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EXPONENTIAL DICHOTOMIES FOR IMPULSIVE
EQUATIONS VIA QUADRATIC FUNCTIONS

LUIS BARREIRA AND CLAUDIA VALLS

ABSTRACT. We give a characterization of the existence
of a nonuniform exponential dichotomy for a linear impulsive
differential equation. The characterization uses quadratic
functions and the symmetric matrices defining them. As
an application, we give a simple proof of the robustness
property of a nonuniform exponential dichotomy under
sufficiently small linear perturbations.

1. Introduction. Impulsive differential equations yield a smooth
evolution that at certain times may change abruptly, namely, consider
a linear impulsive differential equation:

(1.1) x′ = A(t)x, t ̸= τi, ∆x|t=τi = Bix

on a finite-dimensional space Rp, where A(t) and Bi are p×p matrices,
with A(t) varying continuously with t ∈ R. Sometimes τi the evolution
is smooth and is determined by the differential equation x′ = A(t)x,
while at other times τi there are jumps determined by the condition
∆x|t=τi = Bix, that is,

x(τ+i ) = x(τi) +Bix(τi).

This gives rise to unique and global left-continuous solutions of equa-
tion (1.1). We refer the reader to [9, 19] for an extensive list of refer-
ences and for descriptions of many applications of the theory.

Our main aim is to give a characterization of when equation (1.1)
admits a nonuniform exponential dichotomy in terms of quadratic
functions and the matrices defining them, following to the possible
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extent the approach in [2] for nonimpulsive equations. We then use this
characterization to establish in a very simple manner the robustness
property of a nonuniform exponential dichotomy. This means that,
if equation (1.1) admits a nonuniform exponential dichotomy, then for
any sufficiently small B(t) and Ci in some appropriate class of matrices,
the equation

(1.2) x′ = [A(t) +B(t)]x, t ̸= τi, ∆x|t=τi = (Bi + Ci)x

also admits a nonuniform exponential dichotomy.

We emphasize that the robustness property has already been ob-
tained [3], although with a much more elaborate proof in terms of
fixed points of appropriate contraction maps. Some of the arguments
in [3] are inspired by the work of Popescu [18] for uniform exponen-
tial dichotomies. Here, we present a much simpler proof based on the
characterization in terms of quadratic functions.

The main difference between a uniform exponential dichotomy and a
nonuniform exponential dichotomy is that, although in both situations
we have an exponential stability or instability of the solutions, respec-
tively, along the stable and unstable directions, in the nonuniform case
the stability may be nonuniform on the initial time. We emphasize
that the notion of a nonuniform exponential dichotomy is much more
common than its classical uniform counterpart. In particular, from the
point of view of ergodic theory, almost all trajectories having nonzero
Lyapunov exponents admit a nonuniform exponential dichotomy. More
precisely, let

(1.3) x′ = F (x)

be an autonomous differential equation on Rp, and assume that divF
= 0. Moreover, consider the flow

φt(x0) = x(t, x0), t ∈ R,

defined by the equation, where x(·, x0) is the solution x = x(t) of
equation (1.3) with x(0) = x0. Since divF = 0, the flow preserves
volume, that is, for each t ∈ R and each measurable set A ⊂ Rp the
volumes of the sets A and φt(A) are equal. Then, on any invariant
subset of finite volume, one can show that, for almost all initial
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conditions x0 ∈ Rp, the linear variational equation

y′ = Ax0(t)y, where Ax0(t) = dφt(x0)F,

admits a nonuniform exponential dichotomy whenever all of its Lya-
punov exponents are nonzero. For example, this happens on any com-
pact energy level of a Hamiltonian system,

q′ =
∂H

∂p
, p′ = −∂H

∂q
,

taking the usual Liouville volume. In this context, our work can also
be considered a contribution to the theory of nonuniform hyperbolicity.
We refer the reader to [1] for a detailed exposition, which goes back to
the landmark works of Oseledets [15], and particularly, Pesin [16]. It
is an important part of the general theory of dynamical systems and a
principal tool in the study of stochastic behavior.

Our work can also be seen as a development of classical approaches of
Dalec′kĭı and Krĕın [7, Chapter 2] and Massera and Schäffer [13, Chap-
ter 9] for uniform exponential behavior. The use of Lyapunov functions
in the study of the stability of solutions of differential equations goes
back to the seminal work of Lyapunov in his 1892 thesis (see [11]).
Among the first accounts of the theory are the books by LaSalle and
Lefschetz [10], Hahn [8] and Bhatia and Szegö [4]. The study of ro-
bustness also has a long history. In particular, it was discussed by
Massera and Schäffer [12], Coppel [6] and Dalec′kĭı and Krĕın [7] in
the case of Banach spaces. For more recent work in the case of uniform
exponential behavior we refer the reader to [5, 14, 17, 18] and the
references therein.

2. Quadratic functions. Let Mp be the set of all p × p matrices
with real entries. We consider the linear impulsive differential equa-
tion (1.1) on Rp, where A(t) and Bi are in Mp, with A(t) varying
continuously with t ∈ R. Moreover, we assume that the jumping times

· · · < τ−2 < τ−1 < 0 < τ1 < τ2 < · · ·

satisfy limi→±∞ τi = ±∞ and

(2.1) q := sup
t>τ

card {i ∈ Z : τ ≤ τi < t}
1 + t− τ

< ∞.
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We note that there exist unique left-continuous solutions of equa-
tion (1.1) and that these are global (see, for example, [19]). We write
each solution in the form x(t) = T (t, s)x(s) for t, s ∈ R, where T (t, s)
is the associated linear evolution operator. We note that

T (t, s)T (s, r) = T (t, r) and T (t, t) = Id

for t, s, r ∈ R, including when replaced, respectively, by t+, s+ and r+.

Given symmetric invertible matrices S(t) ∈ Mp for t ∈ R, we
consider the function H : R× Rp → R defined by

H(t, x) = ⟨S(t)x, x⟩.

Moreover, we consider the class D of all left-continuous functions F
on R (with values on R or on Mp) at most with discontinuities at the
jumping times τi such that, for each i ∈ Z, there exists a C1 extension
Gi of F | (τi, τi+1) to an open interval containing [τi, τi+1]. For each
function F ∈ D, we define

(2.2) F ′(τi) = lim
h→0−

F (τi + h)− F (τi)

h
= Gi−1(τi)

and

(2.3) F ′(τ+i ) = lim
h→0+

F (τi + h)− F (τ+i )

h
= Gi(τi).

Assuming that t 7→ S(t) is in D, using equations (2.2) and (2.3), one
can define

Ḣ(t, x) =
d

dh
H(t+ h, T (t+ h, t)x)|h=0

for t ∈ R (including for t = τ+i ) and x ∈ Rp. In particular,

(2.4) Ḣ(τi, x) = lim
h→0−

H(τi + h, T (τi + h, τi)x)−H(τi, x)

h

and

(2.5) Ḣ(τ+i , x) = lim
h→0+

H(τi + h, T (τi + h, τ+i )x)−H(τ+i , x)

h
.

For each τ ∈ R, let

(2.6) F s
τ =

{
x ∈ Rp : H(t, T (t, τ)x) ≥ 0 for t ∈ R

}
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and

(2.7) Fu
τ =

{
x ∈ Rp : H(t, T (t, τ)x) ≤ 0 for t ∈ R

}
.

Theorem 2.1. Assume that t 7→ H(t, x(t)) is continuous and is in D

for any solution x(t) of equation (1.1). If there exists θ ∈ (0, 1) such
that

(2.8) Ḣ(t, x) ≤ log θ|H(t, x)|

for every t ∈ R and x ∈ Rp, then

H(t, T (t, τ)x) ≤ θ(t−τ)H(τ, x)(2.9)

for t ≥ τ and x ∈ F s
τ , and

|H(t, T (t, τ)x)| ≥ θ−(t−τ)|H(τ, x)|(2.10)

for t ≥ τ and x ∈ Fu
τ .

Proof. We begin with an auxiliary result.

Lemma 2.2. Given a continuous function w : [τ, t] → R+ and a
constant M > 0, if

(2.11) w(α)− w(τ) ≥ M

∫ α

τ

w(v) dv

for α ∈ [τ, t], then w(α) ≥ w(τ)eM(α−τ) for α ∈ [τ, t].

Proof of Lemma 2.2. By equation (2.11), we have∫ α

τ

w(u)

w(τ) +M
∫ u

τ
w(v) dv

du ≥ α− τ,

and thus,

log
(
w(τ) +M

∫ α

τ

w(v) dv
)
− logw(τ) ≥ M(α− τ).

Finally, again by equation (2.11),

w(α) ≥ w(τ) +M

∫ α

τ

w(v) dv ≥ w(τ)eM(α−τ),

which yields the desired inequality. �
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Take x ∈ Fu
τ . We consider t ≥ τ such that [τ, t] contains no jumping

time. For u ∈ [τ, t] and x(u) = T (u, τ)x, we obtain

H(u, x(u))−H(τ, x(τ)) =

∫ u

τ

Ḣ(v, x(v)) dv ≤ log θ

∫ u

τ

|H(v, x(v))| dv.

Hence,

|H(u, x(u))| − |H(τ, x)| ≥ log(1/θ)

∫ u

τ

|H(v, x(v))| dv,

and it follows from Lemma 2.2 that

(2.12) |H(t, x(t))| ≥ θ−(t−τ)|H(τ, x)|.

This shows that inequality (2.10) holds when [τ, t] contains no jumping
times. Otherwise, since t 7→ H(t, x(t)) is continuous, it is sufficient
to consider the case when [s, t] contains a single jumping time τi. It
follows from equation (2.12) that

|H(t, x(t))| ≥ θ−(t−τi)|H(τ+i , x(τ+i ))|,

and, since t 7→ H(t, x(t)) is continuous, we have H(τ+i , x(τ+i )) =
H(τi, x(τi)). Moreover, on the interval [τ, τi], it follows again from
equation (2.12) that

|H(τi, x(τi))| ≥ θ−(τi−τ)|H(τ, x(τ))|,

and so,

(2.13)

|H(t, x(t))| ≥ θ−(t−τi)|H(τ+i , x(τ+i ))|

= θ−(t−τi)|H(τi, x(τi))|

≥ θ−(t−τi)θ−(τi−τ)|H(τ, x)|

= θ−(t−τ)|H(τ, x)|,

which establishes inequality (2.10).

Now take x ∈ F s
τ and t ≥ τ such that [τ, t] contains no jumping

times. For u ∈ [τ, t] and x(u) = T (u, τ)x, we obtain

H(t, x(t))−H(u, x(u)) =

∫ t

u

Ḣ(v, x(v)) dv ≤ log θ

∫ t

u

H(v, x(v)) dv.
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Consider the function w : [τ, t] → R+ defined by

w(z) = H(t+ τ − z, x(t+ τ − z)).

We have

w(τ) = H(t, x(t)), w(t+ τ − u) = H(u, x(u))

and hence,

w(t+ τ − u)− w(τ) ≥ − log θ

∫ t

u

w(t+ τ − v) dv

= log(1/θ)

∫ t+τ−u

τ

w(z) dz.

Now, let α = t+ τ − u. Since u ∈ [τ, t], we have α ∈ [τ, t]. Therefore,

w(α)− w(τ) ≥ log(1/θ)

∫ α

τ

w(z) dz

for α ∈ [τ, t]. Hence, it follows from Lemma 2.2 that w(t) ≥ θτ−tw(τ),
and so,

(2.14) H(t, x(t)) = w(τ) ≤ θt−τw(t) = θt−τH(τ, x)

for t ≥ τ . This establishes inequality (2.9) when [τ, t] contains no
jumping times. Otherwise, we proceed as for Fu

τ . Indeed, it follows
from equation (2.14) that

H(t, x(t)) ≤ θt−τiH(τ+i , x(τ+i )),

and, since t 7→ H(t, x(t)) is continuous, we have H(τ+i , x(τ+i )) =
H(τi, x(τi)). Finally, on the interval [τ, τi], it follows again from
equation (2.14) that

H(τi, x(τi)) ≤ θτi−τH(τ, x(τ)),

and so,

H(t, x(t)) ≤ θt−τiH(τ+i , x(τ+i )) = θt−τiH(τi, x(τi))

≤ θt−τiθτi−τH(τ, x(τ)) = θt−τH(τ, x),
(2.15)

which establishes inequality (2.9). �
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More generally, one can consider the situation when t 7→ H(t, x(t))
is not continuous. The following is a generalization of Theorem 2.1 to
this setting.

Theorem 2.3. Assume that t 7→ H(t, x(t)) is in D for any solution
x(t) of equation (1.1). Moreover, assume that inequality (2.8) holds
when t is not a jumping time and there exists an η > 0 such that

(2.16) H(τ+i , (Id +Bi)x) ≤ (1 + η)H(τi, x)

for i ∈ Z and x ∈ F s
τi , and

(2.17) |H(τ+i , (Id +Bi)x)| ≥ (1− η)|H(τi, x)|

for i ∈ Z and x ∈ Fu
τi . Then,

H(t, T (t, τ)x) ≤ θt−τ (1 + η)q(1+t−τ)H(τ, x)

for t ≥ τ and x ∈ F s
τ , and

|H(t, T (t, τ)x)| ≥ θ−(t−τ)(1− η)q(1+t−τ)|H(τ, x)|

for t ≥ τ and x ∈ Fu
τ .

Proof. One can proceed as in the proof of Theorem 2.1 to show that

|H(t, x(t))| ≥ θ−(t−τ)|H(τ, x)|

for any interval [τ, t] containing no jumping times and any x ∈ Fu
τ .

Now we consider the case when [τ, t] contains a single jumping time.
Proceeding as in equation (2.13), it follows from equation (2.17) that

|H(t, x(t))| ≥ θ−(t−τi)|H(τ+i , x(τ+i ))|

≥ θ−(t−τi)(1− η)|H(τi, x(τi))|

≥ θ−(t−τ)(1− η)|H(τ, x(τ))|.

Finally, for t ≥ τ and x ∈ Fu
τ , by equation (2.1), we have

|H(t, x(t))| ≥ θ−(t−τ)(1− η)card {i∈N:τ≤τi<t}|H(τ, x(τ))|

≥ θ−(t−τ)(1− η)q(1+t−τ)|H(τ, x(τ))|.

Similarly,
H(t, x(t)) ≤ θ(t−τ)H(τ, x)
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for any interval [τ, t] containing no jumping times and any x ∈ F s
τ .

When [τ, t] contains a single jumping time, proceeding as in equa-
tion (2.15) and using equation (2.16), we obtain

H(t, x(t)) ≤ θt−τiH(τ+i , x(τ+i ))

≤ θt−τi(1 + η)H(τi, x(τi))

≤ θt−s(1 + η)H(τ, x(τ)).

Finally, for t ≥ τ and x ∈ F s
τ , it follows from equation (2.1) that

H(t, x(t)) ≤ θt−τ (1 + η)card {i∈N:τ≤τi<t}H(τ, x(τ))

≤ θt−τ (1 + η)q(1+t−τ)H(τ, x(τ)).

This concludes the proof of the theorem. �

3. Characterization of exponential dichotomies. In this sec-
tion, we give a characterization of the notion of an exponential di-
chotomy in terms of the functionsH and Ḣ. This is used in Section 4 to
prove the robustness property of a nonuniform exponential dichotomy.

We say that equation (1.1) admits a nonuniform exponential di-
chotomy if there exist projections P (t) for t ∈ R satisfying

T (t, s)P (s) = P (t)T (t, s), t, s,∈ R,

and constants a, b,D > 0 and ε ≥ 0 such that

∥T (t, s)P (s)∥ ≤ De−a(t−s)+ε|s|

and
∥T (t, s)−1Q(t)∥ ≤ De−b(t−s)+ε|t|

for t ≥ s, where Q(t) = Id − P (t) for each t ∈ R. The stable and
unstable spaces at time t are defined by

Es
t = P (t)Rp and Eu

t = Q(t)Rp.

In the remainder of the paper we always assume that there exist
constants c > 0 and α,K ≥ 0, such that

(3.1) ∥T (t, s)∥ ≤ Keα|t| for |t− s| ≤ c.
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Given matrices A,B ∈ Mp and a set Y ⊂ Rp, we write A | Y ≤ B | Y
if

(3.2) ⟨Ax, x⟩ ≤ ⟨Bx, x⟩ for x ∈ Y.

Moreover, we write A ≤ B if equation (3.2) holds with Y = Rp.

The following two results give a characterization of the notion of
an exponential dichotomy. We first give necessary conditions for the
existence of a nonuniform exponential dichotomy.

Theorem 3.1. Assume that condition (3.1) holds. If equation (1.1)
admits a nonuniform exponential dichotomy, then there exist symmetric
invertible matrices S(t) for t ∈ R and constants L, κ > 0 such that :

(i) the function t 7→ S(t) is in D and, for each t ∈ R, we have

(3.3) S(t) ≤ Le2ε|t|Id

and

(3.4) S(t)|Es
t ≥ L−1e−2(α+ε)|t|Id, −S(t)|Eu

t ≥ L−1e−2(α+ε)|t|Id;

(ii) for each t ∈ R (including for t = τ+i ) and x ∈ X, we have

(3.5) Ḣ(t, x) ≤ −κ|H(t, x)|;

(iii) t 7→ H(t, x(t)) is continuous for any solution x(t) of equa-
tion (1.1), and so, in particular for each i ∈ Z, we have

(3.6) (Id +Bi)
∗S(τ+i )(Id +Bi) = S(τi);

(iv) for every t ∈ R (including for t = τ+i ) and i ∈ Z, we have

(3.7) S′(t) + S(t)A(t) +A(t)∗S(t) ≤ − 1
2 Id.

Proof. Given a positive number ϱ < min{a, b}, we consider the
matrices

S(t) =

∫ ∞

t

T (v, t)∗P (v)∗P (v)T (v, t)e2(a−ϱ)(v−t) dv

−
∫ t

−∞
T (v, t)∗Q(v)∗Q(v)T (v, t)e2(b−ϱ)(t−v) dv.

(3.8)
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One can easily verify that S(t) is symmetric for each t ∈ R and that the
function t 7→ S(t) is in D. Moreover, since H(t, x) > 0 for x ∈ Es

t \ {0}
and H(t, x) < 0 for x ∈ Eu

t \ {0}, it follows readily from the identity
Es

t ⊕ Eu
t = Rp that the matrix S(t) is invertible for each t.

We observe that

⟨S(t)x, x⟩ =
∫ ∞

t

∥T (v, t)P (t)x∥2e2(a−ϱ)(v−t) dv

−
∫ t

−∞
∥T (v, t)Q(t)x∥2e2(b−ϱ)(t−v) dv

≤ D2e2ε|t|∥x∥2
(∫ ∞

t

e−2ϱ(v−t) dv +

∫ t

−∞
e−2ϱ(t−v) dv

)
=

D2

ϱ
e2ε|t|∥x∥2.

Moreover,

(3.9)

⟨S(t)x, x⟩ ≥
∫ t+c

t

∥T (v, t)P (t)x∥e2(a−ϱ)(v−t) dv

≥ ∥x∥2
∫ t+c

t

1

∥T (t, v)P (t)∥2
e2(a−ϱ)(v−t) dv

≥ ∥x∥2

K2D2
e−2α|t|−2ε|t|

∫ t+c

t

e2(a−ϱ)(v−t) dv

=
e−2α|t|−2ε|t|∥x∥2

2K2D2
· e

2(a−ϱ)c − 1

a− ϱ

for x ∈ Es
t and

−⟨S(t)x, x⟩ ≥
∫ t

t−c

∥T (v, t)Q(t)x∥2e2(b−ϱ)(t−v) dv

≥ ∥x∥2
∫ t

t−c

1

∥T (t, v)Q(t)∥2
e2(b−ϱ)(t−v) dv

≥ ∥x∥2

K2D2
e−2α|t|−2ε|t|

∫ t

t−c

e2(b−ϱ)(t−v)

=
e−2α|t|−2ε|t|∥x∥2

2K2D2
· e

2(b−ϱ)c − 1

b− ϱ

for x ∈ Eu
t . This establishes inequalities (3.3) and (3.4).
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Furthermore, since

∂

∂t
T (τ, t) = −T (τ, t)A(t)

and

∂

∂t
T (τ, t)∗ = −A(t)∗T (τ, t)∗

for t outside the jumping times τi, we obtain

S′(t) = −P (t)∗P (t)

−
∫ ∞

t

A(t)∗T (v, t)∗P (v)∗P (v)T (v, t)e2(a−ϱ)(v−t) dv

−
∫ ∞

t

T (v, t)∗P (v)∗P (v)T (v, t)A(t)e2(a−ϱ)(v−t) dv

− 2(a− ϱ)

∫ ∞

t

T (v, t)∗P (v)∗P (v)T (v, t)e2(a−ϱ)(v−t) dv

−Q(t)∗Q(t)(3.10)

+

∫ t

−∞
A(t)∗T (v, t)∗Q(v)∗Q(v)T (v, t)e2(b−ϱ)(t−v) dv

+

∫ t

−∞
T (v, t)∗Q(v)∗Q(v)T (v, t)A(t)e2(b−ϱ)(t−v) dv

− 2(b− ϱ)

∫ t

−∞
T (v, t)∗Q(v)∗Q(v)T (v, t)e2(b−ϱ)(t−v) dv

= −[P (t)∗P (t) +Q(t)∗Q(t)]−A(t)∗S(t)− S(t)A(t)

− 2(a− ϱ)

∫ ∞

t

T (v, t)∗P (v)∗P (v)T (v, t)e2(a−ϱ)(v−t) dv

− 2(b− ϱ)

∫ t

−∞
T (v, t)∗Q(v)∗Q(v)T (v, t)e2(b−ϱ)(t−v) dv.

On the other hand, for a solution x(t) of equation (1.1), we have

d

dt
H(t, x(t)) = ⟨S′(t)x(t), x(t)⟩

+ ⟨S(t)x′(t), x(t)⟩+ ⟨S(t)x(t), x′(t)⟩
=

⟨(
S′(t) + S(t)A(t) +A(t)∗S(t)

)
x(t), x(t)

⟩
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for t ∈ R (taking derivatives at τi and τ+i , respectively, as in equations
(2.4) and (2.5)). It follows from equation (3.10) that

d

dt
H(t, x(t)) ≤ −

⟨
x(t), x(t)

⟩
− 2(a− ϱ)

∫ ∞

t

∥T (v, t)P (t)x(t)∥2e2(a−ϱ)(v−t) dv

− 2(b− ϱ)

∫ t

−∞
∥T (v, t)Q(t)x(t)∥2e2(b−ϱ)(t−v) dv(3.11)

≤ −2(a− ϱ)

∫ ∞

t

∥T (v, t)P (t)x(t)∥2e2(a−ϱ)(v−t) dv

− 2(b− ϱ)

∫ t

−∞
∥T (v, t)Q(t)x(t)∥2e2(b−ϱ)(t−v) dv.

If H(t, x(t)) ≥ 0, then by equation (3.11), and since a − ϱ > 0 and
b− ϱ > 0, we obtain

d

dt
H(t, x(t)) ≤ −2(a− ϱ)

∫ ∞

t

∥T (v, t)P (t)x(t)∥2e2(a−ϱ)(v−t) dv

+ 2(a− ϱ)

∫ t

−∞
∥T (v, t)Q(t)x(t)∥2e2(b−ϱ)(t−v) dv

= −2(a− ϱ)|H(t, x(t))|.

Analogously, if H(t, x(t)) ≤ 0, then

d

dt
H(t, x(t)) ≤ 2(b− ϱ)

∫ ∞

t

∥T (v, t)P (t)x(t)∥2e2(a−ϱ)(v−t) dv

− 2(b− ϱ)

∫ t

−∞
∥T (v, t)Q(t)x(t)∥2e2(b−ϱ)(t−v) dv

= −2(b− ϱ)|H(t, x(t))|.

Taking κ = min{a− ϱ, b− ϱ}, we obtain inequality (3.5).

For the continuity of the function t 7→ H(t, x(t)), we note that S(τi)
is given by

S(τi) =

∫ ∞

τi

Y ∗
i T (v, τ

+
i )∗P (v)∗P (v)T (v, τ+i )Yie

2(a−ϱ)(v−t) dv

−
∫ τi

−∞
Y ∗
i T (v, τ

+
i )∗Q(v)∗Q(v)T (v, τ+i )Yie

2(b−ϱ)(t−v) dv(3.12)
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= (Id +Bi)
∗S(τ+i )(Id +Bi),

where Yi = Id +Bi, and so,

H(τ+i , x(τ+i ))−H(τi, x(τi))

= ⟨S(τ+i )(Id +Bi)x(τi), (Id +Bi)x(τi)⟩ − ⟨S(τi)x(τi), x(τi)⟩
= ⟨(Id +Bi)

∗S(τ+i )(Id +Bi)x(τi), x(τi)⟩ − ⟨S(τi)x(τi), x(τi)⟩
= ⟨[(Id +Bi)

∗S(τ+i )(Id +Bi)− S(τi)]x(τi), x(τi)⟩ = 0.

This establishes the continuity of the function t 7→ H(t, x(t)) at the
jumping times. For the other times, since t 7→ x(t) is continuous outside
the jumping times and H(t, x(t)) = ⟨S(t)x(t), x(t)⟩, it is sufficient to
recall that t 7→ S(t) is in D.

Finally, since a−ϱ > 0 and b−ϱ > 0, it follows from equation (3.10)
that

(3.13)

⟨(
S′(t) + S(t)A(t) +A(t)∗S(t) + P (t)∗P (t) +Q(t)∗Q(t)

)
x, x

⟩
= −2(a− ϱ)

∫ ∞

t

∥T (v, t)P (t)x∥2e−2(a+ϱ)(v−t) dv

− 2(b− ϱ)

∫ t

−∞
∥T (v, t)Q(t)x∥2e2(b−ϱ)(t−v) dv ≤ 0.

On the other hand,

2⟨(P (t)∗P (t) +Q(t)∗Q(t))⟩ = 2∥P (t)x∥2 + 2∥Q(t)x∥2

≥ ∥P (t)x∥2 + ∥Q(t)x∥2

+ 2∥P (t)x∥ · ∥Q(t)x∥
= (∥P (t)x∥+ ∥Q(t)x∥)2

≥ ∥(P (t) +Q(t))x∥2

= ∥x∥2,

and hence,
P (t)∗P (t) +Q(t)∗Q(t) ≥ 1

2 Id.

Together with equation (3.13), this yields inequality (3.7). �

Now, we consider the other direction and give sufficient conditions
for the existence of a nonuniform exponential dichotomy. Recall the
sets F s

t and Fu
t introduced in equations (2.6) and (2.7).
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Theorem 3.2. If there exist symmetric invertible linear operators S(t)
for t ∈ R and constants L, κ > 0 and ε ≥ 0 satisfying Theorem
3.1 (i)–(iii) with Es

t and Eu
t replaced, respectively, by F s

t and Fu
t and

with κ > 2(ε+α), then equation (1.1) admits a nonuniform exponential
dichotomy.

Proof. We begin with two auxiliary lemmas.

Lemma 3.3. For every t, τ ∈ R with t ≥ τ , we have

∥T (t, τ)|F s
τ ∥2 ≤ L2e−(κ−2ε−2α)(t−τ)+2(2ε+α)|τ |

and
∥T (t, τ)−1|Fu

t ∥2 ≤ L2e−(κ−2ε−2α)(t−τ)+2(2ε+α)|t|.

Proof of Lemma 3.3. For x ∈ F s
τ and t ≥ τ , we have T (t, τ)x ∈ F s

t ,
and so, by conditions (i)–(ii) of Theorems 2.1 and 3.1,

∥T (t, τ)x∥2 ≤ Le2(ε+α)|t|H(t, T (t, τ)x)

≤ Le2(ε+α)|t|e−κ(t−τ)H(τ, x)

≤ L2e2(ε+α)|t|+2ε|τ |e−κ(t−τ)∥x∥2

≤ L2e2(2ε+α)|τ |e−(κ−2ε−2α)(t−τ)∥x∥2.

Similarly, for x ∈ Fu
τ and t ≥ τ , we have T (t, τ)x ∈ Fu

t , and so,

∥T (t, τ)x∥2 ≥ L−1e−2ε|t||H(t, T (t, τ)x)|

≥ L−1e−2ε|t|eκ(t−τ)|H(τ, x)|

≥ L−2e−2ε|t|−2(ε+α)|τ |eκ(t−τ)∥x∥2

≥ L−2e−2(2ε+α)|t|e(κ−2ε−2α)(t−τ)∥x∥2.

This completes the proof of Lemma 3.3. �

Lemma 3.4. For each t ∈ R the sets F s
t and Fu

t are subspaces and
form the direct sum F s

t ⊕ Fu
t = Rp.

Proof of Lemma 3.4. For each t, τ ∈ R, let

Cu
t,τ =

{
T (t, τ)x ∈ Rp : H(τ, x) ≤ 0

}
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and
Cs

t,τ =
{
T (t, τ)x ∈ Rp : H(τ, x) ≥ 0

}
.

By Theorem 3.1 (ii), we have Ḣ(t, x) ≤ 0, and so,

H(t, T (t, τ)x) ≤ H(τ, x)

for every t ≥ τ and x ∈ Rp. Therefore,

(3.14) Cu
t,τ1 ⊃ Cu

t,τ2 and Cs
t,τ2 ⊃ Cs

t,τ1

for every t, τ1, τ2 ∈ R with τ1 ≥ τ2. Since the matrices S(t) have
constant index, there exist integers rs, ru ≥ 0 with rs + ru = p such
that each set Cu

t,τ contains a subspace of dimension ru and each set
Cs

t,τ a subspace of dimension rs. Hence, it follows from equation (3.14)
and the compactness of the closed unit ball in Rp that the intersections

Du
t =

∩
τ∈R

Cu
t,τ and Ds

t =
∩
τ∈R

Cs
t,τ

contain subspaces, respectively, of dimensions ru and rs. On the other
hand, one can easily verify that, for each t ∈ R,

Du
t = Fu

t and Ds
t = F s

t .

Now let Eu
t ⊂ Du

t be any ru-dimensional subspace, and let Es
t ⊂ Ds

t

be any rs-dimensional subspace. By Lemma 3.3, we have

Eu
t ∩ Es

t ⊂ Fu
t ∩ F s

t = {0}.

In order to show that Es
t = Ds

t , we assume that there exists a vector x
in Ds

t that is not in Es
t . Then x would have a component in Eu

t , and
so the solution starting at x would contract and expand simultaneously
as time grows, which is impossible. Hence, Ds

t = Es
t . Since Es

t is a
vector space, we have that F s

t = Ds
t = Es

t is also a vector space. In
a similar manner, we can show that Fu

t = Du
t = Eu

t and thus Fu
t is a

vector space. This completes the proof of the lemma. �

Now let
P (t) : Rp → F s

t and Q(t) : Rp → Fu
t

be the projections associated to the decomposition F s
t ⊕ Fu

t = Rp.
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Lemma 3.5. We have

∥P (t)∥ = ∥Q(t)∥ ≤
√
2Le2(α+ε)|t|∥S(t)∥, t ∈ R.

Proof of Lemma 3.5. Given x ∈ Rp, we write it in the form x = y+z
with y ∈ F s

t and z ∈ Fu
t . We have H(t, y) ≥ 0 and H(t, z) ≤ 0. Take

a(t) > 0, and let

Hs(t, y) = −⟨S(t)y, y⟩+ a(t)∥y∥2.

By equation (3.4), we have

Hs(t, y) ≤ − 1

L
e−2(α+ε)|t|∥y∥2 + a(t)∥y∥2

=

(
a(t)− 1

L
e−2(α+ε)|t|

)
∥y∥2.

Similarly, let
Hu(t, z) = −⟨S(t)z, z⟩ − a(t)∥z∥2.

Again, by equation (3.4), we have

Hu(t, z) ≥
(
1

L
e−2(α+ε)|t| − a(t)

)
∥z∥2.

Hence, if a(t) ≤ e−2(α+ε)|t|/L, then

−H(t, y) + a(t)∥y∥2 ≤ 0 and −H(t, z)− a(t)∥z∥2 ≥ 0.

Since S(t) is symmetric, subtracting the two inequalities, we obtain

0 ≥ a(t)∥P (t)x∥2 + a(t)∥Q(t)x∥2

− ⟨S(t)P (t)x, P (t)x⟩+ ⟨S(t)Q(t)x,Q(t)x⟩
= a(t)∥P (t)x∥2 + a(t)∥Q(t)x∥2 + ⟨S(t)x, x⟩ − 2⟨S(t)P (t)x, x⟩.

Therefore,

a(t)

∥∥∥∥P (t)x− 1

2a(t)
S(t)x

∥∥∥∥2 + a(t)

∥∥∥∥Q(t)x+
1

2a(t)
S(t)x

∥∥∥∥2
= a(t)∥P (t)x∥2 + a(t)∥Q(t)x∥2 + ∥S(t)x∥2

2a(t)

+ ⟨S(t)x, x⟩ − 2⟨S(t)P (t)x, x⟩ ≤ ∥S(t)x∥2

2a(t)
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and ∥∥∥∥P (t)x− 1

2a(t)
S(t)x

∥∥∥∥2 + ∥∥∥∥Q(t)x+
1

2a(t)
S(t)x

∥∥∥∥2 ≤ ∥S(t)x∥2

2a(t)2
.

This implies that

∥P (t)x∥ =

∥∥∥∥P (t)x− 1

2a(t)
S(t)x+

1

2a(t)
S(t)x

∥∥∥∥
≤

∥∥∥∥P (t)x− 1

2a(t)
S(t)x

∥∥∥∥+
1

2a(t)
∥S(t)x∥

≤ 1√
2a(t)

∥S(t)x∥+ 1

2a(t)
∥S(t)x∥

≤
√
2

a(t)
∥S(t)x∥

and, similarly,

∥Q(t)x∥ ≤
∥∥∥∥Q(t)x+

1

2a(t)
S(t)x− 1

2a(t)
S(t)x

∥∥∥∥
≤

∥∥∥∥Q(t)x+
1

2a(t)
S(t)x

∥∥∥∥+
1

2a(t)
∥S(t)x∥

≤ 1√
2a(t)

∥S(t)x∥+ 1

2a(t)
∥S(t)x∥

≤
√
2

a(t)
∥S(t)x∥.

Taking a(t) = e−2(α+ε)|t|/L, we obtain the desired statement. �

Finally, we observe that

∥T (t, τ)P (τ)∥ ≤ ∥T (t, τ)|F s
τ ∥ · ∥P (τ)∥

and
∥T (t, τ)−1Q(t)∥ ≤ ∥T (t, τ)−1|Fu

t ∥ · ∥Q(t)∥

for t ≥ τ , and so, it follows from Lemmas 3.3 and 3.5 that equation (1.1)
admits a nonuniform exponential dichotomy. �

The following result is a version of Theorem 3.2 when Theorem
3.1 (iii) does not hold (we also do not require condition (3.1)).
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Theorem 3.6. If there exist symmetric invertible linear operators S(t)
for t ∈ R and constants L, κ > 0 and α, ε ≥ 0 satisfying Theorem
3.1 (i)–(ii), and

(3.15) (Id +Bi)
∗S(τ+i )(Id +Bi)− S(τi) ≤ ηS(τi)

for i ∈ Z and some η ∈ (0, 1) with

κ > 2(ε+ α) + q log(1 + η),

then equation (1.1) admits a nonuniform exponential dichotomy.

Proof. We first prove an auxiliary result.

Lemma 3.7. For every t, τ ∈ R with t ≥ τ , we have

∥T (t, τ)|F s
τ ∥2 ≤ L2(1 + η)qe2(2ε+α)|τ |e−(κ−2ε−2α−q log(1+η))(t−τ),

and

∥T (t, τ)−1|Fu
t ∥2 ≤ (1− η)−qL2e2(2ε+α)|t|e−(κ−2ε−2α−q log(1−η))(t−τ).

Proof of Lemma 3.7. If x ∈ F s
τ and t ≥ τ , then, in view of equations

(3.4), (3.5) and Theorem 2.3, we have

∥T (t, τ)x∥2 ≤ Le2(ε+α)|t|H(t, T (t, τ)x)

≤ Le2(ε+α)|t|e−κ(t−τ)(1 + η)q(1+t−τ)H(τ, x)

≤ L2e2(ε+α)|t|+2ε|τ |e−κ(t−τ)(1 + η)q(1+t−τ)∥x∥2

≤ L2(1 + η)qe2(2ε+α)|τ |e−(κ−2ε−2α−q log(1+η))(t−τ)∥x∥2.

Similarly, for x ∈ Fu
τ and t ≥ τ , we have

∥T (t, τ)x∥2 ≥ L−1e−2ε|t||H(t, T (t, τ)x)|

≥ L−1e−2ε|t|eκ(t−τ)(1− η)q(1+t−τ)|H(τ, x)|

≥ L−2e−2ε|t|−2(ε+α)|τ |eκ(t−τ)(1− η)q(1+t−τ)∥x∥2

≥ (1− η)qL−2e−2(2ε+α)|t|e(κ−2ε−2α−q log(1−η))(t−τ)∥x∥2.

This completes the proof of Lemma 3.7. �
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We note that the statements in Lemmas 3.4 and 3.5 also hold in this
setting. Thus, proceeding as in the proof of Theorem 3.2, we conclude
that equation (1.1) admits a nonuniform exponential dichotomy. �

4. Robustness of nonuniform exponential dichotomies. In
this section, we establish the robustness of a nonuniform exponential
dichotomy as an application of the results in the former sections. This
means that, for any sufficiently small perturbation (in some appropriate
sense) equation (1.2) still admits a nonuniform exponential dichotomy.

Theorem 4.1. Let A,B : R → B(X) be continuous functions, and let
Bi, Ci ∈ B(X) be linear operators for i ∈ Z such that equation (1.1)
admits a nonuniform exponential dichotomy. If condition (3.1) holds
with α ≤ ε and

(4.1) ∥B(t)∥ ≤ µe−2ε|t|, ∥Ci∥ ≤ µe−7ε|τi|

for t ∈ R and i ∈ Z with µ sufficiently small, then equation (1.2) also
admits a nonuniform exponential dichotomy.

Proof. Consider the matrices S(t) in equation (3.8). Clearly, Theo-
rem 3.1 (i) holds. Now we show that condition (ii) and equation (3.15)
also hold when the dynamics of equation (1.1) is replaced by that of
equation (1.2). If x(t) is a solution of equation (1.2), then

d

dt
H(t, x(t)) = ⟨S′(t)x(t), x(t)⟩

+ ⟨S(t)A(t)x(t), x(t)⟩+ ⟨S(t)B(t)x(t), x(t)⟩
+ ⟨A(t)∗S(t)x(t), x(t)⟩+ ⟨B(t)∗S(t)x(t), x(t)⟩.

(4.2)

By equation (3.10), we obtain

⟨S′(t)x(t), x(t)⟩+ ⟨S(t)A(t)x(t), x(t)⟩+ ⟨A(t)∗S(t)x(t), x(t)⟩

= −1

2
∥x(t)∥2 − 2(a− ϱ)

∫ ∞

t

∥T (v, t)P (t)x(t)∥2e2(a−ϱ)(v−t) dv

− 2(b− ϱ)

∫ t

−∞
∥T (v, t)Q(t)x(t)∥2e2(b−ϱ)(t−v) dv.

(4.3)

Moreover, by equations (3.3) and (4.1), we have

⟨S(t)B(t)x(t), x(t)⟩+ ⟨B(t)∗S(t)x(t), x(t)⟩ ≤ 2Lµ∥x(t)∥2.
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Therefore, it follows from equations (4.2) and (4.3) that, if µ is such
that 2Lµ < 1/2, then

d

dt
H(t, x(t))

≤ −2(a− ϱ)

∫ ∞

t

∥T (v, t)P (t)x(t)∥2e2(a−ϱ)(v−t) dv

− 2(b− ϱ)

∫ t

−∞
∥T (v, t)Q(t)x(t)∥2e2(b−ϱ)(t−v) dv.

(4.4)

Hence, if H(t, x(t)) ≥ 0, then by equation (4.4) and in a similar manner
to that in equation (3.11), since a− ϱ > 0 and b− ϱ > 0, we obtain

d

dt
H(t, x(t)) ≤ −2(a− ϱ)|H(t, x(t))|.

Analogously, if H(t, x(t)) ≤ 0, then

d

dt
H(t, x(t)) ≤ −2(b− ϱ)|H(t, x(t))|.

Thus, taking κ = min{a− ϱ, b− ϱ}, we obtain Theorem 3.1 (ii).

Moreover, it follows from equation (3.6) that

(4.5)

J : = (Id +Bi + Ci)
∗S(τ+i )(Id +Bi + Ci)− S(τi)

= (Id +Bi + Ci)
∗S(τ+i )(Id +Bi + Ci)

− (Id +Bi)
∗S(τ+i )(Id +Bi)

= (Id +Bi)
∗S(τi)Ci + C∗

i S(τi)(Id +Bi + Ci).

Since
∥Id +Bi∥ = ∥T (τ+i , τi)∥ ≤ Keε|τi|,

it follows from equation (4.5) that

∥J∥ ≤ 2∥Ci∥ · ∥S(τi)∥ · (∥Id +Bi∥+ ∥Ci∥)

≤ 2µ(K + µ)e−6ε|τi|∥S(τi)∥.

On the other hand, since S(t) is symmetric, by equation (3.3), we have

∥S(t)∥ = max
∥x∥=1

⟨S(t)x, x⟩ ≤ Le2ε|t|.

Therefore,
∥J∥ ≤ 2µ(K + µ)Le−4ε|τi|,
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and so, by equation (3.9),

⟨Jx, x⟩ ≤ ∥J∥ · ∥x∥2

≤ 2µ(K + µ)L2e−4ε|τi|e2(α+ε)|τi|⟨S(τi)x, x⟩
≤ 2µ(K + µ)L2⟨S(τi)x, x⟩.

Hence, condition (3.15) holds for any sufficiently small µ. Applying
Theorem 3.6 yields that equation (1.2) admits a nonuniform exponen-
tial dichotomy. �
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12. J. Massera and J. Schäffer, Linear differential equations and functional
analysis, I, Ann. Math. 67 (1958), 517–573.

13. , Linear differential equations and function spaces, Pure Appl. Math.
21, Academic Press, New York, 1966.

14. R. Naulin and M. Pinto, Admissible perturbations of exponential dichotomy

roughness, Nonlin. Anal. 31 (1998), 559–571.



IMPULSIVE EQUATION EXPONENTIAL DICHOTOMIES 1793

15. V. Oseledets, A multiplicative ergodic theorem. Liapunov characteristic
numbers for dynamical systems, Trans. Moscow Math. Soc. 19 (1968), 197–221.

16. Ya. Pesin, Families of invariant manifolds corresponding to nonzero char-
acteristic exponents, Math. USSR-Izv. 10 (1976), 1261–1305.

17. V. Pliss and G. Sell, Robustness of exponential dichotomies in infinite-

dimensional dynamical systems, J. Dynam. Diff. Eq. 11 (1999), 471–513.

18. L. Popescu, Exponential dichotomy roughness on Banach spaces, J. Math.

Anal. Appl. 314 (2006), 436–454.

19. A. Samoilenko and N. Perestyuk, Impulsive differential equations, Nonlin.
Sci. Mono. Treatises 14, World Scientific, Singapore, 1995.
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