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APPLICATION OF STRONG DIFFERENTIAL
SUPERORDINATION TO A GENERAL EQUATION

R. AGHALARY, P. ARJOMANDINIA AND A. EBADIAN

ABSTRACT. In this paper, we study the notion of strong
differential superordination as a dual concept of strong
differential subordination, introduced in [1]. The notion of
strong differential superordination has recently been studied
by many authors, see, for example, [2, 3, 5]. Let q(z) be an
analytic function in D that satisfies the first order differential
equation

θ(q(z)) + F (z)q′(z)φ(q(z)) = h(z).

Suppose that p(z) is analytic and univalent in the closure

of the open unit disk D with p(0) = q(0). We shall find
conditions on h(z), G(z), θ(z) and φ(z) such that

h(z) ≺≺ θ(p(z)) +
G(ξ)

ξ
zp′(z)φ(p(z)) =⇒ q(z) ≺ p(z).

Applications and examples of the main results are also
considered.

1. Introduction. Let H = H(D) be the class of all analytic func-
tions in the open unit disk D = {z ∈ C : |z| < 1}, and let A denote the
subclass of H consisting of functions f(z) of the form

f(z) = z + a2z
2 + · · · .

For two functions f, g ∈ H we say that f is subordinate to g (or g is
superordinate to f) and write f ≺ g or f(z) ≺ g(z) if there exists an
analytic function w(z) in D such that

w(0) = 0, |w(z)| < 1 and f(z) = g(w(z)),

see [4]. If g is univalent in D, then

f(z) ≺ g(z) ⇐⇒ f(0) = g(0) and f(D) ⊆ g(D).
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Suppose that F (z) is analytic and univalent in D and F (0) = 0. The
class of F -starlike functions FS∗ is defined as follows:

FS∗ =

{
f ∈ A : Re

(
F (z)

f ′(z)

f(z)

)
> 0

}
,

see [1]. If we set F (z) = z, then we obtain the usual class of starlike
functions.

Let f(z) be analytic in D and g(z, ξ) analytic in D × D. We
say that f(z) is strongly subordinate to g(z, ξ), or g(z, ξ) is strongly
superordinate to f(z), and use f(z) ≺≺ g(z, ξ) if there exists an
analytic function w(z) in D such that

w(0) = 0, |w(z)| < 1 and f(z) = g(w(z), ξ)

for all ξ ∈ D, see [5]. If g(z, ξ) is univalent in D for all ξ ∈ D, then

f(z) ≺≺ g(z, ξ) ⇐⇒ f(0) = g(0, ξ), ξ ∈ D and f(D) ⊆ g(D× D).

A function L : D × [0,∞) → C is a subordination (or Loewner)
chain if L(z, t) as a function of z is analytic and univalent in D and is
a continuously differentiable function of t on [0,+∞) for all z ∈ D, and
L(z, t1) ≺ L(z, t2) when 0 ≤ t1 ≤ t2.

Throughout this paper, we assume that F (z) and q(z) are analytic in
D, F (0) = 0 and p(z) is analytic and univalent in D with p(0) = q(0),
G(z) is analytic in D, G(0) = 0 and that θ and φ are analytic in
a domain D containing p(D) and q(D), unless expressly stated. We
define the analytic function g(z, ξ) in D× D by

(1.1) g(z, ξ) = θ(p(z)) +
G(ξ)

ξ
zp′(z)φ(p(z)).

In this paper, we aim to find conditions on h(z), Q(z) = zq′(z)φ(q(z)),
F (z) and G(z) such that

h(z) ≺≺ g(z, ξ) =⇒ q(z) ≺ p(z).

In order to prove our main results, we need the next lemmas.

Lemma 1.1 ([4]). Let L(z, t) = a1(t)z+ a2(t)z
2 + · · · , with a1(t) ̸= 0

for all t ≥ 0 and lim
t→+∞

|a1(t)| = +∞. Suppose that L(z, t) as a function

of z is analytic in D and a continuously differentiable function of t on
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[0,+∞) for all z ∈ D. Then, L(z, t) is a subordination chain if and
only if Re[(z∂L/∂z)/(∂L/∂t)] > 0 for all z ∈ D and t ≥ 0.

Lemma 1.2 ([5]). Let h(z) be analytic in D, q(z) ∈ H, q(z) =
a+ anz

n + an+1z
n+1 + · · · , n ∈ N and ψ : C2 × D× D → C. Suppose

that
ψ(q(z), tzq′(z); ζ, ξ) ∈ h(D),

where z ∈ D, ζ ∈ ∂D, ξ ∈ D and 0 < t ≤ 1/n ≤ 1. If p(z) is analytic
and univalent in D, p(0) = a and ψ(p(z), zp′(z); z, ξ) is analytic in
D× D and univalent in D for all ξ ∈ D, then

h(z) ≺≺ ψ(p(z), zp′(z); z, ξ) =⇒ q(z) ≺ p(z).

2. Main results.

Theorem 2.1. Let h(z) be convex (univalent) in D. Suppose that q(z)
is an analytic solution of the differential equation

θ(q(z)) + F (z)q′(z)φ(q(z)) = h(z), z ∈ D.

If g(z, ξ) is given by equation (1.1) and is analytic in D × D and
univalent in D for all ξ ∈ D,

(i) θ(q(z)) ≺ h(z), and
(ii) θ(q(z))+(G(ξ)/ξ)Q(z)∈h(D), (Q(z)=zq′(z)φ(q(z)), z∈D, ξ∈D),

then
h(z) ≺≺ g(z, ξ) =⇒ q(z) ≺ p(z).

Proof. Define the function ψ : C2 × D −→ C by

ψ(r, s; ξ) = θ(r) +
G(ξ)

ξ
sφ(r).

Then, we have h(z) ≺≺ ψ(p(z), zp′(z); ξ). It is sufficient to show that

(2.1) ψ(q(z), tzq′(z); ξ) ∈ h(D), z ∈ D, ξ ∈ D, 0 < t ≤ 1.



386 R. AGHALARY, P. ARJOMANDINIA AND A. EBADIAN

We have

ψ(q(z), tzq′(z); ξ) = θ(q(z)) +
G(ξ)

ξ
tzq′(z)φ(q(z))

= (1− t)θ(q(z)) + t

(
θ(q(z)) +Q(z)

G(ξ)

ξ

)
.

From (i), (ii) and the convexity of h(D), we conclude that equation (2.1)
is satisfied. Now, the result follows from Lemma 1.2. �

Example 2.2. Let A and B be positive real numbers, and let C < 0.
Suppose that B > 4A and B + AC ≤ −1. Setting q(z) = 1 − z,
F (z) = 2Cz/(1− z)2, G(z) = z + z2, φ(z) = Az and θ(z) = 2B/z, we
obtain

h(z) = θ(q(z)) + F (z)q′(z)φ(q(z)) =
2B − 2ACz

1− z
, z ∈ D.

It is clear that h(z) is convex (univalent) in D and that Re (h(z)) ≥
B +AC. We have

2B

1− z
= θ(q(z)) ≺ h(z) =

2B − 2ACz

1− z
,

and Theorem 2.1 (i) is satisfied. Condition (ii) is

θ(q(z)) +Q(z)
G(ξ)

ξ
=

2B

1− z
+A(z2 + z2ξ − z − ξz).

By an easy calculation we obtain

Re

(
θ(q(z)) +Q(z)

G(ξ)

ξ

)
= 2BRe

(
1

1− z

)
+ARe (z2 + z2ξ − z − ξz)

> B − 4A > 0,

and Theorem 2.1 (ii) is satisfied. Hence, if

2B

p(z)
+A(1 + ξ)zp′(z)p(z)

is analytic in D× D and univalent in D for all ξ ∈ D, then

2B − 2ACz

1− z
≺≺ 2B

p(z)
+A(1 + ξ)zp′(z)p(z) =⇒ 1− z ≺ p(z).
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In the case that h(z) is analytic in D, but not convex, we have the
next theorem.

Theorem 2.3. Let h(z) and q(z) be analytic in D and

θ(q(z)) + F (z)q′(z)φ(q(z)) = h(z), z ∈ D.

Suppose that g(z, ξ), given by equation (1.1), is analytic in D× D and
univalent in D for all ξ ∈ D. If θ′(q(0))q′(0) ̸= 0,

(i) Q(z) = zq′(z)φ(q(z)) is starlike in D;
(ii) Re [(G(ξ)/ξ)(φ(q(z))/θ′(q(z)))] > 0, z ∈ D, ξ ∈ D; and
(iii) θ(q(z)) + (G(ξ)/ξ)Q(z) ∈ h(D),

then
h(z) ≺≺ g(z, ξ) =⇒ q(z) ≺ p(z).

Proof. The function L : D× [0,+∞)× D −→ C given by

L(z, t; ξ) = θ(q(z)) + t
G(ξ)

ξ
Q(z)

is analytic in D for all t ≥ 0 and ξ ∈ D and is a continuously
differentiable function of t on [0,+∞) for all z ∈ D and ξ ∈ D. We
have that

a1(t) =
∂L

∂z

∣∣∣∣
z=0

= θ′(q(0))q′(0) + t
G(ξ)

ξ
Q′(0)

= θ′(q(0))q′(0)

(
1 + t

G(ξ)

ξ

φ(q(0))

θ′(q(0))

)
.

Since t ≥ 0, from (ii), we deduce that a1(t) ̸= 0 and lim
t→+∞

|a1(t)| = +∞

for all ξ ∈ D. A simple calculation along with (i) and (ii) yields

Re

(
z∂L/∂z

∂L/∂t

)
= Re

(
z(θ′(q(z))q′(z) + t(G(ξ)/ξ)Q′(z))

(G(ξ)/ξ)Q(z)

)
= Re

(
ξθ′(q(z))

G(ξ)φ(q(z))

)
+ tRe

(
zQ′(z)

Q(z)

)
> 0,

for all ξ ∈ D. Hence, by Lemma 1.1, L(z, t; ξ) is a subordination chain
for all ξ ∈ D. Therefore, we have

L(z, t; ξ) ≺ L(z, 1; ξ), z ∈ D, 0 < t ≤ 1, ξ ∈ D.
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Using (iii), the last relation gives

θ(q(z)) + t
G(ξ)

ξ
Q(z) ∈ h(D), z ∈ D, 0 < t ≤ 1, ξ ∈ D.

Now, consider the function ψ : C2 × D → C defined by

ψ(r, s; ξ) = θ(r) +
G(ξ)

ξ
sφ(r).

Then, we have

ψ(q(z), tzq′(z); ξ) ∈ h(D), 0 < t ≤ 1, z ∈ D, ξ ∈ D.

Since all conditions of Lemma 1.2 are satisfied, we obtain q(z) ≺ p(z).
This completes the proof. �

Example 2.4. In this example, we investigate the conditions of The-
orem 2.3. Let 0 < C < A, B > 1 and

B + 1

B − 1
< M <

(B − 1)(A− C)

B + 1
− (C + 1).

Suppose that q(z) = C/(B− z), F (z) = Az, G(z) =Mz+ z2, θ(z) = z
and φ(z) = 1/z. From this, we obtain

h(z) = θ(q(z)) + F (z)q′(z)φ(q(z)) =
C +Az

B − z
, z ∈ D.

We also have

Q(z) = zq′(z)φ(q(z)) =
z

B − z
∈ S∗ (or starlike),

which satisfies (i). It is easy to see that

Re

(
G(ξ)

ξ

φ(q(z))

θ′(q(z))

)
=

1

C
Re (MB −Mz +Bξ − zξ)

>
1

C
(M(B − 1)− (B + 1)) > 0;

thus, condition (ii) is true. In order to satisfy (iii), it is sufficient to
show that∣∣∣∣C + (M + ξ)z

B − z
− A+BC

B2 − 1

∣∣∣∣ < C +AB

B2 − 1
, z ∈ D, ξ ∈ D.



STRONG DIFFERENTIAL SUPERORDINATION 389

Note that

θ(q(z)) +
G(ξ)

ξ
Q(z) =

C + (M + ξ)z

B − z
.

We have∣∣∣∣C + (M + ξ)z

B − z
− A+BC

B2 − 1

∣∣∣∣ ≤ C +M + 1

B − 1
+
A+BC

B2 − 1

≤ (B − 1)(A− C) +A+BC

B2 − 1

=
C +AB

B2 − 1
.

Therefore, (iii) is also satisfied. Hence, if

p(z) + (M + ξ)
zp′(z)

p(z)

is analytic in D× D and univalent in D for all ξ ∈ D, then

C +Az

B − z
≺≺ p(z) + (M + ξ)

zp′(z)

p(z)
=⇒ C

B − z
≺ p(z).
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