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CONTENT FORMULAS FOR POWER SERIES
AND KRULL DOMAINS
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ABSTRACT. Let R be an integral domain with quotient
field K, and let X be an indeterminate over R. In this
paper, we consider content formulae for power series in terms
of ∗-operations for PVMDs, Krull domains and Dedekind
domains, where ∗ is the star-operation, d, w, t, or v. We
prove that R is a Krull domain if and only if c(f/g)w =
(c(f)c(g)−1)w for all f, g ∈ R[[X]]∗ with c(f/g) a fractional
ideal if and only if c(f/g)t = (c(f)c(g)−1)t for all f, g ∈
R[[X]]∗ with c(f/g) a fractional ideal, and R is a Dedekind
domain if and only if for all f, g ∈ R[[X]]∗ with c(f/g) a
fractional ideal, c(f/g) = c(f)c(g)−1.

1. Introduction. Throughout this paper, R denotes an integral
domain with quotient field K. Let R∗ = R − {0}, and let F (R)
be the set of nonzero fractional ideals of R. For A ∈ F (R), set
A−1 = {x ∈ K | xA ⊆ R}. A star operation ∗ on R is a mapping
I → I∗ of F (R) into F (R) such that, for all 0 ̸= a ∈ K and all
A,B ∈ F (R),

(i) (a)∗ = (a), (aA)∗ = aA∗,
(ii) A ⊆ A∗ and A ⊆ B implies A∗ ⊆ B∗, and
(iii) (A∗)∗ = A∗.

An ideal A ∈ F (R) is called a ∗-ideal if A∗ = A and is called ∗-
invertible if (AA−1)∗ = R. Examples of star-operations are the d-, t-
and v-operations, which are well-known star operations and are defined
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in the following way. The d-operation is Ad = A, the t-operation is
At =

∪
Bv and the v-operation is Av = (A−1)−1, where B ranges over

nonzero finitely generated subideals of A. The w-operation on R is
defined by

Aw={x∈K |Jx⊆A for some finitely generated ideal J with J−1= R},

and it gives another example of a star operation [10]. For A ∈ F (R),
we have A ⊆ Aw ⊆ At ⊆ Av.

Let X be an indeterminate over R. For a Laurent power series
f ∈ K[[X]][X−1], the content c(f) is the R-submodule of K generated
by the coefficients of f . Note that c(f) is not necessarily a fractional
ideal of R. In general, c(f) is a fractional ideal of R if and only if
f ∈ R[[X]]R∗ [X−1]. It is clear that f/g ∈ K[[X]][X−1] for all nonzero
f, g ∈ K[[X]][X−1], and so c(f/g) can be defined. Here c(f/g) need not
be a fractional ideal. Recall that 0 ̸= f ∈ R[X] is called ∗-Gaussian
if c(fg)∗ = (c(f)c(g))∗ for all nonzero g ∈ R[X]. If each nonzero
f ∈ R[X] is ∗-Gaussian, we say that R is ∗-Gaussian. It is well known
that R is d-Gaussian if and only if R is a Prüfer domain and that R
is v-Gaussian (equivalently, t-Gaussian) if and only if R is integrally
closed. Recall that an integral domain R is a Prüfer v-multiplication
domain (PVMD) if every nonzero finitely generated ideal of R is t-
invertible (or equivalently, w-invertible). It was shown [5] that R is
w-Gaussian if and only if R is a PVMD. In [2], Anderson and Kang
considered the power series analogues of those results for d-, t- and v-
operations, and gave the conditions equivalent to c(fg)v = (c(f)c(g))v
for all f ∈ R[[X]]∗ and (linear) g ∈ R[X]∗ and c(fg)v = (c(f)c(g))v for
all f, g ∈ R[[X]]∗, respectively. They proved that:

(1) R is completely integrally closed ⇔ c(fg)v = (c(f)c(g))v for all
f ∈ R[[X]]∗ and (linear) g ∈ R[X]∗ ⇔ c(f/g)v = (c(f)c(g)−1)v
for all f ∈ R[[X]]∗ and (linear) g ∈ R[X]∗ with c(f/g) a fractional
ideal.

(2) c(fg)v = (c(f)c(g))v for all f, g ∈ R[[X]]∗⇔c(f/g)v=(c(f)c(g)−1)v
for all f, g ∈ R[[X]]∗ with c(f/g) a fractional ideal.

Motivated by these results, we consider the ∗-version of each of the
above content formulas, where ∗ is the star-operation, d, t, v or w. We
give new characterizations of Krull domains and Dedekind domains: R
is a Krull domain ⇔ c(f/g)w = (c(f)c(g)−1)w for all f, g ∈ R[[X]]∗
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with c(f/g) a fractional ideal ⇔ c(f/g)t = (c(f)c(g)−1)t for all f, g ∈
R[[X]]∗ with c(f/g) a fractional ideal; R is a Dedekind domain ⇔ for
all f, g ∈ R[[X]]∗ with c(f/g) a fractional ideal, c(f/g) = c(f)c(g)−1.
As a consequence, it follows that the equivalence in (2) does not hold
for ∗ = d, t, or w. However, it is shown that the second equivalence in
(1) holds for ∗ = d or w.

2. Content formulae on star operations. Recall that a star
operation ∗ is said to have finite character if, for each A ∈ F (R),

A∗ =
∪

{B∗ | 0 ̸= B ⊆ A is finitely generated},

and that the d-operation, the t-operation and the w-operation all have
finite character while the v-operation need not have finite character.

Lemma 2.1. Let ∗ be a star operation on an integral domain R. If
c(f/g)∗ = (c(f)c(g)−1)∗ for all f, g ∈ R[[X]]∗ with c(f/g) a fractional
ideal, then every nonzero countably generated ideal of R is ∗-invertible.

Proof. Let I be a nonzero countably generated ideal of R. Then
there exists a power series g ∈ R[[X]]∗ such that I = c(g). Since
c(g/g) = R is a fractional ideal of R, we clearly have (c(g)c(g)−1)∗ = R.
Hence, I = c(g) is ∗-invertible. �

Lemma 2.2. Let ∗ be a finite character star operation on an integral
domain R. Then every nonzero ideal of R is ∗-invertible if and only if
every nonzero countably generated ideal of R is ∗-invertible.

Proof. The necessity is clear.

Conversely, suppose that every nonzero countably generated ideal
of R is ∗-invertible. It suffices to show that every ∗-ideal of R is ∗-
invertible. Suppose that A is a ∗-ideal of R. If A ̸= I∗ for any finitely
generated ideal I ⊆ A, then there is an infinite ascending chain

(a1)∗ ⊂ (a1, a2)∗ ⊂ (a1, a2, a3)∗ ⊂ · · · ,

where each an ∈ A− (a1, a2, . . . , an−1)∗. Note that

∞∪
n=1

(a1, a2, . . . , an)∗ =

( ∞∪
n=1

(a1, a2, . . . , an)

)
∗
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is a ∗-ideal of countable type and so is ∗-invertible. Thus,
∞∪

n=1

(a1, a2, . . . , an)∗ = (a1, a2, . . . , am)∗

for some m, a contradiction. Therefore, we have A = I∗ for some
finitely generated ideal I of R, and so A is ∗-invertible. �

By Lemmas 2.1 and 2.2, we have the following:

Theorem 2.3. Let ∗ be a finite character star operation on an integral
domain R. If c(f/g)∗ = (c(f)c(g)−1)∗ for all f, g ∈ R[[X]]∗ with c(f/g)
a fractional ideal, then every nonzero ideal of R is ∗-invertible.

Corollary 2.4. If c(f/g) = c(f)c(g)−1 for all f, g ∈ R[[X]]∗ with
c(f/g) a fractional ideal, then R is a Dedekind domain.

Corollary 2.5. If c(f/g)w=(c(f)c(g)−1)w (or c(f/g)t=(c(f)c(g)−1)t)
for all f, g ∈ R[[X]]∗ with c(f/g) a fractional ideal, then R is a Krull
domain.

It is well known that, if ∗ is a star operation on an integral domain
R, then every nonzero finitely generated ideal of R is ∗-invertible if and
only if every nonzero two-generated ideal of R is ∗-invertible. Using an
argument similar to Lemma 2.1, we can state the following result.

Theorem 2.6. Let ∗ be a star operation on an integral domain R.
If c(f/g)∗ = (c(f)c(g)−1)∗ for all (linear) f, g ∈ R[X]∗ with c(f/g)
a fractional ideal, then every nonzero finitely generated ideal of R is
∗-invertible.

Corollary 2.7. If c(f/g) = c(f)c(g)−1 for all (linear) f, g ∈ R[X]∗

with c(f/g) a fractional ideal, then R is a Prüfer domain.

Corollary 2.8. If c(f/g)w=(c(f)c(g)−1)w (or c(f/g)t=(c(f)c(g)−1)t)
for all (linear) f, g ∈ R[X]∗ with c(f/g) a fractional ideal, then R is a
PVMD.
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3. Krull domains and formally integrally closed domains. It
is well known that an integral domain R is integrally closed if and only
if, for f, g ∈ R[X]∗ and a ∈ R∗, c(fg) ⊆ aR implies c(f)c(g) ⊆ aR [4,
Lemma 3.1]. In this section, we are able to extend the result to power
series and begin with reviewing the result on the content of power series
from [2].

Theorem 3.1. The following conditions are equivalent for an integral
domain R:

(1) R is completely integrally closed.
(2) c(fg)v = (c(f)c(g))v for all f ∈ R[[X]]∗ and (linear) g ∈ R[X]∗.
(3) c(f/g)v = (c(f)c(g)−1)v for all (linear) f, g ∈ R[X]∗ with c(f/g) a

fractional ideal.
(4) c(f/g)v = (c(f)c(g)−1)v for all f ∈ R[[X]]∗ and (linear) g ∈ R[X]∗

with c(f/g) a fractional ideal.
(5) For f ∈ R[[X]]∗, (linear) g ∈ R[X]∗ and a ∈ R∗, c(fg) ⊆ aR

implies c(f)c(g) ⊆ aR.

Proof.

(1) ⇔ (2) ⇔ (3) ⇔ (4). See [2, Theorem 2.1 and Remark 2.2].

(2) ⇒ (5). Trivial.

(5) ⇒ (1). Let α = a/b be almost integral over R where a, b ∈ R∗.
Set g = b − aX = b(1 − αX). Now we have (1 − αX)(1 + αX +
α2X2 + · · · ) = 1, and so g(1 + αX + α2X2 + · · · ) = b. Put
f = (1+αX+α2X2+· · · ). Since α is almost integral overR, there exists
a nonzero element r ∈ R such that rf ∈ R[[X]]. Then c(rfg) ⊆ rbR.
It follows that c(rf)c(g) ⊆ rbR. Hence, a ∈ (1, α, α2 . . .)(b, a) ⊆ bR.
Therefore, α = a/b ∈ R. �

Theorem 3.2. The following conditions are equivalent for an integral
domain R:

(1) c(fg)v = (c(f)c(g))v for all f, g ∈ R[[X]]∗.
(2) c(f/g)v = (c(f)c(g)−1)v for all f, g ∈ R[[X]]∗ with c(f/g) a

fractional ideal.
(3) For f, g ∈ R[[X]]∗ and a ∈ R∗, c(fg) ⊆ aR implies c(f)c(g) ⊆ aR.
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Proof.

(1) ⇔ (2) is given in [2, Theorem 2.3], and

(1) ⇒ (3) is clear.

(3) ⇒ (1). Let f, g ∈ R[[X]]∗. Obviously, c(fg)v ⊆ (c(f)c(g))v.
Suppose that c(fg) ⊆ a/bR where a, b ∈ R∗. Then, c(bfg) = bc(fg) ⊆
aR. Hence, c(bf)c(g) = bc(f)c(g) ⊆ aR. Therefore, c(f)c(g) ⊆ a/bR.
It follows that (c(f)c(g))v ⊆ c(fg)v. �

Recall that, if R is a PVMD with t-dim(R) = 1, then c(fg)t =
(c(f)c(g))t for all f, g ∈ R[[X]]∗ (see [3, Proposition 3.3]). We next
consider the question of which integral domains R satisfies c(fg)w =
(c(f)c(g))w for all f, g ∈ R[[X]]∗.

Theorem 3.3. Consider the following conditions on an integral do-
main R.

(1) R is a PVMD with w-dim(R) = 1.
(2) c(fg)w = (c(f)c(g))w for all f, g ∈ R[[X]]∗.
(3) c(fg)w = (c(f)c(g))w for all f ∈ R[[X]]∗ and (linear) g ∈ R[X]∗.
(4) c(f/g)w = (c(f)c(g)−1)w for all f ∈ R[[X]]∗ and (linear) g ∈

R[X]∗ with c(f/g) a fractional ideal.
(5) c(f/g)t = (c(f)c(g)−1)t for all f ∈ R[[X]]∗ and (linear) g ∈ R[X]∗

with c(f/g) a fractional ideal.

Then (1) ⇒ (2) ⇒ (3) ⇔ (4) ⇔ (5).

Proof.

(1) ⇒ (2). It follows from [3, Proposition 3.3] since every w-ideal is
a t-ideal in a PVMD.

(2) ⇒ (3). Trivial.

(3) ⇒ (4). Suppose that f ∈ R[[X]]∗ and g ∈ R[X]∗ with c(f/g)
a fractional ideal. Then there exists an element r ∈ R∗ and an n > 0
such that rXnf/g ∈ R[[X]]. Thus, we have

c(f)w = (1/(rXn))(c(rXnfg/g))w

= (1/(rXn))(c(rXnf/g)c(g))w

= (c(f/g)c(g))w.
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Since c(g) is w-invertible by [5, Corollary 1.6], (c(f)c(g)−1)w =
(c(f/g)c(g)c(g)−1)w = c(f/g)w.

(4) ⇒ (3). Suppose f ∈ R[[X]]∗ and g ∈ R[X]∗. Now c(fg/g) =
c(f) is a fractional ideal of R. It follows that c(f)w = c(fg/g)w =
(c(fg)c(g)−1)w. Since R is a PVMD by Corollary 2.8, we have
(c(f)c(g))w = (c(fg)c(g)−1c(g))w = c(fg)w.

(4) ⇔ (5). It follows from Corollary 2.8. �

Corollary 3.4. Let R be a Krull domain. Then c(fg)w = (c(f)c(g))w
for all f, g ∈ R[[X]]∗.

Corollary 3.5. Let R be a PVMD with w-dim(R) = 1. Then R is
completely integrally closed.

Example 3.6. Take a ring of entire function R which is a completely
integrally closed Bezout domain. Here R does not satisfy c(fg)w =
(c(f)c(g))w for all f, g ∈ R[[X]]∗ since every ideal is a w-ideal in a
Bezout domain, but R satisfies c(fg)v = (c(f)c(g))v for all f, g ∈
R[[X]]∗ (consult [2, Example 2.10]).

Theorem 3.2 stated that c(fg)v = (c(f)c(g))v for all f, g ∈ R[[X]]∗

if and only if c(f/g)v = (c(f)c(g)−1)v for all f, g ∈ R[[X]]∗ with c(f/g)
a fractional ideal. Next we consider the case of t- and w-operations and
give conditions equivalent to a Krull domain.

Theorem 3.7. The following conditions are equivalent for an integral
domain R:

(1) R is a Krull domain.
(2) For all f, g ∈ R[[X]]∗ with c(f/g) a fractional ideal, c(f/g)w =

(c(f)c(g)−1)w.
(3) For all f, g ∈ R[[X]]∗ with c(f/g) a fractional ideal, c(f/g)t =

(c(f)c(g)−1)t.

Proof.

(1) ⇒ (2). Note that a Krull domain is a completely integrally closed
domain in which every w-ideal is a v-ideal [10, Theorem 5.4]. Then
the result follows from Theorem 3.2 and Corollary 3.4.
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(2) ⇒ (3) is clear, while

(3) ⇒ (1) is given in Corollary 2.5. �

Remark 3.8. By Theorems 3.3 and 3.7, we have that the analogues
of (1) ⇔ (2) of Theorem 3.2 for t- and w-operations are false, since
a PVMD with w-dim(R) = 1 need not be Krull. Recall that an
integral domain R is formally integrally closed if c(fg)t = (c(f)c(g))t
for all f, g ∈ R[[X]]∗. We can also define a formally w-Gaussian
domain. An integral domain R is called a formally w-Gaussian domain
if c(fg)w = (c(f)c(g))w for all f, g ∈ R[[X]]∗. By Corollary 3.4, we
have the implications: Krull domain ⇒ formally w-Gaussian domain
⇒ formally integrally closed domain.

Next we show some necessary and sufficient conditions for R to be
a Krull domain in terms of these two classes of domains, but first we
give the following result.

Lemma 3.9. The following conditions are equivalent for an integral
domain R:

(1) R is a Krull domain.
(2) For any two countably generated ideals A,B with Aw ⊆ Bw, there

exists a countably generated ideal C such that Aw = (BC)w.
(3) For any two countably generated ideals A,B with At ⊆ Bt, there

exists a countably generated ideal C such that At = (BC)t.

Proof.

(1) ⇒ (2). If R is a Krull domain and A,B are two countably
generated ideals with Aw ⊆ Bw, then (B(B−1A))w = Aw. Note that
B−1A ⊆ R and B−1 is a w-ideal of finite type. Set B−1 = Hw for some
finitely generated fractional ideal H of R. Set C = HA, as required.

(2) ⇒ (1). Let I be a nonzero countably generated ideal of R. Pick
0 ̸= a ∈ I. Then (aR)w ⊆ Iw, and thus, aR = (II ′)w for some ideal I ′

of R. Therefore, I is w-invertible. By Lemma 2.2, it follows that R is
a Krull domain.

(1) ⇒ (3) and (3) ⇒ (1) using a similar proof as that above. �
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Theorem 3.10. The following conditions are equivalent for an integral
domain R:

(1) R is a Krull domain.
(2) R is formally w-Gaussian and, for any f ∈ R[[X]]∗, there exists

g ∈ R[[X]]R∗ such that c(fg)w = R.
(3) R is formally integrally closed and, for any f ∈ R[[X]]∗, there exists

g ∈ R[[X]]R∗ such that c(fg)t = R.
(4) R is formally w-Gaussian and, for any f ∈ R[[X]]∗,

fR[[X]]R∗

∩
R[[X]]

contains an element g such that c(g)w = R.
(5) R is formally integrally closed and, for any f ∈ R[[X]]∗,

fR[[X]]R∗

∩
R[[X]]

contains an element g such that c(g)t = R.
(6) R is formally w-Gaussian and, for any f, g ∈ R[[X]]∗ with c(f)w ⊆

c(g)w, there exist h, k ∈ R[[X]]∗ such that fh = gk with c(h)w = R.
(7) R is formally integrally closed and, for any f, g ∈ R[[X]]∗ with

c(f)t ⊆ c(g)t, there exist h, k ∈ R[[X]]∗ such that fh = gk with
c(h)t = R.

Proof.

(1) ⇒ (2). For f ∈ R[[X]]∗, c(f) is w-invertible. Hence, there
exists g ∈ R[[X]]R∗ such that c(g)w = c(f)−1, and thus, c(fg)w =
(c(f)c(g))w = R.

(2) ⇒ (3). Trivial.

(3) ⇒ (1). Let I be a nonzero countably generated ideal of R.
Then there exists f ∈ R[[X]]∗ such that I = c(f). Thus, we have
c(fg)t = (c(f)c(g))t = R for some g ∈ R[[X]]R∗ . Therefore, I = c(f)
is t-invertible. It follows from Lemma 2.2 that R is a Krull domain.

(1) ⇒ (4). For f ∈ R[[X]]∗, we have fR[[X]]R∗
∩

R[[X]] =
fc(f)−1[[X]] by [2, Theorem 2.3] and c(f)−1 = (a0, a1, . . . , an)w, where
each ai ∈ K. Set g = f(a0 + a1X + · · ·+ anX

n). Then we have

c(g)w = (c(f)(a0, a1, . . . , an))w = R.

(4) ⇒ (5). Trivial.
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(5) ⇒ (3). If f ∈ R[[X]]∗, then there exists g ∈ fR[[X]]R∗
∩
R[[X]]

such that c(g)t = R. Let g = fh/b where h ∈ R[[X]] and b ∈ R∗. Then
h/b ∈ R[[X]]R∗ and c(f(h/b))t = R.

(2) ⇒ (6). Let f, g ∈ R[[X]]∗ with c(f)w ⊆ c(g)w. Then c(gg′)w = R
for some g′ ∈ R[[X]]R∗ , and thus, we have

c(fg′)w = (c(f)c(g′))w ⊆ (c(g)c(g′))w = c(gg′)w = R.

Therefore, fg′ ∈ R[[X]]. Set h = gg′ and k = fg′, as required.

(6) ⇒ (1). Let A,B be two countably generated ideals of R where
Aw ⊆ Bw. Then there exist f, g ∈ R[[X]]∗ such that c(f) = A and
c(g) = B. Therefore, there also exist h, k ∈ R[[X]]∗ such that fh = gk
with c(h)w = R. Put C = c(k). Then we have

Aw = (c(f)c(h))w = c(fh)w = (c(g)c(k))w = (BC)w.

Thus, by Lemma 3.9, R is a Krull domain.

(2) ⇒ (7) ⇒ (1). The proof is similar to the implications (2) ⇒
(6) ⇒ (1) above. �

4. Dedekind domains. Using arguments similar to those in Sec-
tion 3, we obtain companion results for some of the results in Section 4
for the d-operation. Firstly, we give the d-analogue for (2) ⇔ (4) of
Theorem 3.1.

Proposition 4.1. c(fg) = c(f)c(g) for all f ∈ R[[X]]∗ and (linear)
g ∈ R[X]∗ if and only if c(f/g) = c(f)c(g)−1 for all f ∈ R[[X]]∗ and
(linear) g ∈ R[X]∗ with c(f/g) a fractional ideal.

Proof. Suppose that c(fg) = c(f)c(g) for all f ∈ R[[X]]∗ and (linear)
g ∈ R[X]∗. If c(f/g) is a fractional ideal of R, then there exists an
element r ∈ R∗ and an n > 0 such that rXnf/g ∈ R[[X]]. Thus,

c(f) = (1/(rXn))c(rXnfg/g) = (1/(rXn))c(rXnf/g)c(g) = c(f/g)c(g).

Since R is a Prüfer domain, we have

c(f)c(g)−1 = c(f/g)c(g)c(g)−1 = c(f/g).

Conversely, assume that f ∈ R[[X]]∗ and g ∈ R[X]∗. Note that
c(fg/g) = c(f) is a fractional ideal of R. It follows that c(f) =
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c(fg)c(g)−1. Since R is a Prüfer domain by Corollary 2.7, we have

c(f)c(g) = c(fg)c(g)−1c(g) = c(fg). �

Theorem 4.2. R is a Dedekind domain if and only if, for all f, g ∈
R[[X]]∗ with c(f/g) a fractional ideal, c(f/g) = c(f)c(g)−1.

Proof. It follows from Corollary 2.4 and Theorem 3.7. �

We call R a formally Gaussian domain if c(fg) = c(f)c(g) for all
f, g ∈ R[[X]]∗. Recall that a one-dimensional Prüfer domain is formally
Gaussian [2, Corollary 2.6]. Note that the d-analogue of Theorem 3.2
(1) ⇔ (2) is not true since a Prüfer domain with dim(R) = 1 need not
be a Dedekind domain.

Next, we show when a formally Gaussian domain is a Dedekind
domain. Using a similar proof as that of Lemma 3.9 and Theorem 3.10,
respectively, we have the following.

Theorem 4.3. R is a Dedekind domain if and only if, for any two
countably generated ideals A,B with A ⊆ B, there exists a countably
generated ideal C such that A = BC.

Theorem 4.4. Let R be a formally Gaussian domain. Then the
following conditions are equivalent :

(1) R is a Dedekind domain.
(2) For any f ∈ R[[X]]∗, there exists g ∈ R[[X]]R∗ such that c(fg) =

R.
(3) For any f ∈ R[[X]]∗, fR[[X]]R∗

∩
R[[X]] contains an element g

such that c(g) = R.
(4) For any f, g ∈ R[[X]]∗ with c(f) ⊆ c(g), there exist h, k ∈ R[[X]]∗

such that fh = gk with c(h) = R.
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