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A COMPUTATION OF BUCHSBAUM-RIM
FUNCTIONS OF TWO VARIABLES

IN A SPECIAL CASE

FUTOSHI HAYASAKA

ABSTRACT. In this paper, we will compute Buchsbaum-
Rim functions of two variables associated to a parameter
matrix of a special form over a one-dimensional Cohen-
Macaulay local ring, and we will determine when the
function coincides with the Buchsbaum-Rim polynomial. As
a consequence, we have that there exists the case where
the function does not coincide with the polynomial function,
which should be contrasted with the ordinary Buchsbaum-
Rim function of single variable.

1. Introduction. Let (R,m) be a Noetherian local ring with the
maximal ideal m of dimension d > 0, and let C be a nonzero R-module
of finite length. Let φ : Rn → Rr be an R-linear map of free modules
with C = Cokerφ as the cokernel of φ, and set M := Imφ ⊂ F := Rr.
Then one may consider the function,

λ(p) := ℓR([Coker SymR(φ)]p) = ℓR(Sp/M
p),

where Sp (respectively Mp) is a homogeneous component of degree p
of S = SymR(F ) (respectively R[M ] = ImSymR(φ)). Buchsbaum-Rim
[3] first introduced and studied this type of function and proved that
λ(p) is eventually a polynomial of degree d + r − 1, which we call the
Buchsbaum-Rim polynomial. Then they defined a multiplicity of C as

e(C) := (The coefficient of pd+r−1 in the polynomial)× (d+ r − 1)!,
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which we now call the Buchsbaum-Rim multiplicity of C. They also
proved that the multiplicity is independent of the choice of φ. The
multiplicity e(C) coincides with the ordinary Hilbert-Samuel multiplic-
ity of an ideal I when C is a cyclic module R/I.

Buchsbaum and Rim also introduced the notion of a parameter
matrix, which generalizes the notion of a system of parameters. A
matrix (a linear map of free modules) φ over R of size r × n (from Rn

to Rr) is said to be a parameter matrix for R, if the following three
conditions are satisfied:

(i) Cokerφ has finite length,
(ii) d = n− r + 1,
(iii) Imφ ⊂ mRr.

Then it is known that, if R is Cohen-Macaulay and φ is a parameter
matrix, then there exist formulas

e(C) = ℓR(C) = ℓR(R/Fitt0(C))

for the Buchsbaum-Rim multiplicity [2, 3, 6] and for the Buchsbaum-
Rim function [1],

λ(p) = e(C)

(
p+ d+ r − 2

d+ r − 1

)
,

for all p ≥ 0. It is also known [5] that, for any p ≥ 0, the inequality,

λ(p) ≥ e(C)

(
p+ d+ r − 2

d+ r − 1

)
,

always holds true for a parameter matrix φ even if R is not Cohen-
Macaulay, and the equality for some p > 0 characterizes the Cohen-
Macaulay property of the ring R.

Kleiman and Thorup [9, 10] and Kirby and Rees [7, 8] introduced
another kind of multiplicity associated to C, which is related to the
Buchsbaum-Rim multiplicity (see also [4]). They considered the func-
tion of two variables,

Λ(p, q) := ℓR(Sp+q/M
pSq),

and proved that Λ(p, q) is eventually a polynomial of total degree
d + r − 1. Then they defined a sequence of multiplicities, for j =



BUCHSBAUM-RIM FUNCTIONS OF TWO VARIABLES 1549

0, 1, . . . , d+ r − 1,

ej(C) := (The coefficient of pd+r−1−jqj in the polynomial)

× (d+ r − 1− j)!j!,

and proved that ej(C) is independent of the choice of φ. Moreover,
they proved that

e(C)=e0(C)≥e1(C)≥· · ·≥er−1(C)>er(C)= · · ·=ed+r−1(C)=0,

where r = µR(C) is the minimal number of generators of C. Thus, we
call ej(C) the jth Buchsbaum-Rim multiplicity of C. Then it is natural
to ask the following.

Problem 1.1. Let φ : Rn → Rr be a parameter matrix with C =
Cokerφ. Suppose that R is Cohen-Macaulay. Then:

(i) does there exist a simple formula for the Buchsbaum-Rim multi-
plicities ej(C) for j = 1, 2, . . . , r − 1?

(ii) Does the function Λ(p, q) coincide with a polynomial function?

In this paper, we will try to calculate the function Λ(p, q) and
multiplicities ej(C) in a special case where C is a direct sum of cyclic
modules R/Qi and Qi is a parameter ideal in a one dimensional Cohen-
Macaulay local ring R. In particular, in the case C = R/Q1⊕R/Q2, we
will determine when the function Λ(p, q) coincides with a polynomial
function (Theorem 2.4). As a consequence, we have that there exists
the case where the function Λ(p, q) does not coincide with a polynomial
function. This should be contrasted with a result of Brennan, Ulrich
and Vasconcelos [1] as stated above: the ordinary Buchsbaum-Rim
function λ(p) = Λ(p, 0) coincides with the Buchsbaum-Rim polynomial
for all p ≥ 0 in the case where R is Cohen-Macaulay and φ is a
parameter matrix.

2. Computation in a special case. In what follows, let (R,m)
be a one dimensional Cohen-Macaulay local ring with the maximal
ideal m. Let r > 0 be a fixed positive integer, and let Q1, Q2, . . . , Qr

be parameter ideals in R with Qi = (xi) for i = 1, 2, . . . , r. We set
ai = ℓR(R/Qi) = e(R/Qi) for i = 1, 2, . . . , r. Let φ : Rr → Rr be an
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R-linear map represented by a parameter matrix,
x1 0 · · · 0

0 x2
. . .

...
...

. . .
. . . 0

0 · · · 0 xr

 ,

and let C = Cokerφ, which is a direct sum R/Q1⊕R/Q2⊕· · ·⊕R/Qr

of cyclic modules. Let S = SymR(R
r) be the symmetric algebra of Rr,

and let N = Imφ be the image of φ. With this notation, we want to
compute the following:

• the function Λ(p, q) = ℓR(Sp+q/N
pSq) for p, q ≥ 0,

• the polynomial Λ(p, q) = ℓR(Sp+q/N
pSq) for p, q ≫ 0,

• the multiplicities ej(C) for j = 1, 2, . . . , r − 1.

In order to calculate the above, we fix a free basis {t1, t2, . . . , tr}
for Rr. Then S = R[t1, t2, . . . , tr] is a polynomial ring and N =
Q1t1 + Q2t2 + · · · + Qrtr ⊂ S1 = Rt1 + Rt2 + · · · + Rtr. Thus, for
any p, q ≥ 0, the module NpSq can be described as follows:

NpSq =

( ∑
|j|=p
j≥0

Qjtj

)( ∑
|k|=q
k≥0

Rtk

)

=
∑

|ℓ|=p+q
ℓ≥0

( ∑
|k|=q
0≤k≤ℓ

Qℓ−k

)
tℓ ⊂ Sp+q

=
∑

|ℓ|=p+q
ℓ≥0

Rtℓ.

Here we use the multi-index notation: for a vector i = (i1, . . . , ir) ∈
Zr
≥0, we denote Qi = Qi1

1 · · ·Qir
r , ti = ti11 · · · tirr and |i| = i1 + · · ·+ ir.

For any vector ℓ = (ℓ1, . . . , ℓr) ∈ Zr
≥0 such that |ℓ| = p + q, we define

the ideal in R as follows:

Jp,q(ℓ) :=
∑
|k|=q
0≤k≤ℓ

Qℓ−k =
∑
|i|=p
0≤i≤ℓ

Qi.
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Then the function Λ(p, q) can be described as

Λ(p, q) = ℓR(Sp+q/N
pSq) =

∑
|ℓ|=p+q

ℓ≥0

ℓR(R/Jp,q(ℓ)),

for any p, q ≥ 0. Thus, in order to compute the function Λ(p, q), it is
enough to compute the colength ℓR(R/Jp,q(ℓ)) of the ideal Jp,q(ℓ).

We first consider the special case where the set of idealsQ1, Q2, . . . , Qr

is an ascending chain. The function Λ(p, q) can be explicitly computed
as follows in this case.

Proposition 2.1. Suppose that Q1 ⊆ Q2 ⊆ · · · ⊆ Qr. Then

Λ(p, q) = (a1 + · · ·+ ar)

(
p+ r − 1

r

)
+

r−1∑
i=1

(ai+1 + · · ·+ ar)

(
p+ r − i− 1

r − i

)(
q + i− 1

i

)

for all p, q ≥ 0, where
(
m
n

)
= 0 if m < n. In particular, the function

Λ(p, q) coincides with a polynomial function and

ej(C) =

{
aj+1 + · · ·+ ar (j = 0, 1, . . . , r − 1)

0 (j = r)

Proof. Let us fix any p, q ≥ 0. The case r = 1 is a well-known
result for the Hilbert-Samuel function. The case q = 0 is a result of [1,
Theorem 3.4] on the ordinary Buchsbaum-Rim function λ(p) = Λ(p, 0).
So we may assume that r ≥ 2 and q ≥ 1. Suppose Q1 ⊆ Q2 ⊆ · · · ⊆ Qr.
Then the ideal Jp,q(ℓ) coincides with the ideal of the product of last p
ideals of a sequence of ideals

ℓ1︷ ︸︸ ︷
Q1, . . . , Q1,

ℓ2︷ ︸︸ ︷
Q2, . . . , Q2, . . . ,

ℓr︷ ︸︸ ︷
Qr, . . . , Qr︸ ︷︷ ︸

p+q

.
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Hence its colength ℓR(R/Jp,q(ℓ)) is the sum of last p integers of a
sequence of integers

(2.1)

ℓ1︷ ︸︸ ︷
a1, . . . , a1,

ℓ2︷ ︸︸ ︷
a2, . . . , a2, . . . ,

ℓr︷ ︸︸ ︷
ar, . . . , ar︸ ︷︷ ︸

p+q

.

To compute the sum ∑
|ℓ|=p+q

ℓ≥0

ℓR(R/Jp,q(ℓ)),

we divide the sequence (2.1) at the (p+1)th integer from the end. If the
(p+ 1)th integer from the end is ai, then the sum of all last p integers
of such sequences can be counted by(

(q − 1) + i− 1

i− 1

)( ∑
ui+···+ur=p
ui,...,ur≥0

(uiai + ui+1ai+1+· · ·+urar)

)
.

Therefore,

Λ(p, q) =
∑

|ℓ|=p+q
ℓ≥0

ℓR(R/Jp,q(ℓ))

=
r∑

i=1

(
(q − 1) + i− 1

i− 1

)( ∑
ui+···+ur=p
ui,...,ur≥0

(uiai+ui+1ai+1+· · ·+urar)

)

=
r∑

i=1

(
q + i−2

i−1

)
(ai+· · ·+ar)

(
(r − i+ 1) + p− 1

p

)
p

r − i+ 1

=

r∑
i=1

(ai + · · ·+ ar)

(
q + i− 2

i− 1

)(
r − i+ p

p

)
p

r − i+ 1

=

r∑
i=1

(ai + · · ·+ ar)

(
q + i− 2

i− 1

)(
r − i+ p

p− 1

)
= (a1 + · · ·+ ar)

(
p+ r − 1

r

)
+

r−1∑
i=1

(ai+1 + · · ·+ ar)

(
p+ r − i− 1

r − i

)(
q + i− 1

i

)
. �
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As a direct consequence of Proposition 2.1, we obtain the following.

Corollary 2.2. Let (R,m) be a DVR. Then, for an arbitrary R-
module C of finite length, the function Λ(p, q) associated to the module
C coincides with a polynomial function. Moreover, we have the formula

ej(C) = ℓR(R/Fittj(C)) = e(R/Fittj(C))

for any j = 0, 1, . . . , r − 1.

Remark 2.3. In [7, Theorem 8.1], Kirby and Rees computed the
multiplicities ej(C) in the case where C is a module of finite length
and R is a DVR (see also [8, Proposition 4.1]). Our results give more
detailed information about the function Λ(p, q).

The case where the set of ideals Q1, Q2, . . . , Qr is not an ascending
chain is more complicated. However, the case where r = 2 can be
computed as follows.

Theorem 2.4. Assume r = 2, and put I := Q1 +Q2. Then:

(i) the Buchsbaum-Rim polynomial is

Λ(p, q) = (a1 + a2)

(
p+ 1

2

)
+ e(R/I)

(
p

1

)(
q

1

)
− e1(I)(p+ q) + c

for all p, q ≫ 0, where e1(I) denotes the first Hilbert coefficient of I
and c is a constant. In particular, we have that

e0(C) = ℓR(R/Fitt0(C)) = ℓR(R/Q1Q2)

e1(C) = e(R/Fitt1(C)) = e(R/I)

e2(C) = 0.

(ii) The function Λ(p, q) coincides with a polynomial function if and
only if the equality ℓR(R/I) = e(R/I)− e1(I) holds true. When this is
the case,

Λ(p, q) = (a1 + a2)

(
p+ 1

2

)
+ e(R/I)

(
p

1

)(
q

1

)
− e1(I)(p+ q) + e1(I)

for all p, q ≥ 0.
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(iii) The function Λ(p, q) coincides with the following simple polyno-
mial function

Λ(p, q) = (a1 + a2)

(
p+ 1

2

)
+ e(R/I)

(
p

1

)(
q

1

)
if and only if there is an inclusion between Q1 and Q2.

Before detailing the proof, we will state a lemma which is an explicit
description of the function Λ(p, q). In order to do this, we will introduce
some notation. Let p, q ≥ 0, and let ℓ = (ℓ1, ℓ2) ∈ Z2

≥0 be such

that |ℓ| = p + q. Let δ = δ(ℓ) be the number of elements of the
set ∆ = ∆(ℓ) = {ℓi | ℓi < p}.

p ≤ q. p > q.

//

OO

?
?

?
?

?

p+ q

∆={ℓ2}

∆=∅

∆={ℓ1}

?
?

?
?

?
?

?
?

?
?

?
?

?

p
//

OO

?
?

?
?

?
?

?
?

?

p+ q

∆={ℓ2}

∆={ℓ1,ℓ2}

∆={ℓ1}

?
?

?
?

?
?

?
?

?
?

?
?

?

p

Let hn = ℓR(R/In) be the Hilbert-Samuel function of the ideal I. With
this notation, we have the following.

Lemma 2.5.

(i)

Jp,q(ℓ) =


Ip if δ = 0

Qp−ℓi
j Iℓi if δ = 1,∆ = {ℓi}, i ̸= j,

Qp−ℓ2
1 Qp−ℓ1

2 Iq if δ = 2.
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(ii)

ℓR(R/Jp,q(ℓ)) =


hp if δ = 0,

aj(p− ℓi) + hℓi if δ = 1,∆ = {ℓi},
i ̸= j,

a1(p− ℓ2) + a2(p− ℓ1) + hq if δ = 2,

(iii)

Λ(p, q) =

{
(a1 + a2)

(
p+1
2

)
+ 2(h1+· · ·+hp−1)+(q − p+ 1)hp if p ≤ q,

(a1 + a2)
(
p+1
2

)
+ 2(h1+· · ·+hq)+(p− q − 1)hq if p > q.

Proof. Assertion (i) is easy and implies assertion (ii). Assertion (iii)
follows from assertion (ii). Indeed, if p ≤ q, then 0 ≤ δ ≤ 1, and we
have that

Λ(p, q) =
∑

ℓ1+ℓ2=p+q
ℓ1,ℓ2≥0

ℓR(R/Jp,q(ℓ1, ℓ2))

=

p−1∑
ℓ1=0

(a2(p− ℓ1) + hℓ1) +

q∑
ℓ1=p

hp +

p+q∑
ℓ1=q+1

(a1(p− ℓ2) + hℓ2)

=

p−1∑
ℓ1=0

(a2(p−ℓ1)+hℓ1)+(q−p+1)hp+

p−1∑
ℓ2=0

(a1(p−ℓ2)+hℓ2)

= (a1+a2)(1+2+· · ·+p)+2(h1+· · ·+hp−1)+(q−p+1)hp

= (a1+a2)

(
p+ 1

2

)
+ 2(h1+· · ·+hp−1)+(q−p+1)hp.

The case where p > q is similar. �

Proof of Theorem 2.4. Let p0 be the postulation number of I, that
is, hp = e(R/I)p − e1(I) for all p > p0 and hp0 ̸= e(R/I)p0 − e1(I).
To compute the Buchsbaum-Rim polynomial, we may assume that
p0 < p ≤ q. Then, by Lemma 2.5 (iii),

Λ(p, q) = (a1 + a2)

(
p+ 1

2

)
+ 2(h1 + · · ·+ hp0 + hp0+1 + · · ·+ hp−1) + (q − p+ 1)hp



1556 FUTOSHI HAYASAKA

= (a1 + a2)

(
p+ 1

2

)
+ e(R/I)

(
p

1

)(
q

1

)
− e1(I)(p+ q) + c,

where c = 2(h1 + · · ·+ hp0)− e(R/I)(p0 + 1)p0 + e1(I)(2p0 + 1). This
proves assertion (i).

Suppose that the function Λ(p, q) coincides with the polynomial
function. Then, by substituting p = 1 in the polynomial, Λ(1, q) =
(e(R/I)− e1(I))q + (a1 + a2 − e1(I) + c) for any q ≥ 0. On the other
hand, by Lemma 2.5 (iii), Λ(1, q) = h1q + (a1 + a2) for any q ≥ 1. By
comparing the coefficients of q, we have h1 = e(R/I)− e1(I).

Conversely, suppose that h1 = e(R/I)− e1(I). Then it is known by
[11, Theorem 1.5 and Corollary 1.6] that the Hilbert-Samuel function
hn coincides with the polynomial function for all n > 0. Hence, the
function Λ(p, q) also coincides with the polynomial function with the
following form

Λ(p, q) = (a1 + a2)

(
p+ 1

2

)
+ e(R/I)

(
p

1

)(
q

1

)
− e1(I)(p+ q) + e1(I),

by Lemma 2.5 (iii). Thus, we have assertion (ii).

For assertion (iii), if the function Λ(p, q) coincides with the following
simple polynomial function

Λ(p, q) = (a1 + a2)

(
p+ 1

2

)
+ e(R/I)

(
p

1

)(
q

1

)
,

then e1(I) = 0 and h1 = e(R/I). This implies that I is a parameter
ideal for R, and hence, Q1 ⊆ Q2 or Q2 ⊆ Q1. The other implication
follows from Proposition 2.1. �

Consequently, there exists the case where the Buchsbaum-Rim func-
tion Λ(p, q) does not coincide with a polynomial function even if the
ring R is Cohen-Macaulay and the module has a parameter matrix.
This should be contrasted with a result due to Brennan, Ulrich and
Vasconcelos [1, Theorem 3.4] on the classical Buchsbaum-Rim func-
tion λ(p) = Λ(p, 0) associated to a parameter matrix.
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