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RESOLUTIONS AND STABILITY
OF C-GORENSTEIN FLAT MODULES

GUOQIANG ZHAO AND XIAOGUANG YAN

ABSTRACT. In this paper, we first investigate the rela-
tionship between W-(co)resolutions and X -(co)resolutions for
two full subcategories W and X of an abelian category with
W ⊆ X . Then some applications are given. In particular,
we obtain the stability of the category of C-Gorenstein flat
modules under the procedure used to define these entities,
which is different from that established by Sather-Wagstaff,
Sharif and White.

1. Introduction. For a kind of generalization of Gorenstein projec-
tive, injective and flat modules, Holm and Jørgensen introduced [10]
the notions of C-Gorenstein (GC- for short) projective, injective and
flat modules, where C is a semidualizing module. However, letting W
be a full subcategory of an abelian category, Sather-Wagstaff, Sharif
and White introduced [14] the Gorenstein category G(W), which uni-
fies the following ideas: Gorenstein projective and injective modules
[5]; V -Gorenstein projective and injective modules [7], which were de-
fined differently than those in [10]. As they play an important role in
relative homological algebra, Gorenstein projective, injective and flat
modules, and their generalized versions have been studied by many
authors since the pioneering work of Auslander and Bridger [1].

In [14], Sather-Wagstaff, Sharif and White also investigated the
stability of Gorenstein categories G(W). When W is selforthogonal,
they showed that an iteration of the procedure used to define these
entities yields exactly the objects in G(W), that is, G(G(W)) ⊆ G(W).
Furthermore, in [15], the authors established a similar stability for a
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subcategory of GC-flat R-modules over a commutative Noetherian ring,
i.e.,

G(GFC(R) ∩ BC(R)) ⊆ GFC(R) ∩ BC(R),

where GFC(R) denotes the category of GC-flat modules, and BC(R)
denotes the Bass class associated to C.

It is natural to consider stability for the category of GC-flat R-
modules:

Question 1.1. Must G(GFC(R)) be contained in GFC(R)?

In this paper, we will prove that the containment always holds true
over a coherent ring.

This paper is organized as follows. In Section 2, we give some
necessary notation and definitions. In Section 3, we first investigate
the relationship between W-(co)resolutions and X -(co)resolutions with
W a subcategory of X and show that these unify some known results
related to C-Gorenstein modules and Gorenstein categories. Then,
as an application, we establish another kind of stability of the GC-flat
modules under the very process used to define these entities. Using this
result, we obtain the containment in Question 1.1 over a commutative
coherent ring.

2. Preliminaries. Throughout this article, for convenience, we as-
sume that R is a commutative ring with identity and all modules are
unitary. Denote the category of R-modules by M(R), and denote the
subcategory of projective, injective and flat R-modules by P(R), I(R)
and F(R), respectively.

We first recall some definitions from [16].

Definition 2.1. An R-module C is semidualizing if it satisfies the
following.

(i) C admits a (possibly unbounded) resolution by finitely generated
projective R-modules.

(ii) The natural homothety mapR → HomR(C,C) is an isomorphism.

(iii) Exti>1
R (C,C) = 0.
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Relative to a semidualizing module C, we set:

PC(R) = {C ⊗R P | P is a projective R-module}
FC(R) = {C ⊗R F | F is a flat R-module}
IC(R) = {HomR(C, I) | I is an injective R-module}.

The elements in the sets above are called C-projective, C-flat and C-
injective R-modules, respectively.

Definition 2.2. An R-module M is said to be GC-injective if there
exists an exact sequence

X = · · · −→ HomR(C, I
1) −→ HomR(C, I

0) −→ I0 −→ I1 −→ · · ·

in M(R) with each Ii and Ii injective, such that M ∼= Im(HomR(C, I
0)

→ I0) and HomR(HomR(C, I),X) is exact for every injective module I.
The exact sequence X is called a complete ICI-resolution of M .

The GC-projective module is defined dually.

Definition 2.3. An R-module N is said to be GC-flat if there exists
an exact sequence

Y = · · · −→ F1 −→ F0 −→ C ⊗R F 0 −→ C ⊗R F 1 −→ · · ·

in M(R) with each Fi and F i flat, such that N ∼= Im(F0 → C ⊗R F 0)
and HomR(C, I) ⊗RY is exact for every injective module I. The exact
sequence Y is called a complete FFC-resolution of N .

We will denote the classes of GC-injective, GC-projective and GC-
flat R-modules by GIC(R), GPC(R) and GFC(R), respectively.

Remark 2.4. When C = R, these definitions are the same as those
of Gorenstein injective, Gorenstein projective and Gorenstein flat R-
modules, which are denoted by GI(R), GP(R) and GF(R) respectively.

By using the definition of GC-flat modules, the proof of the next
lemma is a standard argument.

Lemma 2.5. The following are equivalent for an R-module M :
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(i) M is GC-flat.

(ii) TorR>1(IC(R),M) = 0, and there exists an exact sequence

0 −→ M −→ C ⊗R F 0 −→ C ⊗R F 1 −→ · · ·

in M(R) with each F i flat, such that HomR(C, I) ⊗R leaves it
exact for every injective module I.

Definition 2.6. The Bass class BC(R) with respect to C consists of
all R-modules N satisfying:

(i) Ext>1
R (C,N) = 0 = TorR>1(C,HomR(C,N)), and

(ii) the map C ⊗R HomR(C,N) → N is an isomorphism.

Definition 2.7 (see [14]). Let W be a full subcategory of an abelian
category. The Gorenstein category denoted by G(W) consists of all
objects A isomorphic to Coker(δX1 ) for some exact complex X in W,
such that the complexes HomR(W

′,X) and HomR(X,W ′′) are exact
for each W ′ and W ′′ in W. In this case, X is said to be a complete
W-resolution of A.

Definition 2.8 (see [6]). Let X be a subcategory of M(R). An
X -preenvelope of an R-module M is an R-module homomorphism
φ : M → X, where X ∈ X such that, for each X ′ ∈ X , the
homomorphism

HomR(φ,X
′) : HomR(X,X ′) −→ HomR(M,X ′)

is surjective. X is said to be a preenveloping class, if every R-module
has an X -preenvelope.

3. Stability of GC-flat modules. To begin, we prove some results
in a more general setting and then apply them to the categories of inter-
est. Let A be an abelian category, and fix additive full subcategories V,
W and X of A such that V, W ⊆ X . Write V ⊥ W if Exti>1

A (V,W ) = 0
for each object V in V and each object W in W.

Recall from [14] that W is a cogenerator for X if, for each object X
in X , there exists an exact sequence in X ,

0 −→ X −→ W −→ X ′ −→ 0,
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such that W is an object in W. The subcategory W is an injective
cogenerator for X , if W is a cogenerator for X and X ⊥ W.

Generator and projective generator are defined dually.

A sequence X in A is called HomA(X ,−)-exact if HomA(X,X) is
exact for each object X in X . Dually, it is HomA(−,X )-exact if
HomA(X, X) is exact for each object X in X , and X is X⊗R-exact
if X ⊗R X is exact for each X in X .

Lemma 3.1. Let X be a full subcategory of A closed under extensions.
Suppose that

(3.1) 0 −→ K −→ X1
f−→ X0 −→ A −→ 0

is an exact sequence in A with X0, X1 in X .

(i) If W is a cogenerator for X , then we have the following exact
sequence:

(3.2) 0 −→ K −→ W −→ X −→ A −→ 0

in A with W in W and X in X . Moreover, if W is an injective
cogenerator for X and (3.1) is HomA(−,W)-exact, then so is
(3.2).

(ii) If V is a generator for X , then we have the following exact
sequence:

(3.3) 0 −→ K −→ X ′ −→ V −→ A −→ 0

with V in V and X ′ in X . Moreover, if V is a projective generator
for X and (3.1) is HomA(V,−)-exact, then so is (3.3).

Proof. By a similar argument to the proof of [12, Proposition 2.2],
we obtain the assertion. �

Theorem 3.2. Let n be a positive integer, and let X be a full subcat-
egory of A closed under extensions. Suppose that

(3.4) 0 −→ K −→ Xn−1 −→ Xn−2 −→ · · · −→ X0 −→ A −→ 0

is an exact sequence in A with all Xi in X , then:
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(i) if W is a cogenerator for X , then we have the following exact
sequences:

(3.5) 0 −→ K −→ Wn−1 −→ Wn−2 −→ · · · −→ W0 −→ B −→ 0

and 0 → A → B → X → 0 with all Wi in W and X in X .
Moreover, if W is an injective cogenerator for X and (3.4) is
HomA(−,W)-exact, then so is (3.5).

(ii) If V is a generator for X , then we have the following exact
sequences:

(3.6) 0 −→ L −→ Vn−1 −→ Vn−2 −→ · · · −→ V0 −→ A −→ 0

and 0 → X ′ → L → K → 0 with all Vi in V and X ′ in
X . Moreover, if V is a projective generator for X and (3.4) is
HomA(V,−)-exact, then so is (3.6).

Proof. We give the proof of part (i), and part (ii) is proved dually.

We proceed by induction on n. If n = 1, the assumption gives rise to
an exact sequence 0 → K → X0 → A → 0 with X0 in X . Since W is a
cogenerator for X , we have an exact sequence 0 → X0 → W0 → X → 0,
where W0 in W and X in X . Consider the following pushout diagram:

0

��

0

��
0 // K // X0

��

// A //

��

0

0 // K // W0

��

// B //

��

0

X

��

X

��
0 0

The middle row and the last column in the above diagram are the de-
sired two exact sequences. In addition, if W is an injective cogenerator
for X , then Ext1A(A,W) = 0 since the first row in the above diagram
is HomA(−,W)-exact. The exactness of the third column implies that
Ext1A(B,W) = 0, and hence the middle row is also HomA(−,W)-exact.

Now assume that n ≥ 2, and set M = Coker(Xn−1 → Xn−2).
Because the sequence 0 → K → Xn−1 → Xn−2 → M → 0 is exact,
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Lemma 3.1 yields a HomA(−,W)-exact exact sequence 0 → K →
Wn−1 → X ′

n−2 → M → 0 with Wn−1 in W and X ′
n−2 in X . Set

K ′ = Im(Wn−1 → X ′
n−2). Then we obtain the exactness of

0 −→ K ′ −→ X ′
n−2 −→ Xn−3 −→ · · · −→ X0 −→ A −→ 0,

which is also HomA(−,W)-exact. So, by the induction hypothesis, we
get the assertion. �

Remark 3.3.

(1) From [9, Theorem 2.5], we know that GP(R) is closed under
extensions, and P(R) is both a projective generator and an injective
cogenerator for GP(R). Thus, Theorem 3.2 implies the result of
[12, Theorem 2.4].

(2) By [16, Theorem 2.8 and Proposition 2.9], we know that GPC(R) is
closed under extensions, P(R) is a projective generator and PC(R)
is an injective cogenerator for GPC(R). So Theorem 3.2 implies
the result of [13, Lemma 2.8].

An exact sequence · · · → X1 → X0 → A → 0 in A with each Xi ∈
X is said to be an X -resolution of A. An X -coresolution of A is defined
dually.

Corollary 3.4. Let X be a full subcategory of A closed under exten-
sions, and let A be an object in A.

(i) If W is a cogenerator for X , then A has an X -coresolution if and
only if it has a W-coresolution.

(ii) If V is a generator for X , then A has an X -resolution if and only
if it has a V-resolution.

Proof.

(i) It is enough to show the “only if” part. Let 0 → A → X0 → X1 →
· · · be an X -coresolution of A, and set Ai = Im(Xi → Xi+1) for
each i ≥ 0. By Theorem 3.2 (i) for the case n = 1, we have
the following exact sequences: 0 → A → W0 → B → 0 and
0 → A0 → B → X → 0 with W0 in W and X in X . Consider the
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following pushout diagram:

0

��

0

��
0 // A0

//

��

B

��

// X // 0

0 // X1

��

// X ′

��

// X // 0

A1

��

A1

��
0 0

where X1 ∈ X . Thus, X ′ ∈ X since X is closed under extensions,
and so B has an X -coresolution 0 → B → X ′ → X2 → · · · .
By repeating the preceding process, we have that A has a W-
coresolution.

(ii) is proved dually. �

As an immediate consequence of Corollary 3.4, we obtain two results,
in which the second assertion generalizes [8, Proposition 2.10].

Corollary 3.5.

(i) An R-module M has a GPC(R)-resolution (respectively coresolu-
tion) if and only if M has a P(R)-resolution (respectively PC(R)-
coresolution).

(ii) If W⊥W, then an object A in A has a G(W)-(co)resolution if and
only if A has a W-(co)resolution.

Proof.

(i) follows from Remark 3.3 (2) and Corollary 3.4.
(ii) Since W⊥W, from [14, Corollaries 4.5, 4.7], we know that the

Gorenstein category G(W) is closed under extensions, and W is
both a projective generator and an injective cogenerator for G(W).
The assertion follows from Corollary 3.4. �

Using Theorem 3.2 and Corollary 3.5, we give a simpler proof of the
stability of Gorenstein categories G(W).
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Corollary 3.6 ([14, Corollary 4.10]). If W⊥W, then G(G(W)) =
G(W).

Proof. From [14, Remark 4.2], it is easy to see that G(W) ⊆
G(G(W)).

For the reverse containment, let A be an object in G(G(W)) and

· · · −→ G1 −→ G0 −→ G0 −→ G1 −→ · · ·

a complete G(W)-resolution of A. Since W is a projective generator for
G(W), by Theorem 3.2 (ii) and Corollary 3.5 (ii), A has a W-resolution:

· · · −→ W1 −→ W0 −→ A −→ 0,

which is HomA(W,−)-exact. We claim that it is also HomA(−,W)-
exact. Indeed, put Ai = Im(Wi+1 → Wi) for any i ≥ 0. Since W
is an injective cogenerator for G(W), it is not difficult to show that

Ext>1
A (A,W) = 0 from the definition of G(GW). Thus Ext>1

A (Ai,W) =
0 for each i ≥ 0 by dimension shifting, and so the sequence above is
HomA(−,W)-exact.

By a dual argument, A has a W-coresolution: 0 → A → W 0 →
W 1 → · · · , which is both HomA(−,W)-exact and HomA(W,−)-exact.
Thus, A ∈ G(W). �

In the following, we use M+ to denote the character module
HomZ(M,Q/Z) of M . The following lemma is contained in [15,
Lemma 4.1] over a Noetherian ring, but it is also valid in the following
situation by a similar argument.

Lemma 3.7.

(i) Let R be a ring. Then an R-module M is C-flat if and only if
M+ is C-injective.

(ii) Assume that R is a coherent ring. If N is a C-injective R-module,
then N+ is C-flat.

The following result investigates the relations between GC-flat and
GC-injective modules, which generalizes [9, Theorem 3.6].
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Theorem 3.8. For an R-module M , we consider the following condi-
tions:

(i) M is GC-flat.
(ii) M+ is GC-injective.

Then (i) implies (ii). If R is coherent, then the converse holds true.

Proof.

(i) ⇒ (ii). Let

Z = · · · −→ F1 −→ F0 −→ C ⊗R F 0 −→ C ⊗R F 1 −→ · · ·

be a complete FFC-resolution of M . Then Z+ is exact with F+
i

injective and (C ⊗R F i)+ C-injective by Lemma 3.7 (i). Because
HomR(IC(R),Z+) ∼= (IC(R) ⊗R Z)+ is exact, Z+ is a complete ICI-
resolution of M+, and so M+ is GC-injective.

(ii) ⇒ (i). Assume that M+ is GC-injective. Firstly, for any i > 0,

(TorRi (IC(R),M))+ ∼= ExtiR(IC(R),M+) = 0 by [3, Chapter VI,

Proposition 5.1]. Thus, TorRi (IC(R),M) = 0 for any i > 0.

By Lemma 2.5, it suffices to show thatM has an FC(R)-coresolution:

0 −→ M −→ C ⊗R F 0 −→ C ⊗R F 1 −→ · · · ,

and IC(R) ⊗R − leaves it exact. Because M+ is GC-injective, there

is an exact sequence 0 → K → HomR(C, I0)
f→ M+ → 0 with I0

injective. Then 0 → M++ f+

→ (HomR(C, I0))
+ → K+ → 0 is exact and

(HomR(C, I0))
+ is C-flat by Lemma 3.7 (ii). Since σ : M → M++ is

injective, we have a monomorphism M
f+σ→ (HomR(C, I0))

+. On the
other hand, FC(R) is a preenveloping class by [11, Proposition 5.10],

and suppose that M
g→ C ⊗R F 0 is a C-flat preenvelope of M . It is

easy to see that g is injective. So we get an exact sequence

(∗) 0 → M → C ⊗R F 0 → M1 → 0,

with M1 = Cokerg. Thus, 0 → M+
1 → (C ⊗R F 0)+ → M+ → 0 is
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exact. Consider the following commutative diagram:

HomR(C ⊗R F0,IC (R)+)

∼=

��

HomR(g,IC (R)+)// HomR(M, IC (R)+)

∼=

��

// 0

HomR(IC (R), (C ⊗R F0)+) // HomR(IC (R),M+) // Ext1R(IC (R),M
+
1 ) // 0

The first row is exact since g is a C-flat preenvelope, so Ext1R(IC(R),
M+

1 ) = 0. Therefore, M+
1 is GC-injective by the dual version of [16,

Corollary 3.8]. Because (TorR1 (IC(R),M1))
+ ∼= Ext1R(IC(R),M+

1 ) =
0, the sequence (∗) is IC(R)⊗R − exact.

By a similar argument to M1, repeating the process, we obtain the
desired exact sequence. Therefore, M is GC-flat. �

From Theorem 3.8, we conclude that the category ofGC-flat modules
has nice properties when the ring in question is coherent.

Corollary 3.9. Let R be a coherent ring. Then the category of GC-flat
R-modules contains all flat and C-flat R-modules.

Proof. Assume that M is a flat (respectively C-flat) R-module.
It follows from Lemma 3.7 (i) that M+ is injective (respectively C-
injective), and hence GC-injective by the dual version of [16, Proposi-
tion 2.6]. Theorem 3.8 implies that M is GC-flat. �

Corollary 3.10. Let R be a coherent ring, and 0 → M1 → M →
M2 → 0 an exact sequence of R-modules.

(i) Assuming that M2 is GC-flat, one has M1 is GC-flat if and only
if M is GC-flat.

(ii) Assuming that M1 and M are GC-flat and that TorR1 (IC(R),M2) =
0, then M2 is GC-flat.

Proof.

(i) By Theorem 3.8 and the injective version of [16, Theorem 2.8].
(ii) We have an exact sequence 0 → M+

2 → M+ → M+
1 → 0 with

M+
1 and M+ GC-injective by Theorem 3.8. Because

Ext1R(IC(R),M+
2 ) ∼= (TorR1 (IC(R),M2))

+ = 0,
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M+
2 is GC-injective by the injective version of [16, Corollary 3.8].

Thus, M2 is GC-flat by Theorem 3.8 again. �

Combining Theorems 3.2 and 3.8, we get the following result for the
category of GC-flat modules. The first assertion generalizes [4, Lemma
2.19].

Proposition 3.11. Let R be a coherent ring and n a positive integer.
If

0 −→ K −→ Gn−1 −→ Gn−2 −→ · · · −→ G0 −→ M −→ 0

is an exact sequence of R-modules with all Gi GC-flat, then:

(i) There exist exact sequences

0 −→ K −→ C ⊗ Fn−1 −→ C ⊗ Fn−2 −→ · · · −→ C ⊗ F0 −→ N −→ 0

and 0 → M → N → G → 0 of R-modules with all Fi flat and G
GC-flat.

(ii) There exist exact sequences

0 −→ L −→ F ′
n−1 −→ F ′

n−2 −→ · · · −→ F ′
0 −→ M −→ 0

and 0 → H → L → K → 0 of R-modules with all F ′
i flat and H

GC-flat.

Proof. From Theorem 3.8 and the dual version of [16, Theorem 2.8
and Proposition 2.9], we know that GFC(R) is closed under extensions,
F(R) is a generator and FC(R) is a cogenerator for GFC(R). The
assertion follows from Theorem 3.2. �

We denote G2FC(R) = {A ∈ M(R) | there exists an exact sequence
· · · → G1 → G0 → G0 → G1 → · · · in M(R) with all Gi and Gi in
GFC(R), such that A ∼= Im(G0 → G0) and IC(R)⊗R-leaves it exact}.

Theorem 3.12. When R is a coherent ring, G2FC(R) = GFC(R).

Proof. Because every flat and C-flat R-module is GC-flat by Corol-
lary 3.9, it is clear that GFC(R) ⊆ G2FC(R).

Conversely, let A ∈ G2FC(R) and

X = · · · −→ G1 −→ G0 −→ G0 −→ G1 −→ · · ·
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be an exact sequence in M(R) with all Gi and Gi in GFC(R) and A ∼=
Im(G0 → G0). Put Ai = Im(Gi+1 → Gi) and Ai = Im(Gi → Gi+1) for
any i ≥ 0. Consider the short exact sequences 0 → A0 → G0 → A → 0
and 0 → Ai+1 → Gi+1 → Ai → 0 for any i ≥ 0. Since IC(R) ⊗R X is

exact, TorR≥1(IC(R), A) = 0 and TorR≥1(IC(R), Ai) = 0 for any i ≥ 0

by dimension shifting. Similarly, TorR≥1(IC(R), Ai) = 0 for any i ≥ 0.

To prove A ∈ GFC(R), by Lemma 2.5, it suffices to show that A has
an FC(R)-coresolution:

0 −→ A −→ C ⊗R F 0 −→ C ⊗R F 1 −→ · · · ,

and IC(R) ⊗R − leaves it exact. Because 0 → A → G0 → A0 → 0 is
exact, by Proposition 3.11, there exist exact sequences

0 −→ A −→ C ⊗ F 0 −→ N0 −→ 0

and

0 −→ A0 −→ N0 −→ G −→ 0

with F 0 flat and G GC-flat. Form the exactness of the second sequence,
TorRj≥1(IC(R), N0) = 0, and hence, the first one is IC(R)⊗R − exact.
Consider the following pushout diagram:

0

��

0

��
0 // A0 //

��

N0

��

// G // 0

0 // G1

��

// G′

��

// G // 0

A1

��

A1

��
0 0

Because both G1 and G are GC-flat, so is G′ by Corollary 3.10. Since
TorRj≥1(IC(R), Ai) = 0 for any i ≥ 1, we get an exact sequence

0 −→ N0 −→ G′ −→ G2 −→ G3 −→ · · ·

in M(R), which is IC(R)⊗R− exact. Repeating the process, we obtain
the desired exact sequence. Thus, A ∈ GFC(R). �
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In the special case C = R, we obtain the main theorem of [2] and
[17, Theorem 4.3].

Corollary 3.13. G2F(R) = GF(R).

As a consequence of Theorem 3.12, we give an affirmative answer to
Question 1.1 over a coherent ring.

Corollary 3.14. For a coherent ring R, G(GFC(R)) ⊆ GFC(R).

Proof. Let M ∈ G(GFC(R)), and let

G = · · · −→ G1 −→ G0 −→ G0 −→ G1 −→ · · ·

be a complete GFC(R)-resolution of M . From Lemma 3.7 (ii), we know
that (IC(R))+ ⊆ FC(R), are included in GFC(R) by Corollary 3.9.
Thus, the complex

(IC(R)⊗R G)+ ∼= HomR(G, (IC(R))+),

is exact since HomR(G,GFC(R)) is exact, and so IC(R)⊗RG is exact.
Theorem 3.12 yields that M ∈ GFC(R). �

Remark 3.15. It is convenient to mention that all the results from
Lemma 3.7 to Corollary 3.14 also hold true for non-commutative
coherent rings.
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