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THE DIFFERENTIAL STRUCTURE OF AN ORBIFOLD

JORDAN WATTS

ABSTRACT. We prove that the underlying set of an orb-
ifold equipped with the ring of smooth real-valued functions
completely determines the orbifold atlas. Consequently, we
obtain an essentially injective functor from orbifolds to dif-
ferential spaces.

1. Introduction. Consider an (effective) orbifold X; that is, in
particular, a space that locally is the quotient of a smooth manifold
by an effective finite Lie group action. The family of all “smooth”
functions consists of real-valued functions on X that locally lift to
these manifolds as smooth functions invariant under the finite group
actions. This family is an example of a (Sikorski) differential structure
(see Definition 2.1). The purpose of this paper is to prove the next
theorem.

Main theorem. Given an orbifold, its orbifold atlas can be con-
structed out of invariants of the differential structure.

This result can be tailored to be in the form of a functor from
the “category of orbifolds” to differential spaces, which is essentially
injective on objects. Of course, the “category of orbifolds” has a number
of different definitions, depending on one’s perspective. There is the
classical “category” defined by Satake [25] and further developed by
Thurston [30] and Haefliger [9]. There are subtle differences between
the definitions given by Satake and Haefliger, but we choose not to
expand upon these here. (Reference [12] does deal with this subtlety,
however). There is also the category of effective proper étale Lie
groupoids (with various choices for the arrows), or the corresponding
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2-subcategory of geometric stacks, see, for example, [11, 16, 19, 20,
21, 24]. Choosing to use the weak 2-category of Lie groupoids with
bibundles as arrows, we have:

Theorem A. There is a functor F from the weak 2-category of effective
proper étale Lie groupoids with bibundles as arrows to differential
spaces that is essentially injective on objects.

Here, essentially injective means that, given two objects G and H
such that

F (G) ∼= F (H),

we have
G ≃ H,

where in this case ≃ means Morita equivalent. It should be noted that
this functor is neither full nor faithful (see Example 7.2, which consists
of [12, Examples 24, 25]). The other modifications of the category
of Lie groupoids (including stacks) mentioned in the references listed
above will yield a similar theorem.

In [12], Iglesias-Zemmour, Karshon and Zadka define the notion of
a “diffeological orbifold” and show that this agrees with the classical
definitions as found in [9, 25]. Using this, we show:

Theorem B. There is a functorG from the weak 2-category of effective
proper étale Lie groupoids with bibundles as arrows to diffeological
spaces that is essentially injective on objects.

We give two proofs of this. The first uses the fact that G is
the restriction of a more general functor from the weak 2-category
of Lie groupoids to diffeological spaces introduced in [32, Section
4]. The essential injectivity follows immediately from the work of
Iglesias-Zemmour, et al. The second proof of the essential injectivity
of Theorem B uses the fact that the functor F in Theorem A factors
as Φ ◦ G, where Φ is a faithful functor from diffeological spaces to
differential spaces sending a diffeological space to its underlying set
equipped with the ring of diffeologically smooth functions, see [2]
and [31, Chapter 2]. Both Theorem A and Theorem B rely on a
known correspondence between effective proper étale Lie groupoids
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and orbifolds in the classical sense, see Remark 6.2. For more on
the relationship between Lie groupoids and diffeological spaces, see
[14, 32].

The central idea behind the proof of the main theorem is as follows.
To reconstruct the orbifold, one needs three ingredients: the topology,
the orbifold stratification and the order of points at codimension-2
strata (see Definition 5.3). We show that all three of these are invariants
of the differential structure of an orbifold. This fact for the topology
and, locally, the stratification are more or less already known. We give
a local-to-global argument for the stratification in Theorem 4.14 and
use codimensions of germs of functions (similar to Milnor numbers)
to obtain that the order of a point is an invariant of the differential
structure in Proposition 5.8. From here, a method proved by Haefliger
and Ngoc Du [10] is used to reconstruct the local isotropy groups, and
an argument by induction on the dimension of the orbifold is used to
reconstruct the charts.

Differential spaces were introduced by Sikorski in 1967 [27, 28], and
the theory was further developed by many since then, oftentimes under
different names (see, for example, Schwarz [26], Śniatycki [29] and
Aronszajn [1]). When dealing with quotient spaces such as orbifolds,
the differential structure is induced by the diffeology, which in turn is
induced by the corresponding Lie groupoid/stack. Thus, the differential
structure is a fairly weak structure in this setting. It is equivalent to
the corresponding Frölicher space structure, see [5].

The fact that Theorem A is true given Theorem B is a priori
unexpected. Indeed, consider orbifolds of the form X = Rn/Γ. As
mentioned above, the differential structure on X is induced by the
diffeological structure, but this relationship is definitely not one-to-one
when looking at general group actions. In fact, the differential structure
on Rn/O(n) is independent of n, while the diffeology is dependent on
n, see Example 7.7. What we can conclude from this is that there is
something special about the underlying (local) semi-algebraic structure
of an orbifold (equipped with its natural differential structure) that
allows us to reconstruct the original orbifold atlas.

This paper is broken down as follows. Section 2 reviews the relevant
theory of differential spaces. Section 3 reviews the definition of an
orbifold, defines its differential structure and develops properties of it.
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Section 4 discusses the natural stratification of an orbifold, and here we
prove that this stratification is an invariant of the differential structure
(Corollary 4.15). In Section 5, we prove that the order of a point is an
invariant of the differential structure (Theorem 5.10), reconstruct the
isotropy groups (Theorem 5.5) and reconstruct the charts (the proof
of the main theorem). Section 6 contains the proof of Theorem A.
Section 7 contains both proofs of Theorem B.

Similar unpublished work for orbifolds whose isotropy groups are
reflection-free or completely generated by reflections has been done by
Moshe Zadka (see [12, introduction]), although this is not available as
a preprint, and the author has not seen it.

2. Review of differential spaces. In this section, we review the
basics of differential spaces and give relevant examples. For a more
detailed presentation of differential spaces, see [29] or [31, subsection
2.2].

Definition 2.1 (Differential space). Let X be a set. A (Sikorski)
differential structure is a family F of real-valued functions on X
satisfying the following two conditions:

(1) (Smooth compatibility). For any positive integer k, functions
f1, . . . , fk ∈ F , and g ∈ C∞(Rk), the composition g(f1, . . . , fk)
is contained in F .

(2) (Locality). Equip X with the weakest topology for which each
f ∈ F is continuous. Let f : X → R be a function such that
there exist an open cover {Uα} of X and, for each α, a function
gα ∈ F satisfying

f |Uα = gα|Uα .

Then f ∈ F .

The topology in the locality condition is called the functional topology
(or initial topology) induced by F . A set X equipped with a differential
structure F is called a (Sikorski) differential space and is denoted by
(X,F).
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Definition 2.2 (Functionally smooth map). Let (X,FX) and (Y,FY )
be two differential spaces. A map

F : X −→ Y

is functionally smooth if F ∗FY ⊆ FX . The map F is called a functional
diffeomorphism if it is a bijection and both it and its inverse are smooth.

Remark 2.3. Differential spaces along with functionally smooth maps
form a category, which we denote by DiffSp. Except where it would be
ambiguous, “functional” and “functionally” will be dropped henceforth.

Definition 2.4 (Differential subspace). Let (X,F) be a differential
space, and let Y ⊆ X be any subset. Then Y comes equipped with a
differential structure FY induced by F as follows. A function f ∈ FY

if and only if there is a covering {Uα} of Y by open sets of X such that,
for each α, there exists gα ∈ F satisfying

f |Uα∩Y = gα|Uα∩Y .

We call (Y,FY ) a differential subspace of X. The functional topology
on Y induced by FY coincides with the subspace topology on Y , see
[31, Lemma 2.28]. If Y is a closed differential subspace of Rn, then
FY is the set of restrictions of smooth functions on Rn to Y , see [31,
Proposition 2.36].

Definition 2.5 (Subcartesian space). A subcartesian space is a para-
compact, second-countable, Hausdorff differential space (S,C∞(S))
with an open cover {Uα} such that, for each α, there exist nα ∈ N
and a diffeomorphism

φα : Uα −→ Ũα ⊆ Rnα

onto a differential subspace Ũα of Rnα .

Example 2.6 (Some semi-algebraic varieties). Let k be a positive
integer. Define

Sk := {(x, y) ∈ R2 | y2 − xk = 0, x ≥ 0}.

Then Sk is a closed differential subspace of R2, with a differential
structure given by all real-valued functions that extend to a smooth
function on R2.
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Similarly, define

Ck := {(x, y, z) | x2 + y2 = zk, z ≥ 0}.

Then Ck is a closed differential subspace of R3, and hence, its differ-
ential structure is given by restrictions of smooth functions on R3. We
will encounter these spaces again in later examples. ♢

Definition 2.7 (Quotient differential structure). Let (X,F) be a
differential space, let ∼ be an equivalence relation on X, and let

π : X −→ X/∼

be the quotient map. Then X/∼ obtains a differential structure F∼,
called the quotient differential structure, comprising all functions

f : X/∼−→ R,

each of whose pullback by π is in F . In general, the functional topology
generated by F∼ is coarser than the quotient topology.

Example 2.8 (Orbit space). Let K be a Lie group acting on a
manifoldM . Then the quotient differential structure on the orbit space
M/K consists of all functions, each of which pulls back to aK-invariant
smooth function on M .

Continuing this example, if K is a compact group, or if K acts on
M properly, then M/K is in fact a subcartesian space. Indeed, by the
local nature of a subcartesian space and the slice theorem [15, 22], it
is enough to consider K as a subgroup of O(n) acting on Rn. By a
theorem of Schwarz [26], the Hilbert map

σ = (σ1, . . . , σk) : Rn −→ Rk,

where σ1, . . . , σk is a minimal generating set of the ring of K-invariant
polynomials, descends to a proper topological embedding of Rn/K as
a closed subset of Rk. Moreover,

σ∗(C∞(Rk)) = C∞(Rn)K ,

which implies that the quotient differential structure on Rn/K is equal
to the subcartesian structure induced by Rk. ♢
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3. Orbifolds and their differential structures. We begin this
section with the classical definition of an orbifold, based on the presen-
tation in Moerdijk-Pronk [21, Section 1]. We then discuss its natural
differential structure.

Definition 3.1 ((Effective) orbifold). Let X be a Hausdorff, paracom-
pact, second-countable topological space. Fix a non-negative integer n.

(1) An n-dimension orbifold chart on X is a triple (U,Γ, ϕ) where
U ⊆ Rn is an open subset, Γ is a finite group of diffeomorphisms
of U , and ϕ is a Γ-invariant map

ϕ : U −→ X

that induces a homeomorphism U/Γ → φ(U).
(2) An embedding

λ : (U,Γ, ϕ) −→ (V,∆, ψ)

between two charts is smooth

λ : U −→ V

such that ψ ◦ λ = ϕ.
(3) An n-dimensional orbifold atlas onX is a family U of n-dimensional

orbifold charts that cover X and are locally compatible. This last
condition means that, for any two charts (U,Γ, ϕ) and (V,∆, ψ) in
U , there is a family of charts

{(Wα,Γα, χα)}

with embeddings

(Wα,Γα, χα) −→ (U,Γ, ϕ)

and

(Wα,Γα, χα) −→ (V,∆, ψ)

for each α, and the collection {χα(Wα)} forms an open cover of
ϕ(U) ∩ ψ(V ).

(4) An orbifold atlas U refines another orbifold atlas V if, for any chart
in U , there is an embedding of the chart into a chart of V. If there
exists a common refinement of U and V, then we say that the
two atlases are equivalent. This forms an equivalence relation on
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all atlases of X. Each such equivalence class is represented by a
maximal atlas.

(5) An (effective) orbifold (X,U) of dimension n is a Hausdorff, para-
compact, second-countable space X equipped with a maximal n-
dimensional atlas U .

(6) Let (X,U) and (Y,V) be orbifolds. Then a map

F : X −→ Y

is orbifold smooth if, for any x ∈ X, there exist charts (U,Γ, ϕ)
about x and (V,∆, ψ) about F (x) such that

F (ϕ(U)) ⊆ ψ(V ),

and there exists a smooth map

F̃ : U −→ V

such that ψ ◦ F̃ = F ◦ϕ. If F is orbifold smooth and invertible with
orbifold smooth inverse, then F is an orbifold diffeomorphism.

Remark 3.2.

(1) The topology on an orbifold is locally compact, and, since it is
Hausdorff and second-countable, it follows that the topology is
also normal.

(2) Let X be an orbifold, and

λ : (W,∆, χ) −→ (U,Γ, ϕ)

an embedding of charts. Then λ induces a group monomor-
phism λ : ∆ → Γ such that, for any w ∈W and δ ∈ ∆,

λ(δ · w) = λ(δ) · λ(w).

Moreover, if γ ∈ Γ such that

λ(U) ∩ γ · λ(U) ̸= ∅,

then γ is in the image of λ. In particular, for any w ∈ W , λ
induces a group isomorphism between the stabilizer of w and
that of λ(w), see [21, Appendix]. A similar statement appears
as Lemma 17 of [12].
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Example 3.3 (Reflections and rotations in the plane–Part I). Let Dk

be the dihedral group of order 2k. It is generated by β1 and β2, both
of which have order 2, and such that (β2β1)

k is the identity. β1 acts on
C ∼= R2 by conjugation

z 7−→ z,

and β2 by
z 7−→ e2πi/kz.

The resulting orbit space R2/Dk is an example of an orbifold.

Similarly, let Zk be the cyclic group of order k. It is generated by
α, which has order k. It acts on C ∼= R2 by

z 7−→ e2πi/kz.

We obtain the orbifold R2/Zk. ♢

Theorem 3.4 (A theorem of Leonardo di Vinci–Finite group actions
on the plane). Let Γ ⊂ O(2) be a finite group acting orthogonally on
the plane. Then Γ is isomorphic as a group to a dihedral group Dk or
to a cyclic group Zk.

Proof. The cyclic and dihedral groups are the only finite Lie sub-
groups of O(2). See, for example, [33, pages 66, 99] for a reference
attributing this discovery to di Vinci. �

Remark 3.5. Due to Theorem 3.4 and the fact that any finite
linear group action on the plane can be transformed equivariant-
diffeomorphically into an orthogonal group action (one can always con-
struct an invariant metric) we conclude that any two-dimensional orb-
ifold locally looks like R2/Dk or R2/Zk for some k.

Definition 3.6 (Isotropy group). Let X be an orbifold of dimension n,
and let x ∈ X. Then an isotropy group of X at x is a finite subgroup Γx

of GL(Rn) such that there exists a chart (Rn,Γx, ϕ) satisfying ϕ(0) = x.

Remark 3.7. An isotropy group exists at every point x ∈ X and can
be obtained using the slice theorem. It is unique up to conjugation
in GL(Rn) (see [20, pages 39, 40]). Moreover, we may assume that
Γx ∈ O(n) if needed.
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Definition 3.8 (Differential structure on an orbifold). Let X be an
n-dimensional orbifold. Then the orbifold differential structure C∞(X)
on X is given by real-valued functions

f : X −→ R

satisfying the following: given a chart (U,Γ, ϕ) of X, there exists a
smooth Γ-invariant function

gU : U −→ R

such that gU = ϕ∗f .

Proposition 3.9 (Properties of the orbifold differential structure). Let
X be an orbifold.

(1) The corresponding functional topology on X equals the orbifold
topology.

(2) C∞(X) equals the ring of orbifold smooth functions.
(3) (X,C∞(X)) is subcartesian.

Proof.

(1) A basis for the topology on X induced by its orbifold structure is
given by the union over all charts (U,Γ, ϕ) of each quotient topology
on ϕ(U). But by Example 2.8 and Definition 2.4, this is also a basis
for the topology induced by C∞(X).

(2) This is immediate from the definitions.
(3) This is a direct consequence of Example 2.8 and Definition 3.8. �

Remark 3.10. It follows from Proposition 3.9 that the orbifold dif-
ferential structure depends only on the natural differential structure of
the (local) semi-algebraic variety underlying the orbifold.

Example 3.11 (Reflections and rotations in the plane–Part II). Con-
tinuing example Example 3.3, a minimal generating set for the ring of
Dk-invariant real polynomials on C ∼= R2 is given by {δ1, δ2} where
δ1(z) = |z|2 and δ2(z) = ℜ(zk). The resulting orbifold embeds into R2

as the semi-algebraic variety

Rk := {(s, t) | t2 ≤ sk, s ≥ 0}.
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Similarly, a minimal generating set for the ring of Zk-invariant real
polynomials on C ∼= R2 is given by {σ1, σ2, σ3} where σ1 = ℜ(zk),
σ2 = ℑ(zk) and σ3 = |z|2. The resulting orbifold embeds into R3 as
the semi-algebraic variety

Ck := {(s, t, u) | s2 + t2 = uk, u ≥ 0}.

This is the same differential subspace Ck introduced in Example 2.6. ♢

4. The stratification of an orbifold. In this section, we review
stratified spaces from the perspective of subcartesian spaces. For more
details, see [17] and [29, Chapter 4]. For a general introduction
to stratified spaces, see [23]. The main results of this section are
Theorem 4.14 and Corollary 4.15. The theorem states that the orbifold
stratification is induced by the family of vector fields on the orbifold,
which uses the theory of vector fields on subcartesian spaces developed
by Śniatycki, see [29]. The corollary uses the fact that the family of
vector fields of a subcartesian space is an invariant of the differential
structure, and thus, the orbifold stratification is an invariant of the
orbifold differential structure.

Definition 4.1 (Smooth stratification). Let S be a subcartesian space.
Then a smooth stratification of S is a locally finite partition M of S
into locally closed and connected (embedded) submanifolds M , called
the strata of M, which satisfy the following frontier condition.

Frontier condition: For any M and M ′ in M, if
M ′ ∩M ̸= ∅, then either M =M ′ or M ′ ⊆M rM .

Example 4.2 (Orbit-type stratification–Part I). Let K be a Lie group
acting properly on a manifold M . Define for any closed subgroup H of
K the subset of orbit-type (H) by

M(H) := {x ∈M | there exists k ∈ K such that StabK(x) = kHk−1}.

Then the collection of all connected components of all (non-empty)
subsets M(H) form a smooth stratification of M , called the orbit-type
stratification, see [7, Theorem 2.7.4]. Moreover, this stratification
descends via the quotient map

π :M −→M/K
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to a smooth stratification on M/K, in which the strata are connected
components of π(M(H)) as H runs over closed subgroups of K such
that M(H) is non-empty (see [29, Theorem 4.3.5]). ♢

Definition 4.3 (Orbifold stratification). Let X be an orbifold. Then
X admits a stratification, called the orbifold stratification given locally
as follows. Let (U,Γ, ϕ) be a chart. Then the orbit-type stratification
on U descends to a stratification on U/Γ, and hence, on ϕ(U).

Lemma 4.4 (Orbifold stratification is well-defined). Given an orbifold
X, the orbifold stratification is independent of the charts of X, that is,
it is well-defined. Moreover, it is a smooth stratification in the sense of
Definition 4.1.

Proof. For any chart (U,Γ, ϕ) of X, the orbit-type stratification
on U descends to a smooth stratification on ϕ(U), see Example 4.2.
Since the conditions of a stratification are local, we can construct a
global stratification by piecing together the stratifications on each open
set ϕ(U) for each chart (U,Γ, ϕ). We only need to show that this
stratification is independent of the chart.

To this end, let n be the dimension of X. Fix two charts (U,Γ, ϕ)
and (W,∆, ψ) such that there is an embedding

λ : (W,∆, ψ) −→ (U,Γ, ϕ).

We want to show that the strata of ψ(W ) match up with those of ϕ(U)
via the inclusion ψ(W ) ⊆ ϕ(U). To accomplish this, it is enough to
show that λ induces a one-to-one correspondence between the orbit-
type strata on W and the connected components of the intersection of
orbit-type strata of U with λ(W ).

By Remark 3.2 (2), there is a group monomorphism

λ : ∆ −→ Γ

such that λ(δ · w) = λ(δ) · λ(w) for all δ ∈ ∆, and for any w ∈ W ,
we have that λ induces a group isomorphism between Stab∆(w) and
StabΓ(λ(w)). It follows that λ preserves orbit-types, and since λ is
continuous and continuous maps preserve connectedness, we have that
λ maps strata into connected components of the orbit-type strata of U
that intersect λ(W ).
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Since
λ−1 : λ(W ) −→W

is also an embedding, we have that it maps strata of the λ(∆)-action on
λ(W ) into strata ofW . Let u ∈ U(H)∩λ(W ) with stabilizer H ⊆ Γ. By

Remark 3.2 (2), H must be a subgroup of λ(∆), and it is the stabilizer
of u with respect to the action of λ(∆). We conclude that

U(H) ∩ λ(W ) = λ(W )(H),

and this completes the proof. �

Remark 4.5. Given an orbifold X with a chart (U,Γ, ϕ) in which U is
connected, there is an open, dense stratum of ϕ(U), the codimension-
0 stratum. The union of all of these yields an open and dense
codimension-0 stratum of X, which is a manifold whose dimension
equals the dimension of X. Note that the dimension of X is thus a
topological invariant of it. Indeed, the topological dimension at almost
every x ∈ X is equal to the dimension of X.

Definition 4.6 (Refinements and minimality). Let S be a subcartesian
space, and let M and M′ be smooth stratifications on it. Then M is
said to refine M′ if, for every M ∈ M, there exists an M ′ ∈ M′

such that M ⊆ M ′. If M is not a refinement of any other smooth
stratification on S, then we say that M is minimal.

Example 4.7 (Orbit-type stratification–Part II). Let K be a non-
trivial Lie group acting properly and effectively on a manifoldM . Then
the orbit-type stratification on M is not generally minimal (as the set
of connected components ofM itself refines it). On the other hand, the
induced stratification onM/K is minimal. This is a result of Bierstone,
see [3, 4].

Definition 4.8 (Smooth local triviality). Let S be a subcartesian
space, and let M be a smooth stratification on S. Then S is smoothly
locally trivial if, for every M ∈ M and x ∈M ,

(1) there is an open neighborhood U of x such that the partition of U
into manifolds N ∩ U (N ∈ M) yields a stratification of U ,

(2) there exists a subcartesian space S′ with smooth stratification M′

which contains a singleton set {y} ⊆ M′,
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(3) there exists a strata-preserving diffeomorphism

φ : U −→ (M ∩ U)× S′

sending x to (x, y).

Note that the strata of (M ∩U)× S′ are the sets (M ∩U)×M ′ where
M ′ ∈ M′.

Lemma 4.9. Let X be an orbifold. Then the orbifold stratification on
X is smoothly locally trivial.

Proof. Since it is enough to prove this locally, we may focus on a
chart (U,Γ, ϕ) of X. By Remark 3.7, we may assume that U = Rn, on
which Γ acts orthogonally. Thus, we may apply the result [29, Lemma
4.3.6]. �

Definition 4.10 (Tangent bundles and global derivations). Let S be
a subcartesian space.

(1) Given a point x ∈ S, a derivation of C∞(S) at x is a linear map

v : C∞(S) −→ R

that satisfies Leibniz’s rule: for all f, g ∈ C∞(S),

v(fg) = f(x)v(g) + g(x)v(f).

The set of all derivations of C∞(S) at x forms a vector space, called the
(Zariski) tangent space of x and is denoted TxS. Define the (Zariski)
tangent bundle TS to be the (disjoint) union

TS :=
∪
x∈S

TxS.

Denote the canonical projection TS → S by τ .

(2) A (global) derivation of C∞(S) is a linear map

Y : C∞(S) −→ C∞(S)

that satisfies Leibniz’s rule: for any f, g ∈ C∞(S),

Y (fg) = fY (g) + gY (f).

Denote the C∞(S)-module of all derivations by DerC∞(S).
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(3) Fix Y ∈ DerC∞(S) and x ∈ S. An integral curve exp(·Y )(x)
of Y through x is a smooth map from a connected subset IYx ⊆ R
containing 0 to S such that exp(0Y )(x) = x, and for all f ∈ C∞(S)
and t ∈ IYx , we have

d

dt
(f ◦ exp(tY )(x)) = (Y f)(exp(tY )(x)).

An integral curve is maximal if IYx is maximal among the domains of
all such curves. We adopt the convention that the map

c : {0} −→ S : 0 7−→ c(0)

is an integral curve of every global derivation of C∞(S).

Remark 4.11.

(1) TS is a subcartesian space with its differential structure generated
by functions f ◦τ and df where f ∈ C∞(S) and d is the differential
df(v) := v(f). The projection τ is smooth with respect to this
differential structure, see [18, page 4] or [29, Proposition 3.3.3].

(2) Given x ∈ S, the dimension of TxS is invariant under diffeomor-
phism: if φ : S → R is a diffeomorphism of differential spaces, then
R is a subcartesian space, and the dimension of Tφ(x)R is equal to
that of TxS. Indeed, it is not hard to show that the pushforward

φ∗ : TS −→ TR

sending v ∈ TxS to φ∗v ∈ Tφ(x)R is a linear isomorphism on
each tangent space. (Recall that, for any f ∈ C∞(R), we have
φ∗v(f) = v(f ◦ φ).)

(3) Global derivations of C∞(S) are exactly the smooth sections of

τ : TS −→ S,

see [29, Proposition 3.3.5].
(4) Let Y ∈ DerC∞(S). Then, for any x ∈ S, there exists a unique

maximal integral curve exp(·Y )(x) through x, see [29, Theorem
3.2.1].

Definition 4.12 (Vector fields and their orbits). Let S be a subcarte-
sian space.
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(1) LetD be a subset of R×S containing {0}×S such thatD∩(R×{x})
is connected for each x ∈ S. A map

ϕ : D −→ S

is a local flow if D is open, ϕ(0, x) = x for each x ∈ S, and
ϕ(t, ϕ(s, x)) = ϕ(t + s, x) for all x ∈ S and s, t ∈ R for which
both sides are defined.

(2) A vector field on S is a derivation Y of C∞(S) such that the map

(t, x) 7−→ exp(tY )(x),

sending (t, x) to the maximal integral curve of Y through x evalu-
ated at t, is a local flow. Denote the set of all vector fields on S by
vect(S).

(3) Let S be a subcartesian space, and let M be a smooth stratification
of it. Then, the pair (S,M) is said to admit local extensions of
vector fields if for any stratum M ∈ M, any vector field XM on
M , and any x ∈ M , there exist an open neighborhood U of x and
a vector field X ∈ vect(S) such that XM |U∩M = X|U∩M .

(4) Let S be a subcartesian space. The orbit of vect(S) through a
point x, denoted OS

x , is the set of all points y ∈ S such that there
exist vector fields

Y1, . . . , Yk

and real numbers
t1, . . . , tk ∈ R

satisfying

y = exp(tkYk) ◦ · · · ◦ exp(t1Y1)(x).

Denote by OS the set of all orbits {OS
x | x ∈ S}.

Remark 4.13. Let S be a subcartesian space.

(1) Let R be another subcartesian space, and let F : R → S be a
diffeomorphism. Then F induces a bijection between vect(R)
and vect(S). Indeed, F induces an isomorphism between the
derivations of C∞(R) and those of C∞(S). If Z ∈ vect(R),
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then F∗Z is a vector field on S:

d

dt

∣∣∣
t=t0

F ◦ exp(tZ)(x) = F∗Z|F (x).

The reverse direction also holds, and so the result follows.
(2) vect(S) is a C∞(S)-module, that is, for any f ∈ C∞(S) and

any vector field Y ∈ vect(S), the derivation fY is a vector field,
see [31, Corollary 4.71].

(3) Let M be a smoothly locally trivial smooth stratification of S.
Then (S,M) admits local extensions of vector fields, see [17,
Theorem 4.5] or [29, Proposition 4.1.5].

(4) Let M be a smooth stratification of S. If (S,M) admits local
extensions of vector fields, then the set of orbits OS forms a
stratification of S, of which M is a refinement. In particular,
if M is minimal, then M = OS , see [17, Theorem 4.6] or [29,
Theorem 4.1.6].

(5) Let OS be the set of orbits induced by vect(S). Then, OS is
a stratification of S if and only if it is locally finite and each
O ∈ OS is locally closed in S, see [17, Theorem 4.3] or [29,
Corollary 4.1.3].

Theorem 4.14 (The orbifold stratification is induced by vector fields).
Let X be an orbifold. Then, the orbifold stratification is given by the
set of orbits OX induced by vect(X).

Proof. Let (U,Γ, ϕ) be a chart of X. By Lemma 4.9, the orbifold
stratification on ϕ(U) is smoothly locally trivial. Hence, it admits local
extensions of vector fields by Remark 4.13 (3). Thus, the orbitsOϕ(U) of
vect(ϕ(U)) form a stratification of ϕ(U) which is refined by the orbifold
stratification on ϕ(U) by Remark 4.13 (4). However, since the orbifold
stratification on ϕ(U) is minimal (see Example 4.7), we conclude that
the stratification by orbits Oϕ(U) is equal to the orbifold stratification.

By Lemma 4.4, we already know that the orbifold stratification is
independent of chart. Thus, it remains to show that, for any x ∈ ϕ(U),

we have that O
ϕ(U)
x is a connected component of OX

x ∩ ϕ(U).

We begin with the inclusion

Oϕ(U)
x ⊆ OX

x ∩ ϕ(U).
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Let y ∈ O
ϕ(U)
x . Then there exist vector fields

Y1, . . . , Yk ∈ vect(ϕ(U)) and t1, . . . , tk ∈ R

such that

(4.1) y = exp(tkYk) ◦ · · · ◦ exp(t1Y1)(x).

Fix i ∈ {1, . . . , k}. The path

c : [0, ti] −→ ϕ(U)

defined by

c : s 7−→ exp(sYi) ◦ exp(ti−1Yi−1) ◦ · · · ◦ exp(t1Y1)(x)

has a compact image in ϕ(U). Now, ϕ(U) is open in X, and X is
normal, see Remark 3.2 (1). So, we can find an open neighborhood V
of c([0, ti]) and an open neighborhood W of the complement of ϕ(U)
in X that are disjoint. Let

bi : X −→ R

be a smooth bump function that is equal to 1 on V and has support in
the complement ofW (it follows from Example 2.8 that ϕ(U) ⊂ RN for
some N , and so such a bi can be easily constructed). Then by Remark
4.13 (2), biYi ∈ vect(X). Replacing each vector field Yi with biYi in
equation (4.1), we obtain that y ∈ OX

x .

Now consider the partition P of ϕ(U) by connected components of
O ∩ ϕ(U) for each O ∈ OX . Each element Q of P is an immersed
submanifold of ϕ(U). Moreover, each element Q of P is a finite union
of strata of ϕ(U), and since each of these strata is locally closed, we
have that Q is locally closed. Since, for each x ∈ ϕ(U), we have

Oϕ(U)
x ⊆ OX

x ∩ ϕ(U),

we conclude that P is locally finite. It follows that OX is locally finite
and its elements are locally closed. By Remark 4.13 (5), OX is a smooth
stratification of X. Moreover, P is a smooth stratification of ϕ(U).
Since this stratification is refined by the orbifold stratification of ϕ(U),
which is minimal, we conclude that Oϕ(U) = P . �

Corollary 4.15 (Invariance of stratification). The orbifold stratifica-
tion is an invariant of the orbifold differential structure.
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Proof. This follows from Remark 4.13 (1) and Theorem 4.14. �

Example 4.16 (Reflections and rotations in the plane–Part III).
Continuing Example 3.11, the strata of R2/Dk are given by the origin
{(0, 0)}, the two connected components of

{(s, t) | t2 = sk, s > 0},

and the open dense stratum given by

{(s, t) | t2 > sk, s > 0}.

Note that the codimension-1 and codimension-2 strata (called the
singular strata) together form the set Sk of Example 2.6.

Similarly, the strata of R2/Zk are given by the origin {(0, 0, 0)}, and
the open dense stratum

{(s, t, u) | s2 + t2 = uk, u > 0}. ♢

5. Recovering the charts. We begin with a discussion of orb-
ifold covering spaces, based on [30, Chapter 13]; in particular, we
need universal orbifold covering spaces for the proof of the main theo-
rem. Moreover, these motivate orbifold fundamental groups. In [10],
Haefliger and Ngoc Du show that the orbifold fundamental group can
be obtained using the topology, stratification and orders of points in
codimension-2 strata, see Theorem 5.5. In the previous sections, we
showed that the topology and stratifications are invariants of the orb-
ifold differential structure, and in Proposition 5.8, we show that the
order of a point is also such an invariant. This is important: while
the order of a point in an orbifold may show up as the degree of an
associated defining-polynomial, see Example 5.6, composition with a
diffeomorphism may not yield a polynomial, and so “degree” does not
make sense. We then prove the main theorem at the end of the section.

Definition 5.1 (Orbifold covering space). Let X be an orbifold, and
fix a base point x0 in the codimension-0 stratum of X.

(1) An orbifold covering space ofX is an orbifold X̃ with a base point
x̃0 in its codimension-0 stratum, and an orbifold smooth “projection”

map p : X̃ → X which sends x̃0 to x0. For any x ∈ X, we require that
there be a chart (U,Γ, ϕ) of X with x ∈ ϕ(U), and, for each connected
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component Ci of p−1(ϕ(U)), there is a Γ-equivariant diffeomorphism
Ψi : Ci → U/Γi where Γi ⊆ Γ is a subgroup.

(2) X is called a good orbifold if there exists an orbifold covering
space that is a smooth manifold; otherwise, it is called a bad orbifold.

(3) A universal orbifold covering space of X is a connected orbifold

covering space p : X̃ → X such that, if X̃ ′ is any other orbifold covering

space of X with projection p′ : X̃ ′ → X, then there is a lifting of p via

p′ to a map q : X̃ → X̃ ′ by which X̃ is an orbifold covering space of

X̃ ′.

(4) If p : X̃ → X is a universal orbifold covering space of X with
base point x̃0 ∈ p−1(x0), then, for any other y ∈ p−1(x0), there is a
deck transformation taking x̃0 to y, that is, an orbifold diffeomorphism

f : X̃ → X̃ such that p ◦ f = p and f(x̃0) = y. The group of deck

transformations of X̃ is called the orbifold fundamental group of X.
(See [30, Definition 13.2.5].)

Remark 5.2.

(1) Note that an orbifold covering space of an orbifold X in general is
not a covering space in the topological sense.

(2) If X = M/Γ where M is a simply connected manifold on which
a finite group Γ acts, then M is the universal orbifold covering
space of X. If M is not simply connected, then we can take
its (topological) universal covering space as the universal orbifold
covering space of X.

(3) Let X be an orbifold. Then X has a universal orbifold covering

space X̃, which is unique up to orbifold diffeomorphism. Moreover,

if X is a good orbifold, then X̃ is a simply connected manifold, see
[30, Proposition 13.2.4].

Definition 5.3 (Order of a point). Let X be an orbifold, and let x ∈ X
with isotropy group Γx. Then, the order of x is equal to the order of
the group Γx.

Remark 5.4. It follows from Remark 3.7 that the order of a point is
well-defined.
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Theorem 5.5 (Recovering the groups). Let X be a connected orbifold.
Then, a presentation for the orbifold fundamental group can be con-
structed using the topology, stratification, and the orders of points in
codimension-2 strata.

Proof. This is proved by Haefliger and Ngoc Du [10], see also [6,
subsection 1.3]. We briefly explain the algorithm here. Let Xreg be the
differential subspace ofX consisting of codimension-0 and codimension-
1 strata. Fix a base point x in the codimension-0 stratum. Let G be
the (topological) fundamental group of Xreg with respect to x.

(1) For each codimension-1 stratum Si, and for each homotopy class
µ of paths starting at x and ending on Si, attach a generator βi,µ to G
with relation β2

i,µ = 1.

(2) For each codimension-2 stratumR in the closure of a codimension-
1 stratum, for each pair of codimension-1 strata Si and Si′ with R in
their closures, and for each pair βi,µ and βi′,µ′ , where µ ̸= µ′, as con-
structed in (1) above, add the relation (βi,µβi′,µ′)k = 1 where 2k is the
order of any point in R.

(3) For each codimension-2 stratum Tj not in the closure of a
codimension-1 stratum, let αj be an element of G represented by a
loop starting at x and around Tj . Then add the relation αk

j = 1 to G
where k is the order of any point in Tj .

The resulting group is the orbifold fundamental group of X. �

Example 5.6 (Reflections and rotations in the plane–Part IV). Con-
sider the orbifold R2/Dk. In Example 3.11, we saw that R2/Dk em-
bedded into R2 as the semi-algebraic variety

Rk := {(s, t) | t2 ≤ sk, s ≥ 0},

with its strata listed in Example 4.16. Applying the algorithm in the
proof of Theorem 5.5, we have that the orbifold fundamental group is

⟨β1, β2 | β2
1 = β2

2 = (β1β2)
k = 1⟩.

But this is exactly Dk.
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Similarly, consider the orbifold R2/Zk. In Example 3.11, we saw
that R2/Zk embedded into R3 as the semi-algebraic variety

Ck := {(s, t, u) | s2 + t2 = uk, u ≥ 0},

with its strata listed in Example 4.16. Applying the algorithm in the
proof of Theorem 5.5, we have that the orbifold fundamental group is

⟨α | αk = 1⟩.

This is exactly Zk. ♢

Definition 5.7 (Codimension of a germ). Let En be the R-algebra of
germs of smooth real-valued functions at 0 ∈ Rn:

En = C∞(Rn)/∼

where f ∼ g if there exists an open neighborhood of 0 on which f = g.
(In practice, where it does not cause confusion, we will often identify an
element of En with one of its representatives.) Let f ∈ En, and define
Jf to be the Jacobian ideal of f , which is the ideal of En generated by
the germs of partial derivatives of f at 0:

Jf =

⟨
∂f

∂x1
, . . . ,

∂f

∂xn

⟩
.

The codimension of (the germ of) f at 0, denoted cod(f), is defined to
be the dimension of the quotient algebra En/Jf as a vector space.

Proposition 5.8 (Codimension of a germ is an invariant). Let f ∈
C∞(Rn), with f(0) = a. Assume that 0 is a critical point of f .
Then, the codimension of (the germ of) f at 0 is invariant under
diffeomorphism. In particular, cod(f) is an invariant of the differential
structure on the differential subspace f−1(a) ⊆ Rn.

Proof. The proof that the cod(f) is invariant under diffeomorphism
is an immediate consequence of the chain rule. See [8, Theorem 2.12]
for more details.

Next, let φ be a diffeomorphism between f−1(a) and a differential
space (S,C∞(S)). Then, (S,C∞(S)) is subcartesian. Let x = φ(0) ∈
S. Then, there is an open neighborhood U of x in S and a diffeomor-

phism ψ : U → Ũ where Ũ is a differential subspace of Rm. Without
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loss of generality, we may choose m to be the minimal such integer for
which the diffeomorphism ψ exists. By [18, Lemma 3.4], this is equal
to the dimension of TxS, which is invariant under diffeomorphism by

Remark 4.11 (2). Thus, n ≥ m. If n > m, then embed Ũ ⊆ Rm into
Rn by

(x1, . . . , xm) 7−→ (x1, . . . , xm, 0, . . . , 0).

In either case, we now have a diffeomorphism φ̃ from f−1(a) to Ũ
which are both differential subspaces of Rn. Without loss of generality,
assume that φ̃(0) = 0. By [31, Theorem 6.3], φ̃ extends to a
diffeomorphism from an open neighborhood of 0 ∈ Rn to itself. The
result now follows. �

Example 5.9 (Reflections and rotations in the plane–Part V). Con-
tinuing Example 5.6, recall that the singular strata of the orbit space
R2/Dk are given by the relations

t2 − sk = 0,

s ≥ 0.

The codimension of f(s, t) = t2−sk is computed as follows. The partial
derivatives are

∂f

∂s
(s, t) = −ksk−1 and

∂f

∂t
(s, t) = 2t.

It follows that E2/Jf is generated by

s, s2, . . . , sk−2,

and so cod(f) = k − 2 + 1 = k − 1 (where we add 1 to account for the
constant functions). Note that |Dk| = 2((cod)(f) + 1).

Similarly, recall that R2/Zk is given by the relations

s2 + t2 − uk = 0

u ≥ 0.

The codimension of f(s, t, u) = s2 + t2 − uk is computed as follows.
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The partial derivatives are

∂f

∂s
(s, t, u) = 2s,

∂f

∂t
(s, t, u) = 2t,

and

∂f

∂u
(s, t, u) = −kuk−1.

It follows that E3/Jf is generated by

u, u2, . . . , uk−2

and so cod(f) = k − 2 + 1 = k − 1. Note that |Zk| = cod(f) + 1. ♢

Theorem 5.10 (Order of a point is an invariant). Let X be an orbifold,
and let x ∈ X. If x is in a codimension-2 stratum, then the order of
x is an invariant of the orbifold differential structure. Consequently,
the order of any point of X is an invariant of the orbifold differential
structure.

Proof. Recall that the orbifold stratification is an invariant of the
differential structure by Corollary 4.15. Let n be the dimension of X,
let Γx be an isotropy group of x, and let M be the stratum containing
x. By Lemma 4.9, there is an open neighborhood U of x, a smooth
stratified subcartesian space S′ with a one-point stratum {y}, and a
strata-preserving diffeomorphism U → (M∩U)×S′ sending x to (x, y).
Let (Rn,Γx, ϕ) be a chart at x such that ϕ(0) = x, in which Γx acts
orthogonally. Without loss of generality, assume that U = ϕ(Rn).
Let E = (Rn)Γx be the linear subspace of Γx-fixed points and F an
orthogonal complement to E. Then, since ϕ(0) = x and 0 is a fixed
point, we have that ϕ(E) = M ∩ U . Since Γx acts trivially on E, we
have that

E ∼= Rn−2,

and so F ∼= R2, on which Γx acts with unique fixed point 0. Hence,
by Theorem 3.4, Γx is a dihedral group (if M is in the closure of a
codimension-1 stratum) or a cyclic group (if M is not in the closure of
a codimension-1 stratum). By Example 5.9 and Proposition 5.8, the
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order of Γx can be obtained from invariants of the orbifold differential
structure.

For the second statement, recall that the orbifold fundamental
group of any orbifold can be obtained from the topology, stratification
and orders of points of codimension-2 strata by Theorem 5.5. By
Proposition 3.9 (1), Corollary 4.15, and what was proved above, we have
that the orbifold fundamental group can be obtained from invariants of
the orbifold differential structure. From Remark 5.2 (2), if (Rn,Γx, ϕ) is
a chart of an orbifold X in which x = ϕ(0) and Γx is its isotropy group
(which always exists by Remark 3.7), then the orbifold fundamental
group of ϕ(U) is isomorphic to Γx. Thus, |Γx| can be obtained from
invariants of the orbifold differential structure. �

Definition 5.11 (Link at a point). Let X be an orbifold of dimension
n, and let x ∈ X. Let Γx be an isotropy group of x with associated
chart (Rn,Γx, ϕ). Without loss of generality, assume that Γx ⊂ O(n).
Then Sn−1 is a Γx-invariant set. Define the link at x to be the image
S := ϕ(Sn−1).

Lemma 5.12. Let X be an orbifold of dimension n, and let x ∈ X with
isotropy group Γx. Let (Rn,Γx, ϕ) be a chart with ϕ(0) = x and such
that Γx ⊂ O(n). Then, there is a diffeomorphism ΦS from the link S
at x as a differential subspace of X to Sn−1/Γx, where the action of
Γx on Sn−1 is the restriction of that on Rn in the chart. Moreover, S
has a smooth stratification given by the connected components of S∩M
where M runs over strata of X, and ΦS preserves this with respect to
the orbifold stratification on Sn−1/Γx. Finally, ΦS preserves the orders
of points contained in the codimension-2 strata of S.

Proof. The existence of the diffeomorphism ΦS follows from the
definition of a chart and the following commutative diagram.

Sn−1 //

ϕ|Sn−1

��

Rn

ϕ

��
S // ϕ(Rn)

Let M be a stratum of X, and let y ∈ C ⊆ S ∩ M where C is a
connected component of S ∩M . Then, there exists a subgroup H of Γ
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such that y ∈ ϕ(Rn
(H)). Note that y ̸= ϕ(0). Also, Rn

(H) is a cone, that

is, it is closed under scalar multiplication by non-zero real numbers.
Thus, y ∈ ϕ(Sn−1

(H) ), and since y ∈ C is arbitrary, we have

C ⊆ ϕ(Sn−1
(H) ).

For the opposite inclusion, fix y ∈ Sn−1/Γx, and let H be a subgroup
of Γx such that y ∈ ϕ(Sn−1

(H) ). Then, similar to the previous argument,

y ∈ ϕ(Rn
(H)). Thus, there is a stratum M of the orbifold stratification

onX such that, if C is the connected component of the stratum ϕ(Sn−1
(H) )

containing y, then C ⊆ S ∩M . Finally, the fact that ΦS preserves the
orders of points follows immediately from the definitions. �

Proof of Main theorem. First, recall that the dimension of X is a
topological invariant, see Remark 4.5. Moreover, this topology, the
orbifold stratification and the order of points in codimension-2 strata
are all invariants of the differential structure C∞(X) by Proposition
3.9 (1), Corollary 4.15 and Theorem 5.10, respectively.

If the dimension of X is 0, then X is a countable set of points with
the discrete topology, and the orbifold atlas is trivial.

Now, assume thatX has dimension 1. Then there are no codimension-
2 strata, and applying Theorem 5.5 to X yields the following isotropy
groups Γx at each point x ∈ X:

(i) If x is in the open dense stratum, then Γx = {1}.
(ii) If x is a codimension-1 stratum, then Γx = Z2.

Thus, we can construct the following charts.

(1) If x is in a codimension-0 stratum, then there is an open neighbor-
hood U of x such that

U ∼= R ∼= R/{1},

that is, U is diffeomorphic to a connected open interval of R. We
thus take a chart (R, {1}, ϕ) where ϕ is the diffeomorphism from R
onto U .

(2) If x is equal to a codimension-1 stratum, then there is only one
non-trivial action of Z2 on R given by ±1 · u = ±u. So, we must
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take as a chart near x the triple

(U,Γx, ϕ) = (R,Z2, ϕ)

where ϕ : R → ϕ(U) is the quotient map of this Z2-action.

This completes the one-dimensional case.

Next, assume that the dimension of X is 2. Applying Theorem 5.5
to X yields the following four possible isotropy groups Γx at each point
x ∈ X:

(i) If x is in a codimension-0 stratum, then Γx = {1}.
(ii) If x is in a codimension-1 stratum, then Γx = Z2.
(iii) If x is equal to a codimension-2 stratum that is in the closure of

a codimension-1 stratum, and the order of x is 2k, then Γx = Dk.
(iv) If x is equal to a codimension-2 stratum that is not in the closure

of a codimension-1 stratum, and the order of x is k, then Γx = Zk.

We construct the following charts.

(1) If x is in a codimension-0 stratum, then there is an open neighbor-
hood U of x such that U ∼= R2 ∼= R2/{1}. Similar to what was
done for the one-dimensional case, take (R2, {1}, ϕ) to be a chart.

(2) If x is in a codimension-1 stratum, then there is an open neigh-
borhood U of x such that U ∼= R2/Z2 where Z2 acts by reflection
through some line passing through the origin.

(3) If x is equal to a codimension-2 stratum that is in the closure of a
codimension-1 stratum, and the order of x is 2k, then we take as
a chart near x the triple (R2, Dk, ϕ) where Dk acts on R2

∼= C by
reflections, see Example 3.3.

(4) If x is equal to a codimension-2 stratum that is not in the closure
of a codimension-1 stratum, and the order of x is k, then we take
as a chart near x the triple (R2,Zk, ϕ) where Zk acts on R2 ∼= C
by rotations, see Example 3.3.

By Theorem 3.4 and Remark 3.5, this exhausts all the possible
scenarios in the two-dimensional case.

Now, as an induction hypothesis, assume that we can reconstruct
an atlas for any orbifold of dimension n. Let X be an orbifold of
dimension n+1. Fix x ∈ X, and let Γx be its isotropy group at x. Our
goal is to reconstruct a chart (Rn+1,Γx, ϕ) about x such that ϕ(0) = x.
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Let S be the link at x. By Lemma 5.12, there is a strata-preserving
diffeomorphism that preserves the order of points on codimension-2
strata from S to Sn/Γx for some action of Γx on Sn. By our induction
hypothesis, we now have enough information on S to obtain an orbifold
atlas on S.

Now, S is a good orbifold. Thus, by Remark 5.2 (3), there is a
simply-connected manifold that serves as a universal orbifold covering
space for S, and this is unique up to equivariant diffeomorphism. Hence
(safely assuming that n ≥ 2), Sn is the universal orbifold covering space
for S, with the action of Γx given by deck transformations. Extend this
action to the unique orthogonal action of Γx on Rn+1 such that

γ · x :=

{
0 if x = 0,

|x|(γ · x/|x|) if x ̸= 0.

This finishes the construction of the chart (Rn+1,Γx, ϕ). Since x ∈ X
is arbitrary, we are done. �

6. Proof of Theorem A. The purpose of this section is to express
the main theorem in terms of a functor. We choose to use the weak 2-
category of effective proper étale Lie groupoids with bibundles as arrows
and isomorphisms of bibundles as 2-arrows. We give the definition of
these objects, arrows and 2-arrows, but the reader should consult [16]
for a more detailed exposition. Similar categories have been developed,
toward which the main theorem could be tailored, which we shall not
do here. These categories include that of Hilsum-Skandalis [11], as well
as the calculus of fractions developed by Pronk [24].

Set G = (G1 ⇒ G0) as our notation for a Lie groupoid, with
s : G1 → G0 and t : G1 → G0 the source and target maps, respectively.

Definition 6.1 (Effective proper étale Lie groupoid).

(1) Let G be a Lie groupoid. Then G is étale if the source and target
maps are local diffeomorphisms.

(2) Let M be a manifold. Denote the topological groupoid with
objects the set of points of M and arrows the space of germs of (local)
diffeomorphisms equipped with the sheaf topology by Γ(M). This is
an étale groupoid in the topological sense, i.e., the source and target
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maps are local homeomorphisms. It attains a smooth structure via
these local homeomorphisms.

(3) Let G be an étale Lie groupoid, and let Γ(G0) be the groupoid of
germs associated to G0. Then, for each arrow (g : x → y) ∈ G1, there
exist an open neighborhood U of g and a diffeomorphism

ϕg = t|U ◦ (s|U )−1.

The germ of ϕg is an element of Γ(G0), and we have a smooth functor
γ : G → Γ(G0), sending g to ϕg, and objects to themselves. G is
effective if γ is faithful.

(4) A Lie groupoid G is proper if the smooth functor (s, t) : G1 →
G0 ×G0 is a proper map between manifolds.

Remark 6.2. Any effective proper étale Lie groupoid is Morita equiv-
alent to the effective groupoid associated to an orbifold constructed
using pseudogroups. This construction yields a one-to-one correspon-
dence between orbifolds in the classical sense and Morita equivalence
classes of effective proper étale Lie groupoids, see [20] for definitions,
details, and a proof ([20, Theorem 5.32]). The important point for
our purposes is that, given one of these groupoids G1 ⇒ G0, the orbit
space G0/G1 is the underlying set of the orbifold.

Definition 6.3 (Bibundle).

(1) Let G = (G1 ⇒ G0) and H = (H1 ⇒ H0) be Lie groupoids.
Then, a bibundle P : G → H is a manifold P equipped with a left
groupoid action of G with anchor map aL : P → G0 and a right
groupoid action of H with anchor map aR : P → H0 such that the
following are satisfied.

(a) The two actions commute.
(b) aL : P → G0 is a principal (right) H-bundle.
(c) aR is G-invariant.

G1

����

P

aL

~~~~
~~
~~
~~ aR

  A
AA

AA
AA

A H1

����
G0 H0
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(2) Let G and H be Lie groupoids, and let P : G → H and
Q : G → H be bibundles between them. An isomorphism of bibundles
α : P → Q is a diffeomorphism that is (G-H)-equivariant, that is,
α(h · p · g) = h · α(p) · g.

(3) Let G = (G1 ⇒ G0) and H = (H1 ⇒ H0) be Lie groupoids,
and let P : G → H be a bibundle between them. P is invertible if
its right anchor map aR : P → H0 makes P into a principal (left)
G-bundle, defined similarly to a principal (right) bundle. In this case,
we can construct a bibundle P−1 : H → G by switching the anchor
maps, inverting the left G-action into a right G-action, and doing the
opposite for the H-action. Then, P ◦P−1 is isomorphic to the bibundle
corresponding to the identity map on H, and P−1◦P isomorphic to the
bibundle representing the identity map on G. In the case that G and
H admit an invertible bibundle between them, they are called Morita
equivalent groupoids.

Definition 6.4 (Weak 2-category Orb). Lie groupoids with bibundles
as arrows and isomorphisms of bibundles as 2-arrows form a weak 2-
category, see [16] for more details. Effective proper étale Lie groupoids
form a full (weak) subcategory and will be denoted by Orb. Many view
this (or slight modifications to this definition) to be “the” category of
effective orbifolds.

Lemma 6.5. Let G1 ⇒ G0 and H1 ⇒ H0 be two effective proper étale
Lie groupoids, and let P be a bibundle between them. Then P descends
to a unique smooth map P : G0/G1 → H0/H1 such that the following
diagram commutes.

G1

����

P

aL

||xx
xx
xx
xx
x

aR

##F
FF

FF
FF

FF
H1

����
G0

πG

��

H0

πH

��
G0/G1

P̄

// H0/H1
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Moreover, if P is a Morita equivalence, then P is a diffeomorphism.
Finally, if Q is another bibundle between G1 ⇒ G0 and H1 ⇒ H0 that
is isomorphic to P , then P = Q.

Proof. Fix x ∈ G0 and denote by [x] the point πG(x). Then define

P ([x]) := πH ◦ aR ◦ σ(x)

where σ is a smooth local section of aL about x. Such a local section
exists since aL is a surjective submersion, by definition of a principal
H-bundle.

We claim that P is independent of the chosen local section, as well
as the representative x. Indeed, let y ∈ G0 be another representative
of [x]. Then there exists g ∈ G1 such that s(g) = x and t(g) = y. So,
aL(g ·σ(x)) = y, and hence, g ·σ(x) ∈ a−1

L (y). Let σ′ be a local section
of aL about y. Since aL : P → G0 is a principal H-bundle, there exists
h ∈ H1 such that (g · σ(x)) · h = σ′(y). Since the G- and H-actions
on P commute and aR is G-invariant, it follows that aR(σ

′(y)) = s(h).
Since aR(σ(x)) = t(h), we have

πH(aR(σ(x))) = πH(aR(σ
′(y))).

To show uniqueness, consider p ∈ P . In order for the above diagram
to commute, we require that πG(aL(p)) be sent to πH(aR(p)). This
defines a unique map, which is equal to P .

Denote the quotient differential structures on G0/G1 and H0/H1

by C∞(G0/G1) and C∞(H0/H1), respectively. Denote the spaces
of smooth invariant functions on G0 and H0 by C∞(G0)

G1 and
C∞(H0)

H1 , respectively. Fix f ∈ C∞(H0/H1). Then, there exists

f̃ ∈ C∞(H0)
H1 such that f̃ = π∗

Hf . By definition of a right H-action,

a∗Rf̃ is H-invariant on P . Since aL : P → G0 is a principal H-bundle,

a∗Rf̃ descends to a smooth function f̃ ′ ∈ C∞(G0):

a∗Lf̃
′ = a∗Rf̃ .

By definition of a left G-action, and using the fact that aR is G-

invariant, we obtain that f̃ ′ ∈ C∞(G0)
G1 . Therefore, f̃ ′ descends to a

function f ′ ∈ C∞(G0/G1), and f
′ = P

∗
f .
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Next, P is a Morita equivalence if and only if P is invertible, that
is, aR : P → H0 is a principal G-bundle. It follows immediately that,
in this case, P is a diffeomorphism.

Finally, the fact that isomorphic bibundles P and Q descend to the
same smooth map P = Q between orbit spaces immediately arises from
the uniqueness of P and the fact that α is (G-H)-equivariant. �

Proof of Theorem A. We define a functor F : Orb → DiffSp as
follows. Let G1 ⇒ G0 be an effective proper étale Lie groupoid. Then,
F (G1 ⇒ G0) is the orbit space G0/G1 equipped with the quotient
differential structure. Let G1 ⇒ G0 and H1 ⇒ H0 be two effective
proper étale Lie groupoids, and let P be a bibundle between them.
Then, define F (P ) to be P as defined in Lemma 6.5. F trivialises
2-arrows by Lemma 6.5.

To show that F is a functor, note that, if P : (G1 ⇒ G0) →
(G1 ⇒ G0) is the identity bibundle, then P is the identity map
on G0/G1. We also need to show that F respects composition.
Let G1 ⇒ G0, H1 ⇒ H0 and K1 ⇒ K0 be effective proper étale
Lie groupoids, and let P : (G1 ⇒ G0) → (H1 ⇒ H0) and Q :
(H1 ⇒ H0) → (K1 ⇒ K0) be bibundles. The composition of P and Q
is defined to be the quotient

Q ◦ P := (P ×H0 Q)/H1

where P ×H0 Q is the fibred product with respect to anchor maps

aPR : P → H0 and aQL : Q → H0, on which H1 ⇒ H0 acts diagonally.

Note that F (Q ◦ P ) = Q ◦ P is the unique map causing the following
diagram to commute.

P ×H0 Q
pr1

yyrrr
rrr

rrr
rr pr2

%%LL
LLL

LLL
LLL

P

πG◦aP
L

��

Q

πK◦aQ
R

��
G0/G1

Q◦P
// K0/K1

To show that Q ◦ P = Q ◦ P , it is enough to show that, for any
(p, q) ∈ P ×H0 Q, we have
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Q ◦ P (πG ◦ aPL (p)) = πK ◦ aQR(q).

But this reduces to showing that

πH ◦ aPR(p) = πH ◦ aQL (q),

and this is automatic by definition of P ×H0 Q. We have shown that
F is a functor.

Now, let G1 ⇒ G0 and H1 ⇒ H0 be effective proper étale Lie
groupoids. Then, XG := G0/G1 and XH := H0/H1 are natu-
rally equipped with orbifold atlases. Assume that (XG, C

∞(XG)) and
(XH , C

∞(XH)) are diffeomorphic as differential spaces. Without loss
of generality, we may identify the underlying sets via this diffeomor-
phism. By the main theorem, the orbifold atlases for XG and XH

can be reconstructed from C∞(XG) and C
∞(XH), and these orbifold

atlases are equivalent since they are constructed out of the same invari-
ants of differential spaces. We conclude that G1 ⇒ G0 and H1 ⇒ H0

are Morita equivalent, that is, isomorphic in Orb. �

Remark 6.6.

(1) Note that, while composition of bibundles is only weakly associa-
tive, by Lemma 6.5, F carries this weak associativity to true asso-
ciativity.

(2) F is neither full nor faithful, see Example 7.2.
(3) In the proof above, we did not use the fact that the Lie groupoids

are effective proper étale to show that F is a functor; this was
only used to show that F is essentially injective. Indeed, F is a
restriction of a functor from the weak 2-category of Lie groupoids
to differential spaces.

7. Proof of Theorem B. This section is designed for readers with
some familiarity with the category Diffeol of diffeological spaces. The
main resource on diffeology is the book by Iglesias-Zemmour [13],
although for purposes of this section regarding diffeological orbifolds,
the required details appear in [12]. The purpose of this section is as
follows. Iglesias-Zemmour, et al. [12] proved that there is a one-to-one
correspondence between orbifolds in the classical sense and diffeological
orbifolds. We tailor this result into a functor G : Orb → Diffeol that



322 JORDAN WATTS

is essentially injective on objects, which is Theorem B. We give two
proofs that this functor is essentially injective. The first comes directly
from the result of Iglesias-Zemmour, et al. For the second, we introduce
a functor

Φ : Diffeol −→ DiffSp

that sends a diffeological space to its underlying set equipped with
the ring of diffeologically smooth real-valued functions. We show that
F = Φ ◦G. By the main theorem, F is essentially injective, and so it
follows that G is as well. The functor Φ is studied in [31, Chapter 2],
as well as [2], and more details about it can be found there.

Definition 7.1 (Diffeological orbifold). A diffeological orbifold is a dif-
feological space that is locally diffeologically diffeomorphic to quotient
diffeological spaces of the form Rn/Γ, where Γ ⊂ GL(Rn) is a finite
subgroup, see [12, Definition 6].

Proof of Theorem B. Similar to the functor F : Orb → DiffSp
defined in Theorem A, G is the restriction of a functor from the weak
2-category of Lie groupoids with bibundles as arrows and isomorphisms
of bibundles as 2-arrows to diffeological spaces. See [32, Section 4] for
details on this functor between Lie groupoids and diffeological spaces.

The fact that G is essentially injective follows from the result of
Iglesias-Zemmour, et al., see [12, Proposition 38, Theorems 39, 46],
and from Remark 6.2. �

The functor G is neither faithful nor full, as the next example
illustrates.

Example 7.2. These examples are due to Iglesias-Zemmour, et al.,
and appear as [12, Examples 24, 25]. Let ρn : R → [0, 1] be a smooth
function with non-empty support inside[

1

n+ 1
,
1

n

]
.

Let σ = (σ1, σ2, . . .) ∈ {−1, 1}N, and define fσ : R → R to be the
smooth function
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fσ(x) :=

{
σne

−1/xρn(x) if 1/(n+ 1) < x ≤ 1/n with n ∈ N,
0 if x > 1 or x ≤ 0.

For any σ, the function fσ descends to the same diffeologically smooth
function f : R → R/Z2 (where Z2 acts by reflection). Thus, the functor
G is not faithful.

Next, set r =
√
x2 + y2 for (x, y) ∈ R2. Define g : R2 → R2 to be

the smooth function

g(x, y) :=


e−rρn(r)(r, 0) if 1/(n+ 1) < r ≤ 1/n and n is even,

e−rρn(r)(x, y) if 1/(n+ 1) < r ≤ 1/n and n is odd,

0 if r > 1 or r = 0 .

Then, for any integer k ≥ 2, the function g descends to a diffeologically
smooth function

g : R2/Zk −→ R2/Zk

(where Zk acts by rotation). While g has a smooth lift R2 → R2, this
lift is hn-equivariant when restricted to the annulus

1

n+ 1
< r ≤ 1

n
,

where hn : Zk → Zk is a group homomorphism. In particular, if n is
even, then hn is the trivial homomorphism; whereas if n is odd, then
hn must be the identity. Thus, there certainly is no functor, nor even
a bibundle, between the groupoid

Zk × R2 ⇒ R2

and itself that corresponds to f . Thus, G is not full.

Definition 7.3 (The functor Φ). Let (X,D) be a diffeological space.
Define ΦD by

ΦD := {f : X → R | f ◦ p is smooth for all p ∈ D}.

Then, ΦD is a differential structure on X, see [31, Lemma 2.42]. This
extends to a functor Φ : Diffeol → DiffSp which sends diffeologically
smooth maps to themselves (see the proof of [31, Theorem 2.48]). Note
that ΦD is just the ring of diffeologically smooth functions of (X,D).
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Proposition 7.4 (F = Φ ◦ G). The functor F : Orb → DiffSp is
equal to the composition Φ ◦G.

Proof. We only need to show that, given a diffeological orbifold
(X,D), ΦD is equal to the orbifold differential structure on X. First,
we note that the topology induced by the diffeology on X is equal to
the standard orbifold topology, see [13, Article 2.12], which, in turn,
is equal to the functional topology induced by C∞(X), see Proposition
3.9 (1).

Now, from [12, Proposition 38, Theorems 39, 46], we have that the
local diffeomorphisms defining the diffeological orbifold structure are
exactly the charts of the corresponding orbifold in the sense of Defi-
nition 3.1. Let f ∈ ΦD. Then, locally where (X,D) is diffeologically
diffeomorphic to Rn/Γ, it follows from the definition of a quotient dif-
feology that f will restrict and lift to a Γ-invariant function on Rn.
But, this is exactly the pullback of f via an orbifold chart. Thus,
f ∈ C∞(X). In the reverse direction, if f ∈ C∞(X), then locally
at a chart of the form (Rn,Γ, ϕ), which exists at every point by Re-
mark 3.7, we have that f restricts and lifts to a Γ-invariant function
on Rn. Hence, since the quotient map is a plot of D, it descends to a
(local) diffeologically smooth function, that is, a function in ΦD. Since
smoothness is a local property, the result follows. �

Corollary 7.5. G is an essentially injective functor.

Proof. This is immediate from Proposition 7.4 and the fact that F
is an essentially injective functor, due to the main theorem. �

Remark 7.6.

(1) In general, the functor Φ : Diffeol → DiffSp is not injective
on objects, as the next example illustrates. Also, while it is
faithful, it is not full (see, for example, [31, end of Example
2.67]). It remains an open question whether or not Φ restricted
to diffeological orbifolds is full.

(2) Since G is neither faithful nor full, see Example 7.2, it follows from
Proposition 7.4 that F is neither faithful nor full.
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Example 7.7 (Rotations of Rn). Let O(n) act on Rn by rotations
about the origin. Then the quotient diffeology Dn on Rn/O(n) depends
on n (see [13, Exercise 50] with solution at the back of the book). The
corresponding quotient differential structure which is equal to ΦDn,
however, is equal to C∞([0,∞)), the subspace differential structure of
[0,∞) ⊂ R.
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17. Tsasa Lusala and Jedrzej Śniatycki, Stratified subcartesian spaces, Canad.
Math. Bull. 54 (2011), 693–705.
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