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INVERSE SEMIGROUP ACTIONS ON GROUPOIDS

ALCIDES BUSS AND RALF MEYER

ABSTRACT. We define inverse semigroup actions on
topological groupoids by partial equivalences. From such
actions, we construct saturated Fell bundles over inverse
semigroups and non-Hausdorff étale groupoids. We interpret
these as actions on C∗-algebras by Hilbert bimodules and
describe the section algebras of these Fell bundles.

Our constructions give saturated Fell bundles over non-
Hausdorff étale groupoids that model actions on locally
Hausdorff spaces. We show that these Fell bundles are usu-
ally not Morita equivalent to an action by automorphisms,
that is, the Packer-Raeburn stabilization trick does not gen-
eralize to non-Hausdorff groupoids.

1. Introduction. Two of the most obvious actions of a groupoid G
are those by left and right translations on its arrow space G1. If G
is Hausdorff, they induce continuous actions of G on the C∗-algebra
C0(G

1). What happens if G is non-Hausdorff?

Let G be a non-Hausdorff, étale groupoid with Hausdorff, locally
compact object space G0. Then G1 is locally Hausdorff, that is, it has
an open covering U = (Ui)i∈I by Hausdorff subsets: we may choose Ui
so that the range and source maps restrict to homeomorphisms from
Ui onto open subsets of the Hausdorff space G0.

The covering U yields an étale, locally compact, Hausdorff groupoid
H with object space H0 :=

⊔
i∈I Ui, arrow space H1 :=

⊔
i,j∈I Ui ∩Uj ,

range and source maps r(i, j, x) := (i, x) and s(i, j, x) := (j, x), and
multiplication (i, j, x) · (j, k, x) = (i, k, x). The groupoid H is known as
the Čech groupoid for the covering U. In noncommutative geometry, we
view the groupoid C∗-algebra C∗(H) as the algebra of functions on the
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non-Hausdorff space G1. Is there some kind of action of G on C∗(H)
that corresponds to the translation action of G on G1?

There is no action of G on C∗(H) in the usual sense because there
is no action of G on H by automorphisms. The problem is that arrows
g ∈ G1 have many liftings (i, g) ∈ H0. To let g ∈ G act on H, we
must choose k ∈ I with gh ∈ Uk for h ∈ Uj with r(h) = s(g). It may,
however, be impossible to choose k continuously when h varies in Uj .
This article introduces actions by partial equivalences in order to make
sense of the actions of G on H and C∗(H).

First, we replace G by its inverse semigroup of bisections S =
Bis(G). This inverse semigroup cannot act on H by partial groupoid
isomorphisms for the same reasons as above. It does, however, act
on H by partial equivalences because the equivalence class of H is
independent of the covering, see also [16, Lemma 4.1]; thus, partial
homeomorphisms on G1 lift to partial equivalences of H in a canonical
way. We will see that an S-action by partial equivalences on a Čech
groupoid for a locally Hausdorff space Z is equivalent to an S-action
on Z by partial homeomorphisms.

Let S act on a groupoid H by partial equivalences. Then we build
a transformation groupoid H o S. Special cases of this construction
are the groupoid of germs for an action of S on a space by partial
homeomorphisms, the semidirect product for a group(oid) action on
another group(oid) by automorphisms, and the linking groupoid of a
single Morita-Rieffel equivalence. The original action is encoded in the
transformation groupoid L := H o S and open subsets Lt ⊆ L with

Lt · Lu = Ltu, L−1
t = Lt∗ ,

Lt ∩ Lu =
∪
v≤t,u

Lv, L1 =
∪
t∈S

Lt

and H = L1. We call such a family of subsets an S-grading on L with
unit fiber H. Any S-graded groupoid is a transformation groupoid for
an essentially unique action of S by partial equivalences on its unit
fiber. This is a very convenient characterization of actions by partial
equivalences.

An action of an inverse semigroup S on H by partial equivalences
cannot induce, in general, an action of S on C∗(H) by partial automor-
phisms in the usual sense, as defined by Sieben [33]. But we do get an
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action by partial Morita-Rieffel equivalences, that is, by Hilbert bimod-
ules. We show that actions of S by Hilbert bimodules are equivalent to
(saturated) Fell bundles over S. Along the way, we also drastically sim-
plify the definition of Fell bundles over inverse semigroups in [13]. Our
approach clarifies in what sense a Fell bundle over an inverse semigroup
is an “action” of the inverse semigroup on a C∗-algebra.

In the end, we want an action of the groupoid G itself, not of the
inverse semigroup Bis(G). For actions by automorphisms, Sieben and
Quigg [28] characterize which actions of Bis(G) come from actions of
G. We extend this characterization to Fell bundles: a Fell bundle over
Bis(G) comes from a Fell bundle over G if and only if the restriction
of the action to idempotents in Bis(G) commutes with suprema of
arbitrarily large subsets. This criterion only works for Bis(G) itself.
In practice, we may want to “model” G by a smaller inverse semigroup
S such that G0oS ∼= G. We characterize which Fell bundles over such
S come from Fell bundles over G.

In particular, our action of Bis(G) on C∗(H) for the Čech groupoid
associated to G1 does come from an action of G, so we get Fell bundles
over G that describe the left and the right translation actions on G1.
For these Fell bundles, we show that the section C∗-algebras are Morita
equivalent to C0(G

0). More generally, for any principal G-bundle
X → Z, the section algebra of the Fell bundle over G that describes the
action of G on a Čech groupoid for X is Morita-Rieffel equivalent to
C0(Z), just as in the more classical Hausdorff case (see Proposition 6.5).

For any action of an inverse semigroup S on a locally compact
groupoid H by partial equivalences, we identify the section C∗-algebra
of the resulting Fell bundle over S with the groupoid C∗-algebra of the
transformation groupoid. In brief notation,

C∗(H)o S ∼= C∗(H o S).

This generalizes the well-known isomorphism

C0(X)o S ∼= C∗(X o S)

for inverse semigroup actions on Hausdorff locally compact spaces by
partial homeomorphisms.

For a Hausdorff locally compact groupoid, any Fell bundle is equiva-
lent to an ordinary action on a stabilization (Packer-Raeburn stabiliza-
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tion trick, see also [6, Proposition 5.2]). In contrast, our Theorem 7.1
shows that a non-Hausdorff groupoid has no action by automorphisms
that describes its translation action on G1. Thus, we really need Fell
bundles to treat these actions of a non-Hausdorff groupoid.

Now we give an overview of the individual sections of the paper.

In Section 2, we study partial equivalences between topological
groupoids. We show, in particular, that the involution that exchanges
the left and right actions on a partial equivalence behaves like the
involution in an inverse semigroup.

Section 3 introduces inverse semigroup actions by partial equiv-
alences. We show that the rather simple-minded definition implies
further structure, which is needed to construct the transformation
groupoid. Once we know that actions by partial equivalences are es-
sentially the same as S-graded groupoids, we treat many examples.
This includes actions on spaces and Čech groupoids; in particular, an
S-action on a space by partial homeomorphisms induces an action by
partial equivalences on any Čech groupoid for a covering of the space.
We describe a group action by (partial) equivalences as a kind of ex-
tension by the group. We show that any (locally) proper Lie groupoid
is a transformation groupoid for an inverse semigroup action on a very
simple kind of groupoid: a disjoint union of transformation groupoids
of the form V oK, where V is a vector space, K a compact Lie group,
and the K-action on V is by an R-linear representation. This is meant
as an example for gluing together groupoids along partial equivalences.

In Section 4, we define inverse semigroup actions on C∗-algebras
by Hilbert bimodules. The theory is parallel to that for actions on
groupoids by partial equivalences because both cases have the same
crucial algebraic features. We show that actions by Hilbert bimodules
are equivalent to saturated Fell bundles. This simplifies the original
definition of Fell bundles over inverse semigroups in [13].

In Section 5, we turn inverse semigroup actions on groupoids by
partial equivalences into actions on groupoid C∗-algebras by Hilbert
bimodules. We do this in two different (but equivalent) ways, by using
transformation groupoids and abstract functorial properties of our
constructions. The approach using transformation groupoids suggests
that the section C∗-algebra of the resulting Fell bundle is simply the
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groupoid C∗-algebra of the transformation groupoid:

C∗(H)o S ∼= C∗(H o S).

We prove this, and a more general result, for Fell bundles over H o S.

In Section 6, we relate inverse semigroup actions to actions of
corresponding étale groupoids. In particular, we characterize when
an action of Bis(G) comes from an action of G. Finally, we can then
treat our motivating example and turn a groupoid action on a locally
Hausdorff space Z into a Fell bundle over the groupoid. We may also
describe the section C∗-algebra in this case, which plays the role of the
crossed product. If the action is free and proper, then the result is
Morita-Rieffel equivalent to C0(Z/G). We also define “proper actions”
of inverse semigroups on groupoids. We show that a free and proper
action can only occur on a groupoid that is equivalent to a locally
Hausdorff and locally quasi-compact space.

Section 7 shows that the translation action of a non-Hausdorff étale
groupoid on its arrow space cannot be described by a groupoid action by
automorphisms in the usual sense. Our previous theory shows, however,
that we may describe such actions by groupoid Fell bundles. Thus, the
no-go theorem in Section 7 shows that the Packer-Raeburn stabilization
trick fails for non-Hausdorff groupoids, so Fell bundles are really more
general than ordinary actions in that case.

In Section 8, we examine a very simple explicit example to illustrate
the no-go theorem and to see how our main results avoid it.

Appendix A deals with topological groupoids, their actions on spaces
and equivalences between them. The main point is to define principal
bundles and (Morita) equivalence for non-Hausdorff groupoids in such
a way that the theory works just as well as in the Hausdorff case.
Among others, we show that a non-Hausdorff space is equivalent to a
Hausdorff, locally compact groupoid if and only if it is locally Hausdorff
and locally quasi-compact, answering a question in [8].

Appendix B contains a general technical result regarding upper
semicontinuous fields of Banach spaces over locally Hausdorff spaces
and uses it to prove C∗(H) o S ∼= C∗(H o S) for inverse semigroup
actions on groupoids and a more general statement involving Fell
bundles over H o S.
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2. Partial equivalences. In this section and the next, we work
in the category of topological spaces and continuous maps, without
assuming spaces to be Hausdorff or locally compact. Appendix A
shows how topological groupoids, their actions, principal bundles, and
the equivalences between them should be defined so that the theory
goes through smoothly without extra assumptions on the underlying
topological spaces.

Our main applications deal with groupoids that have a Hausdorff,
locally compact object space and a locally Hausdorff, locally quasi-
compact arrow space. We care about actions of such groupoids G on
locally Hausdorff spaces Z. It is very convenient to encode such an
action by the transformation groupoid G n Z. Its object space Z is
only locally Hausdorff. When we allow such topological groupoids, the
usual definition of equivalence for topological groupoids breaks down
because orbit spaces of proper actions are always Hausdorff, so the
actions on an equivalence bispace cannot be proper unless the object
spaces of the two groupoids are Hausdorff. Tu’s definition [36] works;
it is equivalent to what we do. But the theory becomes more elegant
if we also drop the local compactness assumption and thus no longer
use proper maps in our basic definitions. The replacement for free and
proper actions are “basic” actions, which are characterized by the map

G×s,G0,r X −→ X ×X, (g, x) 7−→ (gx, x),

being a homeomorphism onto its image with the subspace topology
from X ×X.

Readers already familiar with the usual theory of locally compact
groupoids may read on and only turn to Appendix A in cases of doubt;
they should note that range and source maps of groupoids are assumed
to be open, whereas anchor maps of groupoid actions are not assumed
open. Less experienced readers should read Appendix A first.

Definition 2.1. Let G and H be topological groupoids. A partial
equivalence from H to G is a topological space with anchor maps
r : X → G0 and s : X → H0 and multiplication maps G1×s,G0,rX → X
and X ×s,H0,r H

1 → X, which we write multiplicatively, that satisfy
the following conditions:

(P1) s(g · x) = s(x), r(g · x) = r(g) for all g ∈ G1, x ∈ X with
s(g) = r(x), and s(x · h) = s(h), r(x · h) = r(x) for all x ∈ X,
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h ∈ H1 with s(x) = r(h);
(P2) associativity: g1 · (g2 ·x) = (g1 · g2) ·x, g2 · (x ·h1) = (g2 ·x) ·h1,

x · (h1 ·h2) = (x ·h1) ·h2 for all g1, g2 ∈ G1, x ∈ X, h1, h2 ∈ H1

with s(g1) = r(g2), s(g2) = r(x), s(x) = r(h1), s(h1) = r(h2);
(P3) the following two maps are homeomorphisms:

G1 ×s,G0,r X −→ X ×s,H0,s X, (g, x) 7−→ (x, g · x),
X ×s,H0,r H

1 −→ X ×r,G0,r X, (x, h) 7−→ (x, x · h);

(P4) s and r are open.

The first two conditions say that X is a G,H-bispace. The only
difference between a partial and a global equivalence is whether the
anchor maps are assumed surjective or not: conditions (P1)–(P4) are
the same as conditions (E1)–(E4) in Proposition A.5.

We view a partial equivalence X from H to G as a generalized map
from H to G. Indeed, there is a bicategory with partial equivalences
as arrows H → G (Theorem 2.15).

Definition 2.2. Let G be a groupoid. A subset U ⊆ G0 is G-invariant
if r−1(U) = s−1(U). In this case, U and r−1(U) = s−1(U) are the
object and arrow spaces of a subgroupoid of G, which we denote by
GU .

The canonical projection p : G0 → G0/G induces a bijection between
G-invariant subsets U ⊆ G0 and subsets p(U) ⊆ G0/G. We are mainly
interested in open invariant subsets. Since p is open and continuous,
open G-invariant subsets of G0 correspond to open subsets of G0/G.

Lemma 2.3. Let G and H be topological groupoids. A partial equiva-
lence X from H to G is the same as an equivalence from HV to GU for
open, invariant subsets U ⊆ G0, V ⊆ H0. Here, U = r(X), V = s(X).

Proof. Let U ⊆ G0 be G-invariant. A left GU -action is the same
as a left G-action for which the anchor map takes values in U because
G0
U = U and G1 ×s,G0,r X ∼= G1

U ×s,G0,r X if r(X) ⊆ U . Thus, the
commuting actions of GU and HV for an equivalence from HV to GU
may also be viewed as commuting actions of G and H, respectively.
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This gives a partial equivalence, see Definition 2.1. Conversely, let X
be a partial equivalence. Let U := r(X) ⊆ G0 and V := s(X) ⊆ H0.
These are open subsets because r and s are open, and they are invariant
by (P1). The actions of G and H are equivalent to actions of GU
and HV , respectively. After replacing G and H by GU and HV ,
respectively, all conditions (E1)–(E5) in Proposition A.5 hold; thus,
X is an equivalence from HV to GU . �

Lemma 2.4. Let X be a partial equivalence from H to G, and let
U ⊆ G0 and V ⊆ H0 be invariant open subsets. Then

U |X|V := {x ∈ X | r(x) ∈ U, s(x) ∈ V }

is again a partial equivalence from H to G.

We also write U |X and X|V for U |X|H0 and G0 |X|V , respectively.

Proof. The subset U |X|V is open because r and s are continuous
and U and V are open, and it is invariant under the actions of G and
H because U and V are invariant and the two anchor maps are either
invariant or equivariant with respect to the two actions. Hence, we
may restrict the actions of G and H to U |X|V . Conditions (P1)–(P2)
and (P4) in Definition 2.1 are inherited by an open invariant subspace.
The inverse to the first homeomorphism in (P3) maps

U |X|V ×s,H0,s U |X|V
into

G1 ×s,G0,r U |X|V ,

and the inverse to the second homeomorphism maps

U |X|V ×r,G0,r U |X|V
into

U |X|V ×s,H0,r H
1.

Thus, U |X|V also inherits (P3) and is a partial equivalence from H
to G. �

Equivalences are partial equivalences, of course. In particular, the
identity equivalence G1 with G acting by left and right multiplication
is also a partial equivalence.
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Let X and Y be partial equivalences from H to G and from K to
H, respectively. Their composite is defined as for global equivalences
and still denoted by ×H :

X ×H Y := X ×s,H0,r Y / (x · h, y) ∼ (x, h · y),

equipped with the quotient topology and the induced actions of G and
K by left and right multiplication. The canonical map X ×s,H0,r Y →
X×H Y is a principal H-bundle for the H-action defined by (x, y) ·h :=
(x · h, h−1 · y); this follows from the general theory in [21].

Example 2.5. We associate an equivalence Hf from G to H to
a groupoid isomorphism f : G → H. The functor f consists of
homeomorphisms f i : Gi → Hi for i = 0, 1. We take X = H1 with
the usual left H-action and the right G-action by h · g := h · f1(g)
for all h ∈ H1, g ∈ G1 with s(h) = r(f1(g)) = f0(r(g)); so the right
anchor map is (f0)−1 ◦ s = s ◦ (f1)−1.

We claim that an equivalence is of this form if and only if it is
isomorphic to H1 as a left H-space. Since H\H1 ∼= H0, the right
anchor map gives a homeomorphism H0 → G0 in this case; let
f0 : G0 → H0 be its inverse. The right action of g ∈ G1 on h ∈ H1

with s(h) = f0(r(g)) must be of the form h · g = h · f1(g) for a unique
f1(g) ∈ H1 with r(f1(g)) = f0(r(g)) and s(f1(g)) = s(h·g) = f0(s(g)).
It is routine to check that f0 and f1 give a topological groupoid
isomorphism.

When do two isomorphisms f, φ : G → H give isomorphic equiv-
alences? Let u : H1

f
∼−→H1

φ be an isomorphism. Define a continuous

map σ : G0 → H1 by σ(x) := u(1f0(x)) for all x ∈ G0. This satis-

fies r(σ(x)) = f0(x) and s(σ(x)) = φ0(x) for all x ∈ G0 because u
is compatible with anchor maps. Since u is left H-invariant, u(h) =
u(h·1s(h)) = h·(σ◦(f0)−1◦s)(h) for all h ∈ H1, so σ determines u. The

right G-invariance of u translates to σ(r(g)) · φ1(g) = f1(g) · σ(s(g))
for all g ∈ G. Thus,

(2.1) φ0(x) = s(σ(x)), φ1(g) = σ(r(g))−1 · f1(g) · σ(s(g)).

Roughly speaking, f and φ differ by an inner automorphism.

Let an equivalence f : G → H and a continuous map σ : G0 → H1

with r(σ(x)) = f0(x) for all x ∈ H0 be given. Assume that H0 → G0,



62 ALCIDES BUSS AND RALF MEYER

x 7→ s(σ(x)), is a homeomorphism. Then (2.1) defines an isomorphism
φ : G→ H such that h 7→ h·σ((f0)−1(s(h))) is an isomorphism between
the equivalences Hf and Hφ.

Example 2.6. If G and H are minimal groupoids in the sense that
G0 and H0 have no proper open invariant subsets, then any partial
equivalence is either empty or a full equivalence G

∼−→H. This holds, in
particular, if G and H are groups.

Example 2.7. Any non-empty (partial) equivalence between two
groups is isomorphic to one coming from a group isomorphism G ∼= H.
Indeed, since X/H ∼= G0 and G\X ∼= H0 are a single point, both ac-
tions on X are free and transitive. Fix x0 ∈ X. Since the actions are
free and transitive and part of principal bundles, the maps G → X,
g 7→ g · x0 and H → X, h 7→ x0 · h, are homeomorphisms. The com-
posite map G

∼−→X
∼−→H is an isomorphism of topological groups. This

isomorphism depends on the choice of x0. The isomorphisms G
∼−→H

for different choices of x0 differ by an inner automorphism.

Lemma 2.8. The composition ×H is associative and unital with the
identity equivalence as a unit, up to the usual canonical bibundle
isomorphisms

(X ×H Y )×K Z ∼= X ×H (Y ×K Z),

G1 ×G X ∼= X ∼= X ×H H1.

Proof. For global equivalences with arbitrary topological spaces, this
is contained in [21, Proposition 7.10]. The proofs in [21] can be
extended to the partial case as well. Alternatively, we may reduce
the partial to the global case by restricting our partial equivalences to
global equivalences between open subgroupoids as in Lemma 2.4. This
works because

U |(X ×H Y )|V ∼= (U |X)×H (Y |V )

for U ⊆ G0, V ⊆ K0 open and invariant and partial equivalences X
from H to G and Y from K to H. The details are left to the reader. �

Proposition 2.9. Let G and H be topological groupoids. Let X1 and
X2 be partial equivalences from H to G. There is no bibundle map
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X1 → X2 unless r(X1) ⊆ r(X2) and s(X1) ⊆ s(X2). Any G,H-
bibundle map φ : X1 → X2 is an isomorphism onto the open sub-
bibundle r(X1)|X2 = X2|s(X1). The map φ is invertible if r(X2) ⊆
r(X1) or s(X2) ⊆ s(X1). In this case, r(X2) = r(X1) and s(X2) =
s(X1).

Proof. Since rX2 ◦φ = rX1 and sX2 ◦φ = sX1 , we must have r(X1) ⊆
r(X2) and s(X1) ⊆ s(X2) if there is a bibundle map φ : X1 → X2.
Assume this from now on. The image of a bibundle map is contained
in r(X1)|X2 and in X2|s(X1). Since r(X1) ⊆ r(X2) and s(X1) ⊆ s(X2),
we have r(r(X1)|X2) = r(X1) and s(X2|s(X1)) = s(X1). All remaining
assertions now follow once we prove that a bibundle map φ : X1 → X2

is invertible if r(X1) = r(X2) or s(X1) = s(X2). We treat the case
r(X2) = r(X1); the other is proved in the same way, exchanging left
and right.

Since Xi is a partial equivalence, it is a principal H-bundle over
Xi/H ∼= r(Xi). The map φ induces a homeomorphism on the base
spaces because r(X2) = r(X1) both carry the subspace topology from
G0. Hence φ is a homeomorphism by [21, Proposition 5.9]. �

In particular, the restricted multiplication maps G1
U ×H X ⊆ G1×G

X → X and X ×H H1
V ⊆ X ×H H1 → X are bibundle maps.

Proposition 2.9 shows that they induce bibundle isomorphisms

(2.2) G1
U ×G X ∼= U |X, X ×H H1

V
∼= X|V .

Partial equivalences carry extra structure similar to an inverse semi-
group. The adjoint operation is the following:

Definition 2.10. Given a partial equivalence X from H to G, we
define the dual partial equivalence X∗ by exchanging the left and right
actions on X. More precisely, X∗ is X as a space, the anchor maps
r∗ : X∗ → H0 and s∗ : X∗ → G0 are r∗ = sX and s∗ = rX , and the left
H- and right G-actions are defined by h·∗x = x·h−1 and x·∗g := g−1 ·x,
respectively.

If X gives an equivalence from HV to GU for open invariant subsets
U ⊆ G0, V ⊆ H0, then X∗ gives the “inverse” equivalence from GU to
HV .
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The following properties of duals are trivial:

• naturality: a bibundle map X → Y induces a bibundle map
X∗ → Y ∗;
• (X∗)∗ = X;
• there is a natural isomorphism σ : (X ×H Y )∗ ∼= Y ∗ ×H X∗,
(x, y) 7→ (y, x), with σ2 = Id.

Let Map(Y1, Y2) be the space of bibundle maps between two partial
equivalences Y1, Y2 from H to G.

Proposition 2.11. Let X be a partial equivalence from H to G. Then
there are natural isomorphisms

X ×H X∗ ∼= G1
r(X), X∗ ×G X ∼= H1

s(X)

that make the following diagrams of isomorphisms commute:

(2.3)

..

..X ×H X∗ ×G X ..X ×H H1
s(X)

..G1
r(X) ×G X ..X,

..

..X∗ ×G X ×H X∗ ..X∗ ×G G1
r(X)

..H1
s(X) ×G X

∗ ..X∗.

If K is another groupoid and Y and Z are partial equivalences from
K to G and from K to H, respectively, with r(Y ) ⊆ r(X) and
r(Z) ⊆ s(X), then there are natural isomorphisms

Map(X ×H Z, Y ) ∼= Map(Z,X∗ ×G Y ),

Map(Y,X ×H Z) ∼= Map(X∗ ×G Y, Z).

Both map the subsets of bibundle isomorphisms onto each other.

Proof. Lemma 2.3 shows that X is an equivalence from Hs(X) to
Gr(X). Hence, the usual theory of groupoid equivalence gives canonical

isomorphisms X ×H X∗ ∼= G1
r(X) and X∗ ×G X ∼= H1

s(X). The first

maps the class of (x1, x2) with s(x1) = s(x2) to the unique g ∈ G1 with
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x1 = g · x2. In particular, it maps [x, x] 7→ 1r(x). The second maps

the class of (x1, x2) with r(x1) = r(x2) to the unique h ∈ H1 with
x2 = x1 · h. In particular, it maps [x, x] 7→ 1s(x). Then the composite
isomorphisms X ×H X∗ ×G X → X and X∗ ×G X ×H X∗ → X∗ map
[x, x, x] 7→ x, respectively. Since any element in X ×H X∗ ×G X or
X∗ ×G X ×H X∗ has a representative of the form (x, x, x), we get the
two commuting diagrams in equation (2.3).

The assumption r(Y ) ⊆ r(X) implies s(X∗ ×G Y ) = s(Y ) because,
for any y ∈ Y , there is an x ∈ X∗ with (x, y) ∈ X∗ ×G Y . Similarly,
r(Z) ⊆ s(X) implies s(X×HZ) = s(Z). By Proposition 2.9, a bibundle
map X ×H Z → Y exists only if s(Z) ⊆ s(Y ), and then it is an
isomorphism onto Y |s(Z); and a bibundle map Z → X∗ ×G Y exists
only if s(Z) ⊆ s(Y ), and then it is an isomorphism onto X∗×G Y |s(Z).
Thus, we may as well replace Y by Y |s(Z) to achieve s(Y ) = s(Z);
then, all bibundle maps X ×H Z → Y or Z → X∗ ×G Y are bibundle
isomorphisms. The second isomorphism reduces in a similar way to
the case where also s(Y ) = s(Z) and where we are dealing only with
bibundle isomorphisms.

A bibundle map φ : X ×H Z → Y induces IdX∗ ×G φ : X∗×GX ×H
Z → X∗ ×G Z; we compose this with the natural isomorphism

X∗ ×G X ×H Z ∼= H1
s(X) ×H Z ∼= s(X)|Z = Z

to get a bibundle map Z → X∗ ×G Y ; here, we used s(X) ⊇ r(Z).
We claim that this construction gives the desired bijection between
Map(X ×H Z, Y ) and Map(Z,X∗ ×G Y ). Since composing with an
isomorphism is certainly a bijection, it remains to show that

Map(X ×H Z, Y ) −→ Map(X∗ ×G X ×H Z,X∗ ×G Y ),

φ 7−→ IdX∗ ×G φ,

is bijective. Since X×HX∗ ∼= G1
r(X) and r(X) ⊇ r(Y ), we have natural

isomorphisms X×HX∗×GY ∼= Y and X×HX∗×GX×HZ ∼= X×HZ.
Naturality means that they intertwine φ 7→ IdX×HX∗×Gφ and φ. Since
IdX×HX∗ ×G φ = IdX ×H IdX∗ ×G φ, we see that φ 7→ IdX∗ ×G φ is
injective and has ψ 7→ IdX ×H ψ for ψ : Z → X∗ ×G Y as a one-sided
inverse. The same argument also shows that ψ 7→ IdX×Hψ is injective,
so both constructions are bijective. �
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Applying duality, we also get bijections Map(Z∗ ×H X∗, Y ∗) ∼=
Map(Z∗, Y ∗ ×G X) and Map(Y ∗, Z∗ ×H X∗) ∼= Map(Y ∗ ×G X,Z∗)
under the same hypotheses.

The canonical isomorphisms

(2.4) X ×H X∗ ×G X ∼= X, X∗ ×G X ×H X∗ ∼= X∗

from Proposition 2.11 characterize X∗ uniquely in the following sense:

Proposition 2.12. Let X and Y be partial equivalences from H to G
and from G to H, respectively. If there are bibundle isomorphisms

X ×H Y ×G X ∼= X, Y ×H X ×G Y ∼= Y,

then there is a unique bibundle isomorphism X∗ ∼= Y such that the
composite map

(2.5) X ∼= X ×H X∗ ×G X ∼= X ×H Y ×G X ∼= X

is the identity map.

Proof. When we multiply the inverse of the isomorphism X ×H
Y ×G X ∼= X on both sides by X∗ and use equation (2.2), we get
an isomorphism

X∗ ∼= X∗ ×G X ×H X∗ ∼= X∗ ×G X ×H Y ×G X ×H X∗

∼= H1
s(X) ×H Y ×G G1

r(X)
∼= s(X)|Y |r(X).

This implies s(X) = r(X∗) ⊆ r(Y ) and r(X) = s(X∗) ⊆ s(Y ) by
Proposition 2.9. Exchanging X and Y , the isomorphism Y ×H X ×G
Y ∼= Y gives s(Y ) ⊆ r(X) and r(Y ) ⊆ s(X). Hence, r(Y ) = s(X)
and s(Y ) = r(X), so s(X)|Y |r(X) = Y . This gives an isomorphism

α : X∗ ∼−→Y .

A diagram chase using the commutative diagrams in (2.3) shows that
the composite of the map X ×H X∗ ×G X → X ×H Y ×G X induced
by the isomorphism α and the given isomorphism X ×H Y ×GX → Y
(which we used to construct α) is the canonical map X×HX∗×GX →
X as in equation (2.4). Hence, the composite in equation (2.5) is the
identity map for the isomorphism α.
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The isomorphisms in Proposition 2.11 give a canonical bijection

Map(X∗, Y ) ∼= Map(X∗ ×G X ×H X∗, Y ) ∼= Map(X ×H X∗, X ×H Y )

∼= Map(X,X ×H Y ×G X) ∼= Map(X,X).

Inspection shows that it maps an isomorphism X∗ ∼−→Y to the com-
posite map in equation (2.5). Hence, there is only one isomorphism

X∗ ∼−→Y for which the composite map in equation (2.5) is the identity
map. �

Proposition 2.13. Let X be a partial equivalence from G to itself, and
let µ : X×GX → X be a bibundle isomorphism. Then there is a unique
isomorphism φ : X

∼−→G1
U for an open G-invariant subset U ⊆ G0 such

that the next diagram commutes:

(2.6) ..

..X ×G X ..X

..G1
U ×G G1

U ..G1
U ,

.

µ

.
µ0

.φ×G φ . φ

µ0(g1, g2) = g1 · g2. Hence, r(X) = s(X), and µ is associative.

Proof. The isomorphism µ induces an isomorphism

X ×G X ×G X
µ×GIdX−−−−−→ X ×G X

µ−→ X.

Hence, Y = X satisfies the two conditions in Proposition 2.11 that
ensure X = Y ∼= X∗. This gives an isomorphism φ : X ∼= X ×G X ∼=
X ×G X∗ ∼= G1

r(X). Since φ is a bibundle map, the diagram (2.6)

commutes if and only if µ is the composite map

X ×G X
φ×GIdX−−−−−−→ G1

r(X) ×G X ∼= X,

where the map G1
r(X) ×G X ∼= X is the left multiplication map,

[g, x] 7→ g · x. Sending an isomorphism φ : X → G1
r(X)

∼= X ×G X∗ to

this composite map is one of the bijections in Proposition 2.11, namely,
the first one for X = Y = Z:

Map(X,G1
s(X))

∼= Map(X,X∗ ×G X) ∼= Map(X ×G X,X).
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Hence, there is exactly one isomorphism φ that corresponds under this
bijection to µ. �

Proposition 2.11 implies that isomorphism classes of partial equiva-
lences from G to itself form an inverse semigroup p̃eq(G). The idempo-
tents in this inverse semigroup are in bijection with G-invariant open
subsets of G0 by Proposition 2.13. These are, in turn, in bijection with
open subsets of the orbit space G0/G by the definition of the quotient
topology on G0/G. These also correspond to the idempotents of the
inverse semigroup pHomeo(G0/G) of partial homeomorphisms of the
topological space G0/G.

A partial equivalence X from H to G induces a partial homeomor-
phism

X∗ : H
0/H ⊆ s(X) −→ r(X) ⊆ G0/G,

by X∗([h]) = [g] if there is an x ∈ X with s(x) ∈ [h] and r(x) ∈ [g].
If Y is another partial equivalence from K to H, then (X ×H Y )∗ =
X∗ ◦ Y∗ by definition. This gives a canonical homomorphism of inverse
semigroups

p̃eq(G) −→ pHomeo(G0/G).

Remark 2.14. The homomorphism p̃eq(G) −→ pHomeo(G0/G) is
neither injective nor surjective in general, although it is always an
isomorphism on the semilattice of idempotents. Consider, for instance,
the disjoint union G = Z/3 ⊔ {pt}. This groupoid is a group bundle,
and G0/G has two points. The partial homeomorphism that maps
one point to the other does not lift to a partial equivalence because
the stabilizers are not the same and equivalences must preserve the
stabilizer groups. The group Z/3 has non-inner automorphisms, so
there are non-isomorphic partial equivalences of G defined on Z/3 that
induce the same partial homeomorphism on G0/G.

In our definition of an inverse semigroup action (see Sections 3
and 4), certain isomorphisms of partial equivalences are a crucial part
of the data. We could not construct transformation groupoids and Fell
bundles without them. If we identify isomorphic partial equivalences
as above, then we can no longer talk about two isomorphisms of
partial equivalences being equal. The correct way to take into account
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isomorphisms of partial equivalences is through a bicategory (see [1,
19, 6]).

The next remarks are intended for readers familiar with bicategories.

Our bicategory has topological groupoids as objects and partial
equivalences as arrows. Let G and H be topological groupoids, and
let X1 and X2 be partial equivalences from H to G. As 2-arrows
X1 ⇒ X2, we take all G,H-bibundle isomorphisms X1 → X2, so
all 2-arrows are invertible. The vertical product of 2-arrows is the
composition of bibundle maps. Unit 2-arrows are identity maps on
partial equivalences. The composition of arrows is ×H . The unit arrow
on a topological groupoid G is G1 with the standard bibundle structure.
Lemma 2.8 provides invertible 2-arrows

(X ×H Y )×K Z =⇒ X ×H (Y ×K Z),

G1 ×G X =⇒ X ⇐= X ×H H1,

which we take as associator and left and right unit transformations. Let
X1, X2 be partial equivalences from H to G, and let Y1, Y2 be partial
equivalences from K to H. The horizontal product of two bibundle
maps

f : X1 → X2 and g : Y1 → Y2

is
f ×H g : X1 ×H Y1 −→ X2 ×H Y2.

Theorem 2.15. The data above defines a bicategory peq.

Proof. It is routine to check that partial equivalences from H to
G with bibundle maps between them form a category C(G,H) for
the vertical product of bibundle maps and that the composition of
partial equivalences with the horizontal product of bibundle maps is a
functor C(G,H) × C(H,K) → C(G,K). The associator and both unit
transformations are natural isomorphisms of functors; the associator
is clearly compatible with unit transformations and makes the usual
pentagon commute, see [19, page 2]. �

Remark 2.16. We still get a bicategory if we allow all bibundle maps
as 2-arrows. We restrict to invertible 2-arrows to get the correct notion
of inverse semigroup actions below.
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An arrow f : x → y in a bicategory is called an equivalence if there
are an arrow g : y → x and invertible 2-arrows g ◦ f ⇒ Idx and
f ◦ g ⇒ Idy. The equivalences in peq are precisely the global bibundle
equivalences.

The dualityX 7→ X∗ with the canonical flip maps (X×HY )∗
∼−→Y ∗×H

X∗ gives a functor I : peq → peqop with I2 = Idpeq. It seems useful to
formalize the properties of this functor and look for examples in more
general bicategories. But we shall not go into this question here.

3. Inverse semigroup actions on groupoids. We give two equiv-
alent definitions for actions of inverse semigroups on topological group-
oids by partial equivalences. The first is exactly what it promises to be.
The second, more elementary definition, does not mention groupoids
or partial equivalences.

Let S be an inverse semigroup with unit 1. Let G be a topological
groupoid.

Definition 3.1. An action of S on G by partial equivalences consists
of

• partial equivalences Xt from G to G for t ∈ S;
• bibundle isomorphisms µt,u : Xt ×G Xu

∼−→Xtu for t, u ∈ S;

satisfying

(A1) X1 is the identity equivalence G1 on G;

(A2) µt,1 : Xt×GG1 ∼−→Xt and µ1,u : G
1×GXu

∼−→Xu are the canon-
ical isomorphisms, that is, the left and right G-actions, for all
t, u ∈ S;

(A3) associativity: for all t, u, v ∈ S, the next diagram commutes:

..

(Xt ×G Xu)×G Xv

.Xt ×G (Xu ×G Xv).

Xtu ×G Xv

. Xt ×G Xuv

.
Xtuv

.
ass

.

µt,u ×G IdXv

.
IdXt ×G µu,v

.
µt,uv

.

µtu,v

If S has a zero object 0, then we may also ask X0 = ∅.
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Remark 3.2. Let S be an inverse semigroup possibly without 1.
We may add a unit 1 formally and extend the multiplication by
1 · s = s = s · 1 for all s ∈ S ∪ {1}. If partial equivalences (Xt)t∈S and
bibundle isomorphisms (µt,u)t,u∈S are given satisfying associativity for
all t, u, v ∈ S, then we may extend this uniquely to an action of S∪{1}:
we put X1 := G1 and let µt,1 and µ1,u be the right and left G-action,
respectively. The associativity condition is trivial if one of t, u, v is 1,
so associativity holds for all t, u, v ∈ S ∪ {1}. As a result, an action of
S ∪ {1} by partial equivalences is the same as (Xt)t∈S and (µt,u)t,u∈S
satisfying only Condition (A3).

Similarly, we may add a zero 0 to S and extend the multiplication
by 0 · s = 0 = s · 0 for all s ∈ S ∪ {0}. We extend an S-action by
X0 := ∅, so that X0 ×G Xt = ∅ = Xt ×G X0, leaving no choice for the
maps µt,0, µ0,u : ∅ → ∅. This gives an action of S ∪ {0} with X0 = ∅.

If 0, 1 ∈ S and we ask no conditions on X0 and X1, then
r(Xt), s(Xt) ⊆ r(X1) = s(X1) for all t ∈ S, and Xt restricted to
r(X0) = s(X0) is the trivial action where all Xt act by the identity
equivalence. Hence, all the action is on the locally closed, invariant
subset r(X1) \ r(X0) ⊆ G0. The conditions on X0 and X1 merely rule
out such degeneracies.

Remark 3.3. An inverse semigroup may be viewed as a special kind
of category with only one object, which is also a very special kind
of bicategory. An inverse semigroup action by partial equivalences is
exactly the same as a functor from this category to the bicategory peq
of partial equivalences, see [19].

Lemma 3.4. For an inverse semigroup action (Xt, µt,u), we have
r(Xt) = r(Xtt∗) = s(Xtt∗) = s(Xt∗) and s(Xt) = s(Xt∗t) = r(Xt∗t) =
r(Xt∗) for each t ∈ S.

Proof. If e ∈ S is idempotent, then Proposition 2.13 applied to the
isomorphism µe,e : Xe×GXe

∼= Xe gives r(Xe) = s(Xe). The existence
of an isomorphism µt,t∗ : Xt ×G Xt∗

∼= Xtt∗ implies r(Xt) ⊇ r(Xtt∗)
and s(Xt∗) ⊇ s(Xtt∗). Similarly, the isomorphism µtt∗,t gives r(Xtt∗) ⊇
r(Xt), and µt,t∗t gives s(Xt∗t) ⊇ s(Xt). Now everything follows. �
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Definition 3.5. Let S be an inverse semigroup with unit. A simplified
action of S on a topological groupoid consists of

• a topological space G0;
• topological spaces Xt for t ∈ S;
• continuous maps s, r : Xt → G0;
• continuous maps

µt,u : Xt ×s,G0,r Xu −→ Xtu, (x, y) 7−→ x · y,

for t, u ∈ S;

satisfying

(S1) s(x · y) = s(y), r(x · y) = r(x) for all t, u ∈ S, x ∈ Xt, y ∈ Xu

with s(x) = r(y);
(S2) r : Xt → G0 and s : Xt → G0 are open for all t ∈ S;
(S3) the maps r, s : X1 → G0 are surjective;
(S4) µt,u is surjective for each t, u ∈ S;
(S5) the map

Xt ×s,G0,r Xu → Xu ×s,G0,s Xtu, (x, y) 7→ (y, x · y),

is a homeomorphism if t = 1 and u ∈ S;
(S6) the map

Xt ×s,G0,r Xu −→ Xt ×r,G0,r Xtu, (x, y) 7−→ (x, x · y),

is a homeomorphism if t ∈ S and u = 1;
(S7) for all t, u, v ∈ S, the next diagram commutes:

(3.1)

..

(Xt ×s,G0,r Xu)×s,G0,r Xv

.Xt ×s,G0,r (Xu ×s,G0,r Xv).

Xtu ×s,G0,r Xv

. Xt ×s,G0,r Xuv

.

Xtuv

.

ass

.

µt,u ×s,G0,r IdXv

.
IdXt ×s,G0,r µu,v

.

µt,uv

.

µtu,v

If S has a zero element, we may also ask X0 = ∅.

This definition is more elementary because it does not mention
groupoids or partial equivalences. It seems less elegant than Defini-
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tion 3.1 but is simpler because much of the complexity of Definition 3.1
is hidden in the conditions (P1)–(P4) defining partial equivalences of
topological groupoids.

It is clear that an inverse semigroup action by partial equivalences
gives a simplified action: forget the multiplication on G1 and the left
and right actions of G on the spaces Xt. The isomorphisms in (S5)
for t = 1 and in (S6) for u = 1 are those in Definition 3.5, and all
other conditions in Definition 3.5 are evident. The converse is more
remarkable:

Proposition 3.6. Any simplified inverse semigroup action on groupoids
comes from a unique action by partial equivalences. Thus, actions
and simplified actions of inverse semigroups by partial equivalences are
equivalent. Furthermore, the maps in (S5) and (S6) are isomorphisms,
and the maps µt,u are open for all t, u ∈ S.

Proof. The spaces G0 and G1 := X1 with range and source maps
r and s and multiplication µ1,1 satisfy conditions (Gr1)–(Gr4) in
Proposition A.1 because these are special cases of our conditions (S1)–
(S7). Hence, this data defines a topological groupoid. Similarly, the
anchor maps r : Xt → G0 and s : Xt → G0, and the multiplication
maps µ1,t and µt,1 satisfy conditions (P1)–(P4) in Definition 2.1, and
thus, turn Xt into a partial equivalence from G to itself.

Let t, u ∈ S. The associativity of the maps µ for t, 1, u, 1, t, u and
t, u, 1 implies that µt,u descends to a G,G-bibundle map µt,u : Xt ×G
Xu → Xtu. Since µt,u is surjective by (S4), so is µt,u. Hence it is a
bibundle isomorphism by Proposition 2.9.

The groupoid structure onX1 and the left and right actions onXt are
defined so that X1 is the identity equivalence on G and the maps µ1,u

and µt,1 are the canonical isomorphisms. The associativity condition
for the bibundle isomorphisms µt,u follows from the corresponding
property of the maps µt,u. Thus, we have obtained an action by partial
equivalences. This is the only action that simplifies to the given data
because of assumptions regarding X1, µ1,u and µt,1 in Definition 3.1.

By definition, Xt ×G Xu is the orbit space of the G-action on
Xt×s,G0,rXu by (x1, x2)·g := (x1 ·g, g−1 ·x2). The canonical projection

Xt ×s,G0,r Xu −→ Xt ×G Xu
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is open by Proposition A.3. The map µt,u is the composite of this
projection with the homeomorphism µt,u : Xt ×G Xu → Xtu; hence, it
is also open.

Finally, we check that the maps in (S5) are isomorphisms for all
t, u ∈ S; exchanging left and right gives the same for the maps in (S6).
The map in (S5) is G-equivariant if we let G act on Xt ×s,G0,r Xu by
g · (x, y) := (xg−1, gy) and on Xu ×s,G0,s Xtu by g · (y, x) := (gy, x).
Both actions are part of principal bundles: the bundle projection on
Xt ×s,G0,r Xu is the canonical map to Xt ×G Xu, and the bundle
projection on Xu ×s,G0,s Xtu is s ×G0,s IdXtu to Xtu|r(Xu). Our G-
equivariant map induces the map µt,u on the base spaces, which is
a homeomorphism; hence, so is the map on the total spaces by [21,
Proposition 5.9]. �

3.1. Compatibility with order and involution. Let S be an in-
verse semigroup with unit. Define a partial order on S by t ≤ u if
t = tt∗u or, equivalently, t = ut∗t. The multiplication and involution
preserve this order: t1t2 ≤ u1u2 and t∗1 ≤ u∗1 if t1 ≤ u1 and t2 ≤ u2,
see [18].

Let (Xt)t∈S , (µt,u)t,u∈S be an action of S on G. We shall prove that
the action is compatible with this partial order and the involution on S.
To prepare for the proofs of analogous statements for inverse semigroup
actions on C∗-algebras, we give rather abstract proofs, which literally
carry over to the C∗-algebraic case.

Proposition 3.7. There are unique bibundle maps ju,t : Xt → Xu for
t, u ∈ S with t ≤ u such that the following diagrams commute for all
t1, t2, u1, u2 ∈ S with t1 ≤ u1, t2 ≤ u2:

(3.2) ..

..Xt1 ×G Xt2 ..Xt1t2

..Xu1 ×G Xu2 ..Xu1u2

.

µt1,t2

.
µu1,u2

.ju1,t1 ×G ju2,t2

. ju1u2,t1t2

The map ju,t is a bibundle isomorphism onto Xu|s(Xt) = r(Xt)|Xu. We
have jt,t = IdXt for all t ∈ S and jv,u ◦ ju,t = jv,t for t ≤ u ≤ v in S.
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Proof. Let E(S) ⊆ S be the subset of idempotents, and let e ∈ E(S).
Proposition 2.13 gives a unique isomorphism Xe

∼= G1
Ue

intertwining

µe,e : Xe ×G Xe
∼−→Xe and the multiplication in G1

Ue
; here, Ue :=

r(Xe) = s(Xe) is an open G-invariant subset of G0. Diagram (3.2)
for (e, e) ≤ (1, 1) shows that j1,e must be this particular isomorphism
Xe
∼= G1

Ue
⊆ G1.

To simplify notation, we now identify Xe with G1
Ue

for all e ∈ E(S)
using these unique isomorphisms, and we transfer the multiplication
maps µs,t for idempotent s, t or st accordingly. This gives an iso-
morphic action of S by partial equivalences. So we may assume that
Xe = G1

Ue
and that µe,e : Xe ×G Xe → Xe is the usual multiplication

map on G1
Ue

for all e ∈ E(S).

Let e ∈ E(S), and let t, u ∈ S satisfy t∗t ≤ e and uu∗ ≤ e. Thus,
te = t, eu = u and teu = tu. We show that µt,e : Xt ×G G1

Ue
→ Xt

and µe,u : G
1
Ue
×GXu

∼−→Xu are the obvious maps µ0
t,e or µ

0
e,u from the

left and right G-actions in this case. Associativity of the multiplication
maps gives us a commuting diagram of isomorphisms:

..
..Xt ×G Xe ×G Xu ..Xt ×G Xu

..Xt ×G Xu ..Xtu

.

IdXt ×G µe,u

. µt,u

.µt,e ×G IdXu

.

µt,u

We may cancel the isomorphism µt,u to obtain IdXt ×G µe,u = µt,e ×G
IdXu .

Now we consider two cases: t = e or e = u. If t = e, then µt,e = µ0
t,e

is the multiplication map on G1
Ue
, and hence, so is µt,e×G IdXu . Thus,

µe,u and µ0
e,u induce the same map G1

Ue
×GG1

Ue
×GXu → G1

Ue
×GXu.

We may use (2.2) to cancel the factor G1
Ue

because s(Xe) = Ue ⊇
r(Xu) ⊇ r(G1

Ue
×G Xu). Thus, µe,u = µ0

e,u if e is idempotent and

e ≥ uu∗. A similar argument in the other case e = u gives µt,e = µ0
t,e

if t∗t ≤ e.
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Now let t ≤ u, that is, t = tt∗u = ut∗t. Then we get two candidates
for the bibundle map ju,t : Xt → Xu:

(3.3)
Xt

µtt∗,u←−−−−∼=
Xtt∗ ×G Xu = G1

Utt∗
×G Xu

µ0
tt∗,u−−−−→∼=

Utt∗ |Xu ⊆ Xu,

Xt
µu,t∗t←−−−−∼=

Xu ×G Xt∗t = Xu ×G G1
Ut∗t

µ0
u,t∗t−−−−→∼=

Xu|Ut∗t
⊆ Xu.

We claim that both maps Xt → Xu are equal, so we only obtain
one map ju,t : Xt → Xu. Let e = tt∗ and f = t∗t. Then there is a
commutative diagram of isomorphisms:

(3.4) ..

..Xe ×G Xu ×G Xf . . ..Xe ×G Xt

. . ..Ue |Xu ×G Xf

. ..Xe ×G Xu|Uf

..Xt ×G Xf . . ..Xt

.

IdXe ×G µu,f

. µe,t = µ0
e,t

.µe,u ×G IdXf

.

µt,f = µ0
t,f

.

IdXe ×G µ0

.

µ0 ×G IdXf

.

µe,u

.

µu,f

The large rectangle commutes by associativity. The above argument
gives µe,t = µ0

e,t and µt,f = µ0
t,f . The lower left and upper right

triangles commute because µe,u and µu,f are bibundle maps, so they
are compatible with µ0. Hence, the interior quadrilateral commutes.
Thus, the two definitions of ju,t in equation (3.3) are equal.

The first construction of ju,t in equation (3.3) gives the unique map
for which the diagram in equation (3.2) commutes for (e, t) ≤ (1, u)
and the inclusion map j1,e. Since we already saw that j1,e is unique,
the diagrams in equation (3.2) characterize the bibundle maps ju,t
uniquely for all t ≤ u in S. The map jt,t is the identity on Xt because
µtt∗,t = µ0

tt∗,t.

Now, let t ≤ u ≤ v, define e = tt∗ and f = uu∗ and identify Xe and
Xf with subsets of G1. In the next diagram, we abbreviate ×G to ∗,
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and µ0 denotes the left and right actions for subsets of G1:

..

..Xt ..Xe ∗Xu ..Ue |Xu

..Xe ∗Xv ..Xe ∗Xf ∗Xv ..Ue |Xf ∗Xv

..Ue |Xv ..Xe ∗ (Uf
|Xv) ..Ue |Xv

.

µe,u

.

µ0

.
µe,f ∗ Id

.
µ0 ∗ Id

.

µ0

.

µ0

.

µe,v

.

Id ∗ µf,v

.

Ue |µf,v

.

µ0

.

Id ∗ µ0

.

µ0

.

ju,t

.
Ue |jv,u.jv,t

The top left square commutes because the multiplication maps are
associative, the top right square because they are bibundle maps. The
bottom left square commutes because µe,f = µ0, and the bottom right
square commutes for trivial reasons. The bent composite arrows are
the maps j by construction. Thus, the whole diagram commutes, and
this means that jv,u ◦ ju,t = jv,t.

If t1 ≤ u1 and t2 ≤ u2 in S, then there is a commuting diagram of
isomorphisms

(3.5) ..

..Xt1 ∗Xt2 ..Xt1t2

..Xt1t∗1
∗Xu1 ∗Xu2 ∗Xt∗2t2

..Xt1t∗1
∗Xu1u2 ∗Xt∗2t2

..Ut1t∗1
|Xu1

∗Xu2
|Ut∗2t2

..Ut1t∗1
|Xu1u2

|Ut∗2t2

.

µt1t
∗
1 ,u1

∗ µu2,t
∗
2t2

.

µ0

.

µt1t
∗
1 ,u1u2,t

∗
2t2

.

µ0

.

µt1,t2

.
Id ∗ µu1,u2 ∗ Id

.

µu1,u2

Here, we abbreviate ×G to ∗, µ0 denotes the left and right actions for
subsets of G1, and µttt∗t ,u1,u2,t∗2t2

denotes the appropriate combination
of two multiplication maps, which is well defined by associativity. The
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upper square commutes by associativity. The lower square commutes
because µu1,u2

is a bibundle map. The left vertical isomorphism from
Xt1 ∗ Xt2 to Ut1t∗1

|Xu1 ∗ Xu2 |Ut∗2t2
is ju1,t1 ∗ ju2,t2 because the two

constructions in equation (3.3) coincide. It remains to see that the
right vertical isomorphism from Xt1t2 to Ut1t∗1

|Xu1u2 |Ut∗2t2
is ju1u2,t1t2 .

The proof of this is similar to the proof that the two maps in
equation (3.3) coincide. Let e = (t1t2)(t1t2)

∗, so e ≤ t1t
∗
1. Since

r(Xt1t2) = Ue and equation (3.5) is a diagram of isomorphisms, we
have Xe ∗Xt1t∗1

∗Xu1u2 ∗Xt∗2t2
∼= Xt1t∗1

∗Xu1u2 ∗Xt∗2t2
. Furthermore,

the isomorphism

µe,t1t∗1 ∗ Id: Xe ∗Xt1t∗1
∗Xu1u2 ∗Xt∗2t2

−→ Xe ∗Xu1u2 ∗Xt∗2t2

is equal to the standard multiplication map µ0
e,t1t∗1

∗Id because e ≤ ttt∗1.
This fact and associativity show that the right vertical isomorphism in
equation (3.5) is equal to the composite map

Xt1t2

µe,u1u2,t2t∗2←−−−−−−−−∼=
Xe ∗Xu1u2 ∗Xt∗2t2

µ0

−→∼= Ue |Xu1u2 |Ut∗2t2
= Ue |Xu1u2 .

Similarly, we obtain the same composite map if we replace t∗2t2 on the
right by the smaller idempotent f = (t1t2)

∗(t1t2). Now diagram (3.4)
shows that the map we get is ju1u2,t1t2 , as desired. Hence diagram (3.2)
commutes. �

Remark 3.8. Let E be a semilattice with unit 1, viewed as an inverse
semigroup. An E-action on a topological groupoid G is the same as a
unital semilattice map from E to the lattice of open G-invariant subsets
of G0, that is, a map e 7→ Ue satisfying U1 = G0 and Ue∩Uf = Uef for
all e, f ∈ E. The corresponding action by partial equivalences is defined
by Xe := G1

Ue
and µe,f = µ0 : G1

Ue
×G G1

Uf
→ G1

Uef
. Proposition 3.7

implies that every action of E is isomorphic to one of this form.

Proposition 3.9. There are unique bibundle isomorphisms Jt : X
∗
t →

Xt∗ for which the following composite map is the identity :
(3.6)

Xt
∼= Xt ×G X∗

t ×G Xt
IdXt×GJt×GIdXt−−−−−−−−−−−−→ Xt ×G Xt∗ ×G Xt

µt,t∗,t−−−−→ Xt.
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These involutions also make the following diagrams commute:

(3.7) ..

..Xt ×G X∗
t ..G1

Utt∗

..Xt ×G Xt∗ ..Xtt∗

.

µt,t∗

.IdXt ×G Jt ..

..X∗
t ×G Xt ..G1

Ut∗t

..Xt∗ ×G Xt ..Xt∗t

.

µt∗,t

.Jt ×G IdXt

Here the unlabeled arrows are the canonical isomorphisms from Propo-
sitions 2.11 and 2.13. Furthermore, (Jt∗)

∗ ◦ Jt : X∗
t → Xt∗ → X∗

t is
the identity map for all t ∈ S, and the following diagrams commute for
all t, u, v ∈ S with t ≤ u:

(3.8) ..

..X∗
u ×G X∗

v ..X∗
vu

..Xu∗ ×G Xv∗ ..Xu∗v∗

.

µ∗
v,u

.Ju ×G Jv .

µu∗,v∗

. Jvu ..

..X∗
t ..X∗

u|Utt∗

..Xt∗ ..Xu∗ |Utt∗

.

j∗u,t

.Jt .

ju∗,t∗

. Ju|Utt∗

Write x∗ := Jt(x) for x ∈ Xt and µt,u(x, y) = x·y for x ∈ Xt, y ∈ Xu

with s(x) = r(y). The above diagrams and equations of maps mean
that the involution is characterized by x · x∗ · x = x for all x ∈ Xt and
has the properties x·x∗ = 1r(x), x

∗ ·x = 1s(x), (x
∗)∗ = x, (x·y)∗ = y∗ ·x∗

and ju∗,t∗(x
∗) = ju,t(x)

∗.

Proof. The two isomorphisms µt,t∗,t : Xt ×G Xt∗ ×G Xt → Xt and
µt∗,t,t∗ : Xt∗ ×G Xt ×G Xt∗ → Xt∗ that we may build from µ are
equal by associativity. Proposition 2.12 for these isomorphisms gives a
unique isomorphism Jt : X

∗
t
∼= Xt∗ for which the map in equation (3.6)

becomes the identity map.

We claim that the map in equation (3.6) is the identity if and only
if either of the diagrams in equation (3.7) commutes. The proofs for
both cases differ only by exchanging left and right, so we only write
down one of them. Assume that the first diagram in equation (3.7)
commutes. Applying the functor ×G IdXt to it, we obtain that
the isomorphism (3.6) is the identity map because the multiplication
map µtt∗,t : Xtt∗ ×G Xt → Xt is only the left action if we identify
Xtt∗

∼= G1
Utt∗

as usual. Conversely, assume that the isomorphism

in equation (3.6) is the identity map. Take a further product with
Xt∗ , and then identify Xt ×G Xt∗

∼= Xtt∗ via µt,t∗ . Using again that
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the multiplication with Xtt∗ is only the G-action, this gives the first
diagram in equation (3.7).

Next, we show that Jt∗ = (J−1
t )∗, which implies J∗

t∗ ◦Jt = IdXt . We
use the commuting diagram:

..

..X∗
t∗ ×G Xt∗ ..G1

Utt∗

..Xt ×G X∗
t ..G1

Utt∗

..Xt ×G Xt∗ ..Xtt∗

.

µt,t∗

.

(J−1
t )∗ ×G J−1

t

.

IdXt ×G Jt

The top rectangle commutes because the pairing X ×G X∗ → G1
r(X)

is natural. The bottom diagram is the first one in equation (3.7).
The large rectangle is the second diagram in equation (3.7) for t∗ with
(J−1
t )∗ instead of Jt∗ . Since this diagram characterizes Jt∗ , we obtain

Jt∗ = (J−1
t )∗ as asserted.

Since the involution Jvu is uniquely characterized by a diagram
like the first one in equation (3.7), we may prove the first diagram
in equation (3.8) by showing that the composite map µu∗,v∗ ◦ (Ju ×G
Jv) ◦ (µ∗

v,u)
−1 : X∗

vu → Xu∗v∗ also makes the diagram in equation (3.7)
for t = vu commute. This is a routine computation using the same
diagrams for Ju and Jv, and the multiplication maps involving Xe for
idempotent e ∈ S are always given by the left or right action because
of the compatibility with j1,e. This proof is a variant of the usual proof
that (xy)−1 = y−1x−1 in a group because y−1x−1 · (xy) = 1.

Similarly, we get the second diagram in equation (3.8) by showing
that the composite map j−1

u∗,t∗ ◦Ju ◦ j∗u,t : X∗
t → Xt∗ satisfies the defini-

tion for Jt because ju,t and ju∗,t∗ are compatible with the multiplication
maps. �

3.2. Transformation groupoids. Let (Xt, µt,u)t,u∈S be an action
of a unital inverse semigroup S on a topological groupoid G by partial
equivalences. Define the embeddings ju,t : Xt → Xu for t ≤ u in S and
the involutions X∗

t → Xt∗ as in Propositions 3.7 and 3.9.
Let X :=

⊔
t∈S Xt, and define a relation ∼ on X by (t, x) ∼ (u, y)

for x ∈ Xt, y ∈ Xu if there are v ∈ S with v ≤ t, u and z ∈ Xv with
jt,v(z) = x and ju,v(z) = y.
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Lemma 3.10. The relation ∼ is an equivalence relation. Equip X∼ :=
X/∼ with the quotient topology. The quotient map π : X → X∼ is a
local homeomorphism. It restricts to a homeomorphism from Xt onto
an open subset of X∼ for each t ∈ S. Thus, X∼ is locally quasi-compact
or locally Hausdorff if and only if all Xt are as well.

Proof. It is clear that ∼ is reflexive and symmetric. For transitivity,
take (t1, x1) ∼ (t2, x2) ∼ (t3, x3). Then there are t12 ≤ t1, t2, t23 ≤
t2, t3, x12 ∈ Xt12 and x23 ∈ Xt23 with jti,t12(x12) = xi for i = 1, 2 and
jti,t23(x23) = xi for i = 2, 3. Thus, s(x12) = s(x2) = s(x23) ∈ s(t23) =
s(t∗23t23). Let t := t12t

∗
23t23, so that t ≤ t12 and t ≤ t2t

∗
2t23 = t23.

We have x12 ∈ Xt12 |Ut∗23t23

∼= Xt12 ×G Xt∗23t23
∼= Xt. Let x be the

image of x12 under this isomorphism. Then, jt12,t(x) = x12. Hence,
jti,t(x) = jti,t12(jt12,t(x)) = xi for i = 1, 2. Since jt2,t23(x23) = x2 =
jt2,t23(jt23,t(x)) and jt2,t23 is injective by Proposition 2.9, we obtain
jt23,t(x) = x23, and hence, also jt3,t(x) = x3. Thus, x1 ∼ x3, as
desired.

We prove that π is open. Any open subset of X is a disjoint union of
open subsets of the spaces Xt; so π is open if and only if all the maps
Xt → X∼ are open. Let U ⊆ Xt be open; then we must check that
π−1(π(U)) is open. This set is a union over the set of triples t, v, w ∈ S
with w ≤ t, v, where the set for t, v, w is contained in Xv and consists of
all jv,w(x) with x ∈ j−1

t,w(U). The map jv,w is open by Proposition 2.9,

and jt,w is continuous, so jv,w(j
−1
t,w(U)) is open. Hence, π−1(π(U)) is

open as a union of open subsets of X, showing that π is open.

If (t, x) ∼ (t, y), then there are u ≤ t and z ∈ Xu with x = jt,u(z) =
y; so, the map from Xt to X∼ is injective. Since π is open and
continuous, it restricts to a homeomorphism from Xt onto an open
subset of X∼. Thus π is a local homeomorphism. Since being locally
Hausdorff or locally quasi-compact are local properties and π is a local
homeomorphism, X∼ has one of these two properties if and only if X
has, if and only if each Xt has. �

The space X∼ need not be Hausdorff, just as for étale groupoids
constructed from inverse semigroup actions on spaces, where X∼ will
be the groupoid of germs of the action (by Theorem 3.18).

From now on, we identify Xt with its image in X∼, using that
π|Xt:Xt→X∼ is a homeomorphism onto an open subset by Lemma 3.10.
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We will turn X∼ into a topological groupoid with the same object
space G0 as G. Since ju,t is a bibundle map, it is compatible with range
and source maps. Thus, the maps r, s : Xt ⇒ G0 induce well-defined
maps r, s : X∼ ⇒ G0.

The multiplication maps µt,u give a continuous map X ×s,G0,rX →
X by mapping the t, u-component of X ×s,G0,rX to the tu-component
of X by µt,u. Equation (3.2) shows that this descends to a well-defined
continuous map µ : X∼ ×s,G0,r X∼ → X∼.

Lemma 3.11. The maps r, s : X∼ ⇒ G0 and µ : X∼×s,G0,rX∼ → X∼
define a topological groupoid X∼. It contains G as an open subgroupoid.
Hence, X∼ is étale if and only if G is.

Proof. The multiplication is associative already on X by (A3) and
the associativity of S. The maps r and s are open on X∼ because they
are so on each Xt. The maps r, s, µ restricted to G1 = X1 reproduce
the groupoid structure on G by (A1). Even more, (A2) implies that
multiplication in X∼ with elements of X1 is the same as the G-action.
In particular, unit elements in G1 act identically, so they remain unit
elements in X∼. If x ∈ Xt, then x

∗ ∈ Xt∗ satisfies µt,t∗(x, x
∗) = 1r(x)

by Proposition 3.9. Hence,

π(x, t) · π(x∗, t∗) := π(µt,t∗(x, x
∗), tt∗) = π(1r(x), tt

∗).

This is equivalent to the unit element (1r(x), 1) in X∼ because j1,tt∗

is the usual inclusion map (more precisely, the above computation
assumes that we identify Xtt∗

∼= G1
Utt∗

⊆ G1 using j1,tt∗). Similarly,

π(x, t) ·π(x∗, t∗) ∼ (1s(x), 1) is a unit element. Thus, π(x∗, t∗) is inverse
to π(x, t). The map π(x, t) 7→ π(x∗, t∗) is continuous. Thus we have
a topological groupoid. We have seen above that it contains G as an
open subgroupoid. Therefore, X∼ is étale if and only if G is. �

Definition 3.12. The groupoid X∼ is called the transformation
groupoid of the S-action (Xt, µt,u) on G and denoted by G o S, or
by GoXt,µt,u S if the action must be specified.

Our proof shows that GoS with the family of open subsets (Xt)t∈S
encodes all the algebraic structure of our action by partial equivalences.
The next definition characterizes when a groupoid H with a family of
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subsets (Ht)t∈S is the transformation groupoid of an inverse semigroup
action.

Definition 3.13. Let S be an inverse semigroup. A (saturated) S-
grading on a topological groupoid H is a family of open subsets (Ht)t∈S
of H1 such that

(Gr1) Ht ·Hu = Htu for all t, u ∈ S;
(Gr2) H−1

t = Ht∗ for all t ∈ S;
(Gr3)

Ht ∩Hu =
∪
v≤t,u

Hv

for all t, u ∈ S;
(Gr4)

H1 =
∪
t∈S

Ht.

If S has a zero element 0, we may also require H0 = ∅.

Conditions (Gr1) and (Gr2) imply that H1 is a subgroupoid of H,
called the unit fiber of the grading. Conditions (Gr4) and (Gr1) imply
that s(H1) = r(H1) = H0. Condition (Gr3) implies Hv ⊆ Hu for
v ≤ u.

A non-saturated S-grading would be defined by weakening (Gr1) to
Ht · Hu ⊆ Htu for all t, u ∈ S. We only use saturated gradings and
drop the adjective.

Theorem 3.14. Let S be an inverse semigroup with unit. The trans-
formation groupoid G o S of an S-action on a groupoid G by par-
tial equivalences is an S-graded groupoid. Any S-graded groupoid
(H, (Ht)t∈S) is isomorphic to one of this form, where G0 = H0 and
G1 = H1 ⊆ H. Two actions by partial equivalences are isomorphic if
and only if their transformation groupoids are isomorphic in a grading-
preserving way.

Here, an isomorphism between actions (Xt)t∈S and (Yt)t∈S by par-
tial equivalences on two groupoids G and H means the obvious: a
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family of homeomorphisms Xt
∼= Yt compatible with the range, source

and multiplication maps in Definition 3.5.

Proof. It follows directly from our construction that the subspaces
Xt ⊆ GoS for an S-action by partial equivalences satisfy (Gr1)–(Gr4).
It is also clear that the transformation groupoid construction is natural
for isomorphisms of S-actions.

Let H with the subspaces Ht for t ∈ S be an S-graded topological
groupoid. Then G1 := H1 with G0 = H0 is an open subgroupoid of H.
Let Xt = Ht with the restriction of the range and source map of H,
and with the G-action and maps µt,u : Xt ×s,G0,r Xu → Xtu from the
multiplication map in H. This satisfies (S3) by definition, (S4) because
Ht ·Hu = Htu, (S1) and (S7) because H is a groupoid, and (S2) because
Xt is open in H and the range and source maps of H are open. If
(y, z) ∈ Xu ×s,G0,s Xtu, then zy−1 ∈ XtuXu∗ = Xtuu∗ ⊆ Xt because
tuu∗ ≤ t. Hence, (y, z) 7→ (zy−1, y) gives a continuous inverse for the
map in (S5), so that the latter is a homeomorphism. A similar argument
shows that the map in (S6) is a homeomorphism. Thus, we obtain an
S-action by partial equivalences. This construction is natural in the
sense that isomorphic S-graded groupoids give isomorphic actions by
partial equivalences.

If we begin with an action by partial equivalences, turn it into a
graded groupoid, and then back into an action by partial equivalences,
then we get an isomorphic action by construction. When we start with
a graded groupoid, go to an action by partial equivalences and back to a
graded groupoid, then we also get back our original S-graded groupoid.
The only non-trivial point is that the map

π :
⊔
t∈S

Ht −→
( ⊔
t∈S

Ht

)
∼

identifies x ∈ Ht and y ∈ Hu for t, u ∈ S if and only if x = y in H; this
is exactly the meaning of (GR3). �

3.3. Examples: group actions and actions on spaces. The
equivalence between actions by partial equivalences and graded group-
oids makes it easy to describe all actions of groups on groupoids and
all actions of inverse semigroups on spaces.
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Theorem 3.15. Let G be a topological groupoid, and let S be a
group, viewed as an inverse semigroup. Then, an S-action on G by
(partial) equivalences is equivalent to a groupoid H containing G as
an open subgroupoid with H0 = G0, and with a continuous groupoid
homomorphism π : H�S such that π−1(1) = G and, for each x ∈ H0

and t ∈ S, there is h ∈ H1 with s(h) = x and π(h) = t. In this
situation, H is the transformation groupoid G o S. If G is also a
group, this is the same as a group extension G� H�S.

Proof. Since tt∗ = 1 for any t ∈ S, any action of S by partial
equivalences will be an action by global equivalences. By Theorem 3.14,
we may replace an S-action by partial equivalences by an S-graded
groupoid (H, (Ht)t∈S). We have H0 = G0 by construction. Since
S is a group, (Gr3) says that Ht ∩ Hu = ∅ for t ̸= u. Thus, we
obtain a well-defined map π : H1 → S with π−1(t) = Ht; in particular,
G = π−1(1). The map π is continuous because the subsets Ht are
open. The condition on the existence of h for given x, t says that the
map s : Ht → H0 is onto, that is, Ht is a global equivalence. Thus, an
S-action on G gives π : H → S with the asserted properties.

For the converse, let π : H → S be a groupoid homomorphism
as in the statement. Define Ht := π−1(t) ⊆ H1. These are open
subsets because π is continuous. If t, u ∈ S, then HtHu ⊆ Htu is
trivial. If h ∈ Htu, then our technical assumption gives h2 ∈ Hu with
s(h2) = s(h). Then, h1 := hh−1

2 ∈ Ht, so h ∈ HtHu. Thus, (Gr1)
holds. The remaining conditions for an S-grading are trivial in this
case, and H is the transformation groupoid Go S by construction.

If G is also a group, then so is H because G0 = H0, and then the
condition on π simply says that it is a surjection π : H�S with kernel
G. This is the same as a group extension. �

The obvious definition of a group action by automorphisms on
another group only covers split group extensions. We need some kind
of twisted action by automorphisms to allow for non-trivial group
extensions as well. Our notion of action by equivalences achieves this
very naturally.

For groupoid extensions, one usually requires the kernel to be a group
bundle; this need not be the case here. There are many examples of
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groupoid homomorphisms (or 1-cocycles) with the properties required
in Theorem 3.15. We mention one typical case:

Example 3.16. Let H be the groupoid associated to a self-covering
σ : X → X of a compact space X as in [9]. The canonical Z-valued
cocycle π : H → Z on it clearly has the properties needed to define a
Z-grading on H. The subgroupoid G := π−1(0) is the groupoid that
describes the equivalence relation generated by x ∼ y if σk(x) = σk(y)
for some k ∈ N. The action of σ on X preserves this equivalence
relation and hence gives an endomorphism of G; this endomorphism is
an equivalence, and our Z-action on G by equivalences is generated by
this self-equivalence of G. But, unless σ is a homeomorphism, σ is not
invertible on G, so it gives no action of Z by automorphisms.

Now we turn to actions of inverse semigroups on topological spaces.
Let S be an inverse semigroup with unit, and let Z be a topological
space. First, we recall Exel’s construction of the groupoid of germs for
an inverse semigroup action by partial homeomorphisms [12].

Let pHomeo(Z) be the inverse semigroup of partial homeomorphisms
of Z. An action of S on Z by partial homeomorphisms is a monoid ho-
momorphism θ : S → pHomeo(Z). This gives partial homeomorphisms
θt : Dt∗t → Dtt∗ for t ∈ S with open subsets De ⊆ Z for e ∈ E(S). The
groupoid of germs has object space Z, and its arrows are the “germs”
[t, z] for t ∈ S, z ∈ Dt∗t; by definition, [t, z] = [u, z′] if and only if there
is an e ∈ E(S) with z = z′ ∈ De and te = ue. The groupoid structure
is defined by

s[t, z] = z, r[t, z] = θt(z), [t, z] · [u, z′] = [tu, z′]

if z = θu(z
′), and [t, z]−1 = [t∗, θt(z)]. The subsets {[t, z] | z ∈ U} for

t ∈ S and an open subset U ⊆ Dt∗t form a basis for the topology on
the arrow space.

Remark 3.17. Many authors use another germ relation that only
requires an open subset V of Z with z ∈ V and θt|V = θu|V . This may
give a different groupoid, of course. Exel’s germ groupoids need not be
essentially principal, see [32].
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Theorem 3.18. Let Z be a topological space viewed as a topological
groupoid, and let S be an inverse semigroup with unit. Isomorphism
classes of actions of S on Z by partial equivalences are in natural
bijection with actions of S on Z by partial homeomorphisms. The
transformation groupoid Z o S for an action by partial equivalences
is the groupoid of germs defined by Exel [12].

Proof. Let θ : S → pHomeo(Z) be an action of S by partial homeo-
morphisms. Exel’s groupoid of germs carries an obvious S-grading by
the open subsets Xt := {[t, z] | z ∈ Dt∗t} with X1 = Z. The condi-
tions in Definition 3.13 are trivial to check. Hence, Exel’s groupoid is
the transformation groupoid Z o S for an action of S on Z by partial
equivalences by Theorem 3.14. Conversely, an S-action on Z is equiv-
alent to the S-graded groupoid Z o S. This groupoid is étale. The
assumptions of an S-grading imply that the subsets Xt ⊆ Z o S form
an inverse semigroup of bisections that satisfies the assumptions in [12,
Proposition 5.4], which ensures that the groupoid of germs is ZoS. �

Corollary 3.19. Let G be an étale groupoid, let S be an inverse
semigroup and let f : S → Bis(G) be a semigroup homomorphism. This
induces an isomorphism G0 o S ∼= G if and only if∪

t∈S

f(t) = G

and

f(t) ∩ f(u) =
∪
v∈S
v≤t,u

f(v)

for all t, u ∈ S.

Here G0 o S uses the action of S on G0 induced by f and the usual
action of Bis(G).

Proof. Add a unit to S and map it to the unit bisection G0 ⊆ G, so
that we may apply Theorem 3.14. For t ∈ S, let Gt := f(t) ⊆ G1; these
are open subsets because each f(t) is a bisection. Since f is a semigroup
homomorphism, (Gr1) and (Gr2) hold. The other two conditions are
exactly the technical assumptions of Corollary 3.19. Thus, these two
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assumptions are equivalent to (Gt)t∈S being an S-grading on G. If they
hold, then Theorem 3.14 says that G ∼= G1 o S = Z o S. Conversely,
the transformation groupoid Z o S is S-graded by Theorem 3.14, so if
G ∼= Z o S, then it satisfies the two technical assumptions. �

A subsemigroup S ⊆ Bis(G) with the properties required in Corol-
lary 3.19 is called wide. Corollary 3.19 explains why they appear so
frequently, see, for instance, [12, 28, 3]. It has already been shown
[12, Proposition 5.4] that Z o S = G if S is wide, but we have not yet
seen the converse statement.

Since the proof of Theorem 3.18 is not explicit, we give another
pedestrian proof.

Let θt : Dt∗t → Dtt∗ for t ∈ S give an action of S on Z by
partial homeomorphisms. This is a groupoid isomorphism from Dt∗t

to Dtt∗ , which we turn into a partial equivalence from Z to itself as in
Example 2.5. Here, this means that we take X ′

t := Dtt∗ with anchor
maps r′(z) := z, s′(z) := θ−1

t (z). Since all arrows in Z are units,
the range and source maps determine the partial equivalence. The
homeomorphism θt gives a bibundle isomorphism from X ′

t to Xt = Dt∗t

with r(z) := θt(z) and s(z) := z. The comparison with Exel’s groupoid
is more obvious for the second choice, which we take from now on.

There is an obvious homeomorphism

Xt ×Z Xu
∼−→{z ∈ Dtt∗ | θt(z) ∈ Duu∗} = D(tu)∗(tu),

such that the range and source maps are θtu and the inclusion map,
respectively. We choose this isomorphism for µt,u to define our action
by partial equivalences. Actually, this is no choice at all because
the range and source maps are injective here, so there is at most
one bibundle map between any two partial equivalences. (We will
see more groupoids with this property in subsection 3.5.) Hence,
the associativity condition in the definition of an inverse semigroup
action holds automatically. Thus, we have turned an action by partial
homeomorphisms on Z into an action by partial equivalences on Z,
viewed as a topological groupoid.

Our construction of the transformation groupoid above is exactly
the construction of the groupoid of germs in this special case, so the
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isomorphism between Z o S and the groupoid of germs from [12] is
trivial.

Next, we check that every partial equivalence X of Z is isomorphic
to one coming from a partial homeomorphism. Since all arrows in
Z are units, we have X/Z = X = Z\X. Hence, the anchor maps
G0 ← X → H0 are continuous, open and injective by condition (P3)
in Definition 2.1. The map

θ := r ◦ s−1 : s(X) −→ r(X)

is a partial homeomorphism from G0 to H0, and

r : X −→ r(X)

is an isomorphism of partial equivalences from X to Xθ.

Since there is always only one isomorphism between partial equiva-
lences coming from the same partial homeomorphism, an inverse semi-
group action on Z is uniquely determined by the isomorphism classes
of the Xt, which are in bijection with partial homeomorphisms of Z.
This proves the first statement in Theorem 3.18.

3.4. Morita invariance of actions by partial equivalences.

Proposition 3.20. Let Y be an equivalence from H to G, and let
(Xt, µt,u) be an action of an inverse semigroup with unit on G. Let
X ′
t := Y ×GXt×G Y ∗, and let µ′

t,u : X
′
t×HX ′

u → X ′
tu be the composite

isomorphism

Y ×GXt×G Y ∗×H Y ×GXu×G Y ∗ ∼−→Y ×GXt×GG1×GXu×G Y ∗

∼−→Y ×G Xt ×G Xu ×G Y ∗ µt,u−−→∼= Y ×G Xtu ×G Y ∗,

where the first two isomorphisms are canonical from Proposition 2.11
and Lemma 2.8. Then, µ′

t,u is an action of S on H by partial
equivalences. Its transformation groupoid HoS is equivalent to GoS.

When we translate the action on Y back to X using the inverse
equivalence Y ∗, we get an action on G that is isomorphic to the original
one.

Proof. More precisely, X ′
1 as defined above is only isomorphic to

H1 in a very obvious way. We should only use the above definition
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of X ′
t for t ̸= 1, let X ′

1 := H1 for t = 1, and let µ′
1,t and µ′

t,1 be
the canonical isomorphisms. We should also put in associators for
the composition of partial equivalences, which only cause notational
complications, however. Up to these technicalities, it is clear that the
maps µ′ inherit associativity from the maps µ. The action that we get
by translating µ′ back to G with Y ∗ is canonically isomorphic to the
original action because Y ∗ ×H Y ∼= G1.

It remains to prove the equivalence of the transformation groupoids
GoS andHoS. Here, we use the linking groupoid L of the equivalence;
its object space is L0 = G0 ⊔H0, its arrow space is G1 ⊔ Y ⊔ Y ∗ ⊔H1,
its range and source maps are r and s on each component, and its
multiplication consists of the multiplications in G and H, the G,H-
bibundle structure on Y , the H,G-bibundle structure on Y ∗, and
the canonical isomorphisms Y ×G Y ∗ ∼−→H1 and Y ∗ ×H Y

∼−→G1 from
Proposition 2.11. This gives a topological groupoid L. There is a
canonical right action of L on G1 ⊔ Y = r−1(G1) ⊆ L1 that provides
an equivalence from L to G when combined with the left actions of G
on G1 and Y ; there is a similar canonical equivalence H1 ⊔ Y ∗ from L
to H.

We may transport the S-action on G to L because it is equivalent
to G. When we transport this action on L further to H, we get the
action described above because the composite equivalence (G1⊔Y )×L
(H1 ⊔ Y ∗)∗ from H to G is isomorphic to Y .

The action on L is given by bibundles

(G1 ⊔ Y )∗ ×G Xt ×G (G1 ⊔ Y )

∼= Xt ⊔ (Xt ×G Y ) ⊔ (Y ∗ ×G Xt) ⊔ (Y ∗ ×G Xt ×G Y ),

where we canceled factors of G1 using Lemma 2.8. When we restrict the
transformation groupoid LoS to G0 ⊆ L0 or to H0 ⊆ L0, then we only
pick the componentsXt and Y

∗×GXt×GY in the above decomposition,
so we get the transformation groupoids GoS and H oS, respectively.
Routine computations show that the other two parts r−1(G0)∩s−1(H0)
and r−1(H0) ∩ s−1(G0) of L o S give an equivalence from H o S to
Go S, such that Lo S is the resulting linking groupoid.

It can be shown with less routine computations that the embedding
G o S↩→L o S is fully faithful and essentially surjective. We checked
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“fully faithful” above. Being essentially surjective means that the map

G0 ×⊂,L0,r L
1 −→ L0, (x, l) 7−→ s(l),

is open and surjective. It is open because r : L1 → L0 is open and
G0 ⊂ L0 is open, and surjective because already G0×L0 Y ⊂ G0×L0 L1

surjects onto H0. Since both GoS↩→LoS and HoS↩→LoS are fully
faithful and essentially surjective, they induce equivalence bibundles by
[21, Proposition 6.8], which we may compose to an equivalence from
H o S to G o S. Of course, this gives the same equivalence as the
argument above. �

Corollary 3.21. Let S be an inverse semigroup with unit. Let
f : X → Z be an open continuous surjection, and let G(f) be its cov-
ering groupoid, see Definition A.8. Then S-actions by partial equiva-
lences on G(f) are canonically equivalent to S-actions on Z by partial
homeomorphisms, such that G(f)o S is equivalent to Z o S.

Here equivalent means an equivalence of categories, where the arrows
are isomorphisms of S-actions that fix the underlying groupoid.

Proof. G(f) is canonically equivalent to Z viewed as a groupoid, so
the assertion follows from Theorem 3.18 and Proposition 3.20. �

In particular, Corollary 3.21 applies to the Čech groupoid GU of an
open covering U of a locally Hausdorff space Z by Hausdorff open sub-
sets. Thus, we may replace an S-action by partial homeomorphisms on
a locally Hausdorff space Z by an “equivalent” action by partial equiv-
alences on a Hausdorff groupoid GU, and the resulting transformation
groupoids Z o S and GU o S are equivalent.

The quickest way to describe the resulting S-action on GU explicitly
is by describing GU o S and an S-grading on it. Let

X :=
⊔
U∈U

U,

and let p : X → Z be the canonical map, which is an open surjection.
The pull-back p∗(Z o S) of Z o S along p is a groupoid with object
space X, arrow space

X ×p,Z,r (Z o S)1 ×s,Z,p X,
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r(x1, g, x2) = x1,

s(x1, g, x2) = x2,

and
(x1, g, x2) · (x2, h, x3) = (x1, g · h, x3),

see [21, Example 3.13]. Let

Xt := {(x1, g, x2) ∈ X ×p,Z,r (Z o S)1 ×s,Z,p X | g ∈ t}.

Proposition 3.22. The subspaces Xt ⊆ p∗(ZoS)1 form an S-grading
on p∗(Z o S). The resulting S-graded groupoid is the transformation
groupoid for the S-action on GU that we obtain by translating the S-
action on Z along the equivalence to GU.

Proof. The subspaces Xt form an S-grading because the bisections
t ∈ S give an S-grading on Z o S and p is surjective. Hence, they
describe an S-action on GU. The equivalence from GU to Z is given by
the canonical action of GU on G0

U = X and the projection p : X → Z.
Hence, Xt is exactly what we get when we translate t ⊆ Z o S along
the equivalence. �

For instance, let H be an étale groupoid with locally Hausdorff
arrow space, and let S be some inverse semigroup of bisections with
H ∼= H0 o S; we could take S = Bis(H). Let Z = H1 with the action
of H by left multiplication. This induces an action of S on Z. Its
transformation groupoid H1oS is H1oH with the obvious S-grading
by H1 ×H0 t for t ∈ S.

The left multiplication action of H on H1 with the bundle projection
s : H1 → H0 is a trivial principal bundle. In particular, the transforma-
tion groupoid H1oS ∼= H1oH is isomorphic to the covering groupoid
of the cover s : H1�H0. Hence, it is equivalent to the space H0, viewed
as a groupoid with unit arrows only. The S-grading on H1 o S does,
however, not carry over to H0.

If we replace the S-action on H1 by an equivalent S-action on GU

for a Hausdorff open cover of H1, then the transformation groupoid
GUoS is equivalent to H1oS, and hence, also equivalent to the space
H0. In particular, the groupoid GU o S is basic, see Section A.2. If
a groupoid is equivalent to a space, then this space must be its orbit
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space. So if H0 is Hausdorff, then the groupoid GU o S is a free and
proper, Hausdorff groupoid by Proposition A.7.

3.5. Local centralizers. We shall show that, for many groupoids G,
the bibundles Xt already determine the multiplication maps µt,u and
thus the inverse semigroup action. This happens, among others, for
essentially principal topological groupoids (meaning that the isotropy
group bundle has no interior; see [32]) and for groups with trivial
center.

Definition 3.23. A local centralizer of G is a map γ : U → G1 defined
on an open G-invariant subset U of G0 with s(γ(x)) = r(γ(x)) = x for
all x ∈ U and γ(r(g)) · g = g · γ(s(g)) for all g ∈ G. We say that G has
no local centralizers if all local centralizers are given by γ(x) = 1x for
x ∈ U and some U as above.

Local centralizers defined on the same subset U form an Abelian
group under pointwise multiplication. All local centralizers form an
Abelian inverse semigroup. It is the center of Bis(G) if G is étale.

Lemma 3.24. Let X be a partial equivalence from H to G. Then
Map(X,X) is isomorphic to the group of local centralizers of G defined
on r(X), and to the group of local centralizers of H defined on s(X).

If G has no local centralizers and X and Y are partial equivalences
from G or to G, then there is at most one bibundle map X → Y , so
bibundle isomorphisms are unique if they exist.

Proof. The two descriptions of Map(X,X) are equivalent by taking
X∗, so we only prove one. Every bibundle map X → X is invertible
by Proposition 2.9. The canonical group homomorphisms

Map(X,X)
×HX

∗

−−−−−→ Map(X×HX∗, X×HX∗) ∼= Map(G1
r(X), G

1
r(X))

×GX−−−−→ Map(X,X)

are inverse to each other by the proof of Proposition 2.11. Thus, it re-
mains to identify the set Map(G1

U , G
1
U ) for an open G-invariant subset

U of G0 with the group of local centralizers defined on U . We may
view G1

U as the equivalence from G1
U to itself associated to the identity
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functor on G1
U . We described all bibundle isomorphisms between such

equivalences in Example 2.5. Specializing Example 2.5 to the auto-
morphisms of the identity functor gives exactly the local centralizers
defined on U . A quick computation shows that the composition of
bibundle isomorphisms corresponds to the pointwise multiplication of
local centralizers.

Let f1, f2 : X → Y be bibundle maps. Then both are bibundle
isomorphisms X → Y |s(X), and we may form a composite bibundle

isomorphism f−1
2 ◦ f1 : X → X. Since there are no local centralizers,

the first part of Lemma 3.24 shows that this is the identity map, so
f1 = f2. In particular, if two partial equivalences G → H or H → G
are isomorphic, then the isomorphism is unique. �

Recall that p̃eq(G) denotes the inverse semigroup of isomorphism
classes of partial equivalences on G.

Theorem 3.25. Let G be a topological groupoid without local central-
izers. An action of an inverse semigroup S on G is equivalent to a
homomorphism S → p̃eq(G). More precisely, isomorphism classes of
S-actions on G by partial equivalences are in canonical bijection with
homomorphisms S → p̃eq(G).

Proof. A homomorphism f : S → p̃eq(G) gives us bibundles Xt with
Xt ×G Xu

∼= Xtu and X1
∼= G1; we may as well assume X1 = G1. By

Lemma 3.24, the isomorphisms µt,u : Xt×GXu
∼−→Xtu above are unique,

so there is no need to specify them. Conditions (A2) and (A3) hold
because any two parallel bibundle isomorphisms are equal. Thus, f
determines an S-action by partial equivalences. Conversely, an action
by partial equivalences determines such a homomorphism by taking
the isomorphism classes of the Xt and forgetting the µt,u. Since
isomorphisms of partial equivalences are unique if they exist, this
forgetful functor is actually not forgetting anything here, so we get a
bijection between isomorphism classes of actions by partial equivalences
and homomorphisms S → p̃eq(G). �

The results in this section are inspired by the notion of a “quasi-
graphoid” used by Debord [10]. Debord already treated partial equiv-
alences of groupoids as arrows between groupoids and used them to
glue together groupoids constructed locally. She restricts, however,
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to a situation where bibundle isomorphisms are uniquely determined.
Even more, she wants the range and source maps to determine a par-
tial equivalence uniquely. For this, she assumes that a smooth map
γ : U → G1 defined on an open subset U of G0 must already be the
unit section if it only satisfies s(γ(x)) = r(γ(x)) = x for all x ∈ U .
This condition holds for holonomy groupoids of foliations–even for the
mildly singular foliations that she considers.

3.6. Decomposing proper Lie groupoids. A manifold may be
constructed by taking a disjoint union of local charts and gluing
them together along the coordinate change maps, which are partial
homeomorphisms, or diffeomorphisms in the smooth case. When
constructing groupoids locally, it is more likely that the coordinate
change maps are no longer partial isomorphisms but only partial
equivalences. Actually, it may well be that the local pieces are, to
begin with, only local groupoids and not groupoids, see [10]; this is not
covered by our theory. Therefore, we know no good examples where
groupoids have been constructed by gluing together smaller groupoids
along partial equivalences.

Instead, we take a groupoid as given and analyze it using local
information. The local information should say that the groupoid
locally is equivalent to one of a particularly simple form. Then the
groupoid is globally equivalent to a transformation groupoid for an
inverse semigroup action by partial equivalences on a disjoint union of
groupoids having the desired simple form.

We now get more concrete and consider a proper Lie groupoid H.
To formulate stronger results, we shall work with (partial) equivalences
of Lie groupoids in this section; that is, spaces are replaced by smooth
manifolds, continuous maps by smooth maps and open maps by sub-
mersions. This does not change the theory significantly, see [21].

First we formulate the local linearisability of proper Lie groupoids.
This was conjectured by Weinstein [37] and proved by Zung [38]. Both
authors try to describe the local structure of proper Lie groupoids up to
isomorphism. Following Trentinaglia [35], we only aim for a description
up to Morita equivalence:

Theorem 3.26. Let H be a proper Lie groupoid. For every x ∈ H0,
there are an open H-invariant neighborhood Ux of x in H0, a linear
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representation of the stabilizer group Hx on a finite-dimensional vector
space Wx, and a Lie groupoid equivalence from the transformation
groupoid Wx oHx to HUx .

The vector space Wx is the normal bundle to the H-orbit Hx of x,
with its canonical representation of Hx.

Weinstein and Zung impose extra assumptions on H to describe
HUx up to isomorphism. The argument in [35, Section 4] shows how
to deduce Theorem 3.26 quickly from [38, Theorem 2.3] without extra
assumptions.

Actually, we do not need H to be proper. Since we only need
local structure, it is enough for H to be locally proper, that is, each
x ∈ H0 has an H-invariant open neighborhood U such that HU is
proper; this allows the orbit space H0/H to be a locally Hausdorff but
non-Hausdorff manifold.

Assume now that H is a locally proper groupoid. By Theorem 3.26,
there is a covering U of H0 by open, H-invariant subsets and, for each
U ∈ U, a Lie groupoid equivalence XU from a transformation groupoid
WU oGU for a compact Lie group GU and a linear representation WU

of GU to the restriction HU . Now let

G :=
⊔
U∈U

WU oGU .

This disjoint union is a groupoid with object space
⊔
WU .

Let K be the covering groupoid of H0 for the covering U. Since
HU |U∩V = HU∩V = HV |U∩V , the inverse semigroup S := Bis(K) acts
on

⊔
U∈UHU : each element of Bis(K) acts by the identity equivalence

between the appropriate restrictions of HU and HV , and all the mul-
tiplication maps are the canonical isomorphisms. The disjoint union
X :=

⊔
U∈UXU gives an equivalence from G to

⊔
U∈UHU , so we may

transfer this S-action to G.

We make the action on G more concrete. Any bisection of K is a
disjoint union of bisections of the form

(U1, D, U2) := {(U1, x, U2) | x ∈ D}

for U1, U2 ∈ U and an open subset D ⊆ U1 ∩ U2. The product
(U1, D1, U2) · (U ′

2, D2, U3) is empty if U2 ̸= U ′
2 and is equal to (U1, D1∩
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D2, U3) if U2 = U ′
2.

The partial equivalence XU1,D,U2 on G associated to (U1, D, U2) is
the composite partial equivalence

G ⊇WU1 oGU1

D|X∗
U1−−−−→ HD

XU2
|D−−−−→WU2 oGU2 ⊆ G.

The composites of XU1,D1,U2 and XU ′
2,D2,U3

are clearly empty for
U2 ̸= U ′

2, as they should be. If U2 = U ′
2, then there is a canonical

isomorphism of partial equivalences

µ(U1,D1,U2),(U2,D2,U3) : XU1,D1,U2 ×G XU2,D2,U3 −→ XU1,D1∩D2,U3 ,

using the restriction of the canonical pairing XU2
×G X∗

U2
→ HU2

to
remove the extra two factors in the middle. This is exactly what
happens if we translate the “trivial” action of S on

⊔
HU described

above to G along the equivalence
⊔
XU .

Theorem 3.27. The locally proper Lie groupoid H is equivalent to the
transformation groupoid GoS for the action of S on G described above.

Proof. Since we constructed the action of S on G by translating the
action on

⊔
U∈UHU , Proposition 3.20 shows that GoS is equivalent to⊔

U∈UHU o S. Since S acts “trivially” on
⊔
HU , this transformation

groupoid is easy to understand: it is the pull-back p∗(H) of H for the
canonical map p :

⊔
U∈U U → H0. Since p is a surjective submersion,

p∗(H) is equivalent to H. �

As a result, any locally proper Lie groupoid is equivalent to a trans-
formation groupoid for an inverse semigroup action on a disjoint union
of linear actions of compact groups. Such transformation groupoids
need not be locally proper, however, so we do not have a characteri-
zation of locally proper Lie groupoids. The groupoid G o S is étale if
and only if G is, if and only if the stabilizers Hx are finite. This means
that H is an orbifold, see [22].

4. Inverse semigroup actions on C∗-algebras. We now define
inverse semigroup actions on C∗-algebras by Hilbert bimodules, in
parallel to actions on groupoids by partial equivalences.
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Definition 4.1. A Hilbert A,B-bimodule H is a left Hilbert A-module
and a right Hilbert B-module such that the left and right multiplica-
tions commute, and

⟨⟨x|y⟩⟩A · z = x · ⟨y|z⟩B for all x, y, z ∈ H.

A Hilbert A,B-bimodule map is a bimodule map that also intertwines
both inner products.

Let H be a Hilbert A,B-bimodule. Let I ▹ A and J ▹ B be the
closed linear spans of the elements ⟨⟨x|y⟩⟩A and ⟨x|y⟩B with x, y ∈ H,
respectively. These are closed ideals in A and B, and H is an I, J-
imprimitivity bimodule by restricting the left multiplications to I and
J . Ideals in a C∗-algebra are in bijection with open subsets of its
primitive ideal space, so ideals are the right analogues of open invariant
subsets of groupoids. Hence, we denote the ideals I and J above as

I := r(H) and J := s(H),

and we think of Hilbert A,B-bimodules as partial Morita equivalences
from B to A.

Given an ideal K ▹ A, we define the restriction of a Hilbert bimodule
H to K as K |H := K · H ⊆ H, which is canonically isomorphic to
K ⊗A H. We restrict to ideals in B in a similar way.

The left action of A on a Hilbert bimodule is by a nondegenerate
∗-homomorphism A → B(H) into the adjointable operators on H.
Thus, a Hilbert A,B-bimodule becomes a correspondence by forgetting
the left inner product.

Lemma 4.2. A correspondence H carries a Hilbert bimodule structure
if and only if there is an ideal I ▹ A such that the left action φ : A →
B(H) restricts to an isomorphism from I onto K(H). This ideal and
the left inner product are uniquely determined by the correspondence.

Proof. First, let H be a Hilbert bimodule. Then H is an imprimi-
tivity bimodule from s(H) to r(H), so φ|r(H) is an isomorphism from
r(H) onto K(H). If I ▹ A is another ideal with φ(I) = K(H), then
φ(r(H) · I) = K(H) as well. Thus, r(H) is the minimal ideal that
φ maps onto K(H), and the only one on which this happens isomor-
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phically. Thus, r(H) is already determined by the underlying corre-
spondence.

Let H′ be another Hilbert A,B-bimodule with the same underlying
correspondence as H and with left A-valued inner product ⟨⟨x|y⟩⟩′A.
Then

φ(⟨⟨x|y⟩⟩′A)z = x · ⟨y|z⟩B = φ(⟨⟨x|y⟩⟩A)z

for all x, y, z ∈ H. Since r(H) = r(H′) depends only on the correspon-
dence and the restriction of φ to r(H) is faithful, we get H = H′ as
Hilbert bimodules.

Now let H be a correspondence, and let I ▹ A be an ideal that is
mapped isomorphically onto K(H). Transfer the usual K(H)-valued
left inner product on H through this isomorphism to one with values
in A ⊇ I. This turns H into a Hilbert A,B-bimodule. �

Proposition 4.3. Let H and H′ be Hilbert A,B-bimodules. If there
is a Hilbert bimodule map f : H → H′, then s(H) ⊆ s(H′) and
r(H) ⊆ r(H′). Such a Hilbert bimodule map is an isomorphism from H
onto the submodule H′ ·s(H) = r(H)·H′ in H′. So it is an isomorphism
onto H′ if and only if s(H′) ⊆ s(H), if and only if r(H′) ⊆ r(H), if
and only if the map K(H)→ K(H′) induced by f is an isomorphism.

Proof. Since the norm on a Hilbert bimodule is generated by the
inner products, Hilbert bimodule maps are norm isometries and thus
injective. Moreover,

f(H) = f(r(H) · H) = r(H) · f(H) ⊆ r(H) · H′.

Thus, r(H′) ⊆ r(H) is necessary for f to be an isomorphism. Con-
versely, if r(H′) ⊆ r(H), then even r(H′) = r(H) because a bimodule
map preserves the left inner product. Then the map from r(H) ∼= K(H)
to r(H′) ∼= K(H′) that sends |ξ⟩⟨η| to |f(ξ)⟩⟨f(η)| for ξ, η ∈ H is an
isomorphism K(H) ∼= r(H′) ∼= K(H′). Since K(H′) · H′ = H′, the lin-
ear span of elements of the form |f(ξ)⟩⟨f(η)|ζ ′ = f(ξ) · ⟨f(η)|ζ ′⟩ for
ξ, η ∈ H, ζ ′ ∈ H′ is dense in H′. Since f(H) is a right B-module, this
implies that f is surjective. Hence, it is an isomorphism of Hilbert bi-
modules. A similar argument for the right inner product instead of the
left one shows that all the conditions listed for f are indeed equivalent
to f being an isomorphism.
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If r(H) ̸= r(H′), then we may restrict f to a Hilbert bimodule map
H → r(H)·H′. Since r(H)·r(H)·H′ = r(H)·H′, this is an isomorphism
by the first statement. A similar argument on the other side shows that
f is an isomorphism onto H′ · s(H), so H′ · s(H) = r(H) · H′. �

A Hilbert A,B-bimodule H has a dual Hilbert B,A-bimodule H∗,
where we exchange left and right structures using adjoints:

b · x∗ · a := (a∗ · x · b∗)∗ for a ∈ A, b ∈ B, x ∈ H,

and
⟨x∗|y∗⟩A = ⟨⟨y|x⟩⟩A, ⟨⟨x∗|y∗⟩⟩B = ⟨y|x⟩B .

We will see that this construction has the same formal properties as
the dual for partial equivalences of groupoids. To begin with, a Hilbert
bimodule map X → Y remains a Hilbert bimodule map X∗ → Y ∗, and
(X∗)∗ = X. Furthermore,

(ξ ⊗ η)∗ 7−→ η∗ ⊗ ξ∗

defines a Hilbert bimodule map

σ : (X ⊗B Y )∗ −→ Y ∗ ⊗B X∗

with dense range, hence an isomorphism. Applying σ twice gives the
identity map. (More precisely, σY ∗,X∗ ◦ σX,Y = Id(X⊗BY )∗ .)

Proposition 4.4. Let H be a Hilbert A,B-bimodule. The inner
products on H give Hilbert bimodule isomorphisms H ⊗B H∗ ∼= r(H)
and H∗ ⊗AH ∼= s(H), and the restrictions of the left and right actions
give Hilbert bimodule isomorphisms

r(H)⊗A H ∼= H ∼= H⊗B s(H),
s(H)⊗B H∗ ∼= H∗ ∼= H∗ ⊗A r(H).

that make the following diagrams of isomorphisms commute:
(4.1)

..

..H⊗B H∗ ⊗A H ..H⊗B s(H)

..r(H)⊗A H ..H,

..

..H∗ ⊗A H⊗B H∗ ..H∗ ⊗A r(H)

..s(H)⊗B H∗ ..H∗.
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Let D be another C∗-algebra, let K be a Hilbert A,D-bimodule, and
let L be a Hilbert B,D-bimodule with r(K) ⊆ r(H) and r(L) ⊆ s(H).
Then Hilbert A,D-bimodule maps H ⊗B L → K are naturally in
bijection with Hilbert B,D-bimodule maps L → H∗ ⊗A K, and this
bijection maps isomorphisms again to isomorphisms. Similarly, Hilbert
A,D-bimodule maps H⊗BL ← K are naturally in bijection with Hilbert
B,D-bimodule maps L ← H∗ ⊗A K.

Proof. The Hilbert bimodule isomorphisms

H⊗B H∗ ∼= r(H),
H∗ ⊗A H ∼= s(H),

r(H)⊗A H ∼= H ∼= H⊗B s(H)

and

s(H)⊗B H∗ ∼= H∗ ∼= H∗ ⊗A r(H)

are routine to check using that H is full as a Hilbert r(H), s(H)-
bimodule. The diagrams in equation (4.1) are equivalent to the require-
ment ⟨⟨x|y⟩⟩A · z = x · ⟨y|z⟩B in the definition of a Hilbert bimodule.
The claim about Hilbert bimodule maps is proved like the analogous
one about partial equivalences of groupoids in Proposition 2.12; now,
we use the canonical isomorphisms just established and Proposition 4.3
instead of Proposition 2.9. �

Proposition 4.5. Up to isomorphism, H∗ is the unique Hilbert B,A-
bimodule K for which there are isomorphisms:

H⊗B K ⊗A H ∼= H, K ⊗A H⊗B K ∼= K.

More precisely, if there are such isomorphisms, then there is a unique
Hilbert bimodule isomorphism H∗ ∼−→K such that the following map is
the identity map:

H ∼−→H⊗B K ⊗A H
∼−→H⊗B H∗ ⊗A H

∼−→ r(H)⊗A H
∼−→H.

Proof. Repeat the proof of Proposition 2.12, replacing ×G by ⊗A.
�
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Proposition 4.6. Let H be a Hilbert A,A-bimodule, and let µ : H⊗A
H → H be a bimodule isomorphism. Then, there is a unique isomor-
phism from H onto an ideal I ▹ A that intertwines µ and the multiplica-
tion map I⊗AI

∼−→ I. We have I = r(H) = s(H), and the multiplication
µ is associative.

Proof. This is proved exactly like Proposition 2.13. �

Definition 4.7. Let S be an inverse semigroup with unit, and let A
be a C∗-algebra. An S-action on A by Hilbert bimodules consists of

• Hilbert A,A-bimodules Ht for t ∈ S;
• bimodule isomorphisms µt,u : Ht ⊗A Hu

∼−→Htu for t, u ∈ S;

satisfying

(AH1) H1 is the identity Hilbert A,A-bimodule A;

(AH2) µt,1 : Ht⊗AA
∼−→Ht and µ1,u : A⊗AHu

∼−→Hu are the canonical
isomorphisms for all t, u ∈ S;

(AH3) associativity: for all t, u, v ∈ S, the next diagram commutes:

..

(Ht ⊗A Hu)⊗A Hv

.Ht ⊗A (Hu ⊗A Hv).

Htu ⊗A Hv

. Ht ⊗A Huv.
Htuv

.
ass

.

µt,u ⊗A IdHv

.
IdHt ⊗A µu,v

.
µt,uv

.

µtu,v

If S has a 0 element, we may also require H0 = {0}.

Theorem 4.8. Let S be an inverse semigroup with unit, and let A be a
C∗-algebra. Then actions of S on A by Hilbert bimodules are equivalent
to saturated Fell bundles over S (as defined in [13]) with unit fiber A.

More precisely, let (Ht)t∈S and (µt,u)t,u∈S be an S-action by Hilbert
bimodules on A. Then there are unique Hilbert bimodule maps ju,t : Ht
→ Hu for t ≤ u that make the following diagrams commute for all
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t1, t2, u1, u2 ∈ S with t1 ≤ u1, t2 ≤ u2:

(4.2) ..

..Ht1 ⊗A Ht2 ..Ht1t2

..Hu1 ⊗A Hu2 ..Hu1u2

.

µt1,t2

.
µu1,u2

.ju1,t1 ⊗A ju2,t2

. ju1u2,t1t2

The map ju,t is a Hilbert bimodule isomorphism onto Hu · s(Ht) =
r(Ht) · Hu. We have jt,t = IdHt for all t ∈ S and jv,u ◦ ju,t = jv,t for
t ≤ u ≤ v in S, and there are unique Hilbert bimodule isomorphisms
Jt : H∗

t
∼−→Ht∗ , x 7→ x∗, such that

µt,t∗,t(x, x
∗, x) = x · ⟨x|x⟩A = ⟨⟨x|x⟩⟩A · x for all x ∈ Ht.

These also satisfy

µt,t∗(x⊗ x∗) = ⟨⟨x|x⟩⟩A,
µt∗,t(x

∗, x) = ⟨x|x⟩A;
(x∗)∗ = x for all x ∈ Ht;

µt,u(x, y)
∗ = µu∗,t∗(y

∗, x∗) for all x ∈ Ht, y ∈ Hu, t, u ∈ S;

and

ju,t(x)
∗ = ju∗,t∗(x

∗) for all t ≤ u in S, x ∈ Ht.

Conversely, a saturated Fell bundle (At)t∈S over S with A = A1

becomes an S-action by Hilbert bimodules by taking Ht = At with
the multiplication maps µt,u and the A-bimodule structure induced by
the Fell bundle multiplication, and the left and right inner products
⟨⟨x|y⟩⟩A := x · y∗, ⟨x|y⟩A := x∗ · y for x, y ∈ Ht.

Proof. We construct the inclusion maps jt,u and the involutions Jt
and show their properties exactly as in the proofs of Propositions 3.7
and 3.9. �

With Theorem 4.8, it becomes easier to construct saturated Fell
bundles over inverse semigroups because Definition 4.7 needs far less
data and has correspondingly fewer conditions to check.
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Remark 4.9. The correspondence bicategory introduced in [6] is not
suitable for our purposes by the following observation: Let I↩→A�A/I
be a split extension of C∗-algebras. Then p : A → A/I → A is an
idempotent endomorphism. It remains an idempotent arrow in the
correspondence bicategory. More generally, if A is Morita equivalent to
an ideal in a C∗-algebra B, then we can translate p to a correspondence
H from B to itself that is idempotent in the sense that H ⊗B H ∼= H
with an associative isomorphism. Thus, there are more idempotent
endomorphisms in the correspondence bicategory than usual for inverse
semigroup actions. Furthermore, the idempotent arrows no longer
commute up to isomorphism; thus, a very basic assumption for inverse
semigroups fails in this case. This is why we only allowed Hilbert
bimodules above.

Proposition 4.10. There is a bicategory with C∗-algebras as ob-
jects, Hilbert bimodules as arrows, Hilbert bimodule isomorphisms as
2-arrows, and ⊗B as composition of arrows.

Proof. The correspondence bicategory is already constructed in [6].
Lemma 4.2 allows identifying Hilbert bimodules with a subset of cor-
respondences. It is well known that composites of Hilbert bimodules
are again Hilbert bimodules. Hence, the Hilbert bimodules form a sub-
bicategory in the opposite of the correspondence bicategory. �

5. Fell bundles from actions of inverse semigroups. All group-
oids in this section are assumed to be locally quasi-compact, locally
Hausdorff and with (locally compact) Hausdorff object space and a
Haar system, so that they have groupoid C∗-algebras. Let G be such a
groupoid, and let S be a unital inverse semigroup acting on G by partial
equivalences. We want to turn this into an action of S on C∗(G) by
Hilbert bimodules; equivalently, we want a Fell bundle over S with
unit fiber C∗(G). There are two closely related ways to construct this.
We will explain one approach in detail and briefly sketch the other in
subsection 5.3.

We give details for the construction of the Fell bundle using the
transformation groupoid L = G o S because this also suggests how
to describe the section C∗-algebra of the resulting Fell bundle. The
transformation groupoid L comes with an S-grading (Lt)t∈S . Roughly
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speaking, our Fell bundle over S will involve the subspaces of C∗(L)
of elements supported on the open subsets Lt. Since G1 = L1, the
unit fiber of the Fell bundle will be C∗(G). This also suggests that the
section C∗-algebra of the Fell bundle over S is C∗(L). This is indeed
the case, but the technical details need some care.

First, we need a Haar system on L. We show in Proposition 5.1
that the Haar system on G extends uniquely to a Haar system on L.
Secondly, it is non-trivial that C∗(G) is contained in C∗(L): this means
that the maximal C∗-norm that defines C∗(G) extends to a C∗-norm on
C∗(L). A related issue is to show that an element of C∗(L) supported
in G actually belongs to C∗(G). These problems become clearer if we
construct a pre-Fell bundle using the dense ∗-algebra that defines C∗(L)
and then complete it.

In the non-Hausdorff case, continuous functions with compact sup-
port are replaced by finite linear combinations of certain functions
that are not continuous. The identification of C∗(L) with the section
C∗-algebra of the Fell bundle requires a technical result about these
functions. We prove it in Appendix B in the more general setting of
sections of upper semicontinuous Banach bundles because this is not
more difficult and allows us to generalize our main results to Fell bun-
dles over groupoids.

We write S(X) for the space of linear combinations of compactly
supported functions on Hausdorff open subsets of a locally Hausdorff,
locally quasi-compact space X. This is the space of compactly sup-
ported continuous functions on X if and only if X is Hausdorff, and it
is often denoted by Cc(X). We find this notation misleading, however,
because its elements are not continuous functions.

5.1. A Haar system on the transformation groupoid. Before we
enter the construction of Haar systems, we mention an important trivial
case: if G is étale, then so is L. Therefore, L certainly has a canonical
Haar system if G is étale. This already covers many examples, and the
reader only interested in étale groupoids may skip the construction of
the Haar system on L.

We define Haar systems as in [31, Section 1]. Thus, our Haar system
(λxG)x∈G0 on G is left invariant, so

suppλxG = Gx = {g ∈ G1 | r(g) = x}
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and

g∗λ
s(g)
G = λ

r(g)
G for all g ∈ G.

The continuity requirement for (λxG)x∈G0 is that the function λG(f) on
G0 defined by λG(f)(x) :=

∫
G
f(g) dλxG(g) is continuous on G0 for all

f ∈ S(G). By the definition of S(G) (see Definition B.1), it suffices to
check continuity if f is a continuous function with compact support on
a Hausdorff open subset U of G.

Proposition 5.1. The Haar system on G extends uniquely to a Haar
system on the transformation groupoid L.

Proof. Fix x ∈ G0 = L0. We will describe the measure λxL on Lx

in the Haar system. Since L =
∪
t∈S Lt is an open cover, the measure

λxL is determined by its restrictions to Lt for all t ∈ S. If x /∈ r(Lt),
then there is nothing to do; so, consider t ∈ S with x ∈ r(Lt), and
fix g ∈ Lt with r(g) = x. If A ⊆ Lxt := Lt ∩ Lx is measurable, then
A = g · (g−1 ·A) with g−1 ·A ⊆ L−1

t ·Lt = L1 = G. Since we want (λxL)
to be left invariant and to extend (λxG), we must have

λxL(A) = λ
s(g)
G (g−1 ·A)

if g ∈ Lt satisfies r(g) = x and A ⊆ Lxt is measurable. Hence, there is
at most one Haar measure on L extending the given Haar measure on
G.

If g1, g2 ∈ Lt satisfy r(g1) = r(g2) = x, then g−1
1 · g2 ∈ L−1

t Lt =
L1 = G; the left invariance of (λxG) with respect to G implies that

λ
s(g)
G (g−1 ·A) does not depend on the choice of g. If

∅ ̸= A ⊆ Lxt ∩ Lxu,

then we may pick the same element g ∈ A to define the measure of A
as a subset of Lxt and of Lxu. Thus, the definitions of λxL on the sets Lxt
for t ∈ S are compatible. Furthermore, there is a unique measure λxL
on Lx with λxL(A) = λ

s(g)
G (g−1 ·A) whenever A ⊆ Lxt is measurable and

g ∈ Lt satisfies r(g) = x. If l ∈ L has s(l) = x, then l∗(λ
x) is a measure

on Lr(l) with the same properties that characterize λr(l) uniquely; so
we obtain the left invariance of our family of measures:

l∗(λ
s(l)) = λr(l) for all l ∈ L.
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Checking continuity by hand is unpleasant, so we use a different
description of the same Haar system for this purpose. Recall that Lt
is an equivalence between restrictions of G to open invariant subsets of
G0. The proof that equivalent groupoids have Morita-Rieffel equivalent
groupoid C∗-algebras uses a family of measures on the equivalence
bibundle in order to define the right inner product; this measure on Lt
is exactly the one described above (see the proof of [31, Corollary 5.4]),
and its continuity is known, even in the non-Hausdorff case. Thus, our
family of measures restricts to a continuous family on each Lt. Since
the map

⊕
S(Lt)→ S(L) in Proposition B.2 is surjective, the family

of measures (λxL) is continuous. �

5.2. Construction of the Fell bundle. We now know that L has
a Haar system. So we get a ∗-algebra structure on S(L) as in [31,
25]. Since the Haar measure on L extends the one on G, the map
S(G) → S(L) induced by the open embedding G → L is a ∗-algebra
isomorphism onto its image. The groupoid C∗-algebras of L and G are
completions of S(L) and S(G) for suitable C∗-norms.

Lemma 5.2. The involution on S(L) maps S(Lt) onto S(L−1
t ) =

S(Lt∗). The convolution product maps S(Lt)×S(Lu) to S(Ltu).

Proof. The claim for the involution is trivial. The claim for the
convolution product follows, of course, from Lt ·Lu ⊆ Ltu but requires
some care in the non-Hausdorff case because the convolution product is
not defined directly, see the proof of [25, Proposition 4.4]. If f1 ∈ S(U)
and f2 ∈ S(V ) for Hausdorff open subsets U ⊆ Lt and V ⊆ Lu, and
if U · V is also Hausdorff, then we directly obtain f1 ∗ f2 ∈ S(U · V )
with U ·V ⊆ Ltu. If U ·V is non-Hausdorff, a partition of unity is used
to write f1 and f2 as finite sums of functions on smaller Hausdorff
open subsets U ′ ⊆ U , V ′ ⊆ V for which U ′ · V ′ is Hausdorff. Since
U ′ · V ′ ⊆ U · V ⊆ Ltu, we get S(Lt) ∗S(Lu) ⊆ S(Ltu) as desired. �

Lemma 5.2 gives S(G)∗S(Lt) ⊆ S(Lt) and S(Lt)∗S(G) ⊆ S(Lt),
so S(Lt) is a S(G)-bimodule; it also implies f∗1 ∗ f2 ∈ S(G) and
f1 ∗ f∗2 ∈ S(G) for all f1, f2 ∈ S(Lt), which gives S(G)-valued left
and right inner products on S(Lt). We also have f1 ∗ f2 ∈ S(Ltu)
for f1 ∈ S(Lt) and f2 ∈ S(Lu), and these multiplication maps are
associative and “isometric” with respect to the S(G)-valued inner
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products. We put “isometric” in quotation marks because we have
not yet talked about norms.

Lemma 5.3. f∗ ∗ f ∈ S(G) is positive in C∗(G) for each t ∈ S,
f ∈ S(Lt), and the closed linear span of f∗1 ∗ f2 for f1, f2 ∈ S(Lt) is
dense in C∗(Gr(Lt)).

Proof. We have already used in the proof of Proposition 5.1 that
the Haar measure on L restricts to the usual family of measures on
the partial equivalence space Lt. In that context, the positivity of such
inner products is already proved in [31, 25] in order to show that
S(Lt) may be completed to a Hilbert C∗(G)-bimodule. The proof that
an equivalence induces a Morita-Rieffel equivalence also shows that the
inner product defined above is full, that is, the closed linear span of
f∗1 ∗ f2 for f1, f2 ∈ S(Lt) is dense in C∗(Gr(Lt)). �

Hence, we may complete S(Lt) to a Hilbert bimodule C∗(Lt) over
C∗(G). The densely defined convolution map S(Lt)×S(Lu)→ S(Ltu)
extends to a Hilbert bimodule map

µt,u : C
∗(Lt)⊗C∗(G) C

∗(Lu) −→ C∗(Ltu)

because it is isometric for the S(G)-valued inner products. Since
C∗(Lt) is full as a Hilbert bimodule over C∗(Gr(Lt)) and C∗(Gs(Lt)), it
follows that the maps µt,u above are surjective.

The associativity of the multiplication on the dense subspaces S(Lt)
extends to C∗(Lt). Thus, we have constructed an action of S by Hilbert
bimodules on C∗(G). By Theorem 4.8, this is equivalent to a saturated
Fell bundle C∗(Lt)t∈S over S.

Theorem 5.4. The section C∗-algebra C∗(S,C∗(Lt)t∈S) is naturally
isomorphic to the groupoid C∗-algebra C∗(L).

This theorem looks almost trivial from our construction; but the
proof requires a technical result about S(L) to be proved in Appen-
dix B. Before we turn to that, we first add coefficients in a Fell bundle
over L.

The above construction still works in almost literally the same way
if we replace S(Lt) by S(Lt,B) everywhere, where B is a Fell bundle
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over the groupoid L. Unfortunately, we could not find a reference for
the generalization of Lemma 5.3 to this context. The references on
groupoid crossed products we could find consider either Fell bundles
over Hausdorff groupoids, such as [24], or a more restrictive class of
actions for non-Hausdorff groupoids, such as [31, 25], but not both.
In particular, the positivity of the inner product on S(Lt,B) for a
partial equivalence Lt is only proved in some cases: for arbitrary upper
semicontinuous Fell bundles over Hausdorff groupoids in [24]; for Green
twisted actions of non-Hausdorff groupoids on continuous fields of C∗-
algebras overG0 in [31]; and for untwisted actions by automorphisms of
non-Hausdorff groupoids on C0(G

0)-algebras in [25]. This is probably
only a technical issue that will be eventually resolved but not in this
paper. So we add an assumption about it in our next theorem.

Theorem 5.5. Let B be a Fell bundle over L. Assume that f∗ ∗ f ∈
S(G,B) is positive in C∗(G,B) for all f ∈ S(Lt,B), t ∈ S, and
that the linear span of these inner products is dense in C∗(Gs(Lt),B).
Then there is a Fell bundle C∗(Lt,B)t∈S over S that has the section
C∗-algebra of the restriction C∗(G,B|G) as unit fiber. The section C∗-
algebra C∗(S,C∗(Lt,B)t∈S) is naturally isomorphic to the section C∗-
algebra of the groupoid Fell bundle C∗(L,B).

Theorem 5.4 is a special case of Theorem 5.5 for the constant Fell
bundle C. It remains to prove Theorem 5.5. This will be done in
Appendix B.1, after some preliminary results about Banach bundles in
Appendix B.

Corollary 5.6. Let L be an étale topological groupoid with Hausdorff
locally compact object space and with a Haar system. Let S be a wide
inverse subsemigroup of Bis(L), that is,∪

t∈S
t = L

and ∪
t∈S,t⊆t1∩t2

= t1 ∩ t2



110 ALCIDES BUSS AND RALF MEYER

for all t1, t2 ∈ S. Then, the groupoid C∗-algebra of L is isomorphic to
the crossed product C0(L

0)o S.

More generally, if B is a Fell bundle over L, then the section
C∗-algebra C∗(L,B) is isomorphic to the section C∗-algebra of the
associated Fell bundle over S.

Proof. The assumptions on S ensure that L is an S-graded groupoid
by Lt := t with unit fiber G = L0. So, Theorem 5.4 gives the first
assertion, and Theorem 5.5 gives the second. In this case, positivity
is not an issue because we are dealing with a space G, so positivity
in C∗(G,B) is equivalent to pointwise positivity in all x ∈ L0 = G0.
The value (f∗ ∗ f)(x) for f ∈ S(Lt,B) is either zero or f(l)∗f(l) for
the unique l ∈ Lt with s(l) = x. This is assumed to be positive in the
definition of a Fell bundle over a groupoid. �

The isomorphism C∗(L) ∼= C0(L
0)oS has already been proved [12,

Theorem 9.8] (if L0 is second countable and S is countable). The more
general result for (separable) Fell bundles over (second countable) étale
groupoids is proved in [4, Theorem 2.13].

Another special case worth mentioning is group extensions. Let
G� H�S be an extension of locally compact groups with discrete S.
This gives an action of S, viewed as an inverse semigroup, on G by
Theorem 3.15. We obtain a Fell bundle over S with unit fiber C∗(G)
and section C∗-algebra C∗(H). More generally, we get a similar result
for a Fell bundle over H, compare with [5, Example 3.9]. Our Fell
bundle also comes from a Green twisted action of (H,G), and, in this
formulation, our theorem is well known in this case, see [14, 7].

Corollary 5.7. In the situation of Theorem 5.5, the canonical map
from C∗(G,B) to C∗(L,B) is injective.

Proof. The unit fiber of the Fell bundle in Theorem 5.5 is C∗(G,B),
and the section C∗-algebra is C∗(L,B). The unit fiber always embeds
into the section C∗-algebras of a Fell bundle over an inverse semigroup,
see [13, Corollary 8.10]. �

Next, we note a useful variant of Theorem 5.4 for group-valued
cocycles.
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Let L be a locally quasi-compact, locally Hausdorff groupoid, let S
be a group and let c : L → S be a 1-cocycle. Let Lt := c−1(t) ⊆ L for
t ∈ S, and let G = L1 = c−1(1). Since we do not assume anything
about c, this need not be an S-grading, compare Theorem 3.15.
Nevertheless, we may completeS(Lt) to a Hilbert bimodule over C∗(G)
and thus obtain a Fell bundle over S. The difference to the situation
above is that this Fell bundle need not be saturated.

Theorem 5.8. The section C∗-algebra of the Fell bundle over S with
unit fiber C∗(G) just described is isomorphic to C∗(L). Hence, the
canonical map C∗(G)→ C∗(L) is faithful.

Proof. The proofs of Theorem 5.4 and Corollary 5.7 still work for
non-saturated Fell bundles (even over inverse semigroups). Alterna-
tively, we may replace our non-saturated Fell bundle over G by a satu-
rated Fell bundle over an inverse semigroup associated to G, just as for
partial actions, see [11]. This does not change the section C∗-algebra,
and afterwards Theorem 5.4 literally applies. �

5.3. Another construction of the Fell bundle. The construction
of the Fell bundle over S in Section 5.2 used the transformation
groupoid. Now, we construct this Fell bundle using the abstract
functorial properties of actions on groupoids and their corresponding
actions on C∗-algebras. Actually, some aspects of this have been used
to prove Lemma 5.3 above.

It is well known that two equivalent groupoids have Morita-Rieffel
equivalent C∗-algebras, see [23], even in the non-Hausdorff case,
see [31]. The proof is constructive: given an equivalence X from H
to G, the space S(X) is completed to a C∗(G)-C∗(H)-imprimitivity
bimodule, using certain natural formulas for a S(G)-S(H)-bimodule
structure and S(G)- and S(H)-valued inner products. An important
ingredient here is that the Haar measures on G and H give canonical
families of measures on the fibers of the range and source maps of X,
which may be used to integrate functions on X.

Even if X is only a partial equivalence, the same formulas still
work and give a Hilbert bimodule C∗(X) from C∗(H) to C∗(G) by
completingS(X). If f : X → X ′ is an isomorphism between two partial
equivalences, then f∗ : S(X) → S(X ′) defined by f∗(h) = h ◦ f−1
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is an isomorphism that preserves all structure, so it extends to an
isomorphism C∗(X)

∼−→C∗(X ′).

Theorem 5.9. The maps G 7→ C∗(G) from groupoids to C∗-algebras,
X 7→ C∗(X) from partial equivalences to Hilbert bimodules, and f 7→ f∗
from bibundle isomorphisms to Hilbert bimodule isomorphisms are part
of a functor from the bicategory of partial groupoid equivalences to the
bicategory of C∗-algebras and Hilbert bimodules.

Proof. The above map is strictly compatible with unit arrows: the
unit arrow G1 on G is sent to C∗(G1) = C∗(G), and the unit trans-
formations in both bicategories are also preserved. To complete the
above data to a functor of bicategories, it remains to give natural iso-
morphisms C∗(X) ⊗C∗(H) C

∗(Y ) ∼= C∗(X ×H Y ) and check that they
satisfy the expected associativity condition for three composable par-
tial equivalences. They are constructed by writing the “convolution
map” S(X)⊙S(Y )→ S(X ×H Y ), given by the formula

(5.1) (ξ · η)(x, y) :=
∫
H1

ξ(x · h)η(h−1 · y) dλu(h),

for all ξ ∈ S(X), η ∈ S(Y ) and (x, y) ∈ X ×H Y , where u = s(x) =
r(y). It is routine to check that the map (5.1) has dense range and
is a bimodule map and an isometry for both inner products; thus, it
extends to an isomorphism between the completions:

C∗(X)⊗C∗(H) C
∗(Y ) ∼= C∗(X ×H Y ).

One way to construct convolution maps and check their properties
is as in our construction above using the transformation groupoid:
build an appropriate linking groupoid containing all the data. For two
composable equivalences Y and X from K to H and from H to H, this
linking groupoid has object space G0 ⊔ H0 ⊔K0; its arrow space is a
disjoint union of G1, H1, K1, X, Y , X∗, Y ∗, X ×H Y , and Y ∗×H X∗,
the source and range maps are the obvious ones, and the multiplication
is defined using the left and right actions of G, H and K and canonical
maps. This is indeed a topological groupoid, and it inherits a canonical
Haar system if G, H and K have Haar systems. The convolution map
is the restriction of the convolution in this larger groupoid to X ×H Y .
Given three composable partial equivalences, there is a similar linking
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groupoid combining all the relevant data, and the associativity of its
convolution product on X×H Y ×K Z gives the associativity coherence
of the isomorphisms C∗(X)⊗C∗(H) C

∗(Y ) ∼= C∗(X ×H Y ). �

Remark 5.10. Theorem 5.9 is extended in the thesis of Holkar [15],
where a similar functor from a bicategory of groupoid correspondences
to the bicategory of C∗-correspondences is constructed. This construc-
tion is more difficult because the family of measures needed to write
the right inner product is no longer canonical and becomes part of the
data. Hence, the behavior of the measures under composition must be
studied as well.

An inverse semigroup action by partial equivalences may be defined
as a functor (of bicategories) from the inverse semigroup to the bicat-
egory of groupoids and partial equivalences. Composing it with the
functor in Theorem 5.9 gives a functor from the inverse semigroup to
the bicategory of Hilbert bimodules, which is the same as an action by
Hilbert bimodules. This is also the same as a saturated Fell bundle over
the inverse semigroup by Theorem 4.8 and is the second construction
of the Fell bundle over S. It gives an isomorphic Fell bundle because
the Haar measure on L used above is the same as the combination of
the measure families on the partial equivalences Lt that are used to
define the convolution maps in Theorem 5.9.

More concretely, an action (Xt, µt,u) of S on G yields the action on
C∗(G) given by the Hilbert bimodules C∗(Xt) with the multiplication
maps

C∗(Xt)⊗A C∗(Xu)
∼−→C∗(Xt ×G Xu)

C∗(µt,u)−−−−−→∼=
C∗(Xtu),

which involve the convolution isomorphisms

C∗(Xt)⊗A C∗(Xu)
∼−→C∗(Xt ×G Xu).

This is associative by associativity coherence of these convolution
isomorphisms.

6. Actions of inverse semigroups and groupoids. Let H be an
étale groupoid with locally compact Hausdorff object space. Thus far,
we have constructed actions of the inverse semigroup Bis(H) on certain
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C∗-algebras. Instead, we would like to construct actions of H itself. In
this section, we will see that both kinds of actions are very closely
related. Here, an action of Bis(H) is as above: an action by Hilbert
bimodules or, equivalently, a saturated Fell bundle over Bis(H). The
corresponding “actions” of H are saturated Fell bundles over H.

First, we explain how to turn a Fell bundle over H into one over
Bis(H). So, let B = (Bh)h∈H be a Fell bundle over H, see [4, 17].
Let A := C0(H

0,B) be the C∗-algebra of C0-sections of B over H0;
by construction, this is a C0(H

0)-C∗-algebra. If t ∈ Bis(H), then the
Fell bundle operations turn Ht := C0(t,B) into a Hilbert C0(r(t),B)-
C0(s(t),B)-bimodule. The multiplication in the Fell bundle induces
multiplication maps µt,u : Ht ⊗A Hu → Htu. This gives an action of
Bis(H) on A by Hilbert bimodules.

Not every action of Bis(H) by Hilbert bimodules is of this form.
The obstruction lies in how idempotents in Bis(H) act. Idempotents in
Bis(H) are the same as open subsets of H0. We identify the idempotent
semilattice E(Bis(H)) with the complete lattice O(H0) of open subsets
of H0. Thus, the action of idempotents in Bis(H) becomes a map from
O(H0) to the complete lattice I(A) of ideals in A.

Theorem 6.1. An action (Ht, µt,u)t∈Bis(H) of the inverse semigroup
Bis(H) on a C∗-algebra A by Hilbert A-bimodules comes from a Fell
bundle over H if and only if the map from E(Bis(H)) ∼= O(H0) to
I(A) commutes with suprema. This Fell bundle over H is unique up to
isomorphism, and the Fell bundles over Bis(H) and H have the same
section C∗-algebras.

Proof. A map O(H0) → I(A) comes from a continuous map
Prim(A)→ H0 if and only if it commutes with finite infima and arbi-
trary suprema by [20, Lemma 2.25]; here, we need H0 to be a sober
space, a very mild condition that certainly allows all locally Hausdorff
spaces. Compatibility with finite infima says that it is a morphism of
semilattices, which we assume anyway; compatibility with suprema is
an extra condition. A continuous map Prim(A) → H0 is equivalent
to an isomorphism between A and the C∗-algebra of C0-sections of an
upper semicontinuous field (Ax)x∈H0 of C∗-algebras over H0, see [26].
Thus, the criterion in Theorem 6.1 is necessary and sufficient for A to
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come from such an upper semicontinuous field. This gives a Fell bundle
over H0 ⊆ H. It remains to extend this to all of H.

Let t ∈ Bis(H). Then Ht is a Hilbert A-bimodule. For h ∈ t ⊆ H1,
we defineHh,t := Ht⊗AAs(h); this is a Hilbert As(h)-module. If ξ ∈ Ht,
then ∥ξ∥2 = ∥⟨ξ, ξ⟩∥, and, for ⟨ξ, ξ⟩ ∈ A, the norm is the supremum of
the norms of its images in Ax for all x ∈ H0. Therefore, the canonical
map from Ht to

∏
h∈tHh,t is isometric. Thus, we view Ht as a space of

sections of the bundle of Banach spaces Hh,t over t. This is an upper
semicontinuous bundle on t because (Ax)x∈H0 is, and the norm on Ht
is given by ∥ξ∥2 = ∥⟨ξ, ξ⟩∥ with ⟨ξ, ξ⟩ ∈ A.

If t, u ∈ Bis(H) and h ∈ t∩u, then bothHh,t andHh,u are candidates
for the fiber Hh of our Fell bundle at h. These are isomorphic
through the canonical isomorphisms jt,t∩u : Ht∩u → Ht|s(t∩u) and
ju,t∩u : Ht∩u → Hu|s(t∩u) from Theorem 4.8.

For each h ∈ H1, choose some th ∈ Bis(H) with h ∈ th, and define
Hh := Hh,th . If t ∈ Bis(H), then there are canonical isomorphisms
Hh ∼= Hh,t for all h ∈ t. We use them to transport the topology
on the bundle (Hh,t)h∈t to the bundle (Hh)h∈t. These topologies are
compatible on t ∩ u for all t, u ∈ Bis(H). Since the subsets t ∈ Bis(H)
form an open cover of H1, there is a topology on the whole bundle
(Hh)h∈H1 that coincides with the topology on (Hh)h∈t described above
for each t ∈ Bis(H), in particular, the space of C0-sections of (Hh)h∈H1

on t coincides naturally with Ht.
Let A(U) for U ∈ O(G) be the ideal of C0-sections of (Ax) vanishing

outside U . Then A(U) = HU if we view U ∈ E(Bis(G)). We have

(6.1) Ht ⊗A A(U) = Ht·U = Ht(U)·t = A(t(U))⊗A Ht

for all t ∈ Bis(H), U ∈ O(H0) with U ⊆ s(t). Here, we view each
t ∈ Bis(H) as a partial homeomorphism s(t)→ r(t) and write t(U) for
the image of U under this map. This is exactly how Bis(H) acts on H0.
Equation (6.1) implies that Hh,t ∼= Ar(h)⊗AHt. Thus, Hh is a Hilbert
Ar(h)-As(h)-bimodule. The isomorphism Ht ⊗A Hu → Htu is A-linear,

and hence, C0(H
0)-linear. Thus, it restricts to an isomorphism on the

fibers,

Hg,t ⊗A Hh,u −→ Hgh,tu
for all g ∈ t, h ∈ u with s(g) = r(h).



116 ALCIDES BUSS AND RALF MEYER

The compatibility of the multiplication with the inclusion maps from
Theorem 4.8 shows that these maps on the fibers do not depend on the
choice of t and u with h ∈ t and h ∈ u. Thus, we obtain well-defined
isomorphisms

Hg ⊗As(g)
Hh → Hgh

for all g, h ∈ H1 with s(g) = r(h).

Since they can be put together to maps Ht ⊗AHu → Htu for all t, u ∈
Bis(H), and since Bis(H) covers H1, they are locally continuous, hence
continuous. Similarly, the isomorphisms H∗

t
∼= Ht∗ must come from

well-defined, continuous maps H∗
h → Hh−1 for h ∈ H1 by restricting

them to fibers. The remaining algebraic conditions needed for a Fell
bundle over the groupoid H1 all follow easily because (Ht, µt,u) gives
a Fell bundle over Bis(H).

If we turn the Fell bundle overH constructed above into a Fell bundle
over Bis(H) again, we clearly get back the original Fell bundle over
Bis(H) because Ht is the space of C0-sections of (Hh)h∈t. Conversely,
if we start with a Fell bundle over H, turn it into a Fell bundle over
Bis(H), and then use the above construction to go back, we get an
isomorphic Fell bundle over H. Hence, we obtain a bijection between
isomorphism classes of the two types of Fell bundles. Theorem 5.5
shows that the passage from Fell bundles over H to Fell bundles over
Bis(H) does not change the section C∗-algebras. �

We assumed G0 to be Hausdorff and locally compact so far because
Fell bundles over groupoids have not yet been defined in greater
generality. We suggest using the necessary and sufficient criterion in
Theorem 6.1 as a definition:

Definition 6.2. Let G be an étale topological groupoid for which G0

(and hence G1) is sober. An action of G on a C∗-algebra A is an
action of Bis(G) by Hilbert bimodules for which the resulting map
O(G0)→ I(A) commutes with arbitrary suprema.

Sobriety of G0 is needed to turn a map O(G0) → I(A) that com-
mutes with suprema into a continuous map Prim(A) → G0, see [20,
Lemma 2.25].
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Let G be a sober space G0 viewed as a groupoid. Then, an action
of G is the same as a continuous map Prim(A)→ G0. In the notation
of [20], this turns A into a C∗-algebra over G0. It is unclear what
the “fibers” of such a C∗-algebra over G0 should be if G0 is badly
non-Hausdorff. Therefore, it is not clear how to describe actions of
étale sober groupoids in the sense of Definition 6.2 as Fell bundles
over G. If G0 is locally Hausdorff and locally quasi-compact, then
Definition 6.2 seems to work quite well; we plan to discuss this in
greater detail elsewhere.

The criterion in Theorem 6.1 also suggests how to define actions of
étale groupoids on other groupoids:

Definition 6.3. Let G be an étale topological groupoid for which G0,
and hence G1, is sober, and let H be an arbitrary topological groupoid.
An action of G onH is an action of Bis(G) onH by partial equivalences
for which the map O(G0) → O(H0/H) that describes the action of
E(Bis(G)) commutes with arbitrary suprema.

The extra assumption in Definition 6.3 and [20, Lemma 2.25] ensure
that the map O(G0) → O(H0/H) for an action of G on H comes
from a continuous map H0/H → G0 or, equivalently, an H-invariant
continuous map H0 → G0.

Proposition 6.4. Let H be a locally quasi-compact, locally Hausdorff
groupoid with Hausdorff object space and with a Haar system. An
action of G on H induces an action of G on C∗(H) as well.

Proof. In subsection 5.2, we turn an action of Bis(G) on H into an
action of Bis(G) on C∗(H). For any open H-invariant subset U of H0,
the closure of S(HU ) in C∗(H) is an ideal C∗(HU ) in C∗(H). The map

O(H0/H) −→ I(C∗(H)), U 7−→ C∗(HU ),

commutes with suprema. Hence, Theorem 6.1 applies to the action
of Bis(G) on C∗(H) if the action of Bis(G) satisfies the condition in
Definition 6.3. �

6.1. The motivating example. Now we consider our motivating
example: an action of a locally Hausdorff, locally quasi-compact, étale
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groupoid H on a locally Hausdorff, locally quasi-compact space Z. Let
U be a Hausdorff open covering of Z, and let GU be the associated
covering groupoid, which is étale, locally compact and Hausdorff. Its
C∗-algebra C∗(GU) is our noncommutative model for the non-Hausdorff
space Z. We want to construct an “action” of H on it that models the
given action of H on Z.

To construct it, we use the inverse semigroup S := Bis(H) of
bisections of H. First, we turn the action of H on Z into an action of
S on Z by partial homeomorphisms in the usual way: a bisection t ∈ S
acts by the homeomorphism

r−1(s(t)) −→ r−1(r(t)), z 7−→ gr(z) · z,

where gx is the unique arrow in t with s(gx) = x.

We have seen in Corollary 3.21 that the S-action on Z induces an
S-action on GU by partial equivalences. The transformation groupoid
GU o S for this action is Hausdorff, étale and locally compact. It is
equivalent to Z o S by Corollary 3.21.

Let
p : X :=

⊔
U∈U

U → Z

be the canonical map. Then GU = p∗(Z). An idempotent U ∈ O(H0)
in Bis(H) acts on GU by the identity map on the open invariant
subgroupoid GU|(r◦p)−1(U), that is, O(H0) acts on GU through the map

O(H0) −→ O(G0
U/GU), U 7−→ (r ◦ p)−1(U);

this commutes with suprema and infima. Thus, our action of Bis(H)
on GU is also an action of H in the sense of Definition 6.3.

We may identify Z o S ∼= Z o H using the obvious S-grading on
Z oH and Theorem 3.14, so GU o S is equivalent to Z oH.

The S-action on GU induces a Fell bundle over S with unit fiber
C∗(GU), which we view as an action of S on C∗(GU). Theorem 5.4
gives an isomorphism between its section C∗-algebra C∗(GU) o S and
the groupoid C∗-algebra C∗(GU o S). We may turn our Fell bundle
over Bis(H) into a Fell bundle over the groupoid H by Proposition 6.4.

Theorem 6.1 also says that the section C∗-algebra of the Fell bundle
over H is isomorphic to C∗(GU) o S ∼= C∗(GU o S). The restriction
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to the unit fiber is C∗(GU), by construction. We will describe this Fell
bundle over H.

We have GUoS ∼= p∗(ZoH), that is, the object space of GUoS isX,
and the arrow space is homeomorphic to the space of triples (x1, h, x2),
x1, x2 ∈ X, h ∈ H1 with r(p(x1)) = r(h) and r(p(x2)) = s(h) in
H0. Here, (x1, h, x2) is an arrow from x2 to x1, and the multiplication
is (x1, h1, x2) · (x2, h2, x3) = (x1, h1h2, x3). For h ∈ H1, let Kh be
the subspace of triples (x1, h, x2) for x1, x2 ∈ X, r(p(x1)) = r(h) and
r(p(x2)) = s(h). Since p and H are étale, this is a discrete set. The
fiber at h of our Fell bundle over H is the completion of the space
Cc(Kh) of finitely supported functions on Kh to a Hilbert bimodule
over C∗(K1r(h)

) and C∗(K1s(h)
).

Proposition 6.5. Let Z be a basic action of H with Hausdorff quotient
space H\Z, for instance, Z = H1 with the action by left or right
multiplication and quotient space H0. Then, the groupoid GU o S is
equivalent to H\Z and C∗(GU)o S is Morita equivalent to C0(H\Z).

Proof. The groupoid GUoS is equivalent to ZoS. This is the same
as ZoH by Theorem 3.14, using the evident S-grading on ZoH. Since
the H-action on Z is basic, Z oH is equivalent to H\Z. This space is
assumed to be Hausdorff, and GUoS is also a groupoid with Hausdorff
object space. Therefore, the equivalence between them is of the usual
type, involving free and proper actions, by Proposition A.7. Hence, it
induces a Morita-Rieffel equivalence from C0(H\Z) to C∗(GU)oS. �

In the situation of Proposition 6.5, GU o S has Hausdorff arrow
space because it must be isomorphic to the covering groupoid of the
open surjection G0

U → (GU o S)\G0
U
∼= H\Z between two Hausdorff

spaces. In this case, it is also easy to see that any Fell bundle over the
groupoid GUoS is a pull-back of a Fell bundle over H\Z, which is the
same as a C0(H\Z)-C∗-algebra B. The section C∗-algebra of the Fell
bundle over GU o S is Morita-Rieffel equivalent to this C0(H\Z)-C∗-
algebra B. By Theorem 5.5, this is also the section C∗-algebra of the
Fell bundle over S associated to B.

Many properties such as properness, amenability and essential prin-
cipality are shared by an action of a groupoid on a space and its trans-
formation groupoid. This suggests how to extend these notions to in-
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verse semigroup actions on groupoids. We take this as a definition for
proper actions of inverse semigroups on locally compact groupoids:

Definition 6.6. An action of an inverse semigroup S on a topological
groupoid G is proper if the groupoid G o S is proper, that is, the
following map is proper (that is, stably closed):

(s, r) : (Go S)1 −→ G0 ×G0, g 7−→ (s(g), r(g)).

The action is called free if this map is injective.

Let L be a proper groupoid such that L0 is a locally compact
Hausdorff space. Then, the image of L1 in L0 × L0 is locally compact
and Hausdorff because it is a closed subspace of a locally compact
Hausdorff space. Since this subspace is closed and the orbit space
projection L0 → L\L0 is open, it also follows that L\L0 is locally
compact Hausdorff (see Proposition A.3). The groupoid L itself need
not be Hausdorff: the non-Hausdorff group bundle in Section 8 is proper
in this sense because it is quasi-compact and the image of (s, r) is closed.
If L acts freely and properly on a Hausdorff space L0, however, then
L1 must be Hausdorff. In this case, we also obtain information about
any open subgroupoid, which leads to the next proposition.

Proposition 6.7. Let S act properly and freely on a locally Hausdorff,
locally quasi-compact groupoid G. Then G is a basic groupoid, so that
G is equivalent to the locally Hausdorff, locally quasi-compact space
G\G0.

Proof. The map in Definition 6.6 is a homeomorphism onto its image
because it is continuous, injective and closed. Hence, its restriction to
the open subspace G1 ⊆ (G o S)1 is still a homeomorphism onto its
image. This means that G is a basic groupoid, so G is equivalent
to G0/G. This is locally Hausdorff and locally quasi-compact by
Proposition A.14. �

Thus, the free and proper actions of S all come from actions on
locally Hausdorff spaces that are desingularized by replacing the space
by a Hausdorff groupoid G.
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6.2. Inverse semigroup models for étale groupoids. Let G be
an étale groupoid. Thus far, we have described actions of G through
actions of the inverse semigroup Bis(G). Since Bis(G) is usually quite
big, even uncountable, we now replace it by smaller inverse semigroups.
The next definition describes which inverse semigroups we allow as
“models” for G:

Definition 6.8. An inverse semigroup model for an étale groupoid G
consists of an inverse semigroup S, an S-action on the space G0 by
partial homeomorphisms, and an isomorphism G0 o S ∼= G of étale
groupoids that is the identity on objects.

In particular, if S ⊆ Bis(G) is a wide inverse subsemigroup, then S
with its usual action on G0 and the canonical isomorphism G0oS ∼= G
from Corollary 3.19 is a model for G.

Lemma 6.9. An inverse semigroup model for G is equivalent to an
inverse semigroup S with a homomorphism φ : S → Bis(G) that induces
an isomorphism G0oS → G0oBis(G) ∼= G, where we use the canonical
action of Bis(G) on G0 and φ to let S act on G0.

Proof. Let S act on G0. There is a canonical homomorphism
S → Bis(G0oS), see [12]. Combined with an isomorphism G0oS ∼= G,
we obtain a homomorphism φ : S → Bis(G). Conversely, such a
homomorphism induces an action of S on G0 and then a continuous
groupoid homomorphism G0 o S → G0 o Bis(G) ∼= G. Routine
computations show that these two constructions are inverse to each
other. �

The following lemma characterizes inverse semigroup models more

concretely when we take Ŝ = Bis(G).

Lemma 6.10. Let S and Ŝ be inverse semigroups, let φ : S → Ŝ be a

homomorphism, and let Ŝ act on Z by partial homeomorphisms. The

induced groupoid homomorphism φ̃ : ZoS → Zo Ŝ is an isomorphism
if and only if
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(1) for all t1, t2 ∈ S and every z ∈ Z with z ∈ Dt∗1t1
∩Dt∗2t2

and every

f ∈ E(Ŝ) with z ∈ Df and φ(t1)f = φ(t2)f , there is e ∈ E(S) with
z ∈ De and t1e = t2e;

(2) for every u ∈ Ŝ and every z ∈ Z with z ∈ Du∗u, there is t ∈ S with

z ∈ Dt∗t and there is f ∈ E(Ŝ) with z ∈ Df and uf = φ(t)f .

In this case, we call φ a Z-isomorphism.

Proof. The groupoid homomorphism φ̃ is the identity on objects and
always continuous and open on arrows, so the only issue is whether φ̃
is bijective on arrows. It is routine to check that (1) is equivalent to
injectivity and (2) to surjectivity of φ̃. �

Let S and φ : S → Bis(G) be an inverse semigroup model for an étale
topological groupoid G. Which actions of S on groupoids by partial
equivalences or on C∗-algebras by Hilbert bimodules come from actions
of G?

First, we consider a trivial special case to see why we need more data.
Let G be merely a topological space, viewed as a groupoid. In this case,
the trivial inverse semigroup {1} is an inverse semigroup model. An
action of S contains no information. An action of G on a topological
groupoid H or a C∗-algebra is simply a continuous map

ψ : H0/H −→ G0

or

ψ : Prim(A) −→ G0,

respectively.

Theorem 6.11. Let G be a sober étale topological groupoid, and
let S and φ : S → Bis(G) be an inverse semigroup model for G.
Let H be a topological groupoid. An action of G on H by partial
equivalences is equivalent to a pair consisting of an action of S on
H by partial equivalences and an S-equivariant map ψ : H0/H → G0.
The transformation groupoid for an action of G (that is, Bis(G)) and
its restriction to S are the same.
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The S-equivariance of ψ refers to the actions of S on H0/H and G0

by partial homeomorphisms induced by the action on H and by φ.

Proof. First, let G act on H; more precisely, Bis(G) acts on H and
the resulting map

O(G0) = E(Bis(G)) −→ O(H0/H)

commutes with suprema, see Definition 6.3. It comes from a continuous
map ψ : H0/H → G0, as shown in [20, Lemma 2.25]. This map is
Bis(G)-equivariant, and hence, S-equivariant.

Now, let S act on H, and let ψ : H0/H → G0 be an S-equivariant
map. Let L := H o S with its canonical S-grading (Lt)t∈S . We claim
that there is a unique Bis(G)-grading (Lt)t∈Bis(G) on L with Lφ(t) = Lt
for all t ∈ S, and LU = H1

ψ−1(U) for U ∈ O(G0). These two conditions

on the Bis(G)-grading say exactly that it corresponds to the given S-
action and map ψ. Thus, the proof of the claim will finish the proof of
the theorem.

For t ∈ Bis(G) and u ∈ S, we may form t∩φ(u) ∈ Bis(G). We have

t ∩ φ(u) = t · Vt,u = φ(u) · Vt,u
for Vt,u = s(t ∩ φ(u)) ∈ O(G0);

here, we also view Vt,u as an idempotent element of Bis(G). Since S
models G, we have

t =
∪
u∈S

t ∩ φ(u),

and hence,

s(t) =
∪
u∈S

Vt,u.

Any Bis(G)-grading with LV = H1
ψ−1(V ) for all V ∈ O(G0) satisfies

Lt|ψ−1(Vt,u) = Lt · LVt,u = Lt∩φ(u) = Lφ(u)|ψ−1(Vt,u)

for all t ∈ Bis(G), u ∈ S. Since s(t) =
∪
u∈S Vt,u and ψ is S-equivariant,

this shows that there is at most one Bis(G)-grading with the required
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properties, namely,

Lt =
∪
u∈S

Lu|ψ−1(Vt,u).

More explicitly, l ∈ Lt if and only if l ∈ Lu for some u ∈ S for
which t and φ(u) have the same germ at ψ(s(l)). We must prove that
(Lt)t∈Bis(G) is a grading with all desired properties.

First, we check Lφ(u) = Lu for u ∈ S. The inclusion ⊇ is trivial. If

l ∈ Lφ(u), then l ∈ Lu′ for some u′ ∈ S for which φ(u) and φ(u′) have

the same germ at ψ(s(l)) ∈ G0. Hence, there is an idempotent element
e ∈ S with ψ(s(l)) ∈ φ(e) and ue = u′e. Since Le = H1

ψ−1(e), we obtain

l ∈ Lu′Le = Lu′e = Lue = LuLe ⊆ Lu. This finishes the proof that
Lφ(u) = Lu for all u ∈ S.

Next, we check LW = H1
ψ−1(W ) for W ∈ O(G0). The inclusion ⊇

holds because VW,1 = W . Conversely, let l ∈ LW . Then, l ∈ Lu for
some u ∈ S for which φ(u) and IdW have the same germ at ψ(s(l)).
Since G0 o S ∼= G, there is an idempotent e ∈ S with ψ(s(l)) ∈ φ(e)
and ue = e. An argument as in the previous paragraph shows that
l ∈ LuLe = Le ⊆ H1. Thus, LW = H1

ψ−1(W ) for all W ∈ O(G0).

If t ∈ Bis(G), u ∈ S, then (φ(u) ∩ t)∗ = φ(u∗) ∩ t∗. Hence,
Vt∗,u∗ = t(Vt,u) = φ(u)(Vt,u). This implies Lt∗ = L−1

t for all
t ∈ Bis(G).

Let t1, t2 ∈ Bis(G). We claim that Lt1 · Lt1 = Lt1t2 . The inclusion
⊆ follows because

(φ(u1) ∩ t1) · (φ(u2) ∩ t2) ⊆ φ(u1u2) ∩ t1t2.

For the converse inclusion, take l ∈ Lt1t2 . Then t ∈ Lu for some u ∈ S
for which t1t2 and φ(u) have the same germ at ψ(s(l)). Factor this germ
as g1g2 with gj ∈ tj for j = 1, 2. There are uj ∈ S with gj ∈ φ(uj) for
j = 1, 2 because G ∼= G0 o S. Thus, φ(u1)φ(u2) = φ(u1u2) and t1t2
have the same germ g1g2 at ψ(s(l)). Then u1u2 and u also have the
same germ there, and an argument as above shows that l ∈ Lu1u2 as
well. Using (Gr1) for the S-grading, we obtain lj ∈ Luj for j = 1, 2 with
l = l1l2. Then, s(l2) = s(l) and r(l1) = r(l). This allows us to prove
l2 ∈ Lt2 and l−1

1 ∈ Lt∗1 , so that l1 ∈ Lt1 . Hence, the Bis(G)-grading
satisfies (Gr1).
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It is clear that Lt1 ⊆ Lt2 if t1 ≤ t2 in Bis(G), so

Lt1 ∩ Lt2 ⊇
∪

v≤t1,t2

Lv = Lt1∩t2

for all t1, t2 ∈ Bis(G).

For the converse inclusion, take l ∈ Lt1∩Lt2 . Then, there are u1, u2 ∈ S
with l ∈ Lu1 ∩ Lu2 , such that tj and φ(uj) have the same germ at
ψ(s(l)) for j = 1, 2. Condition (Gr3) for the S-grading gives v ∈ S
with v ≤ u1, u2 and l ∈ Lv. Since ψ is S-equivariant, ψ(s(l)) belongs
to the domain of φ(v), so the germs of φ(v) and φ(ui) at ψ(s(l)) are
equal. Then, the germs of t1 and t2 at ψ(s(l)) are equal as well, that
is, t1 ∩ t2 is defined at ψ(s(l)) and has the same germ there as φ(v).
This means that l ∈ Lt1∩t2 . This verifies (Gr3) for the Bis(G)-grading.

Since Lφ(u) = Lu for all u ∈ S and∪
u∈S

Lu = L1,

we also obtain ∪
t∈Bis(G)

Lt = L1,

which is (Gr4). �

The next lemma is needed to formulate a similar result for actions
on C∗-algebras:

Lemma 6.12. An action of S on a C∗-algebra A by Hilbert bimodules
induces an action of S on Prim(A) by partial homeomorphisms.

Proof. The Rieffel correspondence, see [29, Corollary 3.33], says
that an imprimitivity bimodule H from B to A induces a homeomor-
phism Prim(B)

∼−→ Prim(A). The corresponding lattice isomorphism

I(B) = O(Prim(B))
∼−→O(Prim(A)) = I(A)

sends an ideal J ⊆ B to the unique ideal I ⊆ A with I · H = H · J . A
Hilbert A,B-bimodule induces a partial homeomorphism Prim(B) →
Prim(A) because it is an imprimitivity bimodule between certain ideals
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in A and B, which correspond to open subsets of the primitive ideal
spaces. Isomorphic Hilbert bimodules induce the same partial home-
omorphism, of course. The partial homeomorphism associated to a
tensor product bimodule H1 ⊗B H2 is the composite of the partial
homeomorphisms associated to H1 and H2. Thus, the map from S to
pHomeo(Prim(A)) induced by an action on A by Hilbert bimodules is
a homomorphism. �

Theorem 6.13. Let G be a sober étale topological groupoid, and let S
and φ : S → Bis(G) be an inverse semigroup model for G. Let A be a
C∗-algebra. An action of G on A by Hilbert bimodules is equivalent to
a pair consisting of an action of S on A by Hilbert bimodules and an
S-equivariant map ψ : Prim(A) → G0. The section C∗-algebras of the
corresponding Fell bundles over Bis(G) and S are the same.

The S-equivariance of ψ refers to the action of S on Prim(A) from
Lemma 6.12.

Proof. Assume first that G0 is locally compact Hausdorff. In this
case, an action of G is the same as a Fell bundle over G by Theorem 6.1.
This determines an action of Bis(G), which we may compose with φ
to obtain an action of S; we also obtain an S-equivariant map ψ.
Conversely, let an action of S and a continuous S-equivariant map
ψ : Prim(A)→ G0 be given. Since G ∼= G0 oS, we may carry over the
proof of Theorem 6.1. The S-equivariance of ψ gives the compatibility
condition (6.1). Hence, literally the same argument still works.

If G0 is only a sober topological space, we need a different proof
because we cannot describe G-actions fiberwise. We first construct the
section C∗-algebra B of the Fell bundle over S corresponding to the
action by Theorem 4.8. This C∗-algebra is S-graded by construction:
it is the Hausdorff completion of the ∗-algebra

⊕
t∈S Ht in the maximal

C∗-seminorm that vanishes on ju,t(ξ)δu − ξδt for all t, u ∈ S with
t ≤ u and all ξ ∈ Ht, and we let Bt ⊆ B be the image of Ht in
B. In particular, we may identify A = B1. Now we must construct
a Bis(G)-grading (Bt)t∈Bis(G) on B with Bφ(t) = Bt for all t ∈ S and

BU = A(U) for all U ∈ O(G0), where A(U) denotes the ideal in A
corresponding to ψ−1(U) ∈ O(Prim(A)). This is done similarly to the
proof of Theorem 6.11. Since this is rather technical and we already
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have another proof in the locally compact Hausdorff case, we leave it
to the determined reader to spell out the details of this argument. �

7. Actions by automorphisms are not enough. The next the-
orem shows that the multiplication action of a non-Hausdorff groupoid
on its own arrow space cannot be described by a continuous groupoid
action by automorphisms.

Theorem 7.1. Let G be a locally quasi-compact, locally Hausdorff,
étale groupoid with Hausdorff G0 such that G1 is not Hausdorff. Let A
be a C∗-algebra with Prim(A) ∼= G1. There is no continuous (twisted )
action of G on A by automorphisms that induces the left multiplication
action on Prim(A) ∼= G1.

Proof. Since Prim(A) ∼= G1, the lattice of ideals in A is order-
isomorphic to the lattice of open subsets in G1. Let A(U) ▹ A for
an open subset U ⊆ G1 be the corresponding ideal in A. Then,

Prim(A(U)) ∼= U.

Part of a continuous action of G on A is a continuous map
Prim(A) → G0, which is equivalent to a C0(G

0)-algebra structure.
Since we want to obtain the left multiplication action of G1 on Prim(A),
we assume that this map becomes the range map G1 → G0 when we
identify Prim(A) ∼= G1. The fiber at x ∈ G0 is the restriction of A
to the closed subset Gx = {g ∈ G1 | r(g) = x}, which is denoted
by A|Gx ; we have Prim(A|Gx) = Gx. A G-action on A must provide
isomorphisms

αg : A|Gs(g) −→ A|Gr(g) for g ∈ G1.

We assume that αg induces the map

Gs(g) −→ Gr(g), h 7−→ gh,

on the primitive ideal space.

What does continuity of g 7→ αg mean? Let U, V ⊆ G1 be bisections.
Then U · V is also a bisection. If g ∈ U , h ∈ V satisfy s(g) = r(h),
then αg restricts to an isomorphism αg,h : A|h → A|gh. Any element of
U · V is of the form g · h for unique g ∈ U , h ∈ V . Continuity of (αg)
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means that, for all bisections U, V and all a = (ah)h∈V in A(V ), the
section

(g · h) 7−→ αg,h(ah) for g ∈ U, h ∈ V

is continuous on U · V , that is, it belongs to A(U · V ), see also [27,
Definition 2.3]. Thus, we obtain isomorphisms

αU : A(V ) −→ A(U · V ).

In brief, Bis(G) acts on A by partial isomorphisms.

Since G1 is non-Hausdorff, there are g1, g2 ∈ G1 that cannot be
separated by open subsets. Then, r(g1) = r(g2) and s(g1) = s(g2).
Let U1 and U2 be bisections of G containing g1 and g2, respectively.
Through shrinking, we may achieve that s(U1) = s(U2). Let

V := U∗
1U1 = {1x | x ∈ s(U1)} = U∗

2U2;

then, U1V = U1 and U2V = U2. Since g1 and g2 cannot be separated,
there is a net (hn) in U1 ∩ U2 that converges both to g1 and to g2.

Let f ∈ A(V ) with f(1s(g1)) ̸= 0. Then

αU1(f) ∈ A(U1V )

and
αU2(f) ∈ A(U2V )

by our continuity assumption. Thus,

ψ := αU1(f) · αU2(f)
∗ ∈ A(U1V ) ∩A(U2V ) = A(U1 ∩ U2),

so ψ vanishes at g1 and g2. At hn ∈ U1 ∩ U2, we have

αU1(f)(hn) = αU1∩U2(f)(hn) = αU2(f)(hn) = αhn(f(1s(hn))).

Since each αhn is an isomorphism, we obtain

∥ψ(hn)∥ = ∥αhn(f(1s(hh))f(1s(hn))
∗)∥ = ∥f(1s(hh))∥

2.

If U ⊆ G1 is Hausdorff and a ∈ A(U), then

U ∋ x 7−→ ∥a∥x

is continuous by [26, Corollary 2.2] because the map

PrimA(U) −→ U
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is open and U is Hausdorff and locally compact. Therefore, ∥ψ(hn)∥
converges towards ∥ψ(g1)∥ = 0. At the same time, ∥ψ(hn)∥ converges
towards ∥f(1s(g1))∥2 ̸= 0 because s(hn) → s(g1) inside the Hausdorff
open subset V . This contradiction shows that there is no continuous
action of G on A that lifts the multiplication action on

Prim(A) ∼= G1. �

Remark 7.2. More generally, if we only assume an open continuous
surjection

p : Prim(A) −→ G1,

then there is no continuous action ofG on A such that p isG-equivariant
for the induced action of G on Prim(A) and the left multiplication
action on G1; the proof is exactly the same.

The proof of Theorem 7.1 does not use the multiplicativity of the
action, so allowing “twisted” actions of G does not help. There are
only two ways around this. First, we may allow Fell bundles over G.
Second, we may allow actions of the inverse semigroup Bis(G). After
stabilization, every Fell bundle becomes a twisted action by partial
automorphisms, see [3]. We cannot remove the twist, however, because
an untwisted action of Bis(G) by automorphisms would give an action
of G by automorphisms as well, which cannot exist by Theorem 7.1.

8. A simple explicit example. Let G be the group bundle over
G0 = [0, 1] with trivial isotropy groups G(x) for x ̸= 0 and with
G(0) ∼= Z/2 = {1,−1}. So, as a set, G is

(0, 1] ∪ {0+, 0−}

with 0+ corresponding to +1 ∈ Z/2 and 0− to −1 ∈ Z/2. The topology
on G is the quotient topology from [0, 1]×Z/2, where we divide by the
equivalence relation generated by

(x, 1) ∼ (x,−1) for x ̸= 0.

With this topology, G is an étale, quasi-compact, second countable,
locally Hausdorff, non-Hausdorff groupoid (even a group bundle). The
points 0+ and 0− cannot be topologically separated: any net in (0, 1]
converging to 0+ also converges to 0− and vice versa.
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Let H be the groupoid of the equivalence relation ∼ on [0, 1]× Z/2
defined above. Its C∗-algebra C∗(H) ∼= C∗

r (H) is

A := {f ∈ C([0, 1],M2) : f(0) is diagonal}.

This can be proved using the same idea as in [8, Example 7.1]. This
is a C∗-algebra over [0, 1] with fibers Ax ∼= M2 at x ̸= 0 and A0

∼= C2,
and it has

Â ∼= Prim(A) ∼= G1,

which is a special case of [8, Corollary 5.4]. Theorem 7.1 shows that
there is no action of G on A by automorphisms that would model the
left multiplication action of G on G1.

Since A is the groupoid C∗-algebra of the Čech groupoid for the
covering

[0+, 1] ∪ [0−, 1] = H1,

our main results give an action of G on A by Hilbert bimodules. We
first describe it as an inverse semigroup action for a very small inverse
semigroup S that models G. We consider three special bisections of G:

1 = [0+, 1] = G1 \ {0−},
g = [0−, 1] = G1 \ {0+},
e = (0, 1] = g ∩ 1.

The bisection 1 is the unit bisection of G, so

1x = x = x1 for all x ∈ {1, g, e}.

Moreover, g2 = 1, e2 = e and eg = ge = e. Thus, S := {1, e, g} is an
inverse semigroup with x∗ = x for all x ∈ {1, e, g}. A bisection t of G
cannot contain both 0+ and 0−. Hence, either

0+ ∈ t ⊆ 1, 0− ∈ t ⊆ g,

or
t ⊆ e = 1 ∩ g.

The groupoid G is the étale groupoid associated to the trivial action
of S on G0; here, the trivial action has 1 and g acting by the identity
on G0 and e acting by the identity on (0, 1] ⊆ G0. An action of G on a
groupoid or a C∗-algebra is equivalent to an action of S together with
a compatible action of G0 = [0, 1], see Theorem 6.13.
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The transformation groupoid L of the S-action on H may be identi-
fied with the groupoid of the equivalence relation on [0, 1] ⊔ [0, 1] that
identifies the two copies of (0, 1], so that

L1 = [0, 1]× {(+,+), (+,−), (−,+), (−,−)}
⊆ ([0, 1]× {(+,+), (+,−), (−,+), (−,−)})2.

The S-grading on L has

L1 = (0, 1]× {(+,+), (+,−), (−,+), (−,−)} ⊔ {0} × {(+,+), (−,−)},
Lg = (0, 1]× {(+,+), (+,−), (−,+), (−,−)} ⊔ {0} × {(+,−), (−,+)},
Le = (0, 1]× {(+,+), (+,−), (−,+), (−,−)} = L1 ∩ Lg.

Therefore, L1
∼= H is open but not closed. The C∗-algebra of L is

B := C([0, 1],M2).

To let S act on the C∗-algebra A of H, we use the transformation
groupoid C∗-algebra B and the involution

u :=

(
0 1
1 0

)
∈ B.

We have u = u∗ and u2 = 1, u · A(0, 1] = A(0, 1] = A(0, 1] · u and
uA = Au as subsets of B. Let

A1 := A, Ae := A(0, 1] ⊆ A1,

and

Ag := uA = Au.

These subspaces Ax for x ∈ S satisfy A∗
x = Ax = Ax∗ for all x ∈ S

and Ax · Ay = Axy for all x, y ∈ S; in particular, Ag is a full Hilbert
bimodule over A1 with inner products given by the usual formulas a∗1 ·a2
and a1 · a∗2. Furthermore, A1 ∩ Ag = Ae and A1 + Ag = B because
elements of Ag are precisely those of f ∈ B with off-diagonal f(0).
Hence, the map

g 7−→ Ag

defines an action of S on A by Hilbert bimodules. Since A1 + Ag is
already complete in the C∗-norm of B, there is only one C∗-norm on
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A1+Ag that extends the given C∗-norm on A1. Thus, the sectional C
∗-

algebra for the resulting Fell bundle over S is B, which is Morita-Rieffel
equivalent to C[0, 1].

The S-action on A extends to all bisections of G because they are
all contained in 1 or g. If t ⊆ G1 is a bisection, then let At = A1|s(t)
if t ⊆ 1 and At = Ag|s(t) if t ⊆ g; this is consistent for t ⊆ 1 ∩ g = e
because Ae = A1 ∩Ag.

Next, we describe a twisted S-action by partial automorphisms of A
that induces the S-action by Hilbert bimodules described above. (This
is possible by [3, Corollary 4.16] because our saturated Fell bundle is
regular in the notation of [3].)

A twisted S-action by partial automorphisms is given by ideals
A1 = A and Ae with isomorphisms αx : Axx∗ → Ax∗x and unitary
multipliers (the twists) ω(x, y) in M(Axyy∗x∗) for x, y ∈ S. For the
idempotent elements x = e, 1, the isomorphism αx is the identity; for
x = g, it is the order-2 automorphism

αg : A −→ A, a 7−→ uau,

because a1 · ua2 = u · (ua1u · a2) for all a1 ∈ A1 and ua2 ∈ Ag. The
automorphism αg is not inner on A1 because u ∈ B does not belong to
M(A). The restriction of αg to the ideal Ae becomes inner, however,
because u ∈M(A(0, 1]). This unitary u enters in the twisting unitaries
ω(x, y) for x, y ∈ S; they are 1 if x = 1 or y = 1, or if (x, y) is (e, e) or
(g, g) (α2

g = IdA = α1).

The remaining cases are

ω(e, g) = ω(g, e) = u|Ae
,

that is, u viewed as a multiplier of the ideal Ae = A(0, 1]. It is routine
to check that this data gives a twisted action of S on A in the sense
of [3, Definition 4.1] and that the resulting saturated Fell bundle over
S is isomorphic to that described above. Incidentally, this is not a
twisted action in the sense of Sieben [34] because ω(e, g) and ω(g, e)
are non-trivial although e is idempotent.

This twisted S-action cannot be turned into a groupoid action of
G by partial automorphisms because, for x ∈ 1 ∩ g, the restrictions of
αg and α1 to A|s(x) differ by a non-trivial inner automorphism. This
impossibility is in accord with Theorem 7.1.
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Remark 8.1. The Packer-Raeburn stabilization trick replaces a twisted
group action by an untwisted action on a suitable C∗-stabilization. We
claim that this cannot be done for the above inverse semigroup twisted
action. Let D be a C∗-algebra with an untwisted action of S by auto-
morphisms. Then, 1 and e act by the identity on D and by some ideal
De ▹ D, respectively, and g acts by some automorphism αg on D. If
there is no twist, then

αg|De = α1|De

is the identity on De because eg = e = ge. Suppose that D is also
a C∗-algebra over [0, 1] with D((0, 1]) = De. This then allows us to
define an action of the groupoid G on D by letting elements of g or
1 act by the fiber restrictions of αg and IdD, respectively. This gives
a well-defined, untwisted action of G on D. Theorem 7.1 implies that
Prim(D) ̸∼= G1, so that A and D cannot be Morita-Rieffel equivalent.
This example therefore shows that the Packer-Raeburn stabilization
trick cannot be extended from groups to inverse semigroups or non-
Hausdorff groupoids.

APPENDIX

A. Preliminaries on topological groupoids. This appendix de-
fines topological groupoids and equivalences between them, follow-
ing [21]. All of this works smoothly without assuming topological
spaces to be Hausdorff or locally (quasi)-compact if appropriate defi-
nitions are chosen. The theory of possibly non-Hausdorff topological
groupoids becomes very natural if one treats topological groupoids,
Lie groupoids, infinite-dimensional Lie groupoids (modeled on Banach
or Fréchet manifolds) and other types of groupoids simultaneously as
in [21]. Here, we recall the results and definitions [21] that are relevant
for us.

The theory of topological groupoids and their principal bundles
and equivalences depends on a choice of “covers” in the category of
topological spaces, see [21]. We choose the open surjections as covers.
This means that we require the range and source maps in a topological
groupoid, the bundle projection in a principal bundle and the anchor
maps in a (bibundle) equivalence to be open surjections.



134 ALCIDES BUSS AND RALF MEYER

Following Bourbaki, we require compact and locally compact spaces
to be Hausdorff. Since many authors allow non-Hausdorff locally com-
pact spaces, we usually speak of “Hausdorff locally compact” spaces to
avoid confusion. A topological space is locally quasi-compact if every
point has a neighborhood basis consisting of quasi-compact neighbor-
hoods. Strictly, this is more than having a single quasi-compact neigh-
borhood, but both notions coincide in the locally Hausdorff case, which
is the case in which we are interested. Recall that a topological space
is locally Hausdorff if every point has a Hausdorff neighborhood (and
thus, a neighborhood basis consisting of Hausdorff neighborhoods). A
space is locally Hausdorff, locally quasi-compact if and only if every
point has a compact (hence Hausdorff) neighborhood. It would make
sense to call such spaces “locally compact,” if it were not for the conflict
with other established notation.

A.1. Topological groupoids, principal bundles and equiva-
lences. We now specialize the general definitions of groupoids, groupoid
actions, principal bundles, basic groupoid actions and bibundle equiv-
alences in [21] to the category of (all) topological spaces with open
surjections as covers.

Proposition A.1. A topological groupoid consists of topological spaces
G0 and G1 and continuous maps

r, s : G1 ⇒ G0

and
m : G1 ×s,G0,r G

1 −→ G1, (g1, g2) 7−→ g1 · g2,

such that

(Gr1) s(g1 · g2) = s(g2) and r(g1 · g2) = r(g1) for all g1, g2 ∈ G1;
(Gr2) m is associative:

(g1 · g2) · g3 = g1 · (g2 · g3) for all g1, g2, g3 ∈ G1,

with s(g1) = r(g2), s(g2) = r(g3);
(Gr3) the next two maps are homeomorphisms:

G1 ×s,G0,r G
1 −→ G1 ×s,G0,s G

1, (g1, g2) 7−→ (g1 · g2, g2),
G1 ×s,G0,r G

1 −→ G1 ×r,G0,r G
1, (g1, g2) 7−→ (g1, g1 · g2);
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(Gr4) r and s are open surjections.

Then, m is open and surjective and there are continuous maps

G0 −→ G1 and G1 −→ G1

with the usual properties of unit and inversion. Conversely, the maps
in (Gr3) are homeomorphisms if G has continuous unit and inversion
maps.

Proof. Our definition of a groupoid is exactly as in [21, Defini-
tion 3.4]. It implies that m is open, surjective and equivalent to the
usual groupoid with unit and inverse by [21, Proposition 3.6]. �

Let G be a topological groupoid as above.

Proposition A.2. A (right) G-action is a space X with continuous
maps

s : X −→ G0

and
m : X ×s,G0,r G

1 −→ X, (x, g) 7−→ x · g,

such that

(A1) s(x · g) = s(g) for all x ∈ X, g ∈ G1 with s(x) = r(g);
(A2) m is associative: (x · g1) · g2 = x · (g1 · g2) for all x ∈ X,

g1, g2 ∈ G1 with s(x) = r(g1) and s(g1) = r(g2);
(A3) m is surjective.

Condition (A3) holds if and only if x · 1s(x) = x for all x ∈ X, if
and only if m is an open surjection, if and only if the next map is a
homeomorphism:

X ×s,G0,r G
1 −→ X ×s,G0,s G

1, (x, g) 7−→ (x · g, g).

Proof. This is contained in [21, Definition, Lemma 4.1]. �

Left actions are defined similarly and are equivalent to right actions
by

g · x = x · g−1.
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The transformation groupoidXoG of a groupoid action is a topological
groupoid [21, Definition, Lemma 4.11]. Any groupoid acts on G0 by

r(g) · g := s(g) for all g ∈ G1,

and on G1 both on the left and right by left and right multiplication.

Proposition A.3. For any G-action on a topological space X, the
orbit space projection

X −→ X/G

is an open surjection, and X/G is Hausdorff if and only if

X ×X/G X = {(x1, x2) ∈ X |
there is g ∈ G1with s(x1) = r(g) and x1 · g = x2}

is a closed subset of X ×X.

Proof. The orbit space projection is open [21, Proposition 9.31]
because the range and source maps of G are open. By [21, Proposition
9.18], X/G is Hausdorff if and only if X ×X/G X is closed in X × X
(open surjections are clearly biquotient maps, see the discussion in [21,
subsection 9.6]). �

We now specialize the general concepts of basic actions and principal
bundles from [21] to our context.

Proposition A.4. A right G-action is basic if the map

(A.1) X ×s,G0,r G
1 −→ X ×X, (x, g) 7−→ (x, x · g),

is a homeomorphism onto its image with the subspace topology.

A principal right G-bundle is a space X with continuous maps

s : X −→ G0, p : X −→ Z,

and

m : X ×s,G0,r G
1 −→ X, (x, g) 7−→ x · g,

such that
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(Pr1) s(x · g) = s(g) and p(x · g) = p(x) for all x ∈ X, g ∈ G1 with
s(x) = r(g);

(Pr2) m is associative:

(x · g1) · g2 = x · (g1 · g2) for all x ∈ X,

g1, g2 ∈ G1 with s(x) = r(g1) and s(g1) = r(g2);
(Pr3) the map

X ×s,G0,r G
1 −→ X ×p,Z,p X, (x, g) 7−→ (x, x · g),

is a homeomorphism;
(Pr4) the map p is open and surjective.

Then, x ·1s(x) = x for all x ∈ X, and there is a unique homeomorphism
Z ∼= X/G intertwining p and the canonical projection

X −→ X/G.

Thus, a principal G-bundle is equivalent to a basic G-action with a
homeomorphism X/G ∼= Z.

Proof. A principal bundle in the above sense also satisfies x·1s(x) = x
for all x ∈ X because of (Pr3), see [21, Lemma 5.3]. Hence, m and s
give a right G-action, and all conditions for a principal bundle in [21]
are met. The unique homeomorphism X/G ∼= Z intertwining p and the
canonical map X → X/G are given in [21, Lemma 5.3].

A groupoid action is called basic [21] if it becomes a principal bundle
with

X −→ X/G

as a bundle projection. The canonical map X → X/G is automatically
G-invariant, and it is an open surjection [21, Proposition 9.31]. Thus,
the second half of (Pr1) and (Pr4) hold for any G-action with this
choice of p. The first half of (Pr1) and (Pr2) are part of the definition
of a groupoid action. The image of the map in (A.1) is X ×X/G X
by the definition of X/G, so that (Pr3) is equivalent to (A.1) being a
homeomorphism onto its image. �

Next, we consider the notion of equivalence between groupoids as
defined in [21]. We will relate it to notions of equivalence by other
authors in Appendix A.2.
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Proposition A.5. Let G and H be topological groupoids. A bibundle
equivalence from H to G consists of a topological space X, continuous
maps

r : X −→ G0, s : X −→ H0

(anchor maps),

G1 ×s,G0,r X −→ X and X ×s,H0,r H
1 −→ X

(multiplications), satisfying the following conditions:

(E1) s(g · x) = s(x), r(g · x) = r(g) for all g ∈ G1, x ∈ X with
s(g) = r(x) and s(x · h) = s(h), r(x · h) = r(x) for all x ∈ X,
h ∈ H1 with s(x) = r(h);

(E2) associativity :

g1 · (g2 · x) = (g1 · g2) · x, g2 · (x · h1) = (g2 · x) · h1,

x · (h1 · h2) = (x · h1) · h2

for all g1, g2 ∈ G1, x ∈ X, h1, h2 ∈ H1 with

s(g1) = r(g2), s(g2) = r(x), s(x) = r(h1), s(h1) = r(h2);

(E3) the following two maps are homeomorphisms:

G1 ×s,G0,r X −→ X ×s,H0,s X, (g, x) 7−→ (x, g · x),
X ×s,H0,r H

1 −→ X ×r,G0,r X, (x, h) 7−→ (x, x · h);

(E4) s and r are open;
(E5) s and r are surjective.

Then,
1r(x) · x = x = x · 1s(x) for all x ∈ X,

and the anchor maps descend to homeomorphisms G\X ∼= H0 and
X/H ∼= G0.

Proof. Conditions (E1) and (E3) are equivalent to (Pr1) and (Pr3)
for both the left G-action with p = s and the right H-action with
p = r, respectively. Condition (E2) means that the left G- and right H-
actions satisfy (Pr2) and commute. Conditions (E4) and (E5) together
are equivalent to (Pr4) for both actions. Thus, conditions (E1)–(E5)
characterize bibundle equivalences in the notation of [21]. The last
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sentence follows from the general properties of principal bundles, see
Proposition A.4. �

We abbreviate “bibundle equivalence” to “equivalence” because we
do not use any other equivalences between groupoids.

We have switched the direction of a bibundle equivalence compared
to [21] because this is convenient here. Going from right to left is also
consistent with our notation s and r for the right and left anchor maps.

A.2. Basic actions versus free and proper actions. Now, we
compare our basic actions with free and proper actions. A continuous
map

f : X −→ Y

is closed if it maps closed subsets of X to closed subsets of Y and proper
if

IdZ × f : Z ×X −→ Z × Y

is closed for all topological spaces Z or, equivalently, f is closed and
f−1(y) is quasi-compact for all y ∈ Y , see [2, I.10.2, Theorem 1]. A
map from a Hausdorff space X to a Hausdorff locally compact space Y
is proper if and only if preimages of compact subsets are compact. In
this case, X is necessarily locally compact, see [2, I.10.3, Proposition 7].

Definition A.6. A right action of a topological groupoid G on a
topological space X is proper if the map in (A.1) is proper. The action
is free if the map (A.1) is injective.

Groupoids for which the action on their unit space is free, that is,
for which the map

s× r : G1 −→ G0 ×G0

is injective, are often called principal, see [30]. This terminology
conflicts, however, with the usual notion of a principal bundle, which
requires extra topological conditions besides freeness of the action.

We call a groupoid basic if its canonical action on the object space
is basic, that is, the map s × r : G1 → G0 × G0 is a homeomorphism
onto its image.
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Proposition A.7. A groupoid action is free and proper if and only if
it is basic and has Hausdorff orbit space.

If G and H are topological groupoids with Hausdorff object spaces,
then an equivalence from H to G in our sense is the same as a
topological space X with commuting free and proper actions of G and
H such that the anchor maps induce homeomorphisms G\X ∼= H0 and
X/H ∼= G0.

Proof. The characterization of free and proper actions is [21, Corol-
lary 9.32]; the main point of the proof is that the orbit space is Haus-
dorff if and only if the orbit equivalence relation is closed in X × X,
see Proposition A.3. The left and right actions on an equivalence are
basic with

X/H ∼= G0 and G\X ∼= H0;

hence, they are free and proper if and only if G0 and H0 are Hausdorff,
respectively. Conversely, if the actions of G and H on X are free and
proper, then both actions are basic, and both anchor maps are open
because they are equivalent to orbit space projections. Thus, we have
an equivalence in our sense. �

For a general action of a groupoid G on a space X, the image of the
map (A.1) is the orbit equivalence relation

X ×X/G X ⊆ X ×X.

Thus, the map (A.1) is a homeomorphism (the action is basic) if and
only if the action is free and the map that sends (x1, x2) ∈ X ×X/G X
to the unique g ∈ G1 with s(x1) = r(g) and x1 · g = x2 is continuous.

If G, H and X are locally compact Hausdorff, then an equivalence
in our sense is the same as a (G,H)-equivalence in the notation of [23];
the main result therein is that such an equivalence induces a Morita
equivalence between the groupoid C∗-algebras of G and H (for any
Haar systems).

For non-Hausdorff groupoids, a notion of equivalence was defined by
Tu [36] using a technical variant of proper actions. He calls a groupoid
G ρ-proper with respect to a G-invariant continuous map

ρ : G0 −→ T
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if the map

(r, s) : G1 −→ G0 ×ρ,T,ρ G0, g 7−→ (r(g), s(g)),

is proper. If T is non-Hausdorff, then G0 ×ρ,T,ρ G0 need not be closed
in G0×G0, so this is weaker than properness. In the definition of equiv-
alence, he takes ρ to be the anchor map on the other side and requires
the maps in (E3) to be proper. These maps are continuous bijections
because the actions are free. A continuous, proper bijection, being
closed, must be a homeomorphism. Thus, Tu’s notion of equivalence is
identical to ours.

A.3. Covering groupoids and equivalence.

Definition A.8. Let f : X → Z be a continuous, open surjection. The
covering groupoid G(f) has object space X, arrow space

X ×f,Z,f X,

range and source maps

r(x1, x2) := x1, s(x1, x2) := x2,

and multiplication

(x1, x2) · (x2, x3) := (x1, x3)

for all x1, x2, x3 ∈ X with f(x1) = f(x2) = f(x3).

The assumption on f implies that it is a quotient map, that is,
we may identify Z with the quotient space X/∼ by the following
equivalence relation: x ∼ y if and only if f(x) = f(y); and f becomes
the quotient map X → X/∼. The covering groupoid G(f) is the
groupoid associated to this equivalence relation. In particular, Z can
be identified with the orbit space X/G(f) for the canonical action of
G(f) on its unit space X.

Every covering groupoid is basic, that is, its action on the unit space
is basic. Conversely, if G is a basic groupoid, then it is isomorphic to
a covering groupoid. The map

r × s : G1 −→ G0 ×G0



142 ALCIDES BUSS AND RALF MEYER

gives a homeomorphism from G1 onto G0 ×f,G0/G,f G
0, where

f : G0 −→ G0/G

denotes the quotient map. This yields an isomorphism of topological
groupoids G ∼= G(f).

Example A.9 (Čech groupoids). Let Z be a topological space, and
let U be an open covering of Z. Let

X :=
⊔
U∈U

U,

and let
f : X −→ Z

be the canonical map; f is the inclusion map on each U ∈ U. This map
is an open surjection. It is even étale, that is, a local homeomorphism.
We denote the covering groupoid of f by GU and call it the Čech
groupoid of the covering.

Assume that Z is locally Hausdorff, and choose the open covering U
to consist of Hausdorff open subsets U ⊂ Z. Then the Čech groupoid
GU is a Hausdorff, étale topological groupoid, see also [8, Lemma 4.2].
If, in addition, Z is locally quasi-compact, then GU is a (Hausdorff)
locally compact, étale groupoid. This is the situation in which we are
primarily interested.

Proposition A.10. Let

fi : Xi −→ Z for i = 1, 2,

be two continuous, open surjections. Then, X1 ×f1,Z,f2 X2 with the
obvious left and right actions of G(f1) and G(f2) gives an equivalence
from G(f2) to G(f1).

Proof. This is [21, Example 6.4]. �

If G(f1) and G(f2) are Hausdorff locally compact, then so is the
equivalence X1 ×f1,Z,f2 X2 between them. If the maps f1 and f2 are
both étale, for instance, if they come from open coverings of Z, then
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the groupoids G(f1) and G(f2) are étale, and the anchor maps

X1 ←− X1 ×f1,Z,f2 X2 −→ X2, x1 ←− (x1, x2) −→ x2,

are étale as well.

Proposition A.11. The covering groupoid G(f) of a continuous open
surjection f : X → Z is always equivalent (as a topological groupoid )
to the space Z viewed as a groupoid with identity arrows only. In
particular, the Čech groupoid of a covering of Z is equivalent to Z.

Conversely, if X is an equivalence from a space Z to a topological
groupoid G, then G is isomorphic to the covering groupoid of the anchor
map s : X → Z.

Hence, covering groupoids are exactly the groupoids that are equiva-
lent to spaces.

Proof. The first part is a consequence of Proposition A.10 applied
to f1 = f and f2 = IdZ , see also [21, Example 6.3]. For the second
part, observe that the action of Z on X is simply the anchor map

s : X −→ Z,

which must be an open surjection. The anchor map

r : X −→ G0

must be a homeomorphism (because it must be the projection map
X → Z\X = X), so we may assume X = G0 as well. Then,

G1 ×s,G0,r X ∼= G1,

and the first isomorphism in (E3) identifies G1 with X ×s,Z,s X.
This yields an isomorphism from G to the covering groupoid G(s) of
s : X −→ Z. �

Let Z be a space and view Z as a groupoid with identity arrows
only. When is Z equivalent to a locally compact, Hausdorff groupoid?
If Z is equivalent to a topological groupoid G, then G is necessarily the
covering groupoid G(f) of a cover

f : X −→ Z

by Proposition A.11.



144 ALCIDES BUSS AND RALF MEYER

Given a space Z, we thus seek a locally compact, Hausdorff space X
and an open, continuous surjection f : X → Z such that X ×f,Z,f X
is locally compact. The question of when X ×f,Z,f X is locally
compact is asked in [8, Section 4]. We answer this question in
Proposition A.14: X ×f,Z,f X is locally compact if and only if Z is
locally Hausdorff. Proposition A.16 says that the only topological
spaces Z that are equivalent to locally compact Hausdorff groupoids
are the locally Hausdorff, locally quasi-compact ones; Example A.9
gives such an equivalence, where the groupoid is even étale.

We need some preparation in order to prove Proposition A.14.

Definition A.12. [2, I.3.3, Definition 2, Proposition 5]. A subset S
of a topological space X is locally closed if it satisfies the following
equivalent conditions:

(1) any x ∈ S has a neighborhood U such that S ∩ U is relatively
closed in U ;

(2) S is open in its closure;
(3) S is an intersection of an open and a closed subset of X.

The next proposition generalizes [2, I.9.7, Propositions 12, 13] to
the locally Hausdorff case.

Proposition A.13. A subset S of a locally Hausdorff, locally quasi-
compact space X is locally quasi-compact in the subspace topology if
and only if it is locally closed.

Proof. First, let S be locally closed. Write S = A∩U with A closed
and U open in X. Let x ∈ S. Since X is locally quasi-compact, the
quasi-compact neighborhoods of x in X form a neighborhood basis
of X. Since x ∈ U , those quasi-compact neighborhoods of x that are
contained in U form a neighborhood basis in U . Their intersections
with A remain quasi-compact because A is closed in X. They form a
neighborhood basis of x in S, proving that S is locally quasi-compact.

Conversely, assume that S is locally quasi-compact in the subspace
topology. Let x ∈ S. Let U be a Hausdorff open neighborhood of x
in X. Then, S ∩ U is a neighborhood of x in S and, hence, contains
a quasi-compact neighborhood K of x in S because S is locally quasi-
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compact. We have that K = S ∩ V for some neighborhood V of x
in X, and we may assume that V ⊆ U because K ⊆ U . The subset
S ∩ V is relatively closed in V because U ⊇ V is Hausdorff and S ∩ V
is quasi-compact. Thus, S is locally closed. �

Proposition A.14. Let f : X → Z be a continuous, open surjection.
The equivalence relation Xf,Z,fX ⊆ X×X defined by f is locally closed
if and only if Z is locally Hausdorff. In particular, if X is locally quasi-
compact and locally Hausdorff, then Xf,Z,fX is locally quasi-compact
if and only if Z is locally Hausdorff.

Proof. First, assume Z to be locally Hausdorff. Let (x1, x2) ∈
X ×f,Z,f X, and let U ⊆ Z be a Hausdorff open neighborhood of
f(x1) = f(x2). Then, f

−1(U) ⊆ X is an open subset such that

f : f−1(U) −→ U

is an open map onto a Hausdorff space. Hence,

f−1(U)×f,U,f f−1(U) = (X ×f,Z,f X) ∩ (f−1(U)× f−1(U))

is relatively closed in f−1(U)×f−1(U) by [21, Proposition 9.15]. Thus,
X ×f,Z,f X is locally closed in X ×X.

Conversely, assume X ×f,Z,f X to be locally closed in X ×X. Let
x ∈ X. Then, (x, x) has a neighborhood in X ×X so that X ×f,Z,f X
restricted to it is relatively closed. Shrinking this neighborhood, we
may assume that it is of the form U × U for an open neighborhood of
x, by the definition of the product topology on X ×X. The map

f |U : U −→ f(U)

is open, and

(X ×f,Z,f X) ∩ (U × U) = U ×f |U ,f(U),f |U U.

Since this is relatively closed by assumption, [21, Proposition 9.15]
shows that f(U) is Hausdorff. Since x was arbitrary, this means that
Z is locally Hausdorff.

The last sentence follows from the first and Proposition A.13. �

Corollary A.15. A topological space X is locally Hausdorff if and only
if the diagonal {(x, x) | x ∈ X} is a locally closed subset in X ×X.
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Proof. Apply Proposition A.14 to the identity map. �

Proposition A.16. Let G be a locally quasi-compact, locally Hausdorff
groupoid, and let X be a basic right G-action. Then, X/G is locally
quasi-compact and locally Hausdorff.

If X is an equivalence from a space Z to G, then Z ∼= X/G is locally
quasi-compact and locally Hausdorff.

Proof. Since G and X are locally quasi-compact and locally Haus-
dorff, so is their product X × G1. Since G0 is locally Hausdorff, the
diagonal in G0 is locally closed by Corollary A.15. The fiber product
X ×s,G0,r G

1 is the preimage of the diagonal in G0 × G0 under the
continuous map

r × s : X ×G1 −→ G0 ×G0;

hence, X ×s,G0,r G
1 is locally closed in X ×G1. Thus, X ×s,G0,r G

1 is
locally quasi-compact and locally Hausdorff by Proposition A.13.

Since the G-action on X is basic, X ×s,G0,r G
1 is homeomorphic to

the subset X ×X/G X ⊆ X × X. Now, Proposition A.13 shows that
X ×X/G X is locally closed in X ×X. Then, X/G is locally Hausdorff
by Proposition A.14. Since continuous images of quasi-compact subsets
are again quasi-compact, X/G is also locally quasi-compact.

An equivalence from a space Z to G is the same as a basic G-action
with a homeomorphism X/G ∼= Z. If this exists, then Z must be locally
Hausdorff and locally quasi-compact by the above argument. �

B. Fields of Banach spaces over locally Hausdorff spaces.
Let X be a locally quasi-compact, locally Hausdorff space. Thus, any
Hausdorff open subset of X is locally compact.

Definition B.1 (see [25] and the references therein). An upper semi-
continuous field of Banach spaces on X is a family of Banach spaces
(Bx)x∈X with a topology on

B =
⊔
x∈X

Bx

such that, for each Hausdorff open subset U of X, B|U is an upper
semicontinuous field of Banach spaces on U . In particular, the norm
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of any continuous section of B|U is an upper semicontinuous, scalar-
valued function on U .

Let S(U,B) denote the vector space of continuous, compactly sup-
ported sections of B|U . This is the union (hence, inductive limit) of
the subspaces S0(K,B) of continuous sections on K vanishing on ∂K,
where K runs through the directed set of compact subsets of U and

∂K = K ∩ U \K

is the boundary of K in U . Each S0(K,B) is a Banach space for the
supremum norm

∥f∥∞ := sup{∥f(x)∥ | x ∈ K}.

We call a subset of S(U,B) bounded if it is the image of a norm-
bounded subset of S0(K,B) for some K.

If f ∈ S(U,B) for a Hausdorff open subset U of X, then we always
extend f to a section ofB on all ofX by taking f(x) := 0 for x /∈ U . Let
S(X,B) be the vector space of all sections of B that may be written
as finite linear combinations

m∑
i=1

fi for fi ∈ S(Ui,B)

and Hausdorff open subset Ui of X. We call such sections of B quasi-
continuous.

A subset A ofS(X,B) is bounded if there are Hausdorff open subsets
U1, . . . , Um, of X and bounded subsets Ai ⊆ S(Ui,B) for i = 1, . . . ,m,
such that every element of A may be written as a sum

m∑
i=1

fi

with fi ∈ Ai for i = 1, . . . ,m.

To simplify our proofs, we use bornological language, that is, we
speak of bounded instead of open subsets. For a Hausdorff locally
compact space X, S(X,B) with its usual topology is an inductive
limit of Banach spaces. The inductive limit topology is determined by
its continuous seminorms. A seminorm is continuous if and only if it is
bounded in the sense that its supremum over each bounded subset is
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finite; this is so because a seminorm on a Banach space is continuous
if and only if it is bounded. For locally Hausdorff X, the bounded
seminorms are those that restrict to bounded seminorms on all the
subspaces S(U,B) for U ⊆ X open and Hausdorff; this is the same as
the quotient topology from the map⊕

U

S(U,B) −→ S(X,B),

where U runs through the Hausdorff open subsets of X. Thus, the
usual topology on S(X,B), which is the quotient topology induced by
the inductive limit topologies on the direct sums of the spaces S(U,B),
is that generated by all bounded seminorms.

Let U be a family of open subsets of X with the next two properties:

(1) X =
∪
U∈U U , that is, for each x ∈ X, there is U ∈ U with

x ∈ U ;
(2) U1 ∩ U2 =

∪
{U ∈ U | U ⊆ U1 ∩ U2} for all U1, U2 ∈ U; that

is, if x ∈ U1 ∩ U2, then there is U ∈ U with U ⊆ U1 ∩ U2 and
x ∈ U .

In our main application, the open subsets in U will not be Hausdorff.
Thus, S(U,B) for U ∈ U is defined in the same way as S(X,B), by
taking finite linear combinations of continuous compactly supported
sections on Hausdorff open subsets of U . We view S(U,B) as a
subspace in S(X,B) by extending functions on U by 0 outside U .
This gives an injective, bounded linear map

S(U,B) −→ S(X,B).

Being bounded means that it maps bounded subsets to bounded sub-
sets.

Let
ιU : S(U,B) −→

⊕
U∈U

S(U,B)

for U ∈ U denote the inclusion map of the U -summand. We call a subset
A of

⊕
U∈U S(U,B) bounded if there are finitely many U1, . . . , Um ∈ U

and bounded subsets Ai of S(Ui,B) such that any element of A may
be written as
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m∑
i=1

ιUi(fi)

with fi ∈ Ai.

Proposition B.2. The map

E :
⊕
U∈U

S(U,B) −→ S(X,B)

is bounded linear and a bornological quotient map in the sense that any
bounded subset of S(X,B) is the image of a bounded subset of⊕

U∈U

S(U,B);

in particular, it is surjective.

The kernel of E is the closed linear span of the set of elements of
the form ιU (f)− ιV (f) for f ∈ S(U,B), U, V ∈ U with U ⊆ V .

“Closure” in the description of the kernel is bornological, defined
using Mackey’s notion of convergence in a bornological vector space.
For any element g ∈ kerE, we will find a bounded subset

A ⊆
⊕
U∈U

S(U,B)

and linear combinations gn of ιU (f) − ιV (f) for f ∈ S(U,B) and
U, V ∈ U with U ⊆ V such that g − gn ∈ 2−n · A. This implies
convergence in any bounded seminorm.

Remark B.3. Proposition B.2 implies that E is a quotient map with
respect to the canonical topologies on the spaces involved, that is, a
seminorm p on S(X,B) is continuous if and only if p◦E is a continuous
seminorm on

⊕
U∈U S(U,B). The proof assumes that continuity and

boundedness are equivalent for seminorms on both spaces and that E is
a bornological quotient map. It seems inconvenient, however, to prove
this directly without bornological language.
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Proof. In the proof, we abbreviate S(U) := S(U,B) because the
Banach space bundle is fixed throughout. First, we show that E is a
bornological quotient map.

Let A ⊆ S(X) be bounded. By definition, there are finitely many
Hausdorff open subsets V1, . . . , Vm ⊆ X, compact subsets Ki ⊆ Vi and
scalars Ci > 0 such that any f ∈ A may be written as

m∑
i=1

fi

with fi ∈ S0(Ki) having ∥fi∥∞ ≤ Ci.
Since the subsets U ∈ U cover X, they cover the compact subset Ki.

Since compact spaces are paracompact, there is a finite subordinate
partition of unity (ψi,U )U∈U, that is,

ψi,U : Ki −→ [0, 1]

is continuous and has compact support Li,U contained in U ∩Ki, only
finitely many ψi,U are non-zero and∑

U∈U

ψi,U (x) = 1.

If fi ∈ S0(Ki), then

fi · ψi,U ∈ S0(Ki ∩ Li,U ) ⊆ S(Vi ∩ U)

and

∥fi · ψi,U∥∞ ≤ ∥fi∥∞.

Now, write f ∈ A first as
∑m
i=1 fi with fi ∈ S0(Ki) having ∥fi∥∞ ≤ Ci,

and then as
n∑
i=1

∑
U∈U

fi · ψi,U .

This sum is still finite because only finitely many ψi,U are non-zero for
each i, and each summand fi · ψi,U runs through a bounded subset of
S(Vi ∩ U), and hence, of S(U), because we have uniform control on
the supports

supp fiψi,U ⊆ Ki ∩ Li,U
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and norms
∥fi · ψi,U∥∞ ≤ Ci

of the summands. Hence, A is contained in the E-image of a bounded
subset in

⊕
S(U).

Now, we describe the kernel of E. Let N be the linear span of
elements of the form ιU (f) − ιV (f) for all f ∈ S(U), U, V ∈ U with
U ⊆ V . Since E(ιU (f) − ιV (f)) = 0, we obtain N ⊆ kerE. If
U1, U2, V ∈ U satisfy V ⊆ U1 ∩ U2 and f ∈ S(V ), then

ιU1(f)− ιU2(f) = −(ιV (f)− ιU1(f)) + (ιV (f)− ιU2(f)) ∈ N.

We shall modify a given element of kerE by adding elements of N so
that the norms of its constituents become arbitrarily small, without
enlarging their supports.

A generic element

f ∈
⊕
U∈U

S(U)

is of the form
f =

∑
ιU (fU )

with fU ∈ S(U) and fU = 0 for all but finitely many U . Each non-zero
fU is a sum

fU =

kU∑
j=1

fU,j ,

with fU,j ∈ S(VU,j) for finitely many Hausdorff open subsets VU,1, . . . ,
VU,kU ⊆ U . We renumber the finitely many Hausdorff open subsets
VU,j consecutively as V1, . . . , Vm and relabel our sections fi ∈ S(Vi)
accordingly. Let Ui ∈ U for i = 1, . . . ,m, be such that

f =

m∑
i=1

ιUi(fi);

so, Vi ⊆ Ui. Let
Ki := supp fi ⊆ Vi,

and let K◦
i be the interior of Ki inside Vi. Thus, x ∈ K◦

i for all x ∈ X
with fi(x) ̸= 0.
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Now, assume f ∈ ker(E), and let ϵ > 0. We will construct a finite
sequence

f (j) =
m∑
i=1

ιUi(f
(j)
i ),

with f (0) = f , f (j+1) − f (j) ∈ N and

∥f (m)
i ∥ < ϵ for all i = 1, . . . ,m.

Furthermore, our construction ensures that the support of f
(j)
i is

contained in Ki for all i, j. Letting ϵ run through a sequence going to 0,
the differences f − f (m) in N will converge to f in the sense explained

above because each constituent fi−f (m)
i converges to fi in the normed

space S0(Ki). Our construction will be such that f
(j)
i = f

(i)
i for j ≥ i,

that is, in the jth step we keep f1, . . . , fj−1 fixed. To make the following

steps possible we aim for stronger norm estimates ∥f (j)i ∥ < 2j−mϵ.
Assume that we have already constructed

f (j) =
m∑
i=1

ιUi(f
(j)
i )

with f − f (j) ∈ N and

∥f (j)i ∥ < 2j−mϵ for i = 1, . . . , j;

for j = 0, this is satisfied for f (0) = f . We shall construct

f (j+1) =
m∑
i=1

ιUi(f
(j+1)
i )

with f (j) − f (j+1) ∈ N , and hence, f − f (j+1) ∈ N , with f
(j+1)
i = f

(j)
i

for i = 1, 2, . . . , j, and ∥f (j+1)
j+1 ∥ < 2j+1−mϵ.

Let
Aj+1 = {x ∈ Vj+1 | ∥f (j)j+1(x)∥ ≥ 2j+1−mϵ}.

This is a closed subset of K◦
j+1 because the norm function is upper

semicontinuous. Since Kj+1 is compact, Aj+1 is compact. Since
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E(f) = 0 and E(f − f (j)) = 0, we have

m∑
i=1

f
(j)
i (x) = 0 for all x ∈ X.

If x ∈ Aj+1, then this gives∥∥∥∥ m∑
i=j+2

f
(j)
i (x)

∥∥∥∥ =

∥∥∥∥j+1∑
i=1

f
(j)
i (x)

∥∥∥∥ ≥ ∥f (j)j+1(x)∥ −
j∑
i=1

∥f (j)i ∥∞ > 0.

Hence, there must be i > j+1 with f
(j)
i (x) ̸= 0, so that x ∈ K◦

i . Thus,
the open subsets K◦

i for i > j + 1 cover Aj+1. If x ∈ Aj+1 ∩K◦
i , then

x ∈ Ui ∩ Uj+1. By our assumption on U, there is U ∈ U with x ∈ U
and U ⊆ Ui ∩ Uj+1. Thus, the open subsets K◦

i ∩ U for i > j + 1 and
U ∈ U with U ⊆ Ui ∩ Uj+1 cover Aj+1.

Since Aj+1 is compact and contained in the Hausdorff locally com-
pact space Vj+1, there is a subordinate finite partition of unity (ψi,U ),
that is, all but finitely many ψi,U are non-zero,

ψi,U : Aj+1 −→ [0, 1]

is a continuous function with compact support contained in K◦
i ∩ U ,

and ∑
ψi,U (x) = 1 for x ∈ Aj+1.

We may extend each non-zero ψi,U from Aj+1 to a continuous function

ψi,U : Kj+1 −→ [0, 1]

vanishing in a neighborhood of ∂Kj+1 and on Kj+1 \ (K◦
i ∩U) because

these two compact subsets of Aj+1 are disjoint from the compact

support of ψi,U in K◦
i ∩ U . If necessary, we multiply all ψi,U with

a suitable cut-off function so that∑
ψi,U (x) ≤ 1 for all x ∈ Kj+1.

Now, we let

f (j+1) = f (j) +
∑
i,U

ιUi(f
(j)
j+1ψi,U )− ιUj+1(f

(j)
j+1ψi,U ).
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By construction, f
(j)
j+1ψi,U is continuous and supported in a compact

subset of K◦
i ∩ U with U ⊆ Ui ∩ Uj+1, U ∈ U. Hence,

ιUi(f
(j)
j+1ψi,U )− ιUj+1(f

(j)
j+1ψi,U ) ∈ N,

so f (j+1)−f (j) ∈ N as desired. Since only i > j+1 appear in the sum,

f
(j+1)
i = f

(j)
i for i < j + 1. We obtain

f
(j+1)
j+1 (x) = f

(j)
j+1(x) ·

(
1−

∑
i,U

ψi,U (x)

)
.

This has a supremum norm less than 2j+1−mϵ because

1−
∑
i,U

ψi,U (x)

vanishes where ∥f (j)
j+1(x)∥ ≥ 2j+1−mϵ and is at most 1 everywhere else.

The support of f
(j+1)
j+1 is still contained in Kj+1 by construction.

For i > j + 1, we obtain

f
(j+1)
i = f

(j)
i +

∑
U

f
(j)
j+1 · ψi,U .

This still has support Ki because ψi,U is supported there. This
completes the induction step, and thus, the proof. �

Remark B.4. If X is Hausdorff, then a partition of unity argument as
in the proof of [4, Theorem 2.13] shows that ker(E) is the linear span
without closure of ιU (f)− ιV (f) with U, V ∈ U. Hence, this linear span
is already closed for the natural topology on⊕

U∈U

S(U,B).

A convergent infinite series is needed to generate kerE from ιU (f) −
ιV (f) with U, V ∈ U. This happens in simple examples, such as the
space

X = [0, 1]
⊔
(0,1]

[0, 1]

discussed in Section 8 with the trivial bundle C and the standard open
cover by two Hausdorff open subsets with their intersection (0, 1].
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B.1. Proof of Theorem 5.5. We apply Proposition B.2 to X = L,
the cover (Lt)t∈S , and the given Fell bundle B as in the statement
of Theorem 5.5. The subsets B∗ and B1 ∗ B2 for bounded subsets
B,B1, B2 ⊆ S(L,B) are again bounded; this is routine to check. Thus,
S(L,B) is a bornological ∗-algebra. (The continuity of the operations
for the inductive limit topology is also known but somewhat more
difficult.)

We shall cite below some results of [31] which follow from the
disintegration and Morita equivalence theorems. We assume that
they hold for the Fell bundle B in question and its restriction to
G; this is not yet proved in the literature, see the discussion before
Theorem 5.5. Remark B.6 sketches a slightly more complicated proof
that uses only the Morita equivalence theorem, that is, the assumptions
in Theorem 5.5.

Lemma B.5. The C∗-algebra C∗(L,B) is the completion of S(L,B)
in the maximal bounded C∗-seminorm.

Proof. Usually, C∗(L,B) is defined as the completion of S(L,B)
in the maximal C∗-seminorm that is bounded with respect to the I-
norm, a certain norm on S(L,B). It has been shown [31, Corollary
4.8] that a representation of S(L,B) that is continuous with respect to
the inductive limit topology is bounded for the I-norm. Hence, a C∗-
seminorm on S(L,B) is continuous with respect to the inductive limit
topology if and only if it is bounded with respect to the I-norm. The
topology on S(L,B) called inductive limit topology in [31] is really the
quotient topology induced by the inductive limit topology on⊕

U∈U

S(U,B),

where U is the set of all Hausdorff open subsets of L and
⊕

U∈U S(U,B)
is viewed as the inductive limit of the Banach subspaces⊕

U∈F

S0(KU ,B)

where F is a finite subset of U and KU ⊆ U for U ∈ F are compact
subsets. As discussed above, a seminorm is continuous in this sense
if and only if it is bounded in the canonical bornology on S(L,B)
introduced in Appendix B. �
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Proof of Theorem 5.5. Let

D :=
⊕
t∈S

S(Lt,B).

This carries a canonical direct sum bornology as in Appendix B. Fell
bundle operations turn it into a ∗-algebra. The multiplication and
involution are bounded, so we also have a bornological ∗-algebra. The
map

E : D −→ S(L,B)

from Proposition B.2 is a bounded ∗-homomorphism.

Since E is a bornological quotient map by Proposition B.2, a C∗-
seminorm p on S(L,B) is bounded if and only if p ◦ E is a bounded
C∗-seminorm on D. A bounded C∗-seminorm on D is of the form p◦E
for a C∗-seminorm p on S(L,B) if and only if it vanishes on the kernel
of E. By Proposition B.2, a bounded seminorm on D vanishes on
kerE if and only if it vanishes on ιt(f) − ιu(f) for all f ∈ S(Lt,B),
t, u ∈ S, t ≤ u. Thus, C∗(L,B) is isomorphic to the completion of D
in the maximal C∗-seminorm q on D that is bounded and vanishes on
ιt(f)− ιu(f) for all f, t, u as above.

The restriction of this C∗-seminorm q to S(G,B) ⊆ D is bounded.
Since C∗(G,B) is defined as the completion of S(G,B) with respect
to the maximal bounded C∗-seminorm on S(G,B), q extends to a C∗-
seminorm on C∗(G,B). Since

q(f)2 = q(f∗ ∗ f) for f ∈ S(Lt,B),

the restriction of q to S(Lt,B) is dominated by the Hilbert module
norm from C∗(Lt,B). Thus, q automatically extends to the sum⊕

t∈S
C∗(Lt,B)t∈S .

Furthermore, q still annihilates ιt(f) − ιu(f) for all f ∈ C∗(Lt,B),
t, u ∈ S, t ≤ u, because S(Lt,B) is dense in C∗(Lt,B).

Conversely, a C∗-seminorm on⊕
t∈S

C∗(Lt,B)
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that annihilates ιt(f)− ιu(f) for all f ∈ C∗(Lt,B), t, u ∈ S, t ≤ u, re-
stricts to a C∗-seminorm q onD that annihilates ιt(f)−ιu(f) for all f ∈
S(Lt,B), t, u ∈ S, t ≤ u. Since D is dense in

⊕
t∈S C

∗(Lt,B), this im-
plies that C∗(L,B) is isomorphic to the completion of

⊕
t∈S C

∗(Lt,B)
in the maximal C∗-seminorm that annihilates ιt(f) − ιu(f) for all
f ∈ C∗(Lt,B), t, u ∈ S, t ≤ u. This is exactly the definition of
the section C∗-algebra of the Fell bundle C∗(Lt,B)t∈S over S. This
concludes the proof of Theorem 5.5. �

Remark B.6. We may also prove Theorem 5.5 without Lemma B.5,
using the standard definition of C∗(L,B) involving the I-norm on D.
This variant of the proof has the advantage that it does not require the
disintegration theorem. We still need the Morita equivalence theorem
for our Fell bundles, however, so that our inner products are positive
and generate the expected ideals.

We merely explain the new points in this alternative proof. The
I-norm on S(L,B) restricts to the I-norm on S(G,B). Consider a
C∗-seminorm q on D that annihilates ιt(f)−ιu(f) for all f ∈ S(Lt,B),
t, u ∈ S, t ≤ u, and satisfies

q(f) ≤ ∥f∥I for all f ∈ S(G,B).

Then,

q(f) = q(f∗ ∗ f)1/2 ≤ ∥f∗ ∗ f∥1/2I ≤ ∥f∥I

for all f ∈ S(Lt,B), t ∈ S. Thus, q is bounded with respect to our
bornology as well, so it factors as q̇ ◦ E for a bounded seminorm q̇
on S(L,B) by Proposition B.2. This seminorm satisfies q̇(f) ≤ ∥f∥I
for all f ∈ S(Lt,B), t ∈ S. But then q̇(f) ≤ ∥f∥I follows for all
f ∈ S(L,B), t ∈ S. �
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