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POSITIVE GROUND STATE SOLUTIONS FOR SOME
NON-AUTONOMOUS KIRCHHOFF TYPE PROBLEMS

QILIN XIE AND SHIWANG MA

ABSTRACT. In this paper, we study the existence of
positive ground state solutions for non-autonomous Kirchhoff
type problems:

−
(
1 + b

∫
R3

|∇u|2
)
∆u+ u = a(x)|u|p−1u in R3,

where b > 0, 3 < p < 5 and a : R3 → R is such that

lim
|x|→∞

a(x) = a∞ > 0,

but no symmetry property on a(x) is required.

1. Introduction and main results. In the present paper, we
consider the existence of positive ground state solutions for non-
autonomous Kirchhoff type problems:

(SK) −
(
1 + b

∫
R3

|∇u|2
)
∆u+ u = a(x)|u|p−1u in R3,

where b > 0 is a real parameter, 3 < p < 5 and a(x) satisfies conditions
which will be stated later, but with no symmetry property on a(x).

Kirchhoff type problems in the bounded domain Ω ⊂ R3 are often
referred to as being nonlocal because of the presence of the integral
over the entire domain Ω. This is analogous to the stationary case of
equations that arise in the study of string or membrane vibrations, i.e.,

utt −
(
a+ b

∫
Ω

|∇u|2
)
∆u = f(x, u),
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where Ω is a bounded domain in RN , u denotes displacement, f(x, u)
is external force and a is initial tension, while b is related to intrinsic
properties of the string. This type of equation was first proposed by
Kirchhoff in 1883 to describe the transversal oscillations of a stretched
string by taking into account the subsequent change in string length
caused by oscillations.

Kirchhoff type problems in the bounded domain have been studied
by many authors. Alves et al. [1], Ma-Rivera [18] and Yang-Zhang [25]
obtained the existence of positive solutions via variational methods,
while Mao-Zhang [19] and Zhang-Perera [26] obtained sign changing
solutions via invariant sets of descent flow. Recently, many authors,
such as Chen [7], Jin-Wu [12], Li-Wu [15], Li et al. [16], Nie-Wu [20],
and Wu [24], have been more interested in Kirchhoff type problems
in the unbounded domain or in RN . The concentration behavior of
positive solutions has been studied by He-Zou [9], He et al. [11] and
Wang et al. [21]. A result with Hartree-type nonlinearities may be
found in Lü [17]. Ground state solutions for Kirchhoff type problems
with critical nonlinearities is considered in He-Zou [10].

We now consider non-autonomous Kirchhoff type problems (SK)
and obtain a representation of Palais-Smale sequences for this problem.
Similar results may be found in [3, 23]. In this paper, we make the
following assumption on a(x):

(a1) lim
|x|→+∞

a(x) = a∞ > 0, α(x) := a(x)− a∞ ∈ L6/(5−p)(R3),

and consider the functional

I(u) =
1

2

∫
R3

(|∇u|2 + u2) +
b

4

(∫
R3

|∇u|2
)2

− 1

p+ 1

∫
R3

a(x)|u|p+1

(1.1)

on H1(R3). This functional is well defined under assumption (a1).
Since a symmetry assumption is not available, we carefully investigate
the behavior of Palais-Smale sequences and obtain a representation of
Palais-Smale sequences for the functional I. However, this is quite
different from the work of Benci and Cerami [3]. Direct calculation for
the nonlocal term ∫

R3

|∇u|2
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does not show that I ′ is weakly, sequentially continuous in H1(R3). For
any Palais-Smale sequences {un} with un ⇀ u in H1(R3), we do not
know whether ∫

R3

|∇un|2 −→
∫
R3

|∇u|2

holds. In fact, this is the case if u ̸= 0 and 3 < p < 5 in equation (SK),
see Lemma 3.1 herein and [14, Lemma 3.2], where this idea was intro-
duced by Li and Ye. In this case, the representation of Palais-Smale
sequences is quite normal and is similar to that of the Schrödinger-
Poisson systems obtained by Cerami and Vaira [6]. However, when
u = 0, the situation is quite different and∫

R3

|∇un|2 −→ 0

may be invalid. A new representation for the Palais-Smale sequences
must be described in another form, which is presented in Lemma 3.2.

Palais-Smale sequences for the functional I are closely related to the
solution of the problem at infinity:

(NS∞) −∆u+ u = a∞|u|p−1u in R3.

Thus, we denote the unique radial solution of equation (NS∞) by w
and set

m∞ :=

(
1

2
− 1

p+ 1

)
∥w∥2.

Additionally, if we make the assumption:

(a2) a(x) ≥ a∞ for any x ∈ R3,

and a(x) > a∞ holds on a positive measure set, then the next problem:

(NS) −∆u+ u = a(x)|u|p−1u in R3,

admits a ground state solution. The ground state solution of (NS) with
assumption (a2) is denoted by wa and

ma :=

(
1

2
− 1

p+ 1

)
∥wa∥2 < m∞.

Now, we state the result on the existence of ground state solutions
for problem (SK).
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Theorem 1.1. Let (a1) and (a2) hold, and assume that

(1.2) 0 < b ≤ m∞
µ −m µ

a

ν m1+µ
a

,

where µ = (p− 3)/(p+ 1) and ν = 2(p+ 1)/(p− 1). Then, prob-
lem (SK) has a positive ground state solution.

We remark that a similar result has been obtained by Cerami and
Vaira [6] for some non-automous Schrödinger-Poisson systems.

This paper is organized as follows. In Section 2, we will introduce
the variational setting and some basic lemmas. In Section 3, we obtain
a representation of Palais-Smale sequences for the functional I and
establish the compactness conditions. Finally, the proof of Theorem 1.1
is presented in Section 4.

2. Notation and variational setting. In this section, we give the
variational setting for problem (SK) and use the following notation:
H1(R3) is the usual Sobolev space endowed with the standard scalar
product and norm

(u, v) =

∫
R3

(
∇u∇v + uv

)
, ∥u∥ = (u, u)1/2.

The dual space of H1(R3) is denoted by H−1. A Lebesgue space is
denoted by Lq(R3), 1 ≤ q ≤ +∞, and the norm in Lq(R3) is denoted
by |u|q. C and Ci are various positive constants. Moreover, in what
follows, we always assume that a∞ = 1, without any loss of generality.

To prove the existence of a ground state solution, we set

N := {u ∈ H1(R3)\{0} : G(u) = 0},

where

G(u) = ⟨I ′(u), u⟩ = ∥u∥2 + b

(∫
R3

|∇u|2
)2

−
∫
R3

a(x)|u|p+1.
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We remark that

I|N (u) =

(
1

2
− 1

p+ 1

)
∥u∥2 +

(
1

4
− 1

p+ 1

)
b

(∫
R3

|∇u|2
)2

(2.1)

=
1

4
∥u∥2 +

(
1

4
− 1

p+ 1

)∫
R3

a(x)|u|p+1.

The next lemma contains some properties of N .

Lemma 2.1. The following statements hold :

(i) N is a C1 regular manifold diffeomorphic to the sphere of H1(R3);
(ii) I is bounded from below on N by a positive constant ;
(iii) u is a critical point of I if and only if u is a critical point of I

constrained on N .

Proof.

(i) Let u ∈ H1(R3)\{0} be such that ∥u∥ = 1. Then there exists a
unique t ∈ R+\{0} for which tu ∈ N . Indeed, considering that t must
satisfy t > 0 such that

0 = ⟨I ′(tu), tu⟩ = t2∥u∥2 + bt4
(∫

R3

|∇u|2
)2

− t p+1

∫
R3

a(x)|u|p+1,

set

m := b

(∫
R3

|∇u|2
)2

, n :=

∫
R3

a(x)|u|p+1.

We must find a positive solution of t2(1+mt2−ntp−1) = 0 with m > 0
and n > 0. In fact, since p > 3, the equation

1 +mt2 − ntp−1 = 0

has a unique solution t = t(u) > 0, and the corresponding point
t(u)u ∈ N , which is called the projection of u on N , is such that

I(t(u)u) = max
t>0

I(tu).

Let u ∈ N . Then,

0 = ∥u∥2 + b

(∫
R3

|∇u|2
)2

−
∫
R3

a(x)|u|p+1 ≥ ∥u∥2 − C0∥u∥p+1,
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which implies that

(2.2) ∥u∥ ≥ C1 > 0.

As is well-known, I ∈ C2
(
H1(R3),R

)
and

⟨I ′′(u)v, w⟩ =
∫
R3

(∇v∇w + vw) + 2b

∫
R3

∇u∇w

∫
R3

∇u∇v

+ b

∫
R3

|∇u|2
∫
R3

∇v∇w − p

∫
R3

a(x)|u|p−1vw.

Therefore, G becomes a C1 functional, and we have

⟨G′(u), u⟩ = ⟨I ′′(u)u, u⟩(2.3)

= 2∥u∥2 + 4b

(∫
R3

|∇u|2
)2

− (p+ 1)

∫
R3

a(x)|u|p+1

= (1− p)∥u∥2 + (3− p)b

(∫
R3

|∇u|2
)2

≤ (1− p)∥u∥2 ≤ (1− p)C2
1 < 0.

(ii) Let u ∈ N . Using equations (2.1) and (2.2), we obtain

I(u) =

(
1

2
− 1

p+ 1

)
∥u∥2 +

(
1

4
− 1

p+ 1

)
b

(∫
R3

|∇u|2
)2

≥
(
1

2
− 1

p+ 1

)
∥u∥2 > C2 > 0.

(iii) On one hand, if u ̸≡ 0 is a critical point of I, I ′(u) = 0, then
u ∈ N . On the other hand, let u be a critical point of I constrained
on N . Then there exists λ ∈ R such that I ′(u) = λG′(u). Hence, from

0 = G(u) = ⟨I ′(u), u⟩ = λG′(u)

and equation (2.3), λ = 0 is implied and then I ′(u) = 0 follows. �

Setting
m := inf{I(u) : u ∈ N},

as a consequence of Lemma 2.1 (ii), m turns out to be a positive
number.
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We consider problem (NS), i.e.,

(NS) −∆u+ u = a(x)|u|p−1u,

setting

Ia(u) =
1

2
∥u∥2 − 1

p+ 1

∫
R3

a(x)|u|p+1

=
1

2
∥u∥2 − 1

p+ 1

∫
R3

(1 + α(x))|u|p+1,

where α(x) := a(x)− a∞ = a(x)− 1, and

Na :=
{
u ∈ H1(R3)\{0} : ∥u∥2 =

∫
R3

a(x)|u|p+1
}

=
{
u ∈ H1(R3)\{0} : ∥u∥2 =

∫
R3

(
1 + α(x)

)
|u|p+1

}
.

When a(x) = a∞ = 1, equation (NS) becomes

(NS∞) −∆u+ u = |u|p−1u.

In this case, we use the notation I∞ and N∞, respectively, for the
functional and natural constraints, namely,

I∞(u) =
1

2
∥u∥2 − 1

p+ 1

∫
R3

|u|p+1

and

N∞ :=
{
u ∈ H1(R3)\{0} : ∥u∥2 =

∫
R3

|u|p+1
}
.

The following well-known propositions, which provide results regarding
the existence of positive solutions of (NS∞) and (NS), are useful in
obtaining our theorem.

Proposition 2.2. Problem (NS∞) has a positive, ground state solu-
tion w ∈ H1(R3), radially symmetric about the origin, unique up to
translations, decaying exponentially, together with its derivatives, as
|x| → +∞.

Proposition 2.3. Let (a2) hold. Then, equation (NS) has a positive,
ground state solution wa ∈ H1(R3).
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Proposition 2.2 can be found in [4, 8, 13]. Proposition 2.3 can
be proved using a minimization argument and the concentration-
compactness principle.

Since w and wa are ground state solutions, setting

m∞ =: inf{I∞(u), u ∈ N∞},
ma =: inf{Ia(u), u ∈ Na},

we obtain I∞(u) ≥ I∞(w) = m∞ for all u solutions of equation (NS∞)
and also Ia(ua) ≥ Ia(wa) = ma for all ua solutions of equation (NS).
Under condition (a2), we also have that m∞ > ma, where

m∞ = I∞(w) =

(
1

2
− 1

p+ 1

)
∥w∥2

and

ma = Ia(wa) =

(
1

2
− 1

p+ 1

)
∥wa∥2.

Similar to Lemma 2.1 (i), it is possible to show that, for any function
u ∈ H1(R3)\{0}, there exists a unique function τu ∈ Na such that

Ia(τu) = max
t>0

Ia(tu).

Lemma 2.4. Let u ∈ H1(R3)\{0} and tu, τu, (t, τ > 0) are its
projections on N , Na, respectively. Then,

(2.4) τ ≤ t.

Proof. Let u ∈ H1(R3)\{0}. Since τu ∈ Na and tu ∈ N , we have

τ2∥u∥2 = τp+1

∫
R3

a(x)|u|p+1,

t 2∥u∥2 = −t 4b

(∫
R3

|∇u|2
)2

+ t p+1

∫
R3

a(x)|u|p+1.
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It follows from (a1) that

τp−1 =
∥u∥2∫

R3

a(x)|u|p+1

=

−t2b

( ∫
R3

|∇u|2
)2

+ tp−1
∫
R3

a(x)|u|p+1∫
R3

a(x)|u|p+1
≤ tp−1,

which implies that τ ≤ t. �

3. Representation of Palais-Smale sequences. In this section,
we investigate the behavior of Palais-Smale sequences of I.

Lemma 3.1. Let {un} be a (PS)c sequence of I. Then there exists
u ∈ H1(R3) such that un ⇀ u. Moreover, if u ̸= 0 where c ≤ m, then∫

R3

|∇un|2 −→
∫
R3

|∇u|2.

Proof. Let un ∈ H1(R3) be a (PS)c sequence of I, that is,

I(un) −→ c and I ′(un) −→ 0 in H−1.

Thus, for n large enough,

c+ o (1)∥un∥ ≥ I(un)−
1

p+ 1
⟨I ′(un), un⟩

≥
(
1

2
− 1

p+ 1

)
∥un∥2

+

(
1

4
− 1

p+ 1

)
b

(∫
R3

|∇un|2
)2

≥
(
1

2
− 1

p+ 1

)
∥un∥2.

Then, {un} is bounded in H1(R3); hence, passing to a subsequence, we
may assume that un ⇀ u in H1(R3).
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Without loss of generality, we assume that∫
R3

|∇un|2 −→ A2,

for some A ∈ R. If u ̸= 0, we see that∫
R3

|∇u|2 ≤ A2.

Suppose that ∫
R3

|∇u|2 < A2.

By I ′(un) → 0, we have∫
R3

∇u∇φ+ uφ+ bA2

∫
R3

∇u∇φ−
∫
R3

a(x)|u|p−1uφ = 0,

for any φ ∈ C∞
0 (R3). Take φ = u. Then ⟨I ′(u), u⟩ < 0. The term

p > 3 implies that ⟨I ′(tu), tu⟩ > 0 for small t > 0. Hence, there
exists a t0 ∈ (0, 1) satisfying ⟨I ′(t0u), t0u⟩ = 0. We can see that
I(t0u) = maxt∈[0,1] I(tu). Therefore,

c ≤ I(t0u)−
1

4
⟨I ′(t0u), t0u⟩

=
t20
4

∫
R3

(|∇u|2 + u2) +

(
1

4
− 1

p+ 1

)
t p+1
0

∫
R3

a(x)|u|p+1

<
1

4

∫
R3

(|∇u|2 + u2) +

(
1

4
− 1

p+ 1

)∫
R3

a(x)|u|p+1

≤ lim inf
n→∞

[
1

4

∫
R3

(|∇un|2 + u2
n) +

(
1

4
− 1

p+ 1

)∫
R3

a(x)|un|p+1

]
= lim inf

n→∞

(
I(un)−

1

4
⟨I ′(un), un⟩

)
= c,

which is impossible. Therefore,∫
R3

|∇u|2 = A2,

and the proof is complete. �
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Lemma 3.2. Let {un} be a (PS)c sequence of I constrained on N ,
i.e., un ∈ N , and

I(un) −→ c, I ′|N (un) −→ 0 strongly in H−1.

Then, passing to a subsequence, one of the following two cases hold.

Case 1. There exists a solution u ̸= 0 of problem (SK), a number
k ∈ N ∪ {0}, k function u1, u2, . . ., uk of H1(R3) and k sequences of
points {yjn} ⊂ R3, 1 ≤ j ≤ k, such that

(a) |yjn| → ∞, |yjn − yin| → ∞ if i ̸= j, n → +∞;

(b) un −
k∑

j=1

uj(· − yjn) → u in H1(R3);

(c) I(un) → I(u) +

k∑
j=1

I∞(uj);

(d) uj are nontrivial weak solutions of equation (NS∞).

Case 2. There exist u0 ∈ H1(R3), {y0n} ⊂ R3, a number k ∈ N∪{0},
k function u1, u2, . . ., uk of H1(R3) and k sequences of points {yjn} ⊂
R3, 1 ≤ j ≤ k, such that

(a) |y0n| → ∞, |yjn| → ∞, |y0n−yjn| −→ ∞ and |yjn−yin| → ∞ if i ̸= j,
n → +∞;

(b) un −
k∑

j=1

uj(· − yjn)− u0(· − y0n) → 0 in H1(R3);

(c) I(un) → J(u 0) +
k∑

j=1

I∞(uj), where

J(u) :=
1

2

∫
R3

(|∇u|2 + u2) +
b

4

(∫
R3

|∇u|2
)2

− 1

p+ 1

∫
R3

|u|p+1;

(d) uj are nontrivial weak solutions of equation (NS∞), u 0 is a non-
trivial weak solution of the next problem:

(SK∞) −
(
1 + b

∫
R3

|∇u|2
)
∆u+ u = |u|p−1u in R3.

Moreover, in both cases we admit k = 0, and the cases hold without uj.
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Proof. By equation (2.1), we obtain

I(un) ≥
(
1

2
− 1

p+ 1

)
∥un∥2;

hence, {un} is bounded, and we can prove that

(3.1) I ′(un) −→ 0 in H1(R3).

In fact, we have

(3.2) o (1) = I ′|N (un) = I ′(un)− λnG
′(un),

for some λn ∈ R. Thus, taking the scalar product with un, we obtain

(3.3) o (1) = ⟨I ′|N (un), un⟩ = ⟨I ′(un), un⟩ − λn⟨G′(un), un⟩.

Since un ∈ N , i.e., ⟨I ′(un), un⟩ = 0, and, by equation (2.3),

⟨G′(un), un⟩ ≤ −α < 0,

for some constant α > 0. Thus, it follows from equation (3.3) that
λn → 0 for n → +∞. Moreover, by the boundedness of {un}, G′(un) is
bounded, and this implies that λnG

′(un) → 0, so equation (3.1) follows
from equation (3.2).

Since un is bounded in H1(R3), there exists u ∈ H1(R3) such that,
up to a subsequence un ⇀ u in H1(R3) and in Lp+1(R3), un(x) → u(x)
almost everywhere on R3. It follows from Lemma 3.1 that I ′(u) = 0,
and hence, u is a weak solution of equation (SK).

Case 1. u ̸= 0. If un → u in H1(R3), then the proof is complete.
Thus, we can assume that un does not converge strongly to u inH1(R3).
We set

z1n(x) = un(x)− u(x).

Clearly, z1n ⇀ 0 in H1(R3), but not strongly. We claim that

I(un) = I(u) + I∞(z1n) + o (1),(∗)
⟨I ′∞(z1n), z

1
n⟩ = o (1) and I ′∞(z1n) = o (1).

In fact, we have

(3.4) ∥un∥2 = ∥z1n + u ∥2 = ∥z1n∥2 + ∥u ∥2 + o (1).
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It follows from [5] that

(3.5) |un|p+1
p+1 = |u |p+1

p+1 + |z1n|
p+1
p+1 + o (1),

and, using [2, Lemma A.2] and [22, Lemma 8.1], respectively, we
obtain

(3.6) α(x)|z1n|p−1z1n −→ 0 in H−1,

(3.7) |un|p−1un = |u|p−1u+ |z1n|p−1z1n + o (1) in H−1.

It follows from equations (3.4), (3.5), (3.6), (3.7) and Lemma 3.1 that
(3.8)

I(un) =
1

2
∥un∥2 +

b

4

(∫
R3

|∇un|2
)2

− 1

p+ 1

∫
R3

a(x)|un|p+1

=
1

2
∥z1n∥2 +

1

2
∥u ∥2 + b

4

(∫
R3

|∇u |2
)2

− 1

p+ 1

∫
R3

a(x)|u |p+1

− 1

p+ 1

∫
R3

|z1n|p+1 + o (1)

= I(u) + I∞(z1n) + o (1).

For all h ∈ H1(R3), we have

o (1)∥h∥ = ⟨I ′(un), h⟩ = ⟨un, h⟩+ b

∫
R3

|∇un|2
∫
R3

∇un∇h

−
∫
R3

a(x)|un|p−1unh

= ⟨u, h⟩+ b

∫
R3

|∇u |2
∫
R3

∇u∇h

−
∫
R3

a(x)|u|p−1uh

+ ⟨z1n, h⟩ −
∫
R3

|z1n|p−1z1nh+ o (1)∥h∥

= ⟨I ′(u), h⟩+ ⟨I ′∞(z1n), h⟩+ o (1)∥h∥,

so

(3.9) I ′∞(z1n) = o (1) in H−1.
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Moreover, by I ′(u) = 0, we obtain

0 = ⟨I ′(un), un⟩(3.10)

= ⟨I ′(u), u ⟩+ ⟨I ′∞(z1n), z
1
n⟩+ o (1)

= ⟨I ′∞(z1n), z
1
n⟩+ o (1).

Now, claim (∗) holds.
Letting

δ := lim sup
n→+∞

(
sup

∫
y∈R3

|z1n|p+1

)
,

we have δ > 0. In fact, if δ = 0 holds, then by [22, Lemma 1.21],
z1n → 0 in Lp+1(R3) would hold, contradicting the fact that un does
not converge strongly to u in Lp+1(R3). Then, we may assume the
existence of {y1n} ⊂ R3, such that∫

B1(y1
n)

|z1n|p+1 >
δ

2
.

Then, we consider z1n(·+ y1n), and, letting z1n(·+ y1n) ⇀ u1 in H1(R3),
z1n(x+ y1n) → u1(x) almost everywhere on R3. Since∫

B1(0)

|z1n(x+ y1n)|p+1 >
δ

2
,

the Rellich theorem implies∫
B1(0)

|u1(x)|p+1 >
δ

2
.

Thus, u1 ̸= 0. It follows from z1n ⇀ 0 in H1(R3) that {y 1
n} must be

unbounded and, up to a subsequence, we can assume that |y 1
n| → +∞.

Moreover, by equation (3.9), we have I ′∞(u1) = 0. Finally, let

z2n(x) = z1n(x)− u1(x− y1n).

Then, by equations (3.4), (3.5) and the Brezis-Lieb lemma, we obtain

∥z2n∥2 = ∥un∥2 − ∥u∥2 − ∥u1∥2 + o (1),

|z2n|
p+1
p+1 = |un|p+1

p+1 − |u|p+1
p+1 − |u1|p+1

p+1 + o (1),

which implies

I∞(z2n) = I∞(z1n)− I∞(u1) + o (1).
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Hence, by claim (∗), we obtain

I(un) = I(u) + I∞(z1n) + o (1) = I(u) + I∞(u1) + I∞(z2n) + o (1).

It is easy to prove that

I ′∞(z2n) = o (1) in H−1.

Now, if z2n → 0 in H1(R3), we are done. Otherwise, z2n ⇀ 0 not
strongly, so we repeat the argument. By iterating this procedure, we
obtain sequences of points yjn ∈ R3 such that

|yjn| −→ +∞, |yjn − yin| −→ +∞,

if i ̸= j and a sequence of

zjn(x) = zj−1
n (x)− uj−1(x− yj−1

n )

with j ≥ 2 such that

zjn(x+ yjn) ⇀ uj(x) in H1(R3), I ′(uj) = 0.

Thus,

I(un) = I(u) +
k∑

j=1

I∞(uj) + o (1).

Since I∞(uj) ≥ m∞ for all j and I(un) is bounded, the iteration must
stop at some finite index k.

Case 2. u = 0, i.e., un ⇀ 0 in H1(R3) not strongly ({un} ⊂ N and
I(un) → c, so c > 0). We claim that

I(un) = J(un) + o (1),(∗∗)
⟨J ′(un), un⟩ = o (1)

and

J ′(un) = o (1) in H−1.
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In fact, it follows from equation (3.6) that
(3.11)

I(un) =
1

2
∥un∥2 +

b

4

(∫
R3

|∇un|2
)2

− 1

p+ 1

∫
R3

a(x)|un|p+1

=
1

2
∥un∥2 +

b

4

(∫
R3

|∇un|2
)2

− 1

p+ 1

∫
R3

|un|p+1 + o (1)

= J(un) + o (1).

For all h ∈ H1(R3), we have

o (1)∥h∥ = ⟨I ′(un), h⟩ = ⟨un, h⟩+ b

∫
R3

|∇un|2
∫
R3

∇un∇h

−
∫
R3

a(x)|un|p−1unh

= ⟨un, h⟩+ b

∫
R3

|∇un|2
∫
R3

∇un∇h

−
∫
R3

|un|p−1unh+ o (1)∥h∥

= ⟨J ′(un), h⟩+ o (1)∥h∥,

which implies

(3.12) J ′(un) = o (1) in H−1.

Moreover,

(3.13) 0 = ⟨I ′(un), un⟩ = ⟨J ′(un), un⟩+ o (1).

Then, claim (∗∗) holds.
Letting

δ := lim inf
n→+∞

(
sup
y∈R3

∫
B1(y)

|un|p+1

)
,

we have δ > 0. In fact, if δ = 0 holds, then, by [22, Lemma 1.21],
un → 0 in Lp+1(R3) would hold, contradicting the fact that un does
not converge strongly to 0 in Lp+1(R3). We may assume the existence
of {y0n} ⊂ R3, such that ∫

B1(y 0
n)

|un|p+1 >
δ

2
.
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Next, we consider un(·+y0n), and let un(·+y0n) ⇀ u0 in H1(R3). Then

un(x+ y 0
n) −→ u 0(x),

almost everywhere on R3. Since∫
B1(0)

|un(x+ y 0
n)|p+1 >

δ

2
,

the Rellich theorem implies∫
B1(0)

|u 0(x)|p+1 >
δ

2
.

Thus, u 0 ̸= 0. It follows from un ⇀ 0 in H1(R3) that {y 0
n} must be

unbounded and, up to a subsequence, we can assume that |y 0
n| → +∞.

Moreover, similar to Lemma 3.1, by un(·+y 0
n) ⇀ u 0 ̸= 0 in H1(R3)

and equation (3.12), we can obtain that J ′(u 0) = 0 and∫
R3

|∇un|2 =

∫
R3

|∇un(·+ y 0
n)|2 −→

∫
R3

|∇u 0|2.

Finally, let
z1n(x) = un(x)− u 0(x− y 0

n).

Then, by the Brezis-Lieb lemma, we obtain

∥z1n∥ = ∥un∥2 − ∥u 0∥2 + o (1),

|z1n|
p+1
p+1 = |un|p+1

p+1 − |u 0|p+1
p+1 + o (1),

which implies that

J(un) =
1

2
∥un∥2 +

b

4

(∫
R3

|∇un|2
)2

− 1

p+ 1

∫
R3

|un|p+1

=
1

2
∥z1n∥2 +

1

2
∥u 0∥2 + b

4

(∫
R3

|∇u 0|2
)2

− 1

p+ 1

∫
R3

|z1n|p+1 − 1

p+ 1

∫
R3

|u 0|p+1

= J(u 0) + I∞(z1n) + o (1).

For all h ∈ H1(R3), we have

o (1)∥h∥ = ⟨J ′(un(·)), h(·)⟩ = ⟨un(·), h(·)⟩
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+ b

∫
R3

|∇un(·)|2
∫
R3

∇un(·)∇h(·)

−
∫
R3

|un(·)|p−1un(·)h(·)

= ⟨u 0(· − y 0
n), h(·)⟩

+ b

∫
R3

|∇u 0(· − y 0
n)|2

∫
R3

∇u 0(· − y 0
n)∇h(·)

−
∫
R3

|u 0(· − y 0
n)|p−1u(· − y 0

n)h(·)

+ ⟨z1n(·), h⟩ −
∫
R3

|z1n(·)|p−1z1n(·)h(·) + o (1)∥h∥

= ⟨J ′(u 0(· − y 0
n)), h(·)⟩+ ⟨I ′∞(z1n), h⟩+ o (1)∥h∥,

from which it follows that

I ′∞(z1n) = o (1) in H−1.

Moreover, by J ′(u 0) = 0, we obtain

0 = ⟨J ′(un), un⟩ = ⟨I ′∞(z1n), z
1
n⟩+ o (1),

which yields
⟨I ′∞(z1n), z

1
n⟩ = o (1).

Now, if z1n → 0 in H1(R3), then we are done. Otherwise, z1n ⇀ 0,
not strongly, and we repeat the argument. By iterating this procedure
in a manner similar to that of Case 1, we obtain sequences of points
yjn ∈ R3 such that

|y j
n| −→ +∞, |y j

n − yin| −→ +∞

if i ̸= j and a sequence of

zjn(x) = zj−1
n (x)− uj−1(x− y j−1

n )

with j ≥ 2 such that

zjn(x+ y j
n) ⇀ uj(x) in H1(R3),

I ′∞(uj) = 0. Thus,

I(un) = J(u0) +
k∑

j=1

I∞(uj) + o (1).
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Since I∞(uj) ≥ m∞ for all j and I(un) is bounded, the iteration must
stop at some finite index k. �

Remark 3.3. Problem (SK∞) has nontrivial solutions for 3 < p < 5,
see [9]. To our knowledge, if u0 is a nontrivial solution of this problem,
J(u0) ≥ mSK∞ , where mSK∞ is the ground state solution energy. We
obtain

J(u) =
1

2

∫
R3

(|∇u|2 + u2) +
b

4

(∫
R3

|∇u|2
)2

− 1

p+ 1

∫
R3

|u|p+1 >
1

2

∫
R3

(|∇u|2 + u2)− 1

p+ 1

∫
R3

|u|p+1

= I∞(u),

which implies that mSK∞ > m∞.

Remark 3.4. We have given a nontrivial solution u of problem (SK)
in Case 1. If Case 2 occurs, the smallest level c must be

c = mSK∞ ;

Case 2 holds for k = 0. Alternatively, if u (u = u+ − u−) is a solution
of (SK∞), then any of u+ or u− are not. Because of this, and the fact
that we know little about the bounded state solution of this problem,
the next level c which satisfies Case 2 is unknown.

Corollary 3.5. Assume that {un} is a (PS)c sequence. Then {un} is
relatively compact for all c ∈ (0,m∞].

Proof. Let us consider a (PS)c sequence {un} and apply Lemma 3.2
to it, assuming that I∞(uj) ≥ m∞ for all j and I(u) > 0. Thus,

lim
n→+∞

I(un) = c ≤ m∞.

Case 1 (c) gives k = 0, and Case 2 cannot hold for m∞ < mSK∞ .
Therefore, un → u in H1(R3) follows. �

4. The proof of Theorem 1.1. Now, we are in a position to show
our main result.



348 QILIN XIE AND SHIWANG MA

Proof of Theorem 1.1. To prove the existence of a ground state
solution of (SK), we need to make sure that

(4.1) m ≤ m∞.

If equation (4.1) holds, then by Corollary 3.5, it is easy to see that
m is achieved by a function u (passing to |u|) that is positive and
solves (SK). To obtain equation (4.1), we test I with the projection
on N , twa of the minimizer wa of Ia on Na. By virtue of Lemma 2.4,
we get t ≥ 1, which, together with equation (2.1), implies that

m ≤ I(twa) =
1

2
∥twa∥2(4.2)

+
b

4

(∫
R3

|∇twa|2
)2

− 1

p+ 1

∫
R3

a(x)|twa|p+1

=
1

4
∥twa∥2 +

(
1

4
− 1

p+ 1

)∫
R3

a(x)|twa|p+1

≤ tp+1

[
1

4
∥wa∥2 +

(
1

4
− 1

p+ 1

)∫
R3

a(x)|wa|p+1

]
= tp+1

(
1

2
∥wa∥2 −

1

p+ 1

∫
R3

a(x)|wa|p+1

)
= tp+1

(
1

2
− 1

p+ 1

)
∥wa∥2 = tp+1ma.

For wa ∈ Na and t ≥ 1, we obtain

0 = t2∥wa∥2 + t4b

(∫
R3

|∇wa|2
)2

− tp+1

∫
R3

a(x)|wa|p+1

≤ t4∥wa∥2 + t4b

(∫
R3

|∇wa|2
)2

− tp+1∥wa∥2

≤ t4∥wa∥2 + t4b∥wa∥4 − tp+1∥wa∥2,

which implies

t ≤ (1 + b∥wa∥2
)1/(p−3)

=

(
1 +

2(p+ 1)

p− 1
bma

)1/(p−3)

(4.3)

:= (1 + νbma)
1/(p−3).
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Using equations (1.2), (4.2) and (4.3), we obtain

m ≤ I(twa) ≤ tp+1ma ≤ (1 + νbma)
(p+1)/(p−3) ≤ m∞.

The proof is complete. �
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