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SYMBOL CALCULUS OF SQUARE-INTEGRABLE
OPERATOR-VALUED MAPS

INGRID BELTIŢĂ, DANIEL BELTIŢĂ AND MARIUS MĂNTOIU

ABSTRACT. We develop an abstract framework for the
investigation of quantization and dequantization procedures
based on orthogonality relations that do not necessarily in-
volve group representations. To illustrate the usefulness of
our abstract method, we show that it behaves well with
respect to infinite tensor products. This construction sub-
sumes examples from the study of magnetic Weyl calculus,
magnetic pseudo-differential Weyl calculus, metaplectic rep-
resentation on locally compact abelian groups, irreducible
representations associated with finite-dimensional coadjoint
orbits of some special infinite-dimensional Lie groups, and
square-integrability properties shared by arbitrary irreducible
representations of nilpotent Lie groups.

1. Introduction. Square-integrable representations of locally com-
pact groups play a well-known role in Lie theory, representation the-
ory, and their applications to physics. The present paper is devoted
to developing a set of techniques applicable to operator-valued maps
on measure spaces π : (Σ, µ) → B(H) that satisfy a square integrability
property analogous to that of locally compact group representations,
see equation (2.4) below, although π may not be a group representation
and µ may not be a Haar measure. This investigation was motivated
by several situations when Σ is a group that fails to be locally com-
pact so it does not admit any Haar measure (as, for instance, in the
study of canonical commutation relations where suitable substitutes of
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the group algebra for inductive limit groups [12, 13, 14] are sought),
or when Σ is locally compact but π is not a projective group repre-
sentation (see, for instance, the orthogonality relations for irreducible
representations of nilpotent Lie groups [20, 33, 40] and the references
therein, or magnetic Weyl calculus [3, 4, 21, 27, 29]).

From a more technical point of view, this article, as many others,
is concerned with symbol calculus (also called quantization under cer-
tain circumstances) seen as a systematic way of associating operators
in some infinite-dimensional vector space with functions almost every-
where defined in a suitable related set Σ endowed with a measure. Our
primary focus is on operators acting in a Hilbert space H, although
other types of topological vector spaces will also be considered. More-
over, in order to define symbols for arbitrarily bounded linear operators
onH, in subsection (3.2), we will also need extensions of the symbol cal-
culus beyond spaces of functions on Σ, in the same way as the classical
Weyl calculus on Rn needs to be extended from functions to tempered
distributions on R2n.

Among the different strategies for beginning and motivating symbol
calculus, there are two which are dual to each other. The first one,
inspired by Weyl’s quantization procedure, consists of associating a
bounded linear operator π(s) in H to each point s of the space Σ.
This mapping s 7→ π(s), while not supposed to be unitarily-valued or
to possess group-like properties, would benefit from some regularity
requirements. Boundedness and weak continuity are good properties,
and yet a square integrability condition with respect to some measure
µ on Σ (generalizing the notion of square integrable representation
of a group) is the best starting point. Then, operators Π(f) are
associated to suitable functions f on Σ by integration techniques, cf.,
equation (3.4), and square integrability plays an important role in
identifying Hilbert-Schmidt operators as corresponding by quantization
to L2-functions. Simple examples show that not all of the elements in
L2(Σ, µ) need to be involved.

A dual approach is a priori to give the symbols (functions defined
on Σ) of all the rank-1 operators. Then, the symbols of more general
operators are obtained by superposition, modeled by integration on Σ,
followed eventually by extension techniques. If suitably implemented,
the construction is essentially the inverse of that described above.
However, this is achieved only after the formalism has been extended.
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Many classes of operators form ∗-algebras under operator multipli-
cation and taking adjoints. Clearly, it is desirable to use quantization
to induce isomorphic versions of these ∗-algebras on classes of sym-
bols. As a matter of fact, due to the square integrability assumption,
one obtains compatible scalar products on the ∗-algebras, making them
Hilbert algebras. This makes available extension techniques which per-
mit the treatment of symbols not associated to Hilbert-Schmidt oper-
ators. However, most of the known examples strongly suggest the ex-
istence of an extra mathematical structure, resulting in Gelfand triples
both at the level of vectors and at the level of symbols, suitably inter-
connected. One could simply recall the role played in pseudodifferential
theory by the Schwartz space and its dual, the space of tempered distri-
butions. Another example, leading to Gelfand triples of Banach spaces,
is Segal algebra, available on locally compact groups. In our general
framework, we will indicate a systematic way to construct Gelfand
triples connected to the symbol calculus associated with the family
{π(s) | s ∈ Σ} which will have a rich algebraic content.

The objective of Sections 2 and 3 is the construction of the symbol
calculus associated to the data (Σ, µ, π,H) where Σ is a space endowed
with a measure µ. That space serves as a family of indices for a set
of bounded operators {π(s) | s ∈ Σ} in the Hilbert space H. We do
not assume that π(s) is unitary, and we do not require anything about
the product π(s)π(t) for s, t ∈ Σ. The map π(·) is assumed bounded
and weakly continuous. The main requirement is relation (2.4), a
condition of square integrability extending a well-known concept from
group representation theory [6].

In Section 2, we show that the class of square-integrable families of
operators is closed under some basic operations as compressions and
tensor products. We also show that these families are irreducible, in
the sense that their commutant is trivial and they do not have any
nontrivial common invariant subspace, which suggests the interesting
problem of pointing out the topological groups for which every unitary
irreducible representation admits a measure on the group for which the
representation is square integrable, see, for instance, Corollaries 2.5 and
2.6 for answers to this question in the case of compact and nilpotent
Lie groups, respectively.

In Section 3, the first purpose is to raise the family π, essentially by
integration, to a correspondence f 7→ Π(f), sending a closed subspace
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of L2(Σ;µ) to the ideal of all Hilbert-Schmidt operators in H. Actually,
the fact that Π is an “integrated form” of π (in the spirit of group
representation theory) is only seen a posteriori. The initial construction
is based only on the “representation coefficient” map Φ. The linear
maps Π, Φ and Λ are isomorphisms of H∗-algebras. By transport of
structure via these isomorphisms, one then defines classes of trace-class,
compact and bounded-type symbols forming Banach ∗-algebras. Radon
measures on Σ can also be incorporated when Σ is a locally compact
space.

We also develop the dequantization procedure for the operator
calculus, that is, we develop methods for recovering the symbol of a
given operator. In order to do that in an effective way, we need to
explore new spaces of symbols and their natural composition law that
recovers the twisted convolution in the case of group representations
and corresponds to the composition of operators in the representation
space.

Section 4 deals with the Gelfand triples that occur in our general
framework in connection with suitable dense subspaces of the Hilbert
space under consideration. This is suggested by the classical example
of the Schwartz space S(Rn) of rapidly decreasing functions on Rn,
which is continuously and densely embedded into the Hilbert space
L2(Rn) and is closely related to the square-integrable family of unitary
operators Rn×Rn → B(L2(Rn)) defined by the Weyl system. We study
the abstract version of the operators S(Rn) → S ′(Rn) and some related
structures, which provide a unifying perspective on different types of
applications in Section 7.

In Section 5, we develop some very basic aspects of the Berezin-
Toeplitz quantization in our abstract framework, in order to suggest
how this important topic fits into our picture.

Section 6 explores infinite tensor products of square-integrable fam-
ilies of operators, a circle of ideas that plays an important role in the
representation theory of canonical commutation relations (CCR) with
infinitely many degrees of freedom; see, for instance, [18, 19, 24, 34].
We prove that these infinite tensor products always have a certain prop-
erty of approximate square integrability in Theorem 6.6, and then, to a
very limited extent, we also discuss the Berezin-Toeplitz quantization
which suggests that several interesting problems arise in this area. It is
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noteworthy that the relationship between CCR and the infinite tensor
products was also studied from a different perspective in [12, 13, 14].

Finally, in Section 7, we briefly present four topics from earlier
literature where one can find special cases of the general ideas developed
in the present paper:

(i) the magnetic pseudo-differential Weyl calculus;
(ii) the study of metaplectic representation on locally compact abelian

groups;
(iii) irreducible representations associated with finite-dimensional coad-

joint orbits of some special infinite-dimensional Lie groups;
(iv) square-integrability properties shared by arbitrary irreducible rep-

resentations of nilpotent Lie groups.

It would also be quite interesting to understand the relationship be-
tween our abstract approach and the Weyl and Berezin calculus on
bounded symmetric domains as developed, for instance, in [1, 37].

Preliminary conventions and notation. A convenient reference
for square-integrable representations of locally compact groups and
their role in representation theory is [32, Appendix VII]; see also the
references therein.

If Σ is a topological space (always Hausdorff), we set BC(Σ) for
the C∗-algebra of all bounded continuous complex-valued functions on
Σ. If Σ is locally compact, we write C0(Σ) for the C∗-algebra of the
continuous functions vanishing at infinity. For any measure µ on Σ and
q ∈ [1,∞], we denote the usual Lebesgue space of order q on (Σ, µ) by
Lq(Σ;µ).

For two complex Hausdorff locally convex spaces E and F , we will
write E ⊗ F for the algebraic tensor product. When endowed with
projective topology, that space will be denoted by E ⊗p F and its

completion in this topology by E⊗̂pF . Analogously, E⊗̂iF will be the
completion of E ⊗i F , which is E ⊗F endowed with injective topology.

Under the same assumptions on E and F , we denote by B(E ,F)
the vector space of all linear continuous operators from E onto F and
use the abbreviation B(E) := B(E , E). Then, E ′ := B(E ,C) is the
(topological) dual of E .
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We recall [6] that a Hilbert algebra is a ∗-algebra (A ,#,# ) endowed
with a scalar product ⟨·, ·⟩ : A × A → C such that

(i) ⟨g#, f#⟩ = ⟨f, g⟩ for all f, g ∈ A,
(ii) ⟨f#g, h⟩ = ⟨g, f##h⟩ for all f, g, h ∈ A,
(iii) for every g ∈ A , the map

Lg : A −→ A ,

Lg(f) := g#f is continuous.
(iv) A #A is total in A .

A complete Hilbert algebra is called an H∗-algebra.

Clearly, one also has

⟨f#g, h⟩ = ⟨f, h#g#⟩ for all f, g, h ∈ A ,

and the map Rg : A → A given by Rg(f) := f#g is also continuous;

therefore, A × A
#→ A is separately continuous.

To give some basic examples, let us fix a complex Hilbert space
H. By convention, the scalar product ⟨·, ·⟩ is anti-linear in the second
variable and we denote the conjugate space of H by H. By the Riesz
theorem, the dual H′ of H is canonically antilinearly isomorphic to H,
so there is a linear isomorphism permitting the identification of H with
H′. Recall that the space B2(H) of Hilbert-Schmidt operators on H
forms a ∗-ideal in B(H) and a Hilbert space with the scalar product

⟨S, T ⟩B2(H) := Tr(ST ∗).

Actually, B2(H) is an H∗-algebra; the subspace B2(H)B2(H) (coin-
ciding with the ∗-ideal B1(H) of all trace-class operators) is dense in
B2(H).

Let us denote by Λ the canonical unitary operator

(1.1) Λ: H⊗̂H −→ B2(H), Λ(u⊗ v) := λu,v := ⟨·, v⟩u,

where H⊗̂H stands for the Hilbert completion of the algebraic tensor
product H ⊗ H. On the space H ⊗ H, we consider the unique struc-
ture of H∗-algebra such that the above operator Λ is an H∗-algebra
isomorphism. Its restriction Λ : H ⊗ H → F(H) is a Hilbert algebra
isomorphism between the algebraic tensor product and finite rank oper-
ators. We record for further use some relations valid for u, v, u′, v′ ∈ H
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and S ∈ B(H):

Sλu,v = λSu,v, λu,vS = λu,S∗v, λu,vλu′,v′ = ⟨u′, v⟩λu,v′ ,(1.2)

λ∗
u,v = λv,u, Tr (λu,v) = ⟨u, v⟩.(1.3)

Very often, besides the norm topology of a Hilbert algebra A , there is
another finer locally convex topology. We recall that a Fréchet ∗-algebra
is a ∗-algebra (A ,#,# ) with a Fréchet locally convex space topology
T such that the involution A ∋ f → f# ∈ A is continuous, and the
product

A × A ∋ (f, g) −→ f#g ∈ A ,

is separately continuous. Then, a Fréchet-Hilbert algebra (A ,#,# ,T ,
⟨·, ·⟩) is both a Fréchet ∗-algebra and a Hilbert algebra, the topology T
being finer than that of the topology associated to the scalar product.

2. Square-integrable operator-valued maps. Let us fix a com-
plex Hilbert space H, a Borel space Σ with a Σ-algebra M, and a
positive measure µ on Σ. The set of measurable complex-valued func-
tions on Σ will be denoted by M (Σ). We assume that π : Σ → B(H)
is a weakly measurable, almost everywhere defined map. One defines
the sesquilinear mapping

(2.1) ϕπ ≡ ϕ : H×H −→ M (Σ), ϕu,v(s) := ⟨π(s)u, v⟩.

This extends concepts such as representation coefficients, wavelet trans-
form and short time Fourier transform.

Notation 2.1. We will use the notation

(2.2) Φπ ≡ Φ : H⊗̂H −→ L2(Σ;µ) ≡ L2(Σ),

if the mapping ϕπ admits such an isometric extension.

Remark 2.2. The map Φπ from Notation 2.1 exists if and only if

(2.3)

∫
Σ

⟨π(s)u1, v1⟩⟨v2, π(s)u2⟩ dµ(s) = ⟨u1, u2⟩⟨v2, v1⟩,

for all u1, u2, v1, v2 ∈ H. To achieve this equality, a renormalization of
the measure µ may be used, if necessary. Also note that it is enough to
check that equation (2.3) is satisfied for vectors u1, u2, v1 and v2 merely
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in some dense subset of H. A simple polarization argument also shows
that it suffices to verify equation (2.3) for u1 = u2 and v1 = v2, that is,

(2.4)

∫
Σ

∣∣∣⟨π(s)u, v⟩∣∣∣2dµ(s) = ∥u∥2∥v∥2, for all u, v ∈ H.

The next definition is convenient for our purposes.

Definition 2.3. For any complex Hilbert space H, and any measure
space (Σ,M, µ), we define SQ(B(H), µ) as the set of all weakly mea-
surable, almost everywhere defined maps π : Σ → B(H) satisfying the
square-integrability condition (2.3).

Before continuing, we remark that Definition 2.3 was motivated by
several important examples of operator-valued maps that satisfy the
above square-integrability condition:

(i) unitary irreducible representations of compact groups (see Corol-
lary 2.5);

(ii) unitary irreducible representations of connected, simply con-
nected, nilpotent Lie groups (see Corollary 2.6 and Proposi-
tion 7.2);

(iii) the magnetic Weyl systems on R2n (see subsection 7.1);
(iv) operator calculi on locally compact abelian groups (see Proposi-

tion 7.1);
(v) localizedWeyl calculus for some unitary representations of infinite-

dimensional Lie groups (see subsection 7.3).

We will now obtain some simple results which point out that the
square-integrability property of operator-valued maps should be viewed
as a kind of irreducibility in the sense of representation theory, that
is, it implies the absence of nontrivial invariant subspaces. It is
well known that the assertions in the next proposition are equivalent
ways of describing the irreducibility property if the operator set π(Σ)
is assumed to be closed under operator adjoints. Since we do not
assume the self-adjointness hypothesis, we will prove these assertions
separately.

Proposition 2.4. Let π ∈ SQ(B(H), µ). Then, the following asser-
tions hold.
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(i) If a closed linear subspace H0 ⊆ H has the property π(Σ)H0 ⊆ H0,
then either H0 = {0} or H0 = H.

(ii) If the operator T ∈ B(H) has the property Tπ(s) = π(s)T for
almost every s ∈ Σ, then T = z1H for some z ∈ C.

Proof.

(i) Assume that H0 $ H. Then, there exists some nonzero vector
v ∈ H with v ⊥ H0. Hence, by using the hypothesis π(Σ)H0 ⊆ H0, we
obtain v ⊥ π(s)u for all s ∈ Σ and u ∈ H0. Setting u1 = u2 = u and
v1 = v2 = v in equation (2.3), it follows that, for all u ∈ H0, we have
∥u∥2∥v∥2 = 0; hence, necessarily, u = 0. Consequently, H0 = 0, and
this concludes the proof.

(ii) First, note that, for every operator T ∈ B(H) satisfying the con-
dition Tπ(s) = π(s)T for almost every s ∈ Σ, we have ⟨π(·)Tu1, v1⟩ =
⟨π(·)u1, T

∗v1⟩; hence, by equation (2.3), we obtain

⟨Tu1, u2⟩⟨v2, v1⟩ = ⟨u1, u2⟩⟨v2, T ∗v1⟩, for all u1, u2, v1, v2 ∈ H.

Now, for u1 = u2 and v1 = v2 we obtain

⟨Tu, u⟩
∥u∥2

=
⟨Tv, v⟩
∥v∥2

=: z ∈ C for all u, v ∈ H \ {0}.

Thus, the numerical range of operator T consists of a single point, and
T is then a scalar multiple of the identity operator. Specifically, the
above equalities imply ⟨(T − z1H)u, u⟩ = 0 for all u ∈ H. Then, by
polarization, ⟨(T − z1H)u, v⟩ = 0 for all u, v ∈ H; hence, eventually
T = z1H, which completes the proof. �

Proposition 2.4 implies that direct sums of square-integrable maps
may not be square integrable, that is, if

πj(·) ∈ SQ(B(Hj), µj) for j = 1, 2,

then the map (
π1(·) 0
0 π2(·)

)
does not belong to

SQ(B(H1 ⊕H2), µ1 ⊗ µ2),
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unless we have either H1 = {0} or H2 = {0} (see, however, Proposi-
tion 2.7).

Now, we derive other consequences of Proposition 2.4.

Corollary 2.5. If Σ is a compact group with the Haar probability
measure µ and π : Σ → B(H) is a unitary representation, then π ∈
SQ(B(H), µ) if and only if π is an irreducible representation.

Proof. It is well known that irreducible representations of compact
groups are square integrable with respect to the Haar measure, and the
converse implication follows by Proposition 2.4. �

We also state next corollary here for the sake of completeness of
available information on this circle of ideas, although its nontrivial im-
plication depends on some aspects of representation theory of nilpotent
Lie groups to be discussed in subsection 7.4.

Corollary 2.6. Let Σ be any connected, simply connected, nilpotent
Lie group, and let π : Σ → B(H) be any unitary representation. Then,
π is an irreducible representation if and only if there exists a Borel
measure µ on Σ for which π ∈ SQ(B(H), µ).

Proof. If π ∈ SQ(B(H), µ) for some measure µ, then the represen-
tation π is irreducible by Proposition 2.4. The converse implication,
including details on the construction of the measure µ in terms of the
representation π, is the subject of Proposition 7.2. �

Proposition 2.4 suggests the problem of determining topological
groups for which every unitary irreducible representation admits a mea-
sure on the group where the representation is square integrable. As
Corollaries 2.5 and 2.6 show, that property is shared by both the com-
pact topological groups and the connected, simply connected nilpotent
Lie groups, which looks somehow surprising since these two types of
groups have rather few common features. It would be interesting to find
other examples of topological groups whose unitary irreducible repre-
sentations are square-integrable, with respect to suitable measures.

Despite the above irreducibility properties of square-integrable maps,
we note that the direct sums of such maps do have a weaker property, as
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recorded in the following observation, which is necessary for the proof
of Theorem 6.6.

Proposition 2.7. Let (Σ,M, µ) be any measure space. Let J be any
countable index set for every j ∈ J , let Hj be any complex Hilbert space
and let πj ∈ SQ(B(Hj), µ). Assume that, for almost every s ∈ Σ, we
have supj∈J ∥πj(s)∥ < ∞. If we set

H :=
⊕
j∈J

Hj ,

then the map defined almost everywhere

π :=
⊕
j∈J

πj(·) : Σ −→ B(H),

is weakly measurable and has the property

(2.5)

∫
Σ

|⟨π(s)u1, v1⟩⟨v2, π(s)u2⟩| dµ(s) ≤ ∥u1∥∥v1∥∥v2∥∥u2∥

for all u1, u2, v1, v2 ∈ H.

Proof. Since the index set J is countable and the map πj is weakly
measurable for every j ∈ J , it easily follows that the map π is, in turn,
weakly measurable. For arbitrary j ∈ J and u1, u2, v1, v2 ∈ H, we will
denote their projections on Hj by u1j , u2j , v1j , v2j ∈ Hj , respectively.
Then, we have∫
Σ

|⟨π(s)u1, v1⟩⟨v2, π(s)u2⟩| dµ(s)

≤
∑
j,k∈J

∫
Σ

|⟨πj(s)u1j , v1j⟩⟨v2k, πk(s)u2k⟩| dµ(s)

≤
∑
j,k∈J

(∫
Σ

|⟨πj(s)u1j , v1j⟩|2dµ(s)
)1/2(∫

Σ

|⟨v2k, πk(s)u2k⟩|2dµ(s)
)1/2

=
∑
j,k∈J

∥u1j∥∥v1j∥∥v2k∥u2k∥

=

(∑
j∈J

∥u1j∥∥v1j∥
)(∑

k∈J

∥∥v2k∥u2k∥
)
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≤
(∑

j∈J

∥u1j∥2
)1/2(∑

j∈J

∥v1j∥2
)1/2(∑

k∈J

∥v2k∥2
)1/2(∑

k∈J

∥u2k∥2
)1/2

=∥u1∥∥v1∥∥v2∥∥u2∥,

and this concludes the proof. �

Now, we draw a consequence that will be needed in the proof of
Theorem 6.6.

Corollary 2.8. Let (Σ,M, µ) be any measure space, and let K be any
separable complex Hilbert space. If π0 ∈ SQ(B(H0), µ), then

π(·) := π0(·)⊗ idK : Σ −→ B (H0 ⊗̂K)

is a weakly measurable map that satisfies (2.5) for all u1, u2, v1, v2 ∈
H0 ⊗̂K.

Proof. Let J be the index set of any orthonormal basis of K such
that K = ℓ2(J). If we set Hj := H0 and πj := π0 for all j ∈ J , then we
may apply Proposition 2.7, and the conclusion follows. �

Below, we discuss a few operations on operator maps satisfying the
square-integrability condition required in Definition 2.3. In particular,
these operations will provide methods of constructing new square-
integrable maps out of other maps satisfying the same hypothesis.

2.1. Tensor products of square-integrable maps.

Proposition 2.9. For j = 1, 2, let Hj be any complex Hilbert space, let
(Σj ,Mj , µj) be any σ-finite measure space, and let πj ∈ SQ(B(Hj), µj).
If we define

π1 ⊗ π2 : Σ1 × Σ2 −→ B(H1⊗̂H2),

(π1 ⊗ π2)(s1, s2) := π1(s1)⊗ π2(s2),

then
π1 ⊗ π2 ∈ SQ(B(H1⊗̂H2), µ1 ⊗ µ2).

Proof. For any fj ∈ L2(Σj , µj) with j = 1, 2, define

f1 ⊗ f2 ∈ L2(Σ1 × Σ2, µ1 ⊗ µ2)
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by
(f1 ⊗ f2)(x1, x2) := f1(x1)f2(x2),

almost everywhere. Recall that the bilinear map

L2(Σ1, µ1)×L2(Σ2, µ2) −→ L2(Σ1×Σ2, µ1⊗µ2), (f1, f2) 7−→ f1⊗f2,

gives rise to a unitary operator

V : L2(Σ1, µ1) ⊗̂L2(Σ2, µ2) −→ L2(Σ1 × Σ2, µ1 ⊗ µ2).

In fact, using the Fubini theorem, the operator V is an isometry, and in
order to prove that it is also surjective, we may assume that µj(Σj) < ∞
for j = 1, 2. Then, where we have denoted the characteristic function
of the set A by χA, it suffices to show that the set

Q := {A ⊆ Σ1 × Σ2 | χA ∈ RanV }

contains the σ-ring Q0 of all the µ1⊗µ2-measurable subsets of Σ1×Σ2

since {χA | A ∈ Q0} spans a dense linear subspace of L2(Σ1 ×Σ2, µ1 ⊗
µ2). Recall that Q0 is the σ-ring generated by the sets A1 × A2 for
all measurable sets Aj ⊆ Σj with j = 1, 2. It suffices to note that
Q is a ring, i.e., it is closed under finite unions and differences, Q
is closed under countable unions of increasing sequences by Lebesgue’s
dominated convergence theorem since we assumed the measures µ1 and
µ2 to be finite, and moreover, Q contains all of the above-mentioned
sets A1 × A2; hence, by the monotone class theorem, Q0 ⊆ Q [16,
Chapter I, subsection 6, Theorem B].

Then, for j = 1, 2, by using the hypothesis πj ∈ SQ(B(Hj), µj) along
with equation (2.2), we obtain the isometry

Φπj : Hj ⊗̂Hj −→ L2(Σj , µj), Φπj (u⊗ v) = ⟨πj(·)u, v⟩.

As the Hilbertian tensor product of two isometries is again an isometry,
we obtain that the operator

Φπ1 ⊗ Φπ2 : (H1 ⊗̂H1) ⊗̂ (H2 ⊗̂H2) −→ L2(Σ1, µ1) ⊗̂L2(Σ2, µ2)

is an isometry. On the other hand, for j = 1, 2, all uj , vj ∈ Hj , and
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almost all sj ∈ Σj , we have

((Φπ1 ⊗ Φπ2)((u1 ⊗ v1)⊗ (u2 ⊗ v2)))(s1, s2)

= ⟨π(s1)u1, v1⟩⟨π(s2)u2, v2⟩
= ⟨((π1 ⊗ π2)(s1, s2))(u1 ⊗ u2), v1 ⊗ v2⟩
= ϕπ1⊗π2

u1⊗u2,v1⊗v2(s1, s2).

Now, by composing the isometry Φπ1 ⊗ Φπ2 with the flip unitary
operator, (

H1 ⊗̂H1

)
⊗̂
(
H2 ⊗̂H2

)
−→

(
H1 ⊗̂H2

)
⊗̂H1 ⊗̂H2,

u1 ⊗ v1 ⊗ u2 ⊗ v2 7−→ u1 ⊗ u2 ⊗ v1 ⊗ v2,

and with the above unitary operator V , it follows that the sesquilinear
mapping

ϕπ1⊗π2 :
(
H1 ⊗̂H2

)
×
(
H1 ⊗̂H2

)
−→ M (Σ1 × Σ2),

(see equation (2.1)) gives rise to the isometry

Φπ1⊗π2 = Φπ1 ⊗ Φπ2 .

This implies that

π1 ⊗ π2 ∈ SQ
(
B
(
H1 ⊗̂H2

)
, µ1 ⊗ µ2

)
,

and the proof is complete. �

2.2. Compressions of square-integrable maps.

Proposition 2.10. For j = 1, 2, let Hj be any complex Hilbert space,
let (Σj ,Mj , µj) be any measure space, and let πj : Σj → B(Hj).
Assume that p : Σ2 → Σ1 is a measurable map satisfying the condition
p∗(µ2) = µ1 and that ι : H1 → H2 is a linear isometry for which
π1 ◦ p = ι∗π2(·)ι almost everywhere on Σ2.
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If π2 ∈ SQ(B(H2), µ2), then also π1 ∈ SQ(B(H1), µ1), and we have
the commutative diagram

L2(Σ1, µ1)
f 7→f◦p−−−−−→ L2(Σ2, µ2)

Φπ1

x xΦπ2

H1⊗̂H1
ι⊗ι−−−−→ H2⊗̂H2

whose arrows are isometries.

Proof. By using the hypothesis for arbitrary u1, v1 ∈ H1, we obtain∫
Σ1

|⟨π1(s1)u1, v1⟩|2dµ1(s1) =

∫
Σ2

|⟨π1(p(s2))u1, v1⟩|2dµ2(s2)

=

∫
Σ2

|⟨ι∗π2(s2)ι(u1), v1⟩|2dµ2(s2)

=

∫
Σ2

|⟨π2(s2)ι(u1), ι(v1)⟩|2dµ2(s2)

= ∥ι(u1)∥2∥ι(v1)∥2 = ∥u1∥2∥v1∥2,

which shows that π1 ∈ SQ(B(H1), µ1). The assertion on the commuta-
tive diagram is then clear, and this concludes the proof. �

3. H∗-algebra B2(Σ) and larger symbol spaces. We place our-
selves in the setting of Section 2; in particular, we are given a map
π : Σ → B(H) belonging to SQ(B(H), µ). We do not assume the fam-
ily

{ϕu,v ≡ Φ(u⊗ v) | u, v ∈ H}

to be total in L2(Σ). For instance, this property fails if π is any
irreducible representation of any compact group Σ ̸= {1}, since we
then have dimH < ∞ and the Peter-Weyl decomposition of L2(Σ) see
also Corollary 2.5.

Consequently, we need to introduce the closed subspace

B2(Σ) := Φ
(
H⊗̂H

)
⊆ L2(Σ),

which is unitarily equivalent to H⊗̂H, and hence, with B2(H). This
space B2(Σ) is the closure in L2(Σ) of the subspace Φ(H⊗H). Clearly,
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there is a unitary operator

(3.1) Π := Λ ◦ Φ−1 : B2(Σ) −→ B2(H),

uniquely determined by

(3.2) Π(ϕu,v) = λu,v = ⟨·, v⟩u, for all u, v ∈ H,

and satisfying

Tr[Π(f)Π(g)∗] = ⟨f, g⟩(Σ) :=

∫
Σ

f(s)g(s) dµ(s),

for all f, g ∈ B2(Σ). For the sake of clarity, we also note the
commutative diagram

(3.3) H⊗̂H Φ //

Λ

��

B2(Σ)

Πzzuu
uu
uu
uu
u

B2(H)

whose arrows are isomorphisms of H∗-algebras, and, in particular,
unitary operators.

Remark 3.1. Commutative diagram (3.3) can be connected with
previous constructions. For example, in the context of Proposition 2.9,
we can use πj ∈ SQ(B(Hj), µj) to construct the H∗-algebra B2(Σj)
and the map Πj , while π1 ⊗π2 serves in the same way to construct the
H∗-algebra B2(Σ1 × Σ2) and the map Π. As a direct consequence of
Proposition 2.9, B2(Σ1 × Σ2) can be identified with B2(Σ1)⊗̂B2(Σ2)
and Π with Π1 ⊗ Π2. In the setting of Proposition 2.10, one has
f ∈ B2(Σ1) if and only if

f ◦ p ∈ Φπ2
(
ιH1 ⊗̂ ιH1

)
⊂ B2(Σ2),

and then Π1(f) = ι∗Π2(f ◦ p)ι. If ι is unitary, the two H∗-algebras
B2(Σ1) and B2(Σ2) are isomorphic through the transformation

f 7−→ f ◦ p.
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3.1. Basic properties of Π.

Proposition 3.2. For any f ∈ B2(Σ), in a weak sense one has

(3.4) Π(f) =

∫
Σ

f(s)π(s)∗dµ(s), Π(f)∗ =

∫
Σ

f(s)π(s) dµ(s).

Proof. If u, v ∈ H, then one has

⟨Π(f)u, v⟩ = Tr[λΠ(f)u,v] = Tr[Π(f)λu,v]

= Tr[Π(f)Π(ϕv,u)
∗] = ⟨f, ϕv,u⟩(Σ)

=

∫
Σ

f(s)⟨π(s)∗u, v⟩ dµ(s).

Then, the second formula follows from the first one. �

The next simple corollary is needed in the proof of Proposition 7.1.

Corollary 3.3. The adjoint of the isometry

Φ ◦ Λ−1 : B2(H) −→ L2(Σ)

is given by the weakly convergent integral

(Φ ◦ Λ−1)∗f =

∫
Σ

f(s)π(s)∗dµ(s),

for every f ∈ L2(Σ).

Proof. One has
Φ ◦ Λ−1 = Π−1 = Π∗,

since Π is unitary. The assertion now follows by Proposition 3.2. �

By transport of structure, a composition law and an involution may
be defined by

⋆ : B2(Σ)× B2(Σ) −→ B2(Σ), f ⋆ g := Π−1[Π(f)Π(g)],

⋆ : B2(Σ) −→ B2(Σ), f⋆ := Π−1[Π(f)∗].
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Therefore, B2(Σ) is an H∗-algebra and Π : B2(Σ) → B2(H) is an
H∗-algebra isomorphism. Thus, for all f, g, h ∈ B2(Σ):

⟨f⋆, g⋆⟩(Σ) = ⟨g, f⟩(Σ),

⟨f ⋆ g, h⟩(Σ) = ⟨f, h ⋆ g⋆⟩(Σ) = ⟨g, f⋆ ⋆ h⟩(Σ).

The Hilbert subalgebra B1(Σ) := B2(Σ)⋆B2(Σ) is dense in B2(Σ),
and, for every g ∈ B2(Σ), the maps

B2(Σ) ∋ f 7−→ g ⋆ f ∈ B2(Σ), B2(Σ) ∋ f 7−→ f ⋆ g ∈ B2(Σ)

are continuous.

For further use, note the relations

⟨ϕu1,v1 , ϕu2,v2⟩(Σ) = ⟨u1, u2⟩⟨v2, v1⟩(3.5)

ϕu1,v1 ⋆ ϕu2,v2 = ⟨u2, v1⟩ϕu1,v2 , ϕ⋆
u,v = ϕv,u,(3.6)

are valid for every u, u1, u2, v, v1, v2 ∈ H, as well as

f⋆ϕu,v⋆g = ϕΠ(f)u,Π(g)∗v, for all f, g ∈ B2(Σ), u, v ∈ H.

In particular, if ∥u∥ = 1, then ϕu,u is a self-adjoint projection, repre-
sented by Π as the rank-one operator λu,u. Also, note that B1(Σ) and
B2(Σ) are Banach ∗-algebras, where B1(Σ) is endowed with the norm
for which the linear bijection Π: B1(Σ) → B1(H) is an isometry.

3.2. Extensions and the explicit form of the composition law.
In this subsection, we extend some of the above maps to larger symbol
spaces. We define a new norm

∥ · ∥B(Σ) : B2(Σ) −→ R+, ∥f∥B(Σ) := ∥Π(f)∥B(H).

The completion of B2(Σ) under this norm is a C∗-algebra B∞(Σ)
containing B2(Σ) as a dense ∗-ideal (also endowed with the stronger
Hilbert topology). Clearly, Π extends to a C∗-algebraic monomorphism
Π : B∞(Σ) → B(H) with range Π[B∞(Σ)] = B∞(H), the ideal of all
compact operators in H. Then, we denote by B(Σ) the multiplier
C∗-algebra [38] of B∞(Σ), which is isomorphic by a canonical exten-
sion of Π with B(H) and, in turn, can be identified with the multiplier
C∗-algebra of B∞(H). We keep the same notation ⋆ and ⋆ for the com-
position law and the involution on B(Σ). Based on the constructions
above, the elements of B1(Σ) (B2(Σ), B∞(Σ)) will be called trace-
class (Hilbert-Schmidt, compact) symbols, respectively. To eliminate
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any possible confusion, we reserve the term operator-bounded symbols
for the elements of B(Σ).

The spaces Bq(Σ), q = 1, 2,∞ remain ∗-ideals in B(Σ), and the
scalar product ⟨·, ·⟩B2(Σ) can be “extended” to sesquilinear forms

⟨·, ·⟩(Σ) : B1(Σ)× B(Σ) −→ C,
⟨·, ·⟩(Σ) : B(Σ)× B1(Σ) −→ C.

For this, one simply sets ⟨f, g⟩(Σ) := Tr[Π(f)Π(g)∗] (definitions by
approximation are also available). Note for f ∈ B1(Σ) and g ∈ B(Σ)
that the inequality holds:

|⟨f, g⟩(Σ)| ≤ ∥f∥B1(Σ)∥g∥B(Σ) ≡ ∥Π(f)∥B1(H)∥Π(g)∥B(H).

Due to the cyclicity of the trace, if f, g, h ∈ B(Σ), and one belongs to
B1(Σ) (or two belong to B2(Σ)), then one has

⟨f⋆g, h⟩(Σ) = ⟨f, h⋆g⋆⟩(Σ) = ⟨g, f⋆⋆h⟩(Σ).

Let us set

es := Π−1[π(s)∗] ∈ B(Σ) for all s ∈ Σ;

hence, ϕu,v(s) = ⟨u,Π(es)v⟩ for all u, v s and

(3.7) π(s)∗ = Π(es), π(s) = Π(e⋆s).

Proposition 3.4. For every f ∈ B1(Σ), one has

(3.8) ⟨f, es⟩(Σ) = f(s), ⟨f, e⋆s⟩(Σ) = f⋆(s),

µ-almost everywhere s ∈ Σ.

Proof. By direct computation using equations (1.2), (1.3) and (3.2)
for u, v ∈ H, s ∈ Σ, one gets

⟨ϕu,v, es⟩Σ = Tr[Π(ϕu,v)π(s)] = Tr[λu,vπ(s)] = Tr[λu,π(s)∗v] = ϕu,v(s).

Thus, the same is true for ϕu,v replaced by any element of Φ(H⊗H),
which is dense in B1(Σ).

Now, assume that a sequence

{gn}n∈N ⊂ Φ
(
H⊗H

)
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converges to f ∈ B1(Σ), with respect to the trace norm. Then, for
each s ∈ Σ,

|⟨f, es⟩(Σ) − ⟨gn, es⟩(Σ)| = |Tr [Π(f − gn)π(s)]|
≤ ∥Π(f − gn)∥B1(H)∥π(s)∥B(H)

= ∥f − gn∥B1(Σ)∥π(s)∥B(H) −→
n→∞

0,

recalling that Π: B1(Σ) → B1(H) is an isometry by the definition of
the norm of B1(Σ). Since convergence in B1(Σ) implies convergence
in L2(Σ) which, in turn, implies µ-almost everywhere convergence of
a subsequence, there is a µ-negligible set M ⊂ Σ and a subsequence
{gnk

}k∈N such that, for every s ∈ Σ \M ,

f(s) = lim
k→∞

gnk
(s) = lim

k→∞
⟨gnk

, es⟩(Σ) = ⟨f, es⟩(Σ).

Then, for s in the same set s ∈ Σ \M , one has

⟨f, e⋆s⟩(Σ) = ⟨es, f⋆⟩(Σ) = ⟨f⋆, es⟩(Σ) = f⋆(s). �

Corollary 3.5. For every f, g ∈ B1(Σ), one has∫
Σ

⟨f, es⟩(Σ)⟨es, g⟩(Σ) dµ(s) = ⟨f, g⟩(Σ).

Proof. Follows immediately from Proposition 3.4. �

Now, we can compute the symbol of a trace-class operator.

Corollary 3.6. For T ∈ B1(H) ⊂ B2(H), one has

(3.9) [Π−1(T )](s) = Tr [Tπ(s)],

µ-almost everywhere s ∈ Σ.

Proof. For the moment, let us denote the mapping defined in equa-
tion (3.9) by Π(−1). It is enough to show that Π(−1)[Π(f)] = f holds
µ-almost everywhere, for every f belonging to B1(Σ).

But, for µ-almost every s ∈ Σ, one has, by equations (3.7) and (3.8),

(Π(−1)[Π(f)])(s) = Tr [Π(f)π(s)] = ⟨f, es⟩(Σ) = f(s). �
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Corollary 3.7. For each S ∈ B1(H) and each f ∈ B2(Σ) one has

Tr [Π(f)S] =

∫
Σ

f(s)Tr [π(s)∗S]dµ(s),

Tr [Π(f)∗S] =

∫
Σ

f(s)Tr [π(s)S]dµ(s).(3.10)

Proof. Using the definitions, the fact that Π is unitary and for-
mula (3.9),

Tr[Π(f)S] =⟨Π(f),Π[Π−1(S∗)]⟩B2(H) = ⟨f,Π−1(S∗)⟩(Σ)

=

∫
Σ

f(s)[Π−1(S∗)](s)dµ(s) =

∫
Σ

f(s)Tr[S∗π(s)]dµ(s)

=

∫
Σ

f(s)Tr [π(s)∗S] dµ(s).

Relation (3.10) follows similarly. �

Corollary 3.7, which can be alternatively derived from equation (3.4),
reinforces Proposition 3.2, recovered by taking S to be a rank 1
operator.

Remark 3.8. One can also justify, for every f ∈ B2(Σ), the relations

f =

∫
Σ

f(s)esdµ(s), f⋆ =

∫
Σ

f(s)e⋆sdµ(s);

for example, if g ∈ B1(Σ), then∫
Σ

f(s)⟨es, g⟩(Σ) dµ(s) =

∫
Σ

f(s)g(s)dµ(s) = ⟨f, g⟩(Σ).

In general, B2(Σ) is not a reproducing kernel Hilbert space as the
symbols es rarely belong to B2(Σ).

Now, we give explicit formulae for the algebraic structure. In the
following statement, we use the fact that, for any complex Hilbert
space H, the Banach algebra of trace-class operators B1(H) has right
approximate units. For instance, the family of orthogonal projections
onto finite-dimensional subspaces of H is a two-sided approximate
unit of B1(H). This follows by [10, Chapter III, Theorem 6.3] on
separable Hilbert spaces, and then it extends to arbitrary Hilbert
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spaces, every operator in B1(H) written as a linear combination of
self-adjoint operators, and using the fact that the closure of the range
of any compact self-adjoint operator is separable.

Theorem 3.9. Let {Sj | j ∈ J} be any right approximate unit in
B1(H).

(i) If f ∈ B1(Σ), for µ-almost every r ∈ Σ, one has

f⋆(r) = lim
j

∫
Σ

Tr [π(r)π(s)Sj ]f(s) dµ(s).

(ii) If f, g ∈ B2(Σ), for µ-almost every r ∈ Σ, one has

(f ⋆ g)(r) = lim
j

∫
Σ

∫
Σ

Tr [π(s)∗π(t)∗π(r)Sj ]f(s)g(t) dµ(s) dµ(t).

Proof. Both computations rely on Corollaries 3.6 and 3.7. One has
for µ-almost every r ∈ Σ,

f⋆(r) = Tr [Π(f)∗π(r)] = lim
j

Tr [Π(f)∗π(r)Sj ]

= lim
j

∫
Σ

Tr [π(s)π(r)Sj ]f(s) dµ(s),

and

(f ⋆ g)(r) = Tr [Π(f)Π(g)π(r)] = lim
j

Tr [Π(f)Π(g)π(r)Sj ]

= lim
j

∫
Σ

f(s)Tr [π(s)∗Π(g)π(r)Sj ] dµ(s)

= lim
j

∫
Σ

f(s) dµ(s)

∫
Σ

g(t)Tr [π(s)∗π(t)∗π(r)Sj ] dµ(t),

and this concludes the proof. �

Remark 3.10. Let us assume that Σ is a locally compact space and we
have ∥π(s)∥B(H) ≤ C < ∞ for all s ∈ Σ. Let R(Σ) be the Banach space
of all Radon bounded complex measures on Σ, seen alternatively both
as functions on the Borel sets of Σ and as elements of the topological
anti-dual of C0(Σ). Using the Hahn-Banach theorem, one can easily
find a norm-preserving extension of every ρ ∈ R(Σ) to an anti-linear
continuous functional ρ : BC(Σ) → C, where BC(Σ) denotes the
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Banach space of all bounded continuous functions on Σ. We will use
the notation ⟨⟨ρ, f⟩⟩ =

∫
Σ
f dρ for this “duality” (linear in ρ and anti-

linear in f). On R(Σ), the usual norm of an anti-dual coincides with
the measure norm expressed as the total variation applied to the entire
space Σ. Since, for every u, v ∈ H, one has ϕv,u ∈ B2(Σ)∩BC(Σ), one
can define Π(ρ) ∈ B(H) in a weak sense by

⟨Π(ρ)u, v⟩ :=
∫
Σ

⟨π(s)∗u, v⟩ dρ(s) = ⟨⟨ρ, ⟨π(·)∗u, v⟩⟩⟩ = ⟨⟨ρ, ϕv,u⟩⟩.

Now, it is also obvious that et coincides with the Dirac measure
concentrated in t and that, if ρ has a density g with respect to the
initial measure µ, then Π(ρ) = Π(g). The estimate,

∥Π(ρ)∥B(H) ≤ ∥ρ∥R(Σ) sup
s∈Σ

∥π(s)∥B(H),

is easy and certifies that L1(Σ, µ) ⊂ R(Σ) ⊂ B(Σ).

4. Fréchet-Hilbert algebras and their Gelfand triples. In
most applications, there is some supplementary structure which can
be used to enrich and enlarge the formalism. Let G be a Fréchet space
continuously and densely embedded in H, and set α : G → H for the
embedding. We will show that this extra data generates many new,
useful objects, even if we do not require π(s)G ⊂ G for s ∈ Σ. Assuming
that G is nuclear would simplify the overall picture, but we also want
to cover the case of Banach spaces.

Lemma 4.1. The projective tensor product G ⊗̂p G is a Fréchet space

continuously and densely embedded in the Hilbert space H⊗̂H.

Proof. Clearly, G ⊗̂p G is a Fréchet space. It is enough to embed it

continuously and densely into H⊗̂pH. The canonical mapping,

α⊗ α : G ⊗ G −→ H⊗H,

is linear and continuous when we put the corresponding projective
topologies [36, Proposition 43.6] on both tensor products, so it extends
to a linear continuous map

α ⊗̂p α : G ⊗̂p G −→ H⊗̂pH.
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This map obviously has a dense range, and it is injective [36, Example
43.2]. By composing with the canonical injection H⊗̂pH ↩→ H⊗̂H ,

we get the linear continuous map a : G ⊗̂p G → H⊗̂H (injective and
with dense image). �

By slight abuse of notation, we will treat G as a dense subspace of
H and G ⊗̂p G as a dense subspace of H⊗̂H. Let us set

G (Σ) := Φ
[
G ⊗̂p G

]
⊂ B2(Σ) ⊂ L2(Σ).

Theorem 4.2. With the algebraic and topological structure induced
from G ⊗̂p G, along with the scalar product ⟨·, ·⟩(Σ), the space G (Σ) be-
comes a Fréchet-Hilbert algebra (as defined at the end of the introduc-
tion) composed of trace-class symbols, continuously and densely embed-
ded into B2(Σ). Its dual G ′(Σ) contains all of the operator-bounded
symbols. The restriction Φ : G ⊗̂p G → G (Σ) is an isomorphism of
Fréchet-Hilbert algebras.

Proof. Clearly, G (Σ) is turned into a Fréchet space by transport of
structure. It is densely contained in B2(Σ) because G ⊗̂p G is densely

contained in H⊗̂H.

The basic complete tensor products in the case of Hilbert spaces
are described in [36, Section 48]. For instance, by [36, Theorem
48.3], H⊗̂pH can be identified with B1(H) while H⊗̂iH is canonically
isomorphic to B∞(H). We recall that the Hilbert space tensor product
H⊗̂H is isomorphic to B2(H). Taking into account the continuous
embedding of G ⊗̂p G into H⊗̂pH, the assertions G (Σ) ⊂ B1(Σ) follow,
and then B1(Σ)

′ ⊂ G ′(Σ) becomes obvious. However, the dual
of B1(H) is B(H), which permits the identification of B1(Σ)

′ with
B(Σ) ⊂ G ′(Σ).

By the very definition of the structure of G (Σ) by transport of
structure from G⊗̂pG via Φ, it is enough to check that G⊗̂pG is a
Fréchet-Hilbert algebra. Recall from the definition at the end of the
introduction that a Hilbert algebra need not be complete with respect
to the topology defined by its scalar product. On G ⊗ G the algebraic
structure is uniquely defined by (u⊗ v)∗ := v ⊗ u and

(u⊗ v) · (u′ ⊗ v′) = ⟨u′, v⟩(u⊗ v′) ∈ G ⊗ G,
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valid for u, v, u′, v′ ∈ G. Then, one can conclude by density, if it is
checked, that the involution and the multiplication are continuous, with
respect to the projective topology. For the involution, this is very easy;
we will treat the multiplication.

Let {pλ | λ ∈ Λ} be a directed family of seminorms defining
the topology of G. Since G is continuously contained in H, by [36,
Proposition 7.7] there exist λ0 ∈ Λ and C > 0 such that ∥u∥ ≤ Cpλ0(u)
for all u ∈ G. Also, by [36, Proposition 43.1], the projective topology
on G ⊗G is defined by the family of seminorms {pλ,µ | (λ, µ) ∈ Λ×Λ},
given by

pλ,µ(w) := inf

{∑
l

pλ(wl)pµ(w
′
l)

∣∣ w =
∑
l

wl ⊗ w′
l

}
;

all the sums should be finite. For any λ, µ ∈ Λ and any u, v ∈ G ⊗ G,
one has

pλ,µ(u · v) = inf

{∑
l

pλ(wl)pµ(w
′
l)

∣∣ u · v =
∑
l

wl ⊗ w′
l

}
≤ inf

{∑
j,k

pλ(⟨vk, u′
j⟩uj)pµ(v

′
k)

∣∣ u =
∑
j

uj ⊗ u′
j , v =

∑
k

vk ⊗ v′k

}

≤ inf

{∑
j,k

∥u′
j∥∥vk∥pλ(uj)pµ(v

′
k)

∣∣ u =
∑
j

uj ⊗ u′
j , v =

∑
k

vk ⊗ v′k

}

≤ C2 inf

{∑
j

pλ(uj)pλ0(u
′
j)
∑
k

pλ0(vk)pµ(v
′
k)

∣∣ u =
∑
j

uj ⊗ u′
j , v =

∑
k

vk ⊗ v′k

}

= C2 inf

{∑
j

pλ(uj)pλ0
(u′

j)
∣∣ u =

∑
j

uj ⊗ u′
j

}
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× inf

{∑
k

pλ0(vk)pµ(v
′
k)

∣∣ v =
∑
k

vk ⊗ v′k

}
= C2pλ,λ0

(u)pλ0,µ(v),

which justifies the continuity of the product. �

For further reference, we indicate here the continuous embeddings

(4.1) G (Σ) ↩→ B1(Σ) ↩→ B2(Σ) ↩→ B∞(Σ) ↩→ B(Σ) ↩→ G ′(Σ).

The first and last embeddings become isomorphisms if and only if
G = H. In most of the cases, the operators π(s) = Π(es)

∗ are unitary;
in such cases, es is not a compact symbol.

Remark 4.3. The above direct construction of the Fréchet-Hilbert
algebra G (Σ) by transport of structure is convenient because it is
universal, but the output is rather implicit (although, clearly,

{ϕu,v | u, v ∈ G}

is a total family in G (Σ); see [36, Theorem 45.1] for a stronger result).
Fortunately, in most of the interesting examples, the space G (Σ) has
some independent definition as a space of functions (or distributions) on
Σ. The scale of spaces given in equation (4.1) can be used to extend the
composition law by duality techniques and to define optimal “Moyal-
type” ∗-algebras, as in [30].

Now, we need some notions concerning duality of Fréchet spaces [36,
Section 19]. When, on the (topological) dual G′, we consider the weak∗-
topology, we write G′

σ. Recall that, in this topology, the convergence
is merely the pointwise convergence of functionals and that a base of
neighborhoods of 0 ∈ G′

Σ is composed of the polars of all the finite
subsets of G. However, we are also going to use the stronger topology
γ of uniform convergence on convex compact subsets of G, and then G′

will be denoted by G′
γ . One can take the polars of the convex compact

subsets of G as a base of 0 ∈ G′
γ .

Using the transpose α′ : H′ → G′, cf., [36, Section 23], and the
Riesz antilinear identification of H with its strong dual H′, one gets
an injective continuous antilinear embedding of H into the dual G′ (or,
equivalently, a linear embedding of H in G′). Thus, we identify H
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with a subspace of G′, which is dense if, on G′, one considers either
of the topologies σ or γ. Hence, we have a Gelfand triple (G,H,G′

ν)
for ν = σ, γ. Since the duality between G and G′ is compatible
with the scalar product, we can use notation for this duality, such
as ⟨u,w⟩ := w(u), antilinear in w ∈ G′ and linear in u ∈ G.

Note that G can be seen both as the dual of its weak∗-dual G′
σ and as

the dual of G′
γ , cf., [36]. In general, it does not coincide with the dual

of G′
β , involving the strong topology β of uniform convergence on the

bounded subsets of G. By a simple duality argument, it follows that
H (hence, G also) will be dense in G′

ν for ν = σ, γ. This also happens
for ν = β if G is assumed reflexive. If G is a Banach space, we have
a Banach-Gelfand triple. In such a case, the strong topology β on G′

coincides with the norm topology given by

∥w∥G′ := sup{|⟨u,w⟩| | u ∈ G, ∥u∥G ≤ 1}.

The same construction can be applied to the continuous and dense
embedding G ⊗̂p G ↩→ H⊗̂H, obtaining an ampler Gelfand triple

(G ⊗̂p G,H⊗̂H, (G ⊗̂p G)′ν);

one uses the transpose H⊗̂H a′

↩→ (G ⊗̂p G)′ν of the map a constructed
in the proof of Lemma 4.1. Here, once again, we may use any of the
topologies ν = σ, γ, β.

Now, we recall that we have an isomorphism of H∗-algebras Φ :
H⊗̂H → B2(Σ) (in particular, a unitary map) which restricts to an
isomorphism of Fréchet-Hilbert algebras Φ : G ⊗̂p G → G (Σ). The
inverse of the transpose will be a continuous extension (denoted by
abuse of the same letter)

(4.2) Φ : (G ⊗̂p G)′ν −→ G ′(Σ)ν ;

the topological dual of G (Σ) has been denoted by G ′(Σ).

We summarize the discussion above as a corollary. We denote
an isomorphism of Gelfand triples (unitary at the level of Hilbert
spaces) for which the “small” spaces are Fréchet-Hilbert algebras by
isomorphism of Hilbert algebra Gelfand triples. The Hilbert spaces are
H∗-algebras, and the isomorphism respects the ∗-algebra structures,
whenever this makes sense.



1822 I. BELTIŢĂ, D. BELTIŢĂ AND M. MĂNTOIU

Corollary 4.4. Assume that the Fréchet space G is continuously and
densely embedded in H. There is a canonical isomorphism of Hilbert
algebra Gelfand triples
(4.3)

Φπ ≡ Φ : (G ⊗̂p G,H⊗̂H, (G ⊗̂p G)′ν) −→ (G (Σ),B2(Σ),G
′(Σ)ν).

Notice that for u, v ∈ G′ one has a well-defined element

ϕu,v := Φ(u⊗ v) ∈ G ′(Σ).

Remark 4.5. A canonical isomorphism (G ⊗̂p G)′ ∼ B(G,G′
σ) exists

which is purely algebraical and involves the space of all linear operators
A : G → G′ which are continuous when we put the weak∗-topology on
G′. See [36, page 465] for more details. Using this, it is easy to deduce
from the above considerations that

Π = Λ ◦ Φ−1 : B2(Σ) −→ B2(H)

extends to a linear isomorphism

Π : G ′(Σ) −→ B(G,G′
σ).

Thus, the elements of G ′(Σ) can be seen as symbols of linear operators
T : G → G′ that are continuous with respect to the weak∗-topology on
the dual. The relation

(4.4) ⟨Π(g)u, v⟩ =
∫
Σ

g(t)⟨π(t)∗u, v⟩ dµ(t) = ⟨g, ϕv,u⟩(Σ),

valid a priori for g ∈ B2(Σ) and u, v ∈ H, also stands true for g ∈ G ′(Σ)
and u, v ∈ G with the obvious reinterpretation of the duality ⟨·, ·⟩(Σ).

Remark 4.6. Some extra structure is present if, in addition, G satisfies
the approximation property. That property is shared by many specific
examples of Fréchet spaces; see, for instance, [22, Section 18]. Here,

it serves to identify the injective tensor product G′ ⊗̂i G
′
with another

topological tensor product G′ ∈ G′
, and thus, to simplify the picture.

Under this extra assumption, one has isomorphisms

B(G,G′
σ) ∼ (G ⊗̂p G)′γ ∼= G′

γ ⊗̂i G
′
γ .

The second [22, page 346] is an isomorphism of locally convex spaces,
and it involves the topology of uniform convergence on compact convex
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sets on various dual spaces. By general principles, it justifies the Hilbert
algebra Gelfand triple

(G ⊗̂p G, H⊗̂H,G′
γ ⊗̂i G

′
γ).

Remark 4.7. Let us show how suitable subspaces of B2(Σ) can be
used to define the Fréchet spaces G and G (Σ) which are the topic of
this section.

Let G(Σ) be a continuously and densely embedded Fréchet space in
B2(Σ). We fix a unit vector w ∈ H, and we set w(s) := π(s)∗w for
every s ∈ Σ and ϕw(u) := ϕu,w for every u ∈ H. Then, we define

GG(Σ)
w ≡ G := ϕ−1

w [G(Σ)] ⊂ H.

It can be shown that G is a continuously and densely embedded Fréchet
space in H.

We will now give a concrete realization for G (Σ) := Φ(G⊗̂pG). Let
us also define Υw : B2(Σ) → L2(Σ× Σ) by

[Υw(g)](s, t) : = ⟨g, ϕw(t),w(s)⟩(Σ)

=

∫
Σ

g(r)⟨π(r)π(t)w, π(s)w⟩ dµ(r).

It turns out that Υw is an isometry with its range contained in
B2(Σ) ⊗̂B2(Σ). Then, it is rather easy to show that

G (Σ) = Υ−1
w

[
G(Σ) ⊗̂p G(Σ)

]
.

The proof is based on the identity

Υw ◦ Φ = ϕw ⊗ ϕw,

which is an immediate consequence of equation (3.5).

5. The Berezin-Toeplitz quantization. In this section, we show
that some very basic aspects of the Berezin-Toeplitz quantization can
be naturally recovered in our abstract framework. More details on this
circle of ideas can be found in [7].

Let us fix a unit vector w ∈ H and consider the family

W := {w(s) := π(s)∗w | s ∈ Σ}.
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As a consequence of the existence of isometry (2.2), we have, in a weak
sense,

(5.1) 1 =

∫
Σ

λw(s),w(s) dµ(s)

by using the notation introduced in equation (1.1). For later use, we
note that equation (5.1) implies

(5.2) TrT =

∫
Σ

⟨Tw(s), w(s)⟩ dµ(s)

for every operator T ∈ B1(H). In fact, this follows by writing
T as a linear combination of four nonnegative trace-class operators
and then using the diagonalization of these four operators along with
equation (2.3). We set

ϕw : H −→ B2(Σ) ⊂ L2(Σ), [ϕw(u)](s) := ⟨u,w(s)⟩

whose adjoint operator ϕ†
w : L2(Σ) → H is given by

ϕ†
w(f) =

∫
Σ

f(s)w(s) dµ(s) = Π(f)w.

The associated kernel is the function pw : Σ× Σ → C, given by

pw(s, t) := ⟨w(t), w(s)⟩ = [ϕw(w(t))](s) = [ϕw(w(s))](t),

defining a self-adjoint integral operator Pw = Int(pw) in L2(Σ). One
can easily check that Pw = ϕwϕ

†
w is the final projection of the isometry

ϕw, so Pw[L
2(Σ)] is a closed subspace of B2(Σ). Since ϕ†

wϕw = 1, we
obtain the inversion formula

(5.3) u =

∫
Σ

[ϕw(u)](t)w(t) dµ(t),

leading to the reproducing formula ϕw(u) = Pw[ϕw(u)], i.e.,

[ϕw(u)](s) =

∫
Σ

⟨w(t), w(s)⟩[ϕw(u)](t) dµ(t).

Thus, Pw(Σ) := Pw[L
2(Σ)] is a reproducing Hilbert space with repro-

ducing kernel pw.

If, in addition, sup ∥π(·)∥⟨∞, and Σ is endowed with a topology for
which π is weakly continuous, then the reproducing kernel Hilbert space
Pw(Σ) consists of bounded continuous functions on Σ.
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Let us define, for f ∈ L∞(Σ),

Ωπ
w(f) ≡ Ωw(f) :=

∫
Σ

f(s)λw(s),w(s) dµ(s)

and call it the Berezin operator associated to the frame W . This should
be taken in a weak sense, i.e., for any u, v ∈ H, set

⟨Ωw(f)u, v⟩ : =
∫
Σ

f(s)⟨λw(s),w(s)u, v⟩ dµ(s)(5.4)

=

∫
Σ

f(s)[ϕw(u)](s)[ϕw(v)](s) dµ(s).

We gather the basic properties of Ωw in the following statement; see
[2, 7] for other results of this type.

Proposition 5.1.

(i) The estimate ∥Ωw(f)∥B(H) ≤ ∥f∥L∞(Σ) holds.

(ii) The map Ωw sends µ-almost everywhere positive functions in
positive operators.

(iii) If f ∈ L1(Σ, ∥w(·)∥2µ), then Ωw(f) is a trace-class operator and

Tr [Ωw(f)] =

∫
Σ

⟨Ωw(f)w(s), w(s)⟩ dµ(s)

=

∫
Σ

f(s)∥w(s)∥2dµ(s).

(iv) Assume that Σ is a locally compact space and that µ is a Radon
measure with full support. If f ∈ C0(Σ), then Ωw(f) is a compact
operator.

Proof.

(i) We estimate

|⟨Ωw(f)u, v⟩| ≤ ∥f∥L∞

∫
Σ

|[ϕw(u)](s)||[ϕw(v)](s)| dµ(s)

≤ ∥f∥L∞∥ϕw(u)∥L2∥ϕw(v)∥L2

= ∥f∥L∞∥u∥∥v∥,

and this gives the result.
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(ii) This follows from the fact that

⟨Ωw(f)u, u⟩ :=
∫
Σ

f(s)|[ϕw(u)](s)|2dµ(s).

(iii) We may assume that f ≥ 0. On one hand, if {vk}k is any
orthonormal basis in H, one has, by the Parseval equality,

Tr [Ωw(f)] =
∑
k

⟨Ωw(f)vk, vk⟩

=

∫
Σ

f(s)
∑
k

∣∣∣⟨w(s), vk⟩∣∣∣2dµ(s)
=

∫
Σ

f(s)∥w(s)∥2dµ(s);

hence, the assumption f ∈ L1(Σ, ∥w(·)∥2µ) implies Ωw(f) ∈ B1(H).
The asserted formula of the trace can then be obtained either by
equation (5.2) or directly, by equation (5.1),∫

Σ

⟨Ωw(f)w(s), w(s)⟩ dµ(s) =
∫
Σ

∫
Σ

f(t)|⟨w(t), w(s)⟩|2dµ(s) dµ(t)

=

∫
Σ

f(t) dµ(t)

∫
Σ

|⟨w(t), w(s)⟩ |2dµ(s)

=

∫
Σ

f(t)∥w(t)∥2dµ(t).

(iv) Since µ was selected to be a Radon measure, it is finite on
compact subsets of Σ, and thus,

Cc(Σ) ⊂ L1(Σ) ∩ L∞(Σ).

If f is continuous and has compact support, then Ωw(f) is a compact
operator by (iii). Then, the assertion follows by density from (i). �

Remark 5.2. Formula (5.4), which can also be written

⟨Ωw(f)u, v⟩ = ⟨f, ϕw(u)ϕw(v)⟩(Σ),

opens the way to various extensions by duality. Returning to the setting
of Section 4, let us also assume that G (Σ) is stable under the pointwise

product. Then, for w, u, v ∈ G, one has ϕw(u) · ϕw(v) ∈ G (Σ) · G (Σ) ⊂
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G (Σ). This gives meaning to Ωπ
w(f) as a linear continuous operator

G → G′
σ for f ∈ G ′(Σ).

We now give a Toeplitz-like form of the operator

∆w(f) := ϕw ◦ Ωw(f) ◦ ϕ†
w.

Proposition 5.3. For every f ∈ L∞(Σ), one has

∆w(f) = Pw ◦Mf ◦ Pw,

where Mf : L
2(Σ) → L2(Σ) is the multiplication by f operator.

Proof. We have now obtained

[∆w(f)h](s) = ⟨Ωw(f)
[
ϕ†
w(h)

]
, w(s)⟩

=

∫
Σ

f(t)
[
ϕw

(
ϕ†
w(h)

)]
(t)[ϕw(w(s))](t) dµ(t)

=

∫
Σ

f(t) dµ(t)

∫
Σ

h(t′)[ϕw(w(t
′))](t)[ϕw(w(s))](t) dµ(t

′)

=

∫
Σ

∫
Σ

f(t)h(t′)pw(t, t
′)pw(t, s) dµ(t) dµ(t

′)

=

∫
Σ

[ ∫
Σ

pw(s, t)f(t)pw(t, t
′) dµ(t)

]
h(t′) dµ(t′)

= [(Pw ◦Mf ◦ Pw)h](s). �

We define the covariant symbol of the operator A ∈ B[L2(Σ)] to be
the complex function on Σ given by

[σw(A)](s) := ⟨Aϕw[w(s)], ϕw[w(s)]⟩(Σ) = ⟨ϕ†
wAϕw[w(s)], w(s)⟩.

We also introduce the covariant symbol of the operator S ∈ B(H) as

[τw(S)](s) := ⟨Sw(s), w(s)⟩.

Note that, for S = Π(f), we obtain

[τw(S)](s) = ⟨Π(e⋆s ⋆ f ⋆ es)w,w⟩

for any s ∈ Σ. On the other hand, the covariant symbols of Berezin-
Toeplitz operators are also easy to compute in terms of the reproducing
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kernel pw. Specifically,

[σw(∆w(g))](s) = [τw(Ωw(g))](s) =

∫
Σ

g(t)|⟨w(s), w(t)⟩|2dµ(t).

Now, we investigate the connection between Ωw ≡ Ωπ
w and Π.

Proposition 5.4. For any f ∈ L1(Σ, ∥w(·)∥2µ), one has Ωπ
w(f) =

Π[Sπ
w(f)], where, for µ-almost every s ∈ Σ,

[Sπ
w(f)](s) :=

∫
Σ

f(t)⟨π(s)∗w(t), w(t)⟩ dµ(t) = ⟨f, τπw[π(s)]⟩(Σ).

Proof. Using equations (3.9), (5.1), (5.2) and (5.4), one has

Π−1[Ωπ
w(f)](s) = Tr[π(s)Ωπ

w(f)]

=

∫
Σ

⟨Ωπ
w(f)w(t), π(s)

∗w(t)⟩ dµ(t)

=

∫
Σ

∫
Σ

f(r)ϕw(t),w(r)ϕπ(s)∗w(t),w(r) dµ(t) dµ(r)

=

∫
Σ

∫
Σ

f(r)⟨π(r)∗w,w(t)⟩⟨w(t), π(s)π(r)∗w⟩ dµ(r) dµ(t)

=

∫
Σ

f(r)⟨π(r)∗w, π(s)π(r)∗w⟩ dµ(r)

=

∫
Σ

f(t)⟨π(s)∗w(t), w(t)⟩ dµ(t) = [Sπ
w(f)](s),

and this concludes the proof. �

6. Infinite tensor products of square-integrable maps. We
need the next definition in order to describe square-integrability prop-
erties of infinite tensor products of operator-valued maps.

Definition 6.1. Let H be any complex Hilbert space, and let (Σ,M)
be any measurable space as above. Also, let µ = {µα}α∈A be any
family of positive measures defined on the σ-algebra M, where the
index set A is directed with respect to some partial ordering. A weakly
measurable map π : Σ → B(H) is said to be square integrable with
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respect to the family of measures µ if it satisfies the condition

(6.1) lim
α∈A

∫
Σ

⟨π(s)u1, v1⟩⟨v2, π(s)u2⟩ dµα(s) = ⟨u1, u2⟩⟨v2, v1⟩

for all u1, u2, v1, v2 ∈ H.

Remark 6.2. As in Remark 2.2, a polarization argument also shows
that it suffices to verify equation (6.1) for u1 = u2 and v1 = v2, that is,

(6.2) lim
α∈A

∫
Σ

∣∣∣⟨π(s)u, v⟩∣∣∣2dµα(s) = ∥u∥2∥v∥2

for all u, v ∈ H. Also note that, if there exists a measure µ∞ such that,
for some α0 ∈ A, we have

L1(Σ, µ∞) =
∩

α≥α0

L1(Σ, µα),

and, for all ϕ ∈ L1(Σ, µ∞), we have∫
Σ

ϕdµ∞ = lim
α∈A

∫
Σ

ϕdµα,

then the operator-valued map π is square-integrable with respect to the
family of measures µ = {µα}α∈A if and only if π ∈ SQ(B(H), µ∞).

By using infinite tensor products of Hilbert spaces, we introduce the
following notion of infinite tensor product of square integrable maps.
We emphasize that this notion does not involve measure spaces, but
rather measurable spaces, that is, merely pairs (Σ,M) where M is
a σ-algebra of subsets of a set Σ. In particular, the functions on M
must be everywhere defined. However, we use the above notation from
square integrable operator-valued maps to facilitate the application of
this infinite tensor product construction in that setting in Theorem 6.6.

Definition 6.3. For j ≥ 1, let Hj be any complex Hilbert space, let
(Σj ,Mj) be any measurable space, and let πj : Σj → B(Hj). Assume
that we have

(i) a distinguished vector wj ∈ Hj with ∥wj∥ = 1;
(ii) a distinguished point tj ∈ Σj with πj(tj) = 1Hj .
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Denote
w := {wj}j≥1 ∈

∏
j≥1

Hj ,

and define the complex Hilbert space

H :=
⊗̂
j≥1

w

Hj ,

as the inductive limit of the sequence of Hilbert spaces

H(N) :=
⊗̂

1≤j≤N

Hj ,

with respect to the isometric embeddings

H(N) −→ H(N+1), x 7−→ x⊗ wN+1.

Then, define

Σ:=

{
s={sj}j≥1∈

∏
j≥1

Σj

∣∣∣ there exists j(s)≥1 for all j≥j(s), sj= tj

}
and

π : Σ −→ B(H), π({sj}j≥1) =
⊗
j≥1

πj(sj).

As in [15, Appendix D], we say that Σ is the restricted Cartesian
product of {Σj}j≥1 along the sequence of distinguished points {tj}j≥1,
and we endow it with the restricted product of the σ-algebras {Mj}j≥1,
see [15, Definition D.2]. Moreover, π is the restricted tensor product of
maps {πj}j≥1 along the sequences of distinguished points {tj}j≥1 and
distinguished unit vectors w = {wj}j≥1.

Remark 6.4. The definition of an infinite tensor product of operator-
valued functions raises several issues which may seem mutually exclu-
sive, namely, in general, the map π in Definition 6.3 cannot be defined
on the whole Cartesian product of {Σj}j≥1 because of restrictions re-
quired by the definition of an infinite tensor product of operators. More
precisely, if Tj ∈ B(Hj) for every j ≥ 1, then, in order to define ⊗j≥1Tj

on the inductive limit ⊗̂j≥1
w
Hj , we need to have Tjwj = wj when-

ever j ≥ 1 is large enough. On the other hand, the problem with the
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restricted Cartesian product Σ is that, if some measure µj is given on
the measurable space (Σj ,Mj) for every j ≥ 1, then it is not clear how
to use the sequence of measures {µj}j≥1 in order to define a natural
measure on Σ. From this point of view, it might seem preferable to
work with the full Cartesian product of {Σj}j≥1 and to assume that
each µj is a probability measure. In a forthcoming paper, we will see
how these problems can be dealt with in some special cases when ev-
ery (Σj ,Mj , µj) is given by some Gaussian measures on an Euclidean
space, and every πj is a projective representation of the additive group
underlying that Euclidean space.

6.1. Square integrability for infinite tensor products. In order
to avoid the difficulties mentioned in Remark 6.4, we will use an alter-
native approach which leads to Theorem 6.6 and was inspired by some
methods used in the representation theory of canonical commutation
relations; see, for instance, [18, 19], [24, Section B] and [34, Lemma
4.2]. The key of this approach is the approximate orthogonality prop-
erty introduced in Definition 6.1. The next elementary lemma will be
needed in the proof of Theorem 6.6.

Lemma 6.5. Let {aMN}M,N≥1 be any double sequence of complex
numbers satisfying the following conditions.

(i) There exists a ∈ C for which lim
M→∞

lim
N→∞

aMN = a.

(ii) We have sup{|aMN | | M,N ≥ 1} < ∞.
(iii) There exists lim

M→∞
aMN =: bN uniformly for N ≥ 1.

Then, lim
N→∞

lim
M→∞

aMN = a.

Proof. The sequence {bN}N≥1 is clearly bounded. We need to prove
that it is convergent to a, and, to this end, we will prove that every
convergent subsequence has the limit a.

If {bNj}j≥1 is any convergent subsequence, then the uniform conver-
gence hypothesis ensures that the double sequence {aMNj}M,j≥1 has
the property

a = lim
M→∞

lim
j→∞

aMNj
= lim

j→∞
lim

M→∞
aMNj

;
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hence, lim
j→∞

bNj = a for any convergent subsequence {bNj}j≥1, and the

assertion follows. �

Theorem 6.6. Assume the setting of Definition 6.3. Moreover, as-
sume that there is a σ-finite measure µj on the measurable space
(Σj ,Mj) with πj ∈ SQ(B(Hj), µj) for all j ≥ 1. For every N ≥ 1,
define the map

θ(N) : Σ1 × · · · × ΣN −→ Σ

by
θ(N)(s1, . . . , sN ) = (s1, . . . , sN , tN+1, tN+2, . . .),

and consider the measure

µ(N) := (θ(N))∗(µ1 ⊗ · · · ⊗ µN )

on Σ. Then, the restricted tensor product π : Σ → B(H) of the
maps {πj}j≥1 along the sequences of distinguished points {tj}j≥1 and
distinguished unit vectors w = {wj}j≥1 is weakly measurable and square

integrable with respect to the sequence of measures {µ(N)}N≥1.

Proof. The proof has two parts since we will first record some
preliminary facts. It is clear from Definition 6.3 that the map π is
weakly measurable. To prove that this map is square integrable with
respect to the sequence of measures {µ(N)}N≥1, we must prove that,
for arbitrary u, v ∈ H, we have

(6.3) lim
N→∞

∫
Σ

|⟨π(·)u, v⟩|2dµ(N) = ∥u∥2∥v∥2,

which is equivalent to

lim
N→∞

∫
Σ(N)

|⟨π(θ(N)(s))u, v⟩|2d(µ1 ⊗ · · · ⊗ µN )(s) = ∥u∥2∥v∥2,

where Σ(N) := Σ1 × · · · × ΣN for every N ≥ 1.

(i) For every N ≥ 1, denote by K(N) the infinite tensor product of
the sequence of Hilbert spaces {Hj}j≥N+1 along the sequence of unit
vectors {wj}j≥N+1. The associativity of infinite tensor products shows
that there exists a natural unitary operator

W (N) : (H1⊗̂ · · · ⊗̂HN )⊗̂K(N) −→ H,
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which also allows us to define

H(N) := W ((H1⊗̂ · · · ⊗̂HN )⊗ wN+1 ⊗ wN+2 ⊗ · · · ) ⊆ H,

with the orthogonal projection P (N) : H → H(N). Note that,

(6.4) M ≥ N ≥ 1 =⇒ P (M)π(θ(N)(·)) = π(θ(N)(·))P (M),

since, for every N ≥ 1, one has the commutative diagram

(6.5) Σ1 × · · · × ΣN
θ(N)

//

π1(·)⊗···⊗πN (·)⊗1K(N)

��

Σ

π

��
B((H1⊗̂ · · · ⊗̂HN )⊗̂K(N)) // B(H)

whose existence follows by the definition of π (see Definition 6.3)
and whose bottom arrow is the spatial isomorphism of von Neumann
algebras given by T 7→ W (N)T (W (N))∗. For the same reasons, and
by also taking into account Propositions 2.7 and 2.9, we obtain for all
u1, v1, u2, v2 ∈ H and M ≥ N ≥ 1,∫

Σ

|⟨π(·)u1, P
(M)v1⟩⟨P (M)v2, π(·)u2⟩| dµ(N)(6.6)

≤ ∥P (M)u1∥∥P (M)v1∥∥P (M)u2∥∥P (M)v2∥

≤ ∥u1∥∥P (M)v1∥∥u2∥∥P (M)v2∥.

The above inequality holds under a stronger form if N ≥ M ≥ 1,
namely,

N ≥ M =⇒
∫
Σ

⟨π(s)u1, P
(M)v1⟩⟨P (M)v2, π(s)u2⟩ dµ(N)(s)(6.7)

= ⟨P (N)u1, P
(N)u2⟩⟨P (M)v2, P

(M)v1⟩

since, in this case, we have P (M)P (N) = P (N)P (M) = P (M), and then
the above equality follows by Proposition 2.9 along with equations (6.4)
and (6.5).

(ii) Now, we return to the proof of equation (6.3). By using
equation (6.7), we obtain

(6.8) lim
M→∞

lim
N→∞

aMN (u1, v1, u2, v2) = ⟨u1, u2⟩⟨v2, v1⟩,
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where

aMN (u1, v1, u2, v2) :=

∫
Σ

⟨π(s)u1, P
(M)v1⟩⟨P (M)v2, π(s)u2⟩ dµ(N)(s),

for all M,N ≥ 1 and u1, v1, u2, v2 ∈ H.

We will prove that the limits in equation (6.8) can be interchanged
by using Lemma 6.5. To this end, it suffices to consider the case
u1 = u2 =: u (by a polarization argument). Since, by equation (6.6),

(6.9) |aMN (u, v1, u, v2)| ≤ ∥u∥2∥v1∥∥v2∥,

for all M,N ≥ 1, we still need to show that there exists a sequence
{bN (u, v1, u, v2)}N≥1 for which the conditions

lim
M→∞

aMN (u, v1, u, v2) = bN (u1, v1, u2, v2),(6.10)

are uniformly satisfied forN ≥ 1. In order to check the above condition,
first note that, for arbitrary u, v ∈ H and M1,M2 ≥ 1, we have∫

Σ

∣∣∣⟨π(·)u, P (M1)v⟩ − ⟨π(·)u, P (M2)v⟩
∣∣∣2dµ(N)(6.11)

≤ ∥u∥2∥P (M1)v − P (M2)v∥2.

In fact, we may assume that M2 < M1. If N < M1, and we set v1 =
v2 := v − P (M2)v, then

P (M1)vj = P (M1)v − P (M2)v,

for j = 1, 2; hence, by using equation (6.6) for M := M1 and u1 =
u2 := u, we obtain equation (6.11). On the other hand, if N ≥ M1,
then equation (6.11) follows at once by equation (6.7).

Now, we can check equation (6.10) by proving that

{aMN (u, v1, u, v2)}M≥1

is a Cauchy sequence, uniformly for N ≥ 1. More precisely, for all
M1,M2, N ≥ 1, we have
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|aM1N (u, v1, u, v2)− aM2N (u, v1, u, v2)|

≤
∫
Σ

|⟨π(·)u, P (M1)v1⟩(⟨P (M1)v2, π(·)u⟩ − ⟨P (M2)v2, π(·)u⟩)| dµ(N)

+

∫
Σ

|(⟨π(·)u, P (M1)v1⟩ − ⟨π(·)u, P (M2)v1⟩⟨P (M2)v2, π(·)u⟩)| dµ(N)

≤ ∥u∥2(∥P (M1)v1∥∥P (M1)v2 − P (M2)v2∥

+ ∥P (M2)v2∥∥P (M1)v1 − P (M2)v1∥),

where the last inequality follows by the Schwartz inequality, along with
estimates (6.6)–(6.11). Thus, equation (6.10) follows.

Now, equations (6.9) and (6.10) ensure that Lemma 6.5 applies;
hence, the limits in equation (6.8) can be interchanged. In turn, this
implies that

(6.12) lim
N→∞

lim
M→∞

aMN (u1, v1, u2, v2) = ⟨u1, u2⟩⟨v2, v1⟩

for all u1, v1, u2, v2 ∈ H. On the other hand, by taking into account
the definition of aMN (u1, v1, u2, v2), it follows that, for all N ≥ 1 and
u, v ∈ H, we have

lim
M→∞

aMN (u, v, u, v) = lim
M→∞

∫
Σ

|⟨π(·)u, P (M)v⟩|2dµ(N)

=

∫
Σ

|⟨π(·)u, v⟩|2dµ(N),

where the last equality is a direct consequence of equation (6.11).
Thus, equation (6.12) implies that equality (6.3) holds true, and this
completes the proof. �

6.2. Symbol calculus for infinite tensor products. One can in-
quire as to what happens at the level of quantizations when opera-
tions (as tensor products) are performed with square integrable fami-
lies. This question is particularly interesting in the setting of Section 5
since our input there was a pointed Hilbert space (H, w), which is the
basic subject when performing infinite tensor products. In the rest
of this section, we will take a few steps in this direction, but many
interesting problems still remain unsolved; in particular, the symbols
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that give rise to operators in various Schatten ideals. See, for instance,
Proposition 5.1 (iii).

Theorem 6.7. Assume the setting of Theorem 6.6, and denote the
space of all complex-valued, bounded measurable functions on Σ by

L̃∞(Σ). Then, the following assertions hold :

(i) for every N ≥ 1, f ∈ L̃∞(Σ) and u, v ∈ H, the integral

Ω(N)
u (f)v :=

∫
Σ

f(·)⟨v, π(·)u⟩π(·)u dµ(N)

is weakly convergent and defines an operator Ω
(N)
u (f) ∈ B(H)

satisfying ∥Ω(N)
u (f)∥ ≤ ∥u∥2 sup

Σ
|f |.

(ii) For all u ∈ H \ {0} and f ∈ L̃∞(Σ), there exists Ωu(f) ∈ B(H)

satisfying Ωu(f) = lim
N→∞

Ω
(N)
u (f) in the weak operator topology,

and moreover, ∥Ωu(f)∥ ≤ ∥u∥2 sup
Σ

|f |.

(iii) If u ∈ H and 0 ≤ f ∈ L̃∞(Σ), then 0 ≤ Ωu(f) ∈ B(H).
(iv) For every u ∈ H with ∥u∥ = 1, we have Ωu(1) = 1.

Proof.

(i) Use again the notation Σ(N) = Σ1 × · · · × ΣN to write

⟨Ω(N)
u (f)v1, v2⟩ =

∫
Σ

f(·)⟨v1, π(·)u⟩⟨π(·)u, v2⟩ dµ(N)

=

∫
Σ(N)

f(θ(N)(·))⟨v1, π(θ(N)(·))u⟩

⟨π(θ(N)(·))u, v2⟩d(µ1 ⊗ · · · ⊗ µN );

hence, by taking into account commutative diagram (6.5), the conver-
gence of the above integral and the required estimate for the norm of

Ω
(N)
u (f) follow by the estimate provided in Proposition 2.7.

For (ii), we only need to prove the asserted convergence in the weak
operator topology, since the norm estimate will then follow by the norm
estimates established above.

In order to prove that the sequence {Ω(N)
u (f)}N≥1 is convergent

in the weak operator topology, we will adapt the method of proof of
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Theorem 6.6, and we will use the notation from that proof, except that

for fixed f ∈ L̃∞(Σ), we set

aMN (u1, v1, u2, v2) :=

∫
Σ

f(·)⟨π(·)u1, P
(M)v1⟩⟨P (M)v2, π(·)u2⟩ dµ(N)

for all M,N ≥ 1 and u1, v1, u2, v2 ∈ H. Then, we have

lim
M→∞

aMN (u, v1, u, v2) = ⟨Ω(N)
u (f)v1, v2⟩

uniformly for N ≥ 1, using reasoning similar to that used for prov-
ing equation (6.10). Moreover, we have the following version of equa-
tion (6.9)

|aMN (u, v1, u, v2)| ≤ ∥u∥2∥v1∥∥v2∥ sup
Σ

|f |

for all M,N ≥ 1; hence, we can use Lemma 6.5 to prove that

{⟨Ω(N)
u (f)v1, v2⟩}N≥1 is a convergent sequence for all u, v1, v2 ∈ H,

that is, the operator sequence {Ω(N)
u (f)}N≥1 is convergent in the weak

operator topology in B(H) for all u ∈ H.

Assertion (iii) is clear.

Finally, assertion (iv) follows directly from Theorem 6.6 (see equa-
tion 6.3), and this completes the proof. �

Remark 6.8. Theorem 6.7 (iv) should be regarded as a version of
equation (5.1). In the present situation of infinite tensor products, we
do not have any natural version of the space L2(Σ), and therefore, we
need to work inside the space CΣ of all complex-valued functions on Σ
in order to construct the reproducing kernel Hilbert space as above.
For instance, if we pick any unit vector w ∈ H, then we can define

w(·) = π(·)∗w : Σ −→ H and ϕw : H −→ CΣ,

ϕw(u) = ⟨u,w(·)⟩ = ⟨π(·)u,w⟩.

Then, the linear map ϕw is injective by equation (6.3); hence, we may
define Pw(Σ) := Ranϕw, and make this function space into a Hilbert
space such that ϕw : H → Pw(Σ) is a unitary operator. Note that
Pw(Σ) is a reproducing kernel Hilbert space since, for every s ∈ Σ and
the point evaluation evs : Pw(Σ) → C, evs(f) = f(s) is continuous.
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The corresponding reproducing kernel is

pw : Σ× Σ −→ C, pw(s, t) = ⟨w(t), w(s)⟩,

as above, see [32, Theorem I.1.6].

The version of inversion formula (5.3) in the present setting is

u = lim
N→∞

Ω(N)
w (1)u = lim

N→∞

∫
Σ

⟨u, π(·)∗w⟩π(·)∗w dµ(N),

where the limit and the integral are taken in the weak sense. This
is obtained by using Theorem 6.7 (ii) and (iv) for the mappings
πj(·)∗ ∈ SQ(B(Hj), µj) and provides a generalization of a result [24,
Theorem 3.2] from the representation theory of canonical commutation
relations.

7. Examples. It is quite clear that the formalism of Section 6 is
meant to cover at least two situations: square integrable irreducible
unitary group representations with their associated twisted convolution
algebras and the Weyl pseudodifferential calculus. Now, we will briefly
indicate other examples in order to show the generality of our setting.
They are developed only to the extent where the identification of
the relevant objects becomes obvious, although we plan to give more
specific applications in forthcoming papers. The references cited in this
section contain much more than we are able to review here.

7.1. The magnetic Weyl calculus. Take Σ := X ×X ∗, where X is
an n-dimensional real vector space and X ∗ is its dual (so the “phase-
space” Σ is non-canonically isomorphic to R2n). Below, setting B = 0
and A = 0, one may recover the standard Weyl calculus [8].

The magnetic Weyl calculus [21, 23, 27, 28, 31] has, as back-
ground, the problem of quantization of a physical system consisting of
a spinless particle moving in the Euclidean space X ∼= Rn under the
influence of a magnetic field, i.e., a closed 2-form B on X (dB = 0),
given in a base by matrix-component functions

Bjk = −Bkj : X −→ R, j, k = 1, . . . , n.

For simplicity, and in order to have full formalism, we are going to
assume that the components Bjk belong to C∞

pol(X ), the class of smooth
functions on X with polynomial bounds on all the derivatives. The
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magnetic field can be written in many ways as the differential B = dA
of some 1-form A on X called a vector potential. One has B = dA = dA′

if and only if A′ = A + dφ for some 0-form φ (then they are called
equivalent). It is easy to see that vector potential can also be chosen
for class C∞

pol(X ).

One would like to develop a symbol calculus taking the magnetic
field into account. The basic requirements are:

(i) it should reduce to the standard Weyl calculus for A = 0, and

(ii) the operators ΠA(f) and ΠA′
(f) should be unitarily equivalent

(independently on the symbol f) if A and A′ are equivalent; this is
called gauge covariance and has a fundamental physical meaning.

To justify the formulae, one could think of the emerging symbol calculus
as a functional calculus for the family of non commuting self-adjoint
operators (Q1, . . . , Qn;P

A
1 , . . . , PA

n ) in H := L2(X ). Here, Qj is one of
the components of the Poisson operator, but the momentum Pj := −i∂j
is replaced by themagnetic momentum PA

j := Pj−Aj(Q), where Aj(Q)
indicates the operator of multiplication with the function Aj ∈ C∞

pol(X ).
Notice the commutation relations

i[Qj , Qk] = 0, i[PA
j , Qk] = δj,k, i

[
PA
j , PA

k

]
= Bjk(Q).

Now, one computes the magnetic Weyl system

πA : Σ −→ B(H), πA(x, ξ) := exp[i(x · PA −Q · ξ)],

and explicitly obtains

[πA(x, ξ)u](y) = e−i(y+x/2)·ξ exp

[
(−i)

∫
[y,y+x]

A

]
u(y + x).

The extra phase factor involves the circulation of the 1-form A through
the segment

[x, y] := {(1− t)x+ ty | t ∈ [0, 1]}.

These operators depend strongly continuously on (x, ξ) and satisfy
πA(0, 0) = 1 and

πA(x, ξ)∗ = π(x, ξ)−1 = πA(−x,−ξ),
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thus being unitary. However, they do not form a projective represen-
tation of Σ = X × X ∗. Actually, they satisfy

πA(x, ξ)πA(y, η) = ΩB [(x, ξ), (y, η);Q]πA(x+ y, ξ + η),

where ΩB [(x, ξ), (y, η);Q] only depends on the 2-form B and denotes
the operator of multiplication in L2(X ) by the function

X ∋ z −→ ΩB [(x, ξ), (y, η); z]

:= exp

[
i

2
(y · ξ − x · η)

]
exp

[
(−i)

∫
⟨z,z+x,z+x+y⟩

B

]
.

Here, the distinguished factor is constructed with the flux (invariant
integration) of the magnetic field through the triangle defined by the
corners z, z + x and z + x+ y.

Straightforward computation leads to

[ΦA(u⊗ v)](x, ξ) : = ⟨πA(x, ξ)u, v⟩=
∫
X
e−iy·ξ exp

[
(−i)

∫
[y−x/2,y+x/2]

A
]

× u(y + x/2)v(y − x/2) dy.

It can be decomposed into the product of multiplication by a function
with values in the unit circle, a change of variables with the Jacobian
identically equal to 1, and a partial Fourier transform. All are isomor-
phisms between the corresponding spaces, so the orthogonality relation
holds with B2(Σ) = L2(Σ).

Thus, one can apply all of the prescriptions and get the correspon-
dence f 7→ ΠA(f) and the composition law (f, g) → f ⋆B g (depending
only on the magnetic field). In fact, many are interested in the (sym-
plectic) Fourier transformed version

a(Q,PA) ≡ OpA(a) := ΠA[F−1(f)]

and in the multiplication #B obtained by transport of the structure
and therefore satisfying OpA(a)OpA(b) = OpA(a#Bb). The resulting

involution is just complex conjugation; thus, OpA(a)∗ = OpA(a). For
the convenience of the reader, we indicate the explicit formulae in
which we set ΓA([x, y]) :=

∫
[x,y]

A and ΓB(⟨x, y, z⟩) :=
∫
⟨x,y,z⟩ B. The
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magnetic Moyal product is

(a#Bb)(X) = π−2n

∫
Σ

∫
Σ

exp{−2i[(x− z) · (ξ−η)−(x−y)·(ξ−ζ)]}

× exp

[
− iΓB(⟨x− y + z, y − z + x, z − x+ y⟩)

]
× f(Y ) g(Z) dZ dY

and the magnetic Weyl calculus is given by

[OpA(a)u](x) = (2π)−n

∫
X

∫
X ′

exp[i(x− y) · ξ] exp[−iΓA([x, y])]

(7.1)

× a

(
x+ y

2
, ξ

)
u(y) dy dξ.

An important property of equation (7.1) is gauge covariance, as hinted
above. If A′ = A + dρ defines the same magnetic field as A, then

OpA
′
(f) = eiρOpA(f)e−iρ. By destroying the magnetic phase factors

in all the above formulae, one obtains the defining relations of the usual
Weyl calculus.

In this case, a convenient choice of the auxiliary space is the Schwartz
space G = S(X ), which is a nuclear Fréchet space continuously and
densely embedded in L2(Σ); thus, G′ will be the space of tempered
distributions. By simple examination of the map ΦA, this leads to
G (Σ) = S(X ×X ∗). It can easily be shown that (by suitable restriction
or extensions)

OpA[S(X × X ∗)] = B[S ′(X ),S(X )]

and

OpA[S ′(X × X ∗)] = B[S(X ),S ′(X )].

The symbol algebras for the magnetic Weyl calculus were studied
in detail [27] while, in [21], the full pseudodifferential theory was
developed.

7.2. Operator calculi on locally compact abelian groups. In
this subsection, we will present some square integrable operator-valued
maps related to the metaplectic representation in the framework of
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locally compact abelian groups, the representation of which was studied
in [25, 35, 39].

The framework is provided by any locally compact abelian group

(G,+) with its dual group Ĝ, which is the set of all continuous

homomorphisms from G into the circle group T. Recall that Ĝ is in
turn a locally compact abelian group with the pointwise operations
and with the topology given by uniform convergence on compact

sets. The natural duality pairing between Ĝ and G is denoted by

⟨·, ·⟩ : Ĝ × G → T. For every Haar measure ν on G, there exists a

unique Haar measure ν∗ on Ĝ for which the Fourier transform

F : L1(G, ν) −→ BC(Ĝ), (Ff)(ξ) =

∫
G

⟨ξ,−x⟩f(x) dν(x)

gives rise to a unitary operator L2(G, ν) → L2(Ĝ, ν∗).

Proposition 7.1. Let G be any locally compact abelian group with a
Haar measure ν and denote H = L2(G, ν). For k = 1, 2, define

πk : G× Ĝ −→ B(H), (πk(x, ξ)u)(z) = ⟨ξ, kz + (k − 1)x⟩u(z + x).

Then, the following assertions hold :

(i) we have π1 ∈ SQ(B(H), ν × ν∗), and

Φπ1 : H⊗̂H −→ L2(G× Ĝ, ν × ν∗)

is a unitary operator.
(ii) If the map x 7→ 2x is an automorphism of G, then there exists

a constant c > 0 for which π2 ∈ SQ(B(H), ν × cν∗), and the
corresponding operator

Φπ2 : H⊗̂H −→ L2(G× Ĝ, ν × cν∗)

is unitary.

Proof. For k = 1, 2 and every

u ∈ L1(G× Ĝ, ν × ν∗) ∩ L2(G× Ĝ, ν × ν∗),

define
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Tπku =

∫∫
G×Ĝ

u(x, ξ)πk(x, ξ) dν(x) dν
∗(ξ).

Now, we prove the assertions separately.

(i) It follows by [39] that Tπ1 extends to a unitary operator L2(G×
Ĝ, ν × ν∗) → B2(H). By taking operator adjoints and complex-
conjugates of functions, we then obtain a unitary operator

L2(G× Ĝ, ν × ν∗) −→ B2(H),

given by

u 7−→
∫∫

G×Ĝ

u(x, ξ)π1(x, ξ)
∗dν(x) dν∗(ξ),

for every

u ∈ L1(G× Ĝ, ν × ν∗) ∩ L2(G× Ĝ, ν × ν∗),

and this is just the adjoint of

Φπ1 ◦ Λ−1 : H⊗̂H −→ L2(G× Ĝ, ν × ν∗),

in Corollary 3.3. Since Λ is a unitary operator, it follows that Φπ1 is,
in turn, unitary as asserted.

(ii) If the map x 7→ 2x is an automorphism of G, then it follows [35,
Theorem 1] that there exists a constant c > 0 for which Tπ2 extends

to a unitary operator L2(G× Ĝ, ν× cν∗) → B2(H). Now, the assertion
can be proved, just as above. �

The hypothesis that the map x 7→ 2x is an automorphism of G from
Proposition 7.1 (ii) is satisfied by many important examples of groups,
as, for instance, the linear spacesG = Rd, or the additive groups of local
fields, like the p-adic fields Qp which are interesting for quantization
and pseudodifferential theory with applications to number theory, as
shown in [17].

We also note that the aforementioned hypothesis is quite natural
inasmuch as it is satisfied if and only if an appropriate version of the
Stone-von Neumann theorem holds. More precisely, according to [25,
Theorem 1], if we define the cocycle

σ : (G× Ĝ)× (G× Ĝ) −→ T, σ((x, ξ), (y, η)) = ⟨ξ, y⟩⟨η, x⟩,
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then the locally compact abelian group G× Ĝ has just one equivalence
class of unitary irreducible projective representations with the cocycle σ
if and only if the map x 7→ 2x is an automorphism of G. One projective
representation of that type is the map π2 from our Proposition 7.1 (ii).
See also [32, Appendix VIII] for a discussion of this circle of ideas.

Much extra structure is present due to the existence of a Fourier
transform and the structure theorem for locally compact abelian
groups. In particular, besides choosing the Bruhat-Schwartz space for
the ingredient G, there also exists a better choice which relies on writ-
ing G as Rm ×G0 with G0 containing an open compact subgroup. We
do not review the theory; instead, we refer to [11], which also con-
tains many constructions and results involving a certain class of coor-
bit spaces, discretization techniques and Gabor frames. If G = Rm,
i.e., G0 is trivial, the emerging formalism essentially boils down to the
Kohn-Nirenberg pseudodifferential calculus [8].

7.3. Unitary representations of some infinite-dimensional Lie
groups. For a full presentation, we refer to [3, 4, 5, 33].

The starting point is a unitary strongly continuous representation
ϖ : M → U(H), where M is a locally convex Lie group with the Lie
algebra m and a smooth exponential expM : m → M . On the dual m′

of m we consider the weak∗ topology.

We also fix a real finite-dimensional vector space Σ with dual Σ′ and
a linear map θ : Σ → m. The basic idea is to use π := ϖ ◦ expM ◦ θ :
Σ → B(H) as well as the Fourier transform ·̂ : L2(Σ) → L2(Σ′) in order
to build a more general form of the Weyl calculus. So, one should set

(7.2) Opϖ,θ(a) ≡ Π(â) :=

∫
Σ

â(s)ϖ [expM (θ(s))] ds.

In [4], the outcome was called the localized Weyl calculus associated to
the representation ϖ along the linear map θ. The single requirement
needed to develop the basic part of the theory is orthogonality, i.e.,∫

Σ

|⟨ϖ[expM (θ(s))]u, v⟩|2ds = ∥u∥2∥v∥2,

for all u, v ∈ H. Under this requirement, the general theory gives
a definite sense to equation (7.2), at least for â ∈ B2(Σ), and the
constructions and results of Section 2 and subsection 3.2 are valid. A
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good choice for the auxiliary space G is the space of smooth vectors of
the representation ϖ,

G ≡ H∞ := {u ∈ H | M ∋ m 7−→ ϖ(m)u ∈ H is C∞}.

It carries a natural Fréchet topology [4, Remark 2.1] in terms of
“differential operators” indexed by the universal associative enveloping
algebra U(mC) of the complexified Lie algebra mC. In the infinite-
dimensional case, the denseness of H∞ in H is not always verified, so
we must require it. But, as soon as this is achieved, all the present
results hold. In [4], extra regularity assumptions are imposed in order
to obtain good control upon the spaces involved. One of the aims is to
identify G (Σ) with the Schwartz space S (Σ) and

Opϖ,θ[Ĝ (Σ)] = Π[G (Σ)],

with the Fréchet space B(H)∞ of all the smooth vectors (operators)
under the continuous unitary representation

ϖ(2) : M ×M −→ B[B2(H)], [ϖ(2)(m,n)]T := ϖ(m)Tϖ(n)−1.

Another aim is to determine when B2(Σ) = L2(Σ) holds.

The above general setting was studied in some detail in two specific
situations: firstly, when M is a finite-dimensionally and simply con-
nected nilpotent Lie group. Such a situation was pointed out in [33]
and will be discussed in subsection 7.4. Secondly, the case when M
is an infinite-dimensional Lie group that can be written as the semidi-
rect product F nG between a (finite-dimensional) connected nilpotent
Lie group G, with Lie algebra g, and a suitable (typically infinite-
dimensional) locally convex space F of smooth functions on G. This
was studied in [3, 4]. The connection with the square-integrable fam-
ilies of operators is established by [4, Corollary 4.7 (3)].

An important particular case comes from the presence of a smooth
magnetic field (i.e., a closed differential 2-form) on G, inasmuch as
the aforementioned function space F should be invariant under left
translations on G and should contain the coefficients of the magnetic
field as well as their derivatives of arbitrarily high order. This shows
that, if the magnetic field fails to have polynomial coefficients, then F
is infinite-dimensional. In this situation, an irreducible representation
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is given by

ϖ : M = F oG −→ B(L2(G)), (ϖ(ϕ, x)f)(y) = eiϕ(y)f(x−1y),

and, in [3], it was proved that, although M is an infinite-dimensional
Lie group, its irreducible representation ϖ can be obtained by the geo-
metric quantization from a certain finite-dimensional coadjoint orbit
O of M . Moreover, the coadjoint orbit O is symplectomorphic to the
cotangent bundle T ∗G. The appearance of the finite-dimensional vec-
tor space Σ from the above general framework is connected to that
coadjoint orbit O, and the linear mapping θ is canonically assigned to
a vector potential generating the magnetic field. Specifically, one may
use Σ = g × g′. In this setting, the outcome of the operator calculus
is an extension to nilpotent Lie groups of the magnetic Weyl calcu-
lus briefly presented in subsection 7.1, which can be recovered for the
abelian group G = (Rn,+).

7.4. Operator calculus for representations of nilpotent Lie
groups. We will briefly describe some square integrable operator-
valued maps related to unitary irreducible representations of nilpotent
Lie groups. This method was previously used in the proof of Corol-
lary 2.6. The details of this construction can essentially be found in
[5, 33].

Let G be any connected, simply connected, nilpotent Lie group with
the Lie algebra g. Then, the exponential map expG : g → G is a
diffeomorphism with its inverse denoted by logG : G → g. The adjoint
action of G is

AdG : G× g −→ g, AdG(g)x :=
d

dt

∣∣∣
t=0

(
g expG(tx)g

−1
)
.

We denote by g∗ the linear dual space of g and by ⟨·, ·⟩ : g∗ × g → R
the natural duality pairing. The coadjoint action of G is

Ad∗G : G× g∗ −→ g∗, (g, ξ) 7−→ Ad∗G(g)ξ = ξ ◦AdG(g
−1).

Pick any ξ0 ∈ g∗ with its corresponding coadjoint orbit

O := Ad∗G(G)ξ0 ⊆ g∗.

The isotropy group at ξ0 is

Gξ0 := {g ∈ G | Ad∗G(g)ξ0 = ξ0},
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with the corresponding isotropy Lie algebra

gξ0 = {X ∈ g | ξ0 ◦ adgX = 0}.

Let n := dim g and fix any sequence of ideals in g,

{0} = g0 ⊂ g1 ⊂ · · · ⊂ gn = g

such that
dim(gj/gj−1) = 1

and
[g, gj ] ⊆ gj−1 for j = 1, . . . , n.

Pick any Xj ∈ gj \ gj−1 for j = 1, . . . , n, so that the set {X1, . . . , Xn}
will be a Jordan-Hölder basis in g.

The set of jump indices of the coadjoint orbit O, with respect to the
above Jordan-Hölder basis is

e := {j ∈ {1, . . . , n} | gj ̸⊆ gj−1 + gξ0},

and does not depend on the choice of ξ0 ∈ O. The corresponding
predual of the coadjoint orbit O is

ge := span{Xj | j ∈ e} ⊆ g

and it turns out that the map O → g∗e, ξ 7→ ξ|ge
is a diffeomorphism.

Proposition 7.2. Assume that the above setting holds, and let π : G →
B(H) be a fixed, unitary irreducible representation associated with the
coadjoint orbit O. Then, there exists a Lebesgue measure µe on ge for
which, if we denote by µ the measure on G obtained as the pushforward
of µe by the map expG |ge : ge → G, then π ∈ SQ(B(H), µ), and its

corresponding operator Φπ : H⊗̂H → L2(G,µ) is unitary.

Proof. It easily follows by [33, Theorems 2.2.6–2.2.7] that there
exists a Lebesgue measure µe on ge for which, if we define the measure
µ as in the above statement, then the operator

Tπ : L1(G,µ) ∩ L2(G,µ) −→ B(H),
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given by

Tπf =

∫
ge

f(expG x)π(expG x) dµe(x) =

∫
G

f(s)π(s) dµ(s),

extends to a unitary operator L2(G,µ) → B2(H). The assertion is
obtained by the same method as in the proof of Proposition 7.1. �

The space of smooth vectors

H∞ := {v ∈ H | π(·)v ∈ C∞(G,H)}

is a Fréchet space in a natural way and is a dense linear subspace of
H which is invariant under the unitary operator π(g) for every g ∈ G.
We denote the space of all continuous antilinear functionals on H∞ by
H−∞, and then, we have the natural inclusions

H∞ ↩→ H ↩→ H−∞.

Now, consider the unitary representation

π ⊗ π : G×G → B(B2(H)),

defined by

(π⊗π)(g1, g2)T = π(g1)Tπ(g2)
−1 for all g1, g2∈G, for all T ∈B2(H)).

It is well known that π ⊗ π is strongly continuous. The corresponding
space of smooth vectors is denoted by B(H)∞ and is called the space
of smooth operators for the representation π. One can prove that
B(H)∞ ⊆ B1(H).

Since
{⟨·, f1⟩f2 | f1, f2 ∈ H∞} ⊆ B(H)∞ ⊆ B1(H),

and H∞ is dense in H, we obtain continuous inclusion maps

B(H)∞ ↩→ B1(H) ↩→ B(H) ↩→ B(H)∗∞,

where the latter mapping is constructed by using the well-known
isomorphism (B1(H))∗ ≃ B(H) given by the usual semifinite trace on
B(H).

We conclude by noting that the version in the present setting of the
above dequantization formula from Corollary 3.6 corresponds to [33,
Theorem 2.2.6].
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