMod(G)(F,M) ∼= HomZ[G/U ](F,M
U )

for any discrete M . Applying the functor HomDMod(G)(F,−) to the
above diagram, by [4, Proposition 2.1], we obtain that the induced
map

Ext1Z[G/U ](F,C
U ) −→ Ext1DMod(G)(F,C) = 0

is an isomorphism. Thus, CU ∈ Z[G/U ]-Mod is Gorenstein cotorsion
for any U EO G.

The sequences

0 −→ HomZ[G/U ](F
U , C) −→ HomZ[G/U ](F

U , E(C))

−→ HomZ[G/U ](F
U , L) −→ 0

are all exact, so computing the inverse limit, we obtain an exact
sequence

· · · −→ lim
←U

HomZ[G/U ](F
U , L) −→ lim

←U
1 HomZ[G/U ](F

U , C) −→ 0.

On the other hand, the sequence

0 −→ HomDMod(G)(F,C) −→ HomDMod(G)(F,E(C))

−→ HomDMod(G)(F,L) −→ 0

is also exact and

HomDMod(G)(F,M) ∼= lim
←U

HomZ[G/U ](F
U ,M),

for any discrete module M , so we obtain

lim
←U

1 HomZ[G/U ](F
U , C) = 0.
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Conversely, let

0 −→ C −→ V −→ L −→ 0

be exact in DMod(G) with V ∈ F⊥ and L ∈ F , and choose any F ∈ F .
Then, the sequences

0 −→ HomZ[G/U ](F
U , C) −→ HomZ[G/U ](F

U , V )

−→ HomZ[G/U ](F
U , L) −→ Ext1Z[G/U ](F

U , C) −→ 0

are all exact. However,

HomZ[G/U ](F
U ,M) ∼= HomZ[G/U ](F

U ,MU ),

for all M in DMod(G) and

Ext1Z[G/U ](F
U , V U ) = 0,

by the necessary condition that V is cotorsion. It follows that

Ext1Z[G/U ](F
U , C) ∼= Ext1Z[G/U ](F

U , CU ) = 0.

Finally, using a similar argument to that of the necessary condition,
we obtain

Ext1(F,C) ∼= lim
←U

1 Hom(FU , C) = 0. �

Given a prime number p, completions of free Ẑp-modules are usually
denoted as Tp. The next result generalizes [2, Proposition 2.6].

Proposition 3.7. Let p be a prime number and M a discrete Z[G]-
module. IfMU ∼= Tp (as abelian groups) for all UEOG, and there exists
an open subgroup P ≤ G with p - |G/P | (for instance, if G has an open
Sylow p-subgroup), such that M is cotorsion in DMod(P ), then M is
cotorsion in DMod(G).

Proof. Let
0 −→M −→ X −→ L −→ 0

be exact in DMod(G) with X ∈ F⊥ and L torsion free. Then the
sequence splits in DMod(P ). Let f : X → M be a Z[P ]-linear
retraction of M → X. Since p - |G/P |, M ·|G/P |−→ M is an isomorphism
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of G-modules, so if we call 1/|G/P | its inverse, then the standard
average morphism

f(x) =
1

|G/P |
∑

g∈G/P

gf(g−1x)

is a Z[G]-linear retraction of M → X. �

Theorem 3.8. Every cotorsion and torsion free discrete G-module C
can be written, uniquely up to isomorphism, as a direct sum C = V ⊕L
of an injective discrete G-module V and a cotorsion reduced discrete
G-module L, which is also reduced as an abelian group. Moreover, for
any U EO G, the Z[G/U ]-module LU is a product

LU =
∏

Tp in Z[G/U ]-Mod,

in such a way that each Tp is the p-adic completion of a free Z[P/U ]-
module for some (any ) Sylow p-subgroup P/U ≤ G/U . Each Tp is
uniquely determined up to isomorphism by the (Z/(p))[G/U ]-module
Tp/pTp.

Proof. Let V be the largest divisible abelian subgroup of C. Then, V
is a discrete G-submodule of C since gV is a divisible abelian group for
all g ∈ G.

Now, for any U EO G, given z ∈ Z and x ∈ V U , we know that
there exists y ∈ V such that x = zy. However, if u ∈ U , then we have
nuy = ux = x ⇒ n(uy − y) = 0, so uy − y = 0 since V U is torsion
free and then y ∈ V U . We see that V U is divisible as an abelian
group. Then, by [2, Lemma 2.8], we have that V U is an injective
Z[G/U ]-module. Therefore, V is injective in DMod(G) so C = V ⊕ L
in DMod(G) with L reduced.

By Proposition 3.6, we know that LU is Gorenstein cotorsion in
Z[G/U ]-Mod. If each LU were reduced, then the result would follow
by [2, Theorem 2.9]. But, if T ⊆ LU is injective in Z[G/U ]-Mod, then
T is divisible, and, since T ⊂ L, we have T = 0. �

Now, we are able to describe the structure of finitely generated
cotorsion modules in DMod(G).
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Theorem 3.9. Let C ∈ DMod(G) be finitely generated and cotorsion.
Then,

C = C1 ⊕ · · · ⊕ Cn

in DMod(G) where Ci ∼= (Z/(pni
i ))mi as abelian groups for some

primes pi.

Proof. C is finitely generated, C = CU for some U EO G, and
this means that C is Gorenstein cotorsion in Z[G/U ]-Mod by Proposi-
tion 3.6. Hence, by [2, Proposition 2.5], C is cotorsion in Z-Mod.

Now, C is finitely generated as an abelian group by [12, Lemma
1.2.6]. Applying [3, Proposition 2.7], we obtain that the torsion abelian
subgroups t(C) and C/t(C) both are cotorsion abelian groups, and
then, C/t(C) ∼= Zn must be 0. Therefore, C is a torsion abelian group
so C ∼= C1 ⊕ · · · ⊕ Cn where Ci ∼= (Z/(pni

i ))mi (as abelian groups) for
some primes pi. Then, each Ci is the pi-primary part of C, which is
a discrete Z[G]-submodule; thus, the direct sum decomposition lies in
DMod(G). �

We now see that the cotorsion discrete Z[G]-modules are not neces-
sarily the G-modules whose underlying abelian group is cotorsion.

Proposition 3.10. If p is a prime number and (Z/(pn))m is the
underlying abelian group of a cotorsion discrete Z[G]-module C, then
there exists U EO G such that |P/U | | m for some (any ) Sylow p-
subgroup P/U ≤ G/U .

Proof. Let C = (Z/(pn))m. Since C is finitely generated in
DMod(G), then C = CU for some UEOG, and then, C ∈ Z[G/U ]-Mod
is Gorenstein cotorsion, see Proposition 3.6.

Let ψ : F → C be the torsion free cover of C in Z[G/U ]-Mod. By [2,
Lemma 3.1], Ker(ψ) and F are the completion of free Z[P/U ]-modules,
Tp’s, for some Sylow p-subgroup P/U ≤ G/U . Therefore, we easily
deduce that

C ∼=
Tp
pnTp

∼=
HomZ(Z[P/U ], Up)

pnHomZ(Z[P/U ], Up)
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∼= HomZ

(
Z[P/U ],

Up
pnUp

)
∼= (Z/(pn))|I|·|P/U | ,

where Up ∼= Ẑ(I)
p . Hence, m = |I| · |P/U |. �

Then, the next corollary follows immediately.

Corollary 3.11. If (Z/(pn))m is the underlying abelian group of a
cotorsion discrete G-module whose G-action is not trivial and p - m,
then p - |G|.
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4. E. Enochs, J.R. Garćıa Rozas, L. Oyonarte and B. Torrecillas, On Gorenstein
injective discrete modules over profinite groups, Acta Math. Hung. 142 (2014), 296–
316.

5. E. Enochs and O. Jenda, Relative homological algebra, de Gruyter Expos.
Math. 30, Walter de Gruyter, Berlin, 2000.

6. E. Enochs and E. Khan, Flat discrete modules over profinite groups, Comm.

Algebra 42 (2014), 2331–2337.

7. E. Enochs and L. Oyonarte, Flat covers and cotorsion envelopes of sheaves,
Proc. Amer. Math. Soc. 130 (2002), 1285–1292.

8. J.J. Mart́ınez, Cohomological dimension of discrete modules over profinite
groups, Pacific J. Math. 49 (1973), 185–189.

9. L. Ribes and P. Zalesskii, Profinite groups, Springer-Verlag, Berlin, 2000.

10. L. Salce, Cotorsion theories for abelian groups, Sympos. Math. 23 (1979),

11–32.

11. J.P. Serre, Cohomologie Galoisienne, Lect. Notes Math. 5, Springer-Verlag,
Berlin, 1997.

12. C. Studer-De Boer, Tate cohomology for profinite groups, Ph.D. Disserta-
tion, Math. Wissen., Zürich, 2001.
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