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IDEALS IN CROSS SECTIONAL
C∗-ALGEBRAS OF FELL BUNDLES

BEATRIZ ABADIE AND FERNANDO ABADIE

ABSTRACT. With each Fell bundle over a discrete
group G we associate a partial action of G on the spec-
trum of the unit fiber. We discuss the ideal structure of the
corresponding full and reduced cross-sectional C∗-algebras in
terms of the dynamics of this partial action.

Introduction. The discussion of the ideal structure of crossed prod-
ucts by a discrete group by means of the dynamical properties of the
action goes far back (see, for instance, [9, 18, 22]).

Archbold and Spielberg discussed [8] the relation between the ideal
structure of the full crossed product and that of the base algebra, under
the assumption of topological freeness. More recently, the definitions
of topological freeness and several related results were extended to
different settings: by Exel, Laca and Quigg for partial actions on
commutative C∗-algebras [12], by Lebedev [17] and later by Giordano
and Sierakowski [14], for partial actions on arbitrary C∗-algebras, and
by Kwaśniewski [16] for crossed products by Hilbert C∗-bimodules.

We show in this article that a Fell bundle B over a discrete group
G gives rise to a partial action of G on the spectrum of the unit fiber.
This partial action agrees with those discussed in the above-mentioned
work, and we generalize some of those results to this context.

This work is organized as follows. After establishing some back-
ground and notation in Section 1, in Section 2 we introduce a partial
action α̂ on the spectrum of the unit fiber of a Fell bundle B over a
discrete group. When B is the Fell bundle corresponding to a partial
action γ, then α̂ agrees with γ̂, as defined in [5, Section 7] or [17],
and when B is the Fell bundle associated [2] with the crossed-product
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by a Hilbert C∗-bimodule, then α̂ is the homeomorphism ĥ discussed
in [16].

Following familiar lines, we establish in Section 3 a bijective corre-
spondence between the family of α̂-invariant open sets in the spectrum
of the unit fiber and the set of ideals in B (Proposition 3.8 and Propo-
sition 3.10) This enables us to show that, when α̂ is topologically free,
its minimality is equivalent to the simplicity of C∗

r (B) (Corollary 3.12).
We then proceed to generalize some of the results of Giordano and Sier-
akowski [14] to our setting (Theorem 3.19) which concern the connec-
tion among the exactness property, the residual intersection property,
the structure ideal of B, and that of C∗

r (B).

Finally, Section 4 contains some applications to the theory of Fell
bundles with commutative unit fiber.

1. Preliminaries. In this section, we establish some notation and
recall some basic definitions and facts regarding the spectrum of a C∗-
algebra and the Rieffel correspondence. We refer the reader to [19] for
further details.

If A is a C∗-algebra, we denote by I(A) the lattice of ideals in A
and by PrimA the primitive space of A, that is, PrimA is the set
of primitive ideals with the hull-kernel topology. The spectrum of A,

which we denote by Â, consists of the unitary equivalence classes of
irreducible representations of A with the initial topology for the map

(1.1) k : Â −→ Prim(A), given by k([π]) = kerπ for all [π] ∈ Â,

that is, a subset S of Â is open if and only if S = k−1(O), where O is

open in PrimA. We will usually drop the brackets and denote [π] ∈ Â
by π.

Suppose now that A and B are C∗ -algebras and that X is an A−B
imprimitivity bimodule. We denote by ⟨ , ⟩L and ⟨ , ⟩R the left and
right inner products on X, respectively.

An irreducible representation π : B → B(Hπ) induces an irreducible
representation IndX π of A as follows. LetX⊗BHπ be the Hilbert space
obtained as the completion of the algebraic tensor product X ⊙B Hπ

with respect to the norm induced by the inner product determined by
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(1.2) ⟨x⊗ h, y ⊗ k⟩ := ⟨π(⟨y, x⟩R)h, k⟩,

for x, y ∈ X and h, k ∈ Hπ.

Then IndX π : A→ B(X ⊗B Hπ) is defined by

(1.3) IndX π(a)(x⊗ h) = ax⊗ h,

for a ∈ A, x ∈ X, and h ∈ Hπ.

Since IndX π is irreducible as well, the imprimitivity bimodule X
yields a map

(1.4) IndX : B̂ −→ Â

that turns out to be a homeomorphism.

The imprimitivity bimodule X also yields the Rieffel correspondence

hX : I(B) −→ I(A),

which is a lattice isomorphism determined by the equation

(1.5) hX(I)X = XI, for all I ∈ I(B),

where

XI = span{xi : x ∈ X, i ∈ I}

and

hX(I)X = span{jx : x ∈ X, j ∈ hX(I)}.

These constructions are connected by the relation ([19, subsec-
tion 3.24])

(1.6) ker IndX π = hX(kerπ).

If J is an ideal in A, we denote the canonical projection on A/J by
PJ . Let XJ be the set

(1.7) XJ = {π ∈ Â : π|J ̸= 0}.

Then the map J 7→ XJ is a bijection from I(A) onto the topology on

Â.
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In addition, the maps

rJ : XJ −→ Ĵ

and

qJ : Â \XJ −→ Â/J,

determined, respectively, by

(1.8) rJ (π) = π|J and qJ(π) ◦ PJ = π,

are homeomorphisms.

If X is an A − B imprimitivity bimodule and J is an ideal in B,
then XJ = hX(J)X, and X/XJ is an A/hX(J) − B/J imprimitivity
bimodule. Furthermore, the diagram

(1.9) B̂/J
IndX/XJ// ̂A/hX(J)

B̂ \XJ

qJ

OO

IndX

// Â \XhX(J)

qhX (J)

OO

commutes.

2. The partial action associated with a Fell bundle.

Notation 2.1. Throughout this work, B = (Bt)t∈G will denote a Fell
bundle over a discrete group G. We will make use of the usual notation:

X∗= {x∗ : x ∈ X} ⊆ Bt−1 ,

X1X2 · · ·Xn = span{x1x2 · · ·xn : xi ∈ Xi} ⊆ Bt1t2···tn ,

for X ⊆ Bt and Xi ⊆ Bti , where t, ti ∈ G and i = 1, · · · , n.
In this setting, Bt is a Hilbert C∗ -bimodule over Be, for left and

right multiplication and inner products given by

(2.1) ⟨b1, b2⟩L = b1b
∗
2, ⟨b1, b2⟩R = b∗1b2.

We denote by C∗(B) the cross-sectional C∗-algebra of B, and by
Cc(B) the dense *-subalgebra of compactly supported cross sections.
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The map E : Cc(B) → Be consisting of evaluation at e extends to a
conditional expectation E : C∗(B) → Be.

We next recall some definitions and results related to the reduced
cross-sectional C∗-algebra of a Fell bundle. Further details and proofs
can be found in [10].

Let ℓ2(B) denote the right Hilbert C∗-module over Be consisting of
those sections ξ such that ∑

t∈G

ξ∗(t)ξ(t)

converges in Be.

Thus, ℓ2(B) is the direct sum of the right Be-Hilbert C
∗-modules

{Bt : t ∈ G}. Let
jt : Bt −→ ℓ2(B)

be the inclusion map, that is,

(2.2) jt(b) = bδt, for t ∈ G and b ∈ Bt,

where bδt(s) = δs,tb, δs,t is the Kronecker delta. Then jt is adjointable,
and its adjoint is evaluation at t.

Each bt ∈ Bt defines an adjointable operator Λbt ∈ L(ℓ2(B)), given
by

Λbt(ξ)(s) = btξ(t
−1s), for all ξ ∈ ℓ2(B), s ∈ G.

The reduced C∗-algebra C∗
r (B) of the Fell bundle B is the C∗-

subalgebra of L(ℓ2(B)) generated by {Λb : b ∈ B}. The correspondence

bt 7−→ Λbt

extends to a *-homomorphism

Λ : C∗(B) −→ C∗
r (B)

verifying ([10, subsection 3.6])

(2.3) kerΛ = {c ∈ C∗(B) : E(c∗c) = 0}.

We will often view Be as a C∗-subalgebra of C∗
r (B) by identifying

a ∈ Be with Λa ∈ C∗
r (B).
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We denote by Dt the ideal in Be defined by Dt = BtB
∗
t . Since the

structure described above makes Bt into a Dt − Dt−1 imprimitivity
bimodule, Bt yields, as in equation (1.4), a homeomorphism

IndBt : D̂t−1 −→ D̂t.

We will denote by Xt, rt and qt, respectively, the set XDt and the
maps rDt and qDt defined in equations (1.7) and (1.8). Notice that

Xe = B̂e. Finally, we denote by α̂t the homeomorphism that causes
the diagram

Xt−1

rt−1

��

α̂t // Xt

rt
��

D̂t−1
IndBt

// D̂t

commute, that is,

(2.4) α̂t : Xt−1 −→ Xt is given by α̂t = r−1
t ◦ IndBt ◦rt−1 ,

for all t ∈ G.

Remark 2.2. If π ∈ Xt−1 is a representation of De on Hπ, then α̂t(π)
is the representation of De on Bt ⊗Dt−1 Hπ, given by

(2.5)
(
α̂t(π)a

)
(b⊗ h) = ab⊗ h,

for all a ∈ De, b ∈ Bt and h ∈ Hπ.

Proof. When a ∈ Dt, the result follows straightforwardly from
the definition, and equation (2.5) clearly defines an extension of
IndBt(π|Dt−1 ) to a representation of De. �

Proposition 2.3. Given a Fell bundle B = (Bt)t∈G over a discrete
group G, let α̂t be the homeomorphism defined in equation (2.4), for
t ∈ G. Then

α̂ :=
(
{Xt}t∈G, {α̂t}t∈G

)
is a partial action of G on B̂e.
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Proof. Clearly, α̂t is a homeomorphism between open subsets of X,
so it remains to show that α̂st extends α̂sα̂t, for all s, t ∈ G.

We first show that dom α̂sα̂t ⊆ dom α̂st. Let π ∈ dom α̂sα̂t, and
assume that π /∈ dom α̂st, that is, π|D(st)−1 = 0. We will show

that this implies that α̂t(π)|Ds−1 = 0, which contradicts the fact that
π ∈ dom α̂sα̂t.

In fact, let d ∈ Ds−1 . Then, for b ∈ Bt and h ∈ Hπ, we have

∥α̂t(π)(d)(b⊗ h)∥2 = ⟨db⊗ h, db⊗ h⟩ = ⟨π(b∗d∗db)h, h⟩ = 0,

because b∗d∗db ∈ B∗
tDs−1Bt = B∗

tB
∗
sBsBt ⊆ B∗

stBst = D(st)−1 .

We now show that α̂st = α̂sα̂t on dom α̂sα̂t, namely, we will show
that, if π ∈ dom α̂sα̂t is a representation on Hπ, then the map

U : Bs ⊗Ds−1Bt ⊗Dt−1 Hπ −→ Bst ⊗D(st)−1 Hπ,

defined by
U(bs ⊗ bt ⊗ h) = bsbt ⊗ h,

for bs ∈ Bs, bt ∈ Bt and h ∈ Hπ, is a unitary operator intertwining
α̂sα̂t(π) and α̂st(π).

In order to check that the definition of U makes sense, first notice
that

Bs ⊗Ds−1Bt ⊗Dt−1 Hπ = Bs ⊗Ds−1Ds−1Bt ⊗Dt−1 Hπ

= Bs ⊗Ds−1Ds−1(BtB
∗
tBt)⊗Dt−1 Hπ

= Bs ⊗Ds−1Bt(B
∗
tDs−1Bt)⊗Dt−1 Hπ.

This implies that the map

Ũ : Bs ×Bt ×Hπ −→ Bst ⊗D(st)−1 Hπ

defined by Ũ(bs, bt, h) = bsbt ⊗ bst is balanced: given bs ∈ Bs,
bt ∈ Bt, e ∈ B∗

tDs−1Bt, c ∈ Dt−1 and h ∈ Hπ, we have that
ec ∈ B∗

tDs−1BtDt−1 = B∗
tDs−1Bt ⊆ D(st)−1 . Therefore,

Ũ(bs, btec, h) = bsbtec⊗ h = bsbt ⊗ π(ec)h

= bsbt ⊗ π(e)π(c)h

= bsbte⊗ π(c)h

= Ũ(bs, bt, π(c)h).
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Additionally, U is an isometry because, if bs, cs ∈ Bs, bt, ct ∈ Bt, and
h, h′ ∈ Hπ, then

⟨bs ⊗ bt ⊗ h, cs ⊗ ct ⊗ h′⟩ = ⟨
(
α̂t(π)(c

∗
sbs)

)
(bt ⊗ h), ct ⊗ h′⟩

= ⟨c∗sbsbt ⊗ h, ct ⊗ h′⟩
= ⟨π(c∗t c∗sbsbt)h, h′⟩
= ⟨bsbt ⊗ h, csct ⊗ h′⟩
= ⟨U(bs ⊗ bt ⊗ h), U(cs ⊗ ct ⊗ h′)⟩.

Furthermore, U is onto because its image is a non-zero α̂st(π)-invariant
subspace of Bst⊗H. Finally, it is apparent that U intertwines α̂sα̂t(π)
and α̂st(π). �

Definition 2.4. Let B be a Fell bundle over a discrete group G. The
partial action α̂ in Proposition 2.3 will be called the partial action
associated with B.

Example 2.5 (Crossed products by Hilbert C∗-bimodules). When B
is the Fell bundle associated to a Hilbert C∗-bimodule X over a C∗-
algebra A as in [2, subsection 2.6], the associated partial action α̂ is the

partial homeomorphism ĥ discussed in [16]. When the C∗-algebra A is
commutative, it also agrees with the partial homeomorphism induced
by the partial action θ in [3, subsection 1.9].

Example 2.6 (Partial crossed products). If γ = ({γt}t∈G, {Dt}t∈G) is
a partial action of a discrete group G on a C∗-algebra A, then the Fell
bundle Bγ associated with γ has fibers Bt = {t}×Dt with the obvious
structure of Banach space, and product and involution given by:

(r, dr)(s, ds) = (rs, γr(γr−1(dr)ds)),

(r, dr)
∗ = (r−1, γr−1(d∗r)).

The unit fiber of Bγ is identified with A in the obvious way.

The partial action γ induces a partial action γ̂ on Â that was defined
in [5, Section 7] and [6] and further discussed in [17]. The partial
action γ̂ is given by

γ̂t(π) = π ◦ γt−1 for π ∈ Â,
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and it agrees with the partial action associated with the Fell bundle

Bγ . In fact, it is easily checked that, if π ∈ D̂t−1 is a representation on
a Hilbert space Hπ, then the map

U : Bt ⊗Dt−1 Hπ −→ Hπ, given by U((t, dt)⊗ h) = π(γt−1(dt))(h),

for dt ∈ Dt, t ∈ G and h ∈ Hπ, is a unitary operator intertwining
IndBt π and π ◦ γt−1 .

Example 2.7 (Fell bundles with commutative unit fiber). We now
assume that the Fell bundle B has commutative unit fiber, that is,
Be = C0(X) for a locally compact Hausdorff space X. We identify X

with B̂e in the usual way: x ∈ X is viewed as [πx] ∈ B̂e, where πx is
evaluation at x.

If Ix = kerπx, then x ∈ Xt−1 if and only if B∗
tBt ̸⊆ Ix, that is, ([19,

subsection 3.3]), x ∈ Xt−1 if and only if BtIx ̸= Bt. Therefore, if bt(x)
denotes the image of an element bt of Bt under the quotient map on
Bt/BtIx, then

B̂e \Xt−1 = {x ∈ X : bt(x) = 0 for all bt ∈ Bt}.

Additionally, if x ∈ Xt−1 , we have, by equation (1.6),

Iα̂t(x)Bt = Iα̂t(x)DtBt = ker(IndBt πx)Bt = Bt kerπx = BtIx.

Therefore,

(2.6) (abt)(x) =

{
a(α̂t(x))bt(x) if x ∈ Xt−1

0 otherwise,

for a ∈ Be and bt ∈ Bt.

3. Topological freeness and ideals in the cross-sectional C∗-
algebras. In this section, we show that some well-known results re-
lating topological freeness and the ideal structure of crossed products
carry over to our setting.

Proposition 3.1. Let B = (Bt)t∈G be a Fell bundle over a discrete
group G, and let ρ be a representation of C∗(B) on a Hilbert space K.
Suppose that σ : Be → B(H) is an irreducible subrepresentation of
ρ|Be , and let Ht = span ρ(Bt)H, for each t ∈ G. Then:
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(i) Ht is ρ(Be)-invariant for all t ∈ G.
(ii) Ht = {0} if σ /∈ Xt−1 , and Ht ⊥ H if σ /∈ Xt.
(iii) If σ ∈ Xt ∩Xt−1 and α̂t(σ) ̸= σ, then Ht ⊥ H.

Proof. Statement (i) is apparent. As for (ii), consider the orthogonal
decompositions

K = H⊕H⊥, ρ|Be = σ ⊕ σ⊥.

Notice that any element in Bt can be written as xbty, where x ∈ Dt,
bt ∈ Bt, and y ∈ Dt−1 . Additionally, if σ ̸∈ Xt−1 , then σ|Dt−1 = 0,
and, for any h ∈ H,

ρ(xbty)(h) = ρ(xbt)(σ(y)(h) + σ⊥(y)h) = 0,

which shows that Ht = {0}.
If σ /∈ Xt, then, for x, bt, y as above, and h, h′ ∈ H,

⟨ρ(xbty)h, h′⟩ = ⟨ρ(bty)h, ρ(x∗)h′⟩

= ⟨ρ(bty)h, σ(x∗)h′ + σ⊥(x∗)h′⟩
= ⟨ρ(bty)h, σ(x∗)h′⟩
= 0,

which completes the proof of (ii). In order to prove (iii), we now assume
that σ ∈ Xt∩Xt−1 . Let σt denote the subrepresentation of ρ|Be on Ht,
that is,

σt(c)ht = ρ(c)ht,

for all c ∈ Be and ht ∈ Ht. Then the map

U : Bt ⊗Dt−1 H −→ Ht given by U(bt ⊗ h) = ρ(bt)h

is a unitary operator intertwining σt and α̂t(σ). In fact, if bt, ct ∈ Bt,
and h, k ∈ H, then

⟨bt ⊗ h, ct ⊗ k⟩ = ⟨σ(c∗t bt)h, k⟩ = ⟨ρ(c∗t bt)h, k⟩ = ⟨ρ(bt)h, ρ(ct)k⟩.

Therefore, if σ ̸= α̂t(σ), then σ and σt are irreducible non-equivalent
subrepresentations of ρ|Be . It now follows from [7, subsection 12.15]
that H and Ht are orthogonal. �

Definition 3.2. Recall from [12, subsection 2.2] that a partial action
θ of a discrete group G on a locally compact topological space X is
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topologically free if, for any finite subset S of G \ {e}, the set∪
t∈S

{x ∈ dom θt : θt(x) = x}

has empty interior. Equivalently, θ is topologically free if the set

Ft = {x ∈ dom θt : θt(x) = x}

has empty interior for any t in G \ {e}.

Theorem 3.3. Suppose that B = (Bt)t∈G is a Fell bundle over a
discrete group G, A is a C∗-algebra and

ϕ : C∗(B) −→ A

is a ∗-homomorphism, and let J := kerϕ ∩Be.

If the partial action α̂ associated with B is topologically free on

B̂e \XJ , then

(3.1) ∥ϕ(c)∥ ≥ ∥ϕ(E(c))∥, for all c ∈ C∗(B).

Proof. Since it suffices to show that equation (3.1) holds when c
belongs to the dense ⋆-subalgebra Cc(B) of compactly supported cross
sections, we assume that

c =
∑

t∈ supp(c)

c(t)δt,

where supp(c) is a finite subset of G. In order to show the statement,
we will prove that

(3.2) ∥ϕ(c)∥ ≥ ∥ϕ(E(c))∥ − ϵ,

for all ϵ > 0.

Fix ϵ > 0. Note that

∥ϕ(E(c))∥ = ∥E(c) + J∥Be/J = max{∥τ(E(c) + J)∥ : τ ∈ B̂e/J}
(3.3)

= max{∥σ(E(c))∥ : σ ∈ B̂e \XJ}.

In addition, since the map σ 7→ ∥σ(E(c))∥ is lower semicontinuous on

B̂e \ XJ ([19, A30]), we can choose a set V that is open in B̂e \ XJ
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such that

(3.4) ∥σ(E(c)∥ ≥ ∥ϕ(E(c))∥ − ϵ,

for all σ ∈ V .

Now, since α̂ is topologically free on B̂e \XJ , the set

(3.5) F =
∪

t∈ supp(c)
t ̸=e

{σ ∈ Xt−1 : α̂t(σ) = σ}

does not contain V . Thus, we can choose a representation σ ∈ V on a
Hilbert space H such that σ /∈ F .

Let ϕ̃ : Be/J → ϕ(Be) be the canonical isomorphism induced by
ϕ|Be , and let ψ0 be a state of ϕ(Be) associated with the irreducible

representation qJ (σ) ◦ (ϕ̃)−1, where qJ is as in equation (1.8). Extend
ψ0 to a pure state ψ on ϕ(C∗(B)). The GNS construction for ψ yields a
representation π of ϕ(C∗(B)) on a Hilbert space K containing a closed

subspace H such that qJ(σ) ◦ (ϕ̃)−1 is the subrepresentation of π|ϕ(Be)

on H.

We now define ρ : C∗(B) −→ B(K) by ρ = π ◦ ϕ. If Q ∈ B(K,H) is
the orthogonal projection on H, then
(3.6)

Qρ(b)Q∗ = Qπ(ϕ(b))Q∗ = Q(π(ϕ̃(b+ J))Q∗ = qJ(σ)(b+ J) = σ(b),

for all b ∈ Be, which shows that σ is an irreducible subrepresentation
of ρ|Be .

We now set Ht = spanρ(Bt)(H). By Proposition 3.1, we have, since
σ /∈ F , that Ht ⊥ H for all t ∈ supp(c) such that t ̸= e. Therefore,

∥ϕ(c)∥ ≥ ∥π ◦ ϕ(c)∥ = ∥ρ(c)∥
≥ ∥Qρ(c)Q∗∥ = ∥Qρ(E(c))Q∗∥
= ∥σ(E(c))∥ ≥ ∥ϕ(E(c))∥
− ϵ. �

Corollary 3.4. Suppose that B = (Bt)t∈G is a Fell bundle over a
discrete group G such that the partial action associated with B is
topologically free. Then:
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(i) if I is an ideal in C∗(B) such that I ∩ Be = {0}, then I ⊂ kerΛ,
where

Λ : C∗(B) −→ C∗
r (B)

is the canonical surjective map.
(ii) If I is an ideal in C∗

r (B) such that I ∩ Be = {0}, then I = {0}.
Consequently, a representation of C∗

r (B) is faithful if and only if
its restriction to Be is faithful.

Proof.

(i) Since the restriction of the quotient map

PI : C∗(B) −→ C∗(B)/I

to Be is injective, we have by Theorem 3.3 that

∥PI(E(c))∥ ≤ ∥PI(c)∥ for all c ∈ C∗(B).

Consequently, E(I) ⊆ I ∩ Be = {0} and I ⊂ kerΛ, see equa-
tion (2.3).

(ii) Let J = Λ−1(I). Then J ▹ C∗(B) and Λ(J ∩Be) ⊆ I ∩Be = {0}.

Therefore, J ∩ Be ⊆ kerΛ ∩ Be = {0}. It now follows from (i) that
J ⊆ kerΛ. Hence, I = Λ(J) = {0}. �

Definition 3.5 (cf., [5]). Let B be a Fell bundle over a discrete
group G. A subset J ⊆ B is an ideal of B if it is a Fell bundle over G
with the inherited structure, and if JB = J = BJ . An ideal I in Be

is said to be B-invariant if BtIB
∗
t ⊆ I, for all t ∈ G.

Proposition 3.6. Let B be a Fell bundle over a discrete group G, and
let I be an ideal in Be. Then the following statements are equivalent :

(i) I is a B-invariant ideal.
(ii) BtIB

∗
t = I ∩BtB

∗
t for all t ∈ G.

(iii) BtI = IBt for all t ∈ G.
(iv) I = (IBt)t∈G is an ideal of B.

Proof. Suppose that I is B-invariant. Then BtIB
∗
t ⊆ I, and, since

BtIB
∗
t ⊆ BtBeB

∗
t = BtB

∗
t , we have that BtIB

∗
t ⊆ I ∩BtB

∗
t .
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On the other hand, since B∗
t IBt ⊆ I, we have that

I ∩BtB
∗
t = IBtB

∗
t = BtB

∗
t IBtB

∗
t ⊆ BtIB

∗
t .

Thus, (i) implies (ii).

Now, if (ii) holds, then

BtI = BtB
∗
tBtI = BtIB

∗
tBt = (I ∩BtB

∗
t )Bt = (IBtB

∗
t )Bt = IBt,

which implies (iii). Clearly I is a right ideal, and it is apparent that it
is also a left ideal if (iii) holds. Finally, suppose that I is an ideal in
B. Then

BtIB
∗
t ⊆ I ∩Be = I. �

Remark 3.7. If J ▹C∗(B) or J ▹C∗
r (B), then J ∩Be is a B-invariant

ideal.

Proof. In both cases, JeBt = Jt = BtJe, where Jt = J ∩ Bt for
all t ∈ G. It is clear that Jt ⊇ JeBt and Jt ⊇ BtJe. On the
other hand, since Jt is a Hilbert C∗ sub-bimodule of Bt, we have that
Jt = JtJ

∗
t Jt ⊆ JeBt ∩BtJe. �

Proposition 3.8. Let B be a Fell bundle over a discrete group G.
The map I 7→ I = (It)t∈G, where It = IBt is an isomorphism from
the lattice of B-invariant ideals of Be onto that of the ideals of B. Its
inverse is given by I 7→ I ∩Be.

Proof. Assume that I is B-invariant. Then, by Proposition 3.6,
I = (It) is an ideal in B, and the correspondence I 7→ I is injective
because Ie = I. Conversely, if I is an ideal of B, let It := I ∩ Bt, for
all t ∈ G. Since I is a Fell bundle and a right ideal of B, we have:

It = IeIt ⊆ IeBt ⊆ I ∩Bt = It.

Then It = IeBt, and, analogously, It = BtIe. Thus, Ie is a B-invariant
ideal of Be, and I = (IeBt).

Finally, it is clear that both maps preserve inclusion, which implies
they are lattice isomorphisms. �



IDEALS IN CROSS SECTIONAL C∗-ALGEBRAS 365

Definition 3.9. Recall that, if α is a partial action of G on a set X,
then a set S ⊂ X is said to be α-invariant if

αt(S ∩ domαt) = S ∩ domαt−1 , for all t ∈ G.

Proposition 3.10. Let B be a Fell bundle over a discrete group G,

and let α̂ be the partial action on B̂e associated with B. Then the map
J 7→ XJ is an isomorphism from the lattice of B-invariant ideals in Be

to that of open α̂-invariant sets in B̂e.

Proof. Since it is well known that the correspondence J 7→ XJ is

a lattice isomorphism from I(Be) to the topology of B̂e, the proof
amounts to showing that an ideal J in Be is B-invariant if and only if
the open set XJ is α̂-invariant.

First, assume that J is B-invariant. If σ ∈ XJ ∩ Xt−1 , then
σ|JDt−1 ̸= 0. In addition, BtJ = JBt is a DtJ − JDt−1 imprimitivity
bimodule, and it follows that IndBtJ(σ|JDt−1 ) ̸= 0.

On the other hand, if σ is a representation on a Hilbert space Hσ,
then the map

btj ⊗Dt−1J h 7−→ btj ⊗Dt−1 h

extends to a unitary operator from BtJ ⊗Dt−1J Hσ onto Bt ⊗Dt−1 Hσ

that intertwines IndBt(σ|Dt−1 )|DtJ and IndBtJ (σ|Dt−1J). This shows
that α̂t(σ)|J ̸= 0, that is, that α̂t(σ) ∈ XJ .

Assume now that XJ is α̂-invariant. Then

BtJ = BtDt−1J = hBt(Dt−1J)Bt,

for all t ∈ G.

Now, since the Rieffel correspondence is a lattice isomorphism,

hBt(Dt−1J) = hBt

(∩
{kerπ|Dt−1 : π ∈ Xc

J ∩Xt−1}
)

=
∩

{hBt(kerπ|Dt−1 ) : π ∈ Xc
J ∩Xt−1}

=
∩

{ker IndBt(π|Dt−1 ) : π ∈ Xc
J ∩Xt−1}
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= Dt ∩
∩

{ker α̂t(π) : π ∈ Xc
J ∩Xt−1}

= Dt ∩
∩

{kerπ : π ∈ Xc
J ∩Xt} = DtJ.

Thus, BtJ = JDtBt = JBt. �

Definition 3.11. Recall that a partial action α on a topological space
X is said to be minimal if X does not have α-invariant open proper
subsets.

Corollary 3.12. Let B = (Bt)t∈G be a Fell bundle with associated
partial action α̂. Consider the following statements:

(i) C∗
r (B) is simple.

(ii) The Fell bundle B has no non-trivial ideals.
(iii) Be has no non-trivial B-invariant ideals.
(iv) The partial action α̂ is minimal.

Then we have (i) ⇒ (ii) if and only if (iii) if and only if (iv) and, if α̂
is topologically free, then we also have (iv) ⇒ (i), so in this case all the
statements are equivalent.

Proof. Since all open proper subsets of B̂e can be written as XJ for
some non-trivial ideal J in Be, Proposition 3.8 and Proposition 3.10
show that (ii), (iii) and (iv) are equivalent.

Assume now that C∗
r (B) is simple, and let J �▹ B. Then C∗

r (J ) ▹
C∗

r (B) by [5, subsection 3.2]. In addition, since J ̸= B, we have that

E(C∗
r (J )) = J ∩Be ̸= Be,

by Proposition 3.8. This implies that C∗
r (J ) ̸= C∗

r (B). Therefore,
C∗

r (J ) = {0}. We now have that

0 ⊆ J ⊆ C∗
r (J ) = {0};

hence, J = {0}, and therefore, (i) implies (ii).

Suppose now that (iv) holds and that α̂ is topologically free. Let
J �▹ C∗

r (B), and set Je = J ∩Be.

By Remark 3.7, Je is B-invariant. Now, by Proposition 3.10,
XJe = ∅, which implies that Je = {0}. It now follows from Corollary 3.4
that J = {0}, which implies that C∗

r (B) is simple. �
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Let A = (At)t∈G and B = (Bt)t∈G be Fell bundles over a discrete
group G. A map

ϕ : A −→ B

is said to be a morphism if

ϕ|At : At −→ Bt

is linear for all t ∈ G, and ϕ(aa′) = ϕ(a)ϕ(a′), ϕ(a∗) = ϕ(a)∗ for all
a, a′ ∈ A, which implies that ϕ is norm decreasing. A morphism ϕ
induces a homomorphism

ϕc : Cc(A) −→ Cc(B),

given by ϕc(f)(t) := ϕ(f(t)). The map ϕc is a ∥ ∥1-continuous ∗-
homomorphism, so it extends to a homomorphism of Banach ∗-algebras

ϕ1 : L1(A) −→ L1(B),

and hence, to a C∗-algebra homomorphism

ϕ∗ : C∗(A) −→ C∗(B).

Thus, we have a functor

(A ϕ−→ B) 7−→ (C∗(A)
ϕ∗−→ C∗(B)),

that turns out to be exact ([4, 3.1]).

If we now consider reduced C∗-algebras instead of full C∗-algebras,
we obtain another functor. In fact, suppose that

EA : C∗(A) −→ Ae

is the canonical conditional expectation and that

ΛA : C∗(A) −→ C∗
r (A)

is the canonical homomorphism. Since kerΛA = {x ∈ C∗(A) :
EA(x

∗x) = 0}, and the diagram

C∗(A)
ϕ∗ //

EA

��

C∗(B)

EB

��
Ae

ϕ|Be

// Be



368 BEATRIZ ABADIE AND FERNANDO ABADIE

is commutative, we have that ϕ∗(kerΛA) ⊆ kerΛB. It follows that
there exists a unique homomorphism ϕr : C∗

r (A) → C∗
r (B) such that

C∗(A)
ϕ∗ //

ΛA

��

C∗(B)

ΛB

��
C∗

r (A)
ϕr

// C∗
r (B)

commutes. Thus, we have another functor

(A ϕ−→ B) 7→ (C∗
r (A)

ϕr−→ C∗
r (B)).

If ϕ is injective or surjective, then so is ϕr ([5, subsection 3.2]).
However, if we consider the exact sequence of Fell bundles

0 // I i // B
p // B/I // 0 ,

where I is an ideal in B, then the induced sequence

0 // C∗
r (I)

ir // C∗
r (B)

pr // C∗
r (B/I) // 0

is not exact in general, because C∗
r (I) does not necessarily agree with

ker pr.

We remark that, since kerΛA = {x ∈ C∗(A) : EA(x
∗x) = 0}, we

can define a map
C∗

r (A) −→ Ae

such that
ΛA(x) 7−→ EA(x),

for all ΛA(x) ∈ C∗
r (A). This map is itself a faithful conditional

expectation ([10, subsection 2.12]) with range Ae, which we will also
denote by EA.

Let I(B) and I(C∗
r (B)) denote the lattice of ideals of the Fell bundle

B and in C∗
r (B), respectively. Since, for every I ∈ I(B), we may identify

C∗
r (I) with the closure of Cc(I) in C∗

r (B), there is an order-preserving
map

µ : I(B) −→ I(C∗
r (B))

given by µ(I) := C∗
r (I).
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We now consider the maps

ν1, ν2 : I(C∗
r (B)) −→ I(B),

given as follows. ν1(J) is the ideal of B corresponding to J ∩ Be by
Proposition 3.6 (and Remark 3.7), that is, ν1(J) = (Jt)t∈G, where
Jt = J ∩ Bt. Also, define ν2(J) to be the ideal of B generated by
EB(J). Then, both ν1 and ν2 are left inverses for µ which implies
that µ is injective. However, µ is not surjective in general. Clearly,
a necessary condition for µ to be onto is that ν1 = ν2, that is, that
J ∩Be = EB(J) for all J ∈ I(C∗

r (B)).

Definition 3.13 (cf., [21]). Let B = (Bt)t∈G be a Fell bundle over a
discrete group G. An ideal J of C∗

r (B) is said to be diagonal invariant
if EB(J) ⊆ J , that is, EB(J) = J ∩Be.

In [14], Giordano and Sierakowski thoroughly discussed the above
correspondence µ. In what follows, we generalize their methods and
results to the context of Fell bundles.

Given an ideal J of C∗
r (B), let J (1) := ν1(J) and J (1) := µν1(J),

for µ and ν1 as above. Then J (1) ⊆ J , as it is the closure of the subset
Cc(J (1)) of J .

Similarly, we define

J (2) := ν2(J)

and

J (2) := µν2(J).

Then J (2) is the ideal of B generated by EB(J) and J
(2) = C∗

r (J (2)).
Note that the unit fiber of J (2) is the invariant ideal of Be generated
by the ideal EB(J) of Be. Since EB is the identity on J ∩Be, it follows
that J (1) ⊆ J (2). Therefore, J (1) ⊆ J ∩ J (2).

Definition 3.14 (cf., [14, Definition 3.1]). Let B = (Bt)t∈G be a Fell
bundle over the discrete group G, and let I = (It)t∈G be an ideal of B.
Then:
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(i) B is said to have the exactness property at I ▹ B if the sequence

0 // C∗
r (I)

ir // C∗
r (B)

pr // C∗
r (B/I) // 0

is exact.
(ii) B is said to have the intersection property at I if the intersection

of Be/Ie with any nonzero ideal in C∗
r (B/I) is also nonzero.

If B has the exactness property at every ideal I ∈ I(B), we say that
B has the exactness property, and if it has the intersection property
at every ideal I ∈ I(B), we say that B has the residual intersection
property.

In view of Definition 3.14, the second statement of Corollary 3.4
could be restated in the following way: B has the intersection property
whenever its associated partial action is topologically free. More
generally, we have:

Proposition 3.15. Let B = (Bt)t∈G be a Fell bundle over a discrete
group G. Suppose that J = (Jt)t∈G is an ideal of B, and let X :=

B̂e \XJe . If the partial action of B is topologically free on X, then B
has the intersection property at the ideal J .

Proof. The unit fiber of the quotient bundle B/J is Be/Je, whose

spectrum is homeomorphic to B̂e \ XJe = X. On the other hand, it
is easily checked that the partial action associated to the Fell bundle
B/J agrees with that induced by the partial action of B. Now, by the
commutativity of diagram (1.9) and the fact that the partial action
associated with B is topologically free on X, we conclude that the
partial action associated to B/J is topologically free. Finally, we apply
part (ii) in Corollary 3.4. �

Corollary 3.16. If the partial action of the Fell bundle B is topologi-

cally free on every invariant closed subset of B̂e, then B has the residual
intersection property.

Proposition 3.17. Let B = (Bt)t∈G be a Fell bundle over a discrete
group G, and let J ∈ I(C∗

r (B)).
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(i) If B has the exactness property at J (2), then J ⊆ J (2). If, in
addition, J is diagonal invariant, then J (1) = J = J (2).

(ii) If B has the exactness property and the intersection property at
J (1), then J (1) = J = J (2).

Proof. Let

0 // J (2) i // B
p // B/J (2) // 0

be the exact sequence associated with the ideal J (2) of B, and suppose
that B has the exactness property at J (2). Then the diagram

0 // C∗
r (J (2))

ir //

EJ (2)

��

C∗
r (B)

pr //

EB

��

C∗
r (B/J (2)) //

EB/J (2)

��

0

0 // J (2) ∩Be
i

// Be p
// Be/(J (2) ∩Be) // 0

is commutative and has exact rows. If x ∈ J+, then EB(x) ∈ J (2)∩B+
e ,

which implies that EB/J (2)pr(x) = 0. Since pr(x) ∈ C∗
r (B/J (2))+ and

EB/J (2) is faithful, then pr(x) = 0. Then x ∈ C∗
r (J (2)) because of the

exactness of the first row at C∗
r (B). This shows that J ⊆ J (2). Since

the inclusion J (1) ⊆ J always holds, and the definition of diagonal
invariance requires precisely that J (1) = J (2), which implies that
J (1) = J (2), we conclude that J (1) = J = J (2).

Suppose now that B has both the exactness and the residual inter-
section properties at J (1). Let

q : B −→ B/J (1)

be the quotient map. In order to prove that J (1) = J = J (2), it suffices
to show that J (1) = J , for, in this case, we have that E(J) ⊆ J (1), and,
consequently, that J (2) = J (1). In other words, we must show that
qr(J) = {0}. Since B is exact at J (1), we have ker qr = J (1). Let

qr : C∗
r (B)/J (1) −→ C∗

r (B/J (1))

be the isomorphism induced by qr. Since B has the intersection
property at J (1), in order to prove that qr(J) = {0}, it suffices to
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show that qr(J) ∩Be/(J ∩Be) = {0}, or, equivalently, that

(3.7) J/J (1) ∩ (Be + J (1))/J (1) = {0},

since

J/J (1) ∩ (Be + J (1))/J (1) = q̄−1
r (qr(J) ∩Be/(J ∩Be)).

Let x ∈ J and b ∈ Be be such that

x+ J (1) = b+ J (1) ∈ J/J (1) ∩ (Be + J (1))/J (1).

Then x − b ∈ J (1) ⊆ J , which implies that b ∈ J ∩ Be ⊆ J (1) and
x ∈ J (1), so equation (3.7) holds, and (ii) follows. �

Lemma 3.18. If the map

µ : I(B) −→ I(C∗
r (B))

given by
I 7−→ C∗

r (I)

is a lattice isomorphism and B has the exactness property at J ∈ I(B),
then

µJ : I(B/J ) −→ I(C∗
r (B/J ))

given by
I 7−→ C∗

r (I/J )

is also a lattice isomorphism.

Proof. Let
IJ := {I ∈ I(B) : J ⊆ I}

and
Iµ(J ) := {I ∈ I(C∗

r (B)) : µ(J ) ⊆ I}.

Then the restriction of µ to IJ gives rise to an isomorphism between
IJ and Iµ(J ). On the other hand, the map

η1 : I 7−→ I/J

is an isomorphism from IJ onto I(B/J ), as is the map

η2 : I 7−→ I/C∗
r (J )
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from Iµ(J ) onto I(C∗
r (B)/C∗

r (J )). Moreover, since B is exact at J ,
the quotient map

p : B −→ B/J

induces an isomorphism

pr : C∗
r (B)/C∗

r (J ) −→ C∗
r (B/J )

which, in turn, induces an obvious lattice isomorphism

η3 : I(C∗
r (B)/C∗

r (J )) −→ I(C∗
r (B/I)).

Then µJ is an isomorphism because µJ = η3η2µ|IJ η
−1
1 . �

Theorem 3.19. Let B = (Bt)t∈G be a Fell bundle over a discrete
group G. Let µ : I(B) → I(C∗

r (B)) be the lattice homomorphism given
by µ(I) = C∗

r (I). Then the following statements are equivalent :

(i) the map µ is an isomorphism of lattices.
(ii) B has the exactness property and every J ∈ I(C∗

r (B)) is diagonal
invariant.

(iii) B has the exactness and residual intersection properties.

Proof. It follows from Proposition 3.17 that either statement (ii)
or (iii) implies (i). Suppose that µ is a lattice isomorphism. Then any
ideal of C∗

r (B) is of the form C∗
r (I), and therefore, is diagonal invariant.

Recall from the comments preceding Definition 3.13 that the inverse of
µ is given by J 7→ J ∩Be. To show that (i) implies (ii), we must prove
that B has the exactness property at any ideal I = (It)t∈G of B. The
quotient map

p : B −→ B/I

induces a surjective homomorphism

pr : C∗
r (B) −→ C∗

r (B/I),

whose kernel contains C∗
r (I). Then

Ie = EB(C
∗
r (I)) ⊆ EB(ker(pr)) = ker(pr) ∩Be,

the last equation following from the diagonal invariance of ker(pr). But,

ker(pr) ∩Be = ker(p|Be) = Ie = C∗
r (I) ∩Be.

Then ker(pr) = C∗
r (I).
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To conclude that (i) also implies (iii) we must show that B has the
residual intersection property. So, pick an element J = (Jt)t∈G ∈ I(B),
and suppose that I ▹ C∗

r (B/I) is such that

I ∩ Be

Je
= {0}.

By Lemma 3.18, there is a unique I = (It)t∈G ▹ B such that J ⊆ I
and I = C∗

r (I/J ). Then

{0} = I ∩ Be

Je
=
Ie ∩Be

Je
,

that is, Je = Ie. Since, by Proposition 3.8, this implies that I = J , it
follows that I = {0}. �

Corollary 3.20. Let B = (Bt)t∈G be a Fell bundle over a discrete
group G. Then the correspondences

J 7−→ C∗(J ) and J 7−→ C∗
r (J )

are injective lattice homomorphisms from the lattice of ideals in B to
the lattices I(C∗(B)) and I(C∗

r (B)) of ideals in C∗(B) and C∗
r (B),

respectively. If B has the exactness property and its associated partial

action is topologically free on every α̂-invariant closed subset of B̂e,
then

I(B) −→ I(C∗
r (B))

is a lattice isomorphism.

Proof. Let J = (Jt)t∈J be an ideal in B. By [4, subsection 3.1],

Cc(J ) = C∗(J )▹ C∗(B),

where Cc(J ) is the closure of Cc(J ) in C∗(B). It follows that Be ∩
C∗(J ) = J ∩ Be, which takes care of the injectivity, in view of
Proposition 3.8. The rest of the proof follows immediately from
Theorem 3.19 and Corollary 3.16. �

Example 3.21 (Ideal structure of quantum Heisenberg manifolds).
The family

{Dc
µ,ν : c ∈ Z, c > 0, µ, ν ∈ T}
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of quantum Heisenberg manifolds was constructed [20] as a deforma-
tion of the Heisenberg manifold Mc for a positive integer c. The C∗-
algebra Dc

µν was shown [2] to be the crossed product of C(T2) by a
Hilbert C∗-bimodule Xc

µν , where T denotes the unit circle. SinceXc
µν is

full in both the left and the right, α̂ turns out to be a homeomorphism,
which was shown in [3] (see also Example 2.5) to be given by

α̂(x, y) = (x+ 2µ, y + 2ν) for all (x, y) ∈ T2.

Let Gµν denote the abelian free group

Gµν = Z+ 2µZ+ 2νZ.

Rieffel showed [20, subsection 6.2] that Dc
µν is simple if and only if

rankGµν = 3. On the other hand, when rankGµν = 1, the C∗-algebra
Dc

µν is Morita equivalent to the commutative C∗-algebra C(Mc) ([1,
subsection 2.8]), and, consequently, has the same ideal structure. We
now discuss the case in which rankGµν = 2. First note that the action
α̂ is free in that case. In fact, α̂n(x, y) = (x, y) if and only if 2nµ and
2nν are integers, which implies that n = 0 or rankGµν = 1.

Additionally, C(T2) o Xc
µν has the exactness property by [4, sub-

section 3.1] because it is the cross-sectional C∗-algebra of a Fell bundle
B over the amenable group Z. Thus, we are under the assumptions of
Lemma 3.20, and there is a lattice isomorphism between I(Dc

µν) and
the lattice of α̂-invariant open sets of the two-torus.

4. Fell bundles with commutative unit fiber. Throughout this
section, we will assume that the unit fiber of the Fell bundle B is
commutative, that is, Be = C0(X), for some locally compact Hausdorff
space X. We will use the identifications and facts established in
Example 2.7. Let jt : Bt → ℓ2(B) be the inclusion map described
in equation (2.2). Exel proved [10] that, for any c ∈ C∗

r (B) and t ∈ Bt,
there is a unique element ĉ(t) ∈ Bt, called the Fourier coefficient of c
corresponding to t, such that

j∗t cje(a) = ĉ(t)a for all a ∈ Be.

He also showed that c = 0 if and only if ĉ = 0 ([10, subsections 2.6,
2.7, 2.12]).

Lemma 4.1. Let a ∈ Be and c ∈ C∗
r (B). Then âc = aĉ and ĉa = ĉa.
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Consequently, c commutes with a if and only if aĉ(t) = ĉ(t)a for all
t ∈ G.

Proof. Note that Λaje(a
′) = je(aa

′) for all a′ ∈ Be. Then

ĉa(t)a′ = j∗t caje(a
′) = j∗t cje(aa

′) = j∗t cje(a)a
′ = ĉ(t)aa′,

and it follows that ĉa = ĉa.

On the other hand, as is easily checked, j∗t Λa(ξ) = aξ(t) for all
ξ ∈ ℓ2(B). Therefore, if a′ ∈ Be:

âc(t)a′ = j∗t acje(a
′) = aj∗t cje(a

′) = aĉ(t)a′,

which shows that âc(t) = aĉ(t). The last statement follows from the

first one and from the fact that ac = ca if and only if âc− ca = 0. �

Lemma 4.2. Let bt ∈ Bt, and

Ft = {x ∈ Xt−1 : α̂t(x) = x}.

Then bt ∈ B′
e if and only if bt(x) = 0 for all x /∈ Ft.

Proof. Since abt = bta if and only if (abt− bta)(x) = 0 for all x ∈ X,
we have that bt ∈ B′

e if and only if bt(x)a(α̂t(x)) = bt(x)a(x) for all
x ∈ Xt−1 and a ∈ Be. Thus, bt ∈ B′

e if bt(x) = 0 for all x /∈ Ft.

Conversely, if bt ∈ B′
e and x ∈ Xt−1 \ Ft, we can pick an element

a ∈ Be such that a(x) ̸= 0 = a(α̂t(x)). Then bt(x)a(x) = 0, which
shows that bt(x) = 0. �

Zeller-Meier showed that, if α is an action of a discrete group G on
a commutative C∗-algebra A, then A is a maximal commutative C∗-
subalgebra of the reduced crossed product Aoα,r G if and only if α is

topologically free on Â ([22, Proposition 4.14]). The previous results
allow us to generalize that result in the following way.

Proposition 4.3. Let B′
e be the commutant of Be in C∗

r (B). Then
B′

e = Be if and only if α̂ is topologically free.

Proof. Let c ∈ C∗
r (B). By Lemmas 4.1 and 4.2, we have c ∈ B′

e if
and only if ĉ(t) = 0 outside Ft for all t ∈ G. Then if, for all t ̸= e,
the interior of Ft is empty, we have ĉ(t) = 0, so c ∈ Be, and therefore,
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B′
e = Be. On the other hand, if there exists t ̸= e such that Ft has

a non empty interior, then there exists a ∈ Dt−1 , a ̸= 0, such that
a(x) = 0 for all x /∈ Ft. Since Bta ̸= 0, there exists b′t ∈ Bt such
that 0 ̸= b′ta =: bt ∈ Bt. Now bt(x) = 0 for all x /∈ Ft, and therefore,
bt ∈ B′

e \Be. �

Corollary 4.4. The partial action α̂ is topologically free if and only
if Be is a maximal commutative C∗-subalgebra of C∗

r (B), and conse-
quently, it is a Cartan subalgebra of C∗

r (B).

4.1. The case of partial crossed products. We consider next a
partial action on a commutative C∗-algebra A = C0(X), where X a
locally compact Hausdorff space. It is clear from Example 2.6 that, in
this case, the partial action α̂ associated to the Fell bundle agrees with

α when X is identified in the usual way with Â. In what follows, we
will write α to denote either one.

Theorem 4.5. Suppose that α is a partial action of a discrete group
G on a commutative C∗-algebra. Consider the following statements:

(i) A is a maximal commutative C∗-subalgebra of Aoα,r G.
(ii) α is a topologically free.
(iii) If I is an ideal in AoαG with A∩ I = {0}, then I ⊆ kerΛ, where

Λ : Aoα G −→ Aoα,r G

is the canonical map.
(iv) If I is a non-zero ideal of Aoα,r G, then A ∩ I ̸= {0}.
(v) If a representation ϕ : Aoα,rG→ B(H) is faithful when restricted

to A, then ϕ is faithful.

Then we have that (i) if and only if (ii) if and only if (iii) ⇒ (iv) if and
only if (v).

Proof. Corollary 4.4 shows that (i) and (ii) are equivalent. In
addition, Corollary 3.4 proves that (ii) implies (iii), and its proof shows
that (iii) implies (iv). Since (iv) and (v) are obviously equivalent, we
are left with the proof of the fact that (iii) implies (ii). We will adapt
the proof for global actions [8, Theorem 2], which in turn essentially
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follows [15], to our setting. Suppose (iii) holds. Let X be a locally
compact Hausdorff topological space such that A = C0(X).

Given x ∈ X, let o(x) denote the α-orbit of x:

o(x) := {αt(x) : t such that x ∈ Xt−1}.

Let Hx := ℓ2(o(x)) with its canonical orthonormal basis {ey : y ∈
o(x)}. Consider

vx : G −→ B(Hx)

defined by

vxt (ey) =

{
eαt(y) if y ∈ Xt−1

0 otherwise.

Thus, vxt is a partial isometry with initial space ℓ2(o(x)∩Xt−1) and
final space ℓ2(o(x) ∩Xt).

We claim that vx is a partial representation of G. Let us first note
that (vxt )

∗ = vxt−1 , since

⟨vxt (ey), ez⟩ =

{
1 if y ∈ Xt−1 and z = αt(y)

0 otherwise

= ⟨ey, vxt−1(ez)⟩.

We next show that

vxr v
x
s v

x
s−1(ey) = vxrsv

x
s−1(ey), for all r, s ∈ G, y ∈ o(x).

In fact, we have, on one hand, that

vxr v
x
s v

x
s−1(ey) =

{
eαr(y) if y ∈ Xs ∩Xr−1

0 otherwise.

On the other hand,

vxrsv
x
s−1(ey) =

{
0 if y /∈ Xs ∩ αs(Xs−1r−1 ∩Xs−1) = Xr−1 ∩Xs

eαr(y) otherwise.

We now define the representation πx : A → B(Hx) by πx(a)(ey) =
a(y)ey for all a ∈ A and y ∈ o(x).
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We claim that the pair (πx, vx) is a covariant representation of the
system (A,α). In fact, if a ∈ C0(Xt−1), y ∈ o(x):

πx(αt(a))(ey) = αt(a)(y)ey

=

{
a(αt−1(y))ey if y ∈ Xt

0 otherwise.

On the other hand, vxt π
x(a)vxt−1(ey) = 0 if y /∈ Xt, and if y ∈ Xt:

vxt π
x(a)vxt−1(ey) = vxt (a(αt−1(y))eαt−1 (y))

= a(αt−1(y))ey.

Let
ρx : Aoα G −→ B(Hx)

be the integrated form ρx = πx o vx of the covariant representation
(πx, vx). If

I =
∩
x∈X

ker ρx,

then I ∩A = 0 since if a ∈ A and ρx(a) = 0 for all x ∈ X, then

0 = ρx(a)(ey) = a(y)ey, for all x ∈ X, y ∈ o(x),

which shows that a = 0. Since we are assuming that (iii) holds,
I ⊆ kerΛ.

Let t ̸= e and a ∈ A be such that

supp (a) ⊆ {x ∈ X ∩Xt−1 : αt(x) = x}.

Then we have, for x ∈ X, y ∈ o(x):

• if y ∈ supp (a) then αt(y) = y, and

ρx(aδe − aδt)(ey) = a(y)ey − a(αt(y))eαt(y) = 0.

• if y /∈ supp (a) then αt(y) /∈ supp (a), and therefore, we have

ρx(aδe − aδt)(ey) = a(y)ey − a(αt(y))eαt(y) = 0.

From the computations above, we conclude that aδe − aδt ∈ I. There-
fore, aδe − aδt ∈ kerΛ. Then

a = E(aδe − aδt) = 0,
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from which it follows that the set

{x ∈ X ∩Xt−1 : αt(x) = x}

has empty interior.

�
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