
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 46, Number 5, 2016

GALOIS p-GROUPS AND GALOIS MODULES
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ABSTRACT. The smallest non-abelian p-groups play a
fundamental role in the theory of Galois p-extensions. We
illustrate this by highlighting their role in the definition
of the norm residue map in Galois cohomology. We then
determine how often these groups–as well as other closely
related, larger p-groups–occur as Galois groups over given
base fields. We show further how the appearance of some
Galois groups forces the appearance of other Galois groups
in an interesting way.

1. Introduction. From its beginning, Galois theory has carried an
aura of mystery and depth. Despite remarkable progress, some very
basic problems remain open. Given a base field F and a finite group G,
the inverse Galois problem asks whether there is a Galois extension
K/F with Galois group G. When F is the field of rational numbers
we do not have a solution for all G. However, in the remarkable paper
[46], Shafarevich showed that each solvable groupG appears as a Galois
group over any algebraic number field. (See also [47] for corrections
related to problems caused by the prime 2.) For a comprehensive
treatment of Shafarevich’s theorem over any global field, see [39,
subsection 9.6]. For another nice exposition of Shafarevich’s theorem in
the original case of algebraic number fields, see [18, Chapter V, Section
6]. For a special case of solvable groups G whose order is a power of a
prime p, see [48].
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Although in the above works there are some considerable technical
issues, some basic principles can be explained briefly. The first basic
ingredient is the description of all Galois extensions K/F with Galois
group Z/p over any field F . If F contains a primitive pth root of unity,
this problem has a classical, elegant solution described by Kummer
theory; if char (F) = p, the problem is solved by Artin-Schreier theory,
and when char (F) ̸= p and F does not contain the primitive pth
root of unity, one can use Galois descent (see [23, Chapter 6]). The
appearance of elementary p-abelian groups can be described in this
language as well. Indeed, for any field F , there exists an Fp-space J(F )
so that subspaces of J(F ) of dimension k are in correspondence with
elementary p-abelian extensions L/F of rank k. (We will consider J(F )
more fully in Section 3.)

In order to build a given group G of prime-power order as a Galois
group over a given field F , it is natural to consider Galois embedding
problems. Consider the short exact sequence:

1 // Gal(L/K) // Gal(L/F ) // Gal(K/F ) // 1

from Galois theory. If, given G� Q and Gal(K/F ) ≃ Q, can a Galois
extension L/F as above be found so that Gal(L/F ) ≃ G, with the
natural map from Galois theory corresponding to the original surjection
G � Q? This is the Galois embedding problem for G � Q over the
extension K/F .

First consider p > 2. The smallest nonabelian groups of prime-
power order have order p3, and, up to group isomorphism, there are
exactly two such groups (see, e.g., [8, pages 185–186]). The Heisenberg
group, which we write Hp3 , is the unique nonabelian group of order p3

and exponent p. This group is isomorphic to U3(Fp), the group of
upper triangular matrices over a field with p-elements and all diagonal
elements 1. The modular group, which we write Mp3 , is the unique
nonabelian group of order p3 and exponent p2. If p = 2, there are also
two nonabelian groups of order 8: the dihedral group D4 (isomorphic to
U3(F2)) and the quaternion group Q8. Hp3 andMp3 have the following
presentations by generators and relations:

(1.1)
Hp3 = ⟨σ, τ, ω | σp = τp = ωp = [ω, σ] = [ω, τ ] = id, [σ, τ ] = ω⟩

Mp3 =
⟨
x, y | yp

2

= xp = id, [x, y] = yp
⟩
= ⟨y⟩o ⟨x⟩.
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It is worth observing that Mp3 is one group in the larger family of
groups of the form

Mpn =
⟨
y : yp

n−1

= 1
⟩
o ⟨x : xp = 1⟩.

When p = 2 and n > 3, there are four non-abelian groups of order
2n which have an element of order 2n−1; M2n is obviously one of
them, and some automatic realization results for these four groups
were considered in [19]. (Jensen uses F2n to denote the group we are
calling M2n .) For odd p, the group Mpn is the only non-abelian group
of order pn which contains an element of order pn−1 (see, e.g., [16,
subsection 12.5]). Michailov [27] described the realizability conditions
and Galois extensions for Mpn , as well as several other groups related
to this group.

The nonabelian groups of order p3, along with cyclic groups of
order dividing p2, play a surprising basic role in the structure of
some canonical quotients of absolute Galois groups of fields containing
a primitive pth root of unity. For p = 2, based on the work of
Villegas [33], it was shown that the fixed field of the third term of
the 2-descending central sequence of the absolute Galois group is the
compositum of all Galois extensions of the base field with Galois group
isomorphic to Z/2, Z/4 or the dihedral group of order 8. Similar
results were obtained [11] for p > 2 with groups Z/p, Z/p2 and Mp3 .
When replacing the 2-descending central sequence by the Zassenhaus
descending sequence [12], an analogous result for groups Z/p and Hp3

was shown. On the other hand, it was shown [7, 12, 13, 34] that
these quotients of absolute Galois groups of fields as above encode
crucial information about Galois cohomology, valuations and orderings
of fields. These fundamental results can also be viewed as precursors
to current investigations [9, 10, 17, 30, 36, 37, 38] related to Massey
products in Galois cohomology.

If F is a field containing a primitive pth root of unity ξp, and if

a, b ∈ F× give rise to a Z/p × Z/p extension F ( p
√
a, p
√
b)/F , then it is

known (see [24, (3.6.4)], [26, Theorem 3 (A)], [28, Theorem 3.1]) that
the embedding problem corresponding to

(1.2) 1 // Z/p // Hp3 // Z/p× Z/p // 1

is solvable over F ( p
√
a, p
√
b) if and only if b ∈ NF ( p

√
a)/F (F (

p
√
a)×).
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The analogous embedding problem forMp3 is solvable over F ( p
√
a, p
√
b)

if and only if

bξkp ∈ NF ( p
√
a)/F (F (

p
√
a)×) for some k ∈ Z \ pZ

(see [6, Theorem 1], [26, pages 523–524, Corollary], [28, Theo-
rem 3.2]). It is also known that the existence of an extension K/F
with Gal(K/F ) ≃ Hp3 implies the existence of an extension L/F with
Gal(L/F ) ≃Mp3 (see [6, Theorem 2]).

In some special cases, more precise results were obtained. Letting
ν(F,G) be the number of extensions of F whose Galois group is G (in
a fixed algebraic closure F ), Brattström has proved ([6, Theorem 5])
that, when char (F) = p or ξp2 ∈ F , one has

ν(F,Mp3) = (p2 − 1)ν(F,Hp3).

The purpose of this paper is to investigate Hp3 ,Mp3 and their closely
related p-groups as Galois groups. We investigate the number of Galois
extensions with given Galois group G as above and the interrelation
between these numbers. Section 2 discusses the fundamental relation
in Galois cohomology. Assume that a and 1− a are non-zero elements
in a field F , and ξp ∈ F . Then, by Kummer theory, we have
associated classes (a), (1 − a) ∈ H1(GF ,Fp). Here GF is the absolute
Galois group of F and Hi(GF ,Fp) is the ith group cohomology of GF

with the Fp-coefficients viewed as a trivial module over GF . Then
(a) ∪ (1 − a) = 0 ∈ H2(GF ,Fp), a result known as the Bass-Tate
lemma (see Proposition 2.1 below). We discuss how this relation
is connected to the solvability of embedding problem (1.2) over the
field F ( p

√
a, p
√
1− a). We will use this as motivation for providing an

“elementary” proof of this vanishing for p > 2 akin to the result of
Pfister [40] for p = 2. Pfisters’ proof is remarkable as it uses nothing
but the definition of Galois cohomology, but the impetus behind the
selection of the desired coboundary is unexplained. In our treatment,
we also keep the elementary nature of the proof, but we shed light on
the construction of the desired coboundary.

The Bass-Tate lemma has a fairly short proof (see Section 2), but it
is nevertheless a deep statement which implies automatic realizations
for Galois groups Hp3 , Z/4 and the dihedral group of order 8. It
also directly connects Galois theory to the crucial relation between
addition and multiplication in the base field. This connection has
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some profound consequences for birational anabelian geometry (see
[3, 4, 5, 43, 44, 50, 51]).

In Section 3, we change our methodology for investigating Hp3 and
Mp3 extensions by replacing the embedding problem from (1.2) to one
that comes from a short exact sequence of the form:

(1.3) 1 // Z/p× Z/p // G // Z/p // 1.

(Both Hp3 and Mp3 fit in such an exact sequence.) If K/F is the base
extension satisfying Gal(K/F ) ≃ Z/p, this new perspective allows us to
parameterize solutions to these embedding problems over K/F by cer-
tain Gal(K/F )-submodules within J(K). This change in perspective
also allows us to exhibit Hp3 andMp3 within a larger family of p-groups
(namely, those which can be written as an extension of Z/pn by a cyclic
Fp[Z/pn]-module) for which the solvability of the associated embedding
problem is again tied to the appearance of certain Galois modules in
J(K). In the final two sections, we use this module-theoretic perspec-
tive to give generalizations of some of the known results concerning the
appearance of Mp3 and Hp3 as Galois groups to this broader family of
groups.

2. Norm residue homomorphism and Galois modules. One
of the most exciting theorems from the last decade was the proof of
the norm residue isomorphism (previously, the Bloch-Kato conjecture).
Before stating this theorem, we remind the reader of some important
terms. Throughout this section, we assume that p is a given prime
number and that F is a field which contains a primitive pth root of unity
ξp. We denote the separable closure of F by Fsep and the associated

absolute Galois group by GF := Gal(F sep/F ). When we speak of the
cohomology of F , we mean the cohomology groups associated to the
trivial GF -module Fp: H

m(F ) := Hm(GF ,Fp).

The Milnor K-groups KmF attached to F are defined as K0F = Z,
K1F = F× (the multiplicative group of F ), and for m > 1, as

KmF := (F×)⊗m/⟨a1⊗· · ·⊗am : ∃ 1 ≤ i < j ≤ m so that ai+aj = 1⟩.

Here F× is viewed as an abelian group and the tensor product is over
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Z. In fact, we obtain a graded ring,

K∗(F ) =
∞⊕

m=0

Km(F ),

where the product is induced by tensor products. We define the reduced
Milnor K-groups as kmF := KmF/⟨p⟩, and they too form a graded
ring which is also a graded vector space over Fp. An element of
kmF which is represented by f1 ⊗ · · · ⊗ fm is written in the form
{f1, . . . , fm}. For basic properties of Milnor K-theory, we refer the
reader to [15, 29, 40, 49].

Now, since ξp ∈ F , we have H1(F ) ≃ F×/F×p, and so it is obvious
that H1(F ) and k1F are isomorphic. The norm residue isomorphism
says that this is true of higher reduced K-groups and cohomology as
well, and that this isomorphism respects the underlying ring structures.

The following theorem, proved by Rost and Voevodsky (see [52]), is
a substantial advance in Galois cohomology which builds on previous
work of Arason, Bass, Bloch, Elman, Jacob, Kato, Lam, Merkurjev,
Milnor, Suslin, Tate and others. See also [41] for a very nice survey
concerning this theorem in the case p = 2.

Theorem (Norm residue isomorphism). The rings k∗F and H∗(F ) are
isomorphic via the map h : k∗F → H∗(F ) defined by h({f1, . . . , fm}) =
(f1) ∪ · · · ∪ (fm).

Although the following proposition can be proved relatively simply,
it is the first step in the long journey of proving the norm residue
isomorphism. Milnor [29, pages 339–340] stated that this result
originated with Bass and Tate.

Proposition 2.1 (Bass-Tate lemma). The map h : k∗F → H∗(F ) is
well defined.

For this, we need to ensure that the defining relation on the level
of K-theory maps to a coboundary in cohomology. In other words,
we need to show that, if a ∈ F× \ {1} is given, then the element
(a) ∪ (1 − a) is trivial in cohomology. Because the standard proof of
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this result is rather short and interesting, we shall include it here. (See
[15, subsection 4.6], [49, Lemma 8.1].)

Proof. Because (bp) ∪ (1 − bp) = 0 for all b ∈ F× such that 1 ̸= bp,
we shall assume that a /∈ F×p. Since we assume ξp ∈ F , we have the
factorization

1− a =

p−1∏
i=0

(
1− ξip p

√
a
)

in the field F ( p
√
a). This factorization, however, is equivalent to taking

the norm NF ( p
√
a)/F (1− p

√
a), and so we have

(a) ∪ (1− a) = (a) ∪
(
NF ( p

√
a)/F

(
1− p
√
a
))
.

Now the projection formula (see [39, Proposition 1.5.3 (iv)]) tells us
that, when K/F is a Galois extension with f ∈ F× and k ∈ K×, then
the element (f) ∪ (NK/F (k)) ∈ H2(F ) is equal to corK/F ((f) ∪ (k)),

where here corK/F : H2(K) → H2(F ) is the corestriction map and

the element (f) ∪ (k) ∈ H2(K). Applied to our previous equation, the
projection formula gives us

(a) ∪ (1− a) = (a) ∪
(
NF ( p

√
a)/F

(
(1− p

√
a)
))

= corF ( p
√
a)/F

(
(a) ∪ (1− p

√
a)
)

= corF ( p
√
a)/F

(
p
(

p
√
a
)
∪ (1− p

√
a)
)

= corF ( p
√
a)/F (0) = 0. �

This proof is certainly elegant, although the critical use of the
projection formula prevents us from seeing the result in an “elementary
way” (i.e., one which exhibits a given cochain as a coboundary). In
the case p = 2, Pfister [40] gave just such an elementary proof of
the Bass-Tate lemma. Our goal in this first section is to prove the
vanishing of (a)∪ (1− a) in two different ways: first, by exploiting the
known connection between the vanishing of (x) ∪ (y) and a particular
Galois embedding problem concerning Hp3 ; and then, by giving an
“elementary” proof for p > 2 akin to Pfister’s proof for p = 2. In fact,
in both proofs, certain Galois extensions with Galois group Hp3 play a
key role. If we consider p = 2 instead, then the Galois extensions to
be considered have Galois group either Z/4 or the dihedral group of
order 8.
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2.1. A Proof of Bass-Tate via Galois embedding problems.
The goal of this subsection is to give an alternate proof of the vanishing
of (a) ∪ (1− a). We shall also assume that p > 2, as the case p = 2 is
similar and no new insight is obtained when considering this case. For
the rest of this section we will assume that a and 1−a are independent
in F×/F×p. This is a reasonable assumption as, otherwise, (1 − a) ∪
(a) vanishes because the cup product is an anticommutative bilinear
map H1(GF ,Fp) × H1(GF ,Fp) → H2(GF , Fp) (see [39, Chapter 1,
Section 4]). It is possible to shorten our exposition below using [21,
subsection 6.6] or alternatively [28, Theorem 3.1] and [42, Chapter 14,
Section 4, Exercise 2 (c)]; however, we feel that it is instructive to
present a full detailed exposition.

We recall (see [24, page 58]) that, for x, y ∈ F×, the vanishing
of (x) ∪ (y) is equivalent to the solvability of the Galois embedding
problem:

1 // Fp
// Hp3 // Z/p× Z/p // 1

over F ( p
√
x, p
√
y). Hence, we will prove that (a)∪ (1−a) = 0 by finding

an explicit Hp3-extension of F which contains L := F ( p
√
a, p
√
1− a) as

a quotient. We have already said that the criterion for solving this
embedding problem over the field F ( p

√
a, p
√
1− a) is that

1− a ∈ NF ( p
√
a)/F (F (

p
√
a)×),

and we have already observed this condition in our first proof of Bass-
Tate. In a sense, then, we are done. It will be profitable for us to
carry the explanation out a bit more completely, however, as this will
help us find an explicit representation of (a)∪ (1− a) as a coboundary,
and because it is intimately connected to the results we present in
subsequent sections.

First, we establish some notation. We know that, for L =
F ( p
√
a, p
√
1− a), we have Gal(L/F ) ≃ Z/p×Z/p; we will write σ and τ

for generators of this group which are dual to a and 1− a, respectively
(e.g., σ( p

√
a) = ξp p

√
a, yet σ acts trivially on p

√
1− a). Now consider

α = 1− p
√
a ∈ F ( p

√
a). We have already seen that

1− a =

p−1∏
i=0

(
1− ξip p

√
a
)
= NF ( p

√
a)/F (α) .
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We define β = (σ− 1)p−2(α) and claim that the desired Hp3-extension
of L/F is L( p

√
β)/F .

First, observe that the F -conjugates of p
√
β are the pth roots of

β under the action of σ and τ . Since β ∈ F ( p
√
a), we have τ(β) =

β. On the other hand, the action of σ on β is nontrivial; because
1 + σ + · · ·+ σp−1 ≡ (σ − 1)p−1 mod p, we have

σ(β) = σ
(
(σ − 1)p−2α

)
= β(σ − 1)p−1α

≡ βNF ( p
√
a)/F (α) = β(1− a) mod F ( p

√
a)×p.

In either case, though, the pth roots of τ(β) and σ(β) are contained in
L( p
√
β), and hence L( p

√
β) is Galois.

To prove

Gal(L( p
√
β)/F ) ≃ Hp3 ,

begin by noting that this extension is degree p3. Hence, all we must
do is show that this group is noncommutative and that elements have
order at most p. Let σ̂ and τ̂ be lifts of σ and τ to Gal(L( p

√
β)/F ); it

will be enough for us to show that σ̂τ̂ ̸= τ̂ σ̂ and that σ̂p = τ̂p = id. To
arrive at these results we will only need to investigate actions on p

√
β

since we already know how τ̂ and σ̂ act on p
√
a and p

√
1− a.

We have already seen that τ̂(β) = β and σ̂(β) = β(1−a)kp for some
k ∈ F ( p

√
a). By extracting pth roots in these equations, we therefore

have

(2.1)
σ̂( p

√
β) = ξxp

p
√
β p
√
1− a k

τ̂( p
√
β) = ξyp

p
√
β

for some x, y ∈ Z. With these identities in hand, it is easy to see that
τ̂ and σ̂ do not commute:

ξpσ̂τ̂(
p
√
β) = τ̂ σ̂( p

√
β).

Furthermore, by iteratively applying the second part of equation (2.1),
one recovers τ̂p( p

√
β) = p

√
β. Hence, τ̂p = id. On the other hand,

σ̂p( p
√
β)

p
√
β

= (σ̂ − 1)(1 + σ̂ + σ̂2 + · · ·+ σ̂p−1)( p
√
β)

= (σ̂ − 1)
(
ξzp

p
√
(1 + σ + σ2 + · · ·+ σp−1)β

)
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= (σ̂ − 1)
(
ξzp

p

√
NF ( p

√
a)/F (β)

)
= (σ̂ − 1)

(
ξzp

p
√
1
)
= 1.

In this case, the second-to-last equality comes from the fact that β is
in the image of σ − 1, and the last equality follows because ξp ∈ F by
assumption.

2.2. Exhibiting (1−a)∪ (a) explicitly as a coboundary. In [40],
Pfister gives a very interesting proof of the vanishing of (a)∪ (1− a) in
the case when p = 2. Pfister’s proof uses nothing but basic definitions
from Galois cohomology; he shows that (a) ∪ (1− a) = 0 by explicitly
exhibiting it as a coboundary. His proof, however, is unmotivated.
Where does his choice of coboundary come from? Also, one would like
to produce small Galois extensions where one can show the definition
of (a)∪ (1− a) and show that it vanishes there. In our proof below, we
explicitly exhibit (1− a) ∪ (a) as a coboundary; there is no significant
difference between this and (a) ∪ (1 − a), considering the symmetry
between a and 1 − a and the anti-commutative property of the cup
product (see [39, Proposition 1.4.4]). We believe that the vanishing of
(1−a)∪ (a) is in fact a precursor of the n-vanishing Massey conjecture
for n ≥ 3. (See [9, 17, 36, 37, 38] for related material.)

In this section, we provide motivation for Pfister’s proof, and in
the process, we both extend it to the case p > 2 and show that
(1 − a) ∪ (a) can be defined on a Galois extension of degree p3 on
which it vanishes. Although thematically similar, there are some small
distinctions between the proof when p > 2 and p = 2; for this reason,
we shall focus on the case p > 2 and only indicate the necessary changes
for p = 2. So assume now that p > 2.

Before diving into the details, we give a short road map for our
argument. Let p : F×

sep → F×
sep be the map p(f) = fp; the kernel of

this map is ⟨ξp⟩ ≃ Z/p, and we write η for the associated embedding
of Z/p into F×

sep. The short exact sequence:

1 // Z/p
η // F×

sep

p // F×
sep

// 1
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induces the exact sequence on cohomology:

(2.2)
H1(GF , F

×
sep) // H1(GF , F

×
sep)

δ // H2(GF ,Z/p)

η∗ // H2(GF , F
×
sep).

Although H1(GF , F
×
sep) = {0} by Hilbert 90, it is convenient to keep

this group in the picture since we need concrete 1-cochains of GF in
F×
sep. Using the Galois theory of p3-extensions, we produce a 1-cochain

N ∈ C1(GF , F
×
sep) such that d1(N) = η∗((1 − a) ∪ (a)), and hence,

η∗((1 − a) ∪ (a)) = 0 in H2(GF , F
×
sep). Because η∗ is injective, this

implies that (1 − a) ∪ (a) = (0) ∈ H2(GF ,Z/p). However, in order to
produce a specific 2-boundary for the cochain representing (1−a)∪(a),
we chase sequence (2.2) and modify N by another 1-cochain M so that
d1(M) is trivial but N/M takes values in Z/p.

As in the previous section, assume that a and 1−a represent classes
which are linearly independent in the Fp-vector space F×/F×p. We

again write L = F ( p
√
a, p
√
1− a). Thus, L/F is a Galois extension and

Gal(L/F ) ≃ Z/p × Z/p. We fix a specific primitive pth root of unity
ξp. This will give us an isomorphism ι : ⟨ξp⟩ → Z/p; in this way,
we can identify ⟨ξp⟩ with Z/p via ι. Following the convention from
subsection 2.1, we write σ and τ for the generators of Gal(L/F ) that
are dual to p

√
a and p

√
1− a, respectively.

Observe that (1− a) ∈ H1(GF ,Z/p) is represented by

γ 7−→ ι
(
γ( p
√
1− a)/ p

√
1− a

)
,

and, similarly, (a) ∈ H1(GF ,Z/p) is represented by

γ 7−→ ι
(
γ( p
√
a)/ p
√
a
)
.

Let γ1, γ2 ∈ GF restrict to τ iσk, τ lσj ∈ Gal(L/F ), respectively; we
have (see [39, Proposition 1.4.8]) that (1 − a) ∪ (a) ∈ Z2(GF ,Z/p) is
the function

(γ1, γ2) 7−→ ι

(
γ1(

p
√
1− a)

p
√
1− a

γ2( p
√
a)

p
√
a

)
= ij mod p.

We now proceed to produce a 1-cochain h ∈ C1(GF ,Z/p) so that
d1h(γ1, γ2) = ij mod p (where d1 : C1(GF ,Z/p) → Z2(GF ,Z/p) is
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the usual coboundary map). To begin, set

α = 1− p
√
a ∈ F ( p

√
a)

and

β = αp−1σ(αp−2) · · ·σp−2(α).

(Note that the element β is not identical to the element β in sub-
section 2.1; see also [21, page 162].) Note that, for the element
x = p
√
1− a/α ∈ L, we have σ(β)/β = xp and

(2.3) xσ(x) · · ·σp−1(x) =

(
p
√
1− a

)p
NF ( p

√
a)/F (α)

=
1− a
1− a

= 1.

We also have τ(x) = ξpx and τ(β) = β.

Now let us consider the possible images of β under Gal(L/F ). First,
one proves by induction that, for any k ∈ {1, . . . , p− 1}, we have

σk(β) =
(
σk−1(x)σk−2(x) · · ·σ(x)x

)p
β.

Then, since all elements of Gal(L/F ) can be written in the form τ iσk,
and since we already know that τ acts trivially on xp and β, this gives all
possible images of β under Gal(L/F ). In particular, this means that, if
γ ∈ GF restricts to τ iσk, then there exists a unique c ∈ {0, 1, . . . , p−1}
such that

γ
(

p
√
β
)
= ξcp

p
√
β

k−1∏
l=0

σl(x).

We use this last equation to define two functions from GF to F×
sep:

N(γ) =
k−1∏
l=0

σl(x)

and

M(γ) =
γ( p
√
β)

p
√
β

= ξcp

k−1∏
l=0

σl(x).

Note that M ∈ Z1(GF , F
×
sep) since it is conspicuously in B1(GF , F

×
sep).

Observe that, by using equation (2.3), one can show that the function
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N ∈ C1(GF , F
×
sep) is well defined. Finally, observe that, since

β ≡ (σ − 1)p−2(α) ∈ F ( p
√
a)×/F ( p

√
a)×p,

subsection 2.1 tells us that L( p
√
β)/F is Galois with Gal(L( p

√
β)/F )

≃ Hp3 . Hence, M and N are defined on the Hp3 -extension L( p
√
β)/F .

As a consequence, we have a 1-cochain

h = ι∗(N/M) ∈ C1(Gal(L( p
√
β)/F ),Z/p).

We show that, as cocycles, we have inf (d1h) = (1−a)∪(a). To do this,
let us assume that γ1 and γ2 are elements ofGF with restrictions in L/F
of the form τ iσk and τ lσj . Our goal will be to show inf (d1h)(γ1, γ2) =
ij mod p. Since M ∈ B1(GF , Fsep), we know that d1M is trivial.
Therefore, we have

inf

(
d1
N

M

)
(γ1, γ2) = ι

(
N(γ2)

γ1N(γ1)

N(γ1γ2)

M(γ1γ2)

M(γ2)γ1M(γ1)

)
= ι

(
N(γ2)

γ1N(γ1)

N(γ1γ2)

)
.

By definition, we have

N(γ1) =

k−1∏
l=0

σl(x),

N(γ2) =

j−1∏
l=0

σl(x),

and

N(γ1γ2) =

j+k−1∏
l=0

σl(x).

Using the relation τ(x) = ξpx and the fact that σ and τ commute in
Gal(L/F ), we recover

N(γ2)
γ1N(γ1)

N(γ1γ2)
=

( j−1∏
l=0

σl(x)

)τ iσk( k−1∏
l=0

σl(x)

)( j+k−1∏
l=0

σl(x)

)−1
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=

( j−1∏
l=0

σl(xτ
i

)

)σk( i−1∏
l=0

σl(x)

)( j+k−1∏
l=0

σl(x)

)−1

= ξijp .

This gives the desired result.

The case p = 2 is nearly identical with the case p > 2, except that,
in this case, one should also consider the cases when 1−a and a belong
to the same class in F×/F×2. Then, L = F (

√
a,
√
1− a) = F (

√
a) is

a quadratic extension and L(
√
1−
√
a)/F is cyclic of degree 4. When

1− a and a are independent modulo F×2, the extension L(
√
α)/F is a

dihedral extension of degree 8.

It is now straightforward to check that the construction above
provides a 1-cochain h ∈ C1(GF ,F2) such that d1h = (a) ∪ (1 − a)
(with (a) and (1 − a) viewed as 1-cochains and (a) ∪ (1 − a) viewed
as an element of Z2(GF ,F2)). Moreover, in this way we recover the
cochain h introduced by Pfister [40, page 275].

3. Recasting the embedding problem. We continue to assume
that p is a prime number, but for the rest of the paper we assume that
p > 2. We assume that F is a field and K/F an extension with Galois
group isomorphic to Z/pn. We no longer make assumptions on the
characteristic of F or on the roots of unity it contains.

Traditionally, theorems concerning the realizability of Hp3 and Mp3

as Galois groups are studied from the perspective of embedding prob-
lems that arise from group extensions of Z/p × Z/p by Z/p. In the
second part of this paper, we revisit the realizability of these groups as
Galois groups by studying them instead as a special case of the family
of embedding problems:

1 // (Z/p)⊕ℓ // G // Z/pn // 1 .

(Both Hp3 and Mp3 occur as short exact sequences for ℓ = 2 and
n = 1.) By studying appropriate Fp-vector spaces as modules over
Galois groups, we are able to associate the realizations of these groups
as Galois groups to the appearance of modules of a certain type within
the classical parameterizing spaces of elementary p-abelian extensions;
by using the recently computed module structures for these spaces,
we can revisit the known results concerning these groups from this
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module-theoretic perspective, and furthermore exhibit them as part of
a broader phenomena.

We begin by establishing some notation and reminding the reader
of some module-theoretic machinery. We write Gn for the group Z/pn,
and we use σ to denote a generator of this group (the particular n
corresponding to σ will be clear from the context).

Fp[Gn] is a local ring with maximal ideal ⟨σ − 1⟩. We define a
homomorphism ψ : Fp[t] → Fp[Gn] by ψ(t) = σ − 1. Now ψ is a

surjective map, and tp
n ∈ ker(ψ) because

1 = σpn

= ((σ − 1) + 1)
pn

= (σ − 1)p
n

+ 1.

Counting dimensions over Fp, we conclude that Fp[t]/⟨tp
n⟩ ≃ Fp[Gn].

Hence, we define a “valuation-like” map v : Fp[Gn] → Ln, where
Ln = {0, 1, . . . , pn−1}∪{∞} is a set endowed with a binary operation
∗ defined by

i ∗ j =

{
i+ j if i, j ̸=∞ and i+ j ≤ pn − 1,

∞ if i =∞ or j =∞ or i+ j > pn − 1.

For nonzero f ∈ Fp[Gn], we will write v(f) for the maximum value
i ∈ Ln \ {∞} satisfying f ∈ ⟨(σ − 1)i⟩, and we set v(0) =∞. Then we
have

v(fg) = v(f) ∗ v(g)

and

v(f + g) ≥ min{v(f), v(g)}

(following the usual convention that ∞ > i for all i ∈ Ln \ {∞}).
If M is an Fp[Gn]-module (written additively) and γ ∈ M , then the
smallest positive integer ℓ such that (σ − 1)ℓγ = 0 coincides with the
Fp-dimension of ⟨γ⟩; we write ℓ(γ) for this quantity.

If γ1, γ2 ∈M and µ = max{ℓ(γ1), ℓ(γ2)} we see that

(σ − 1)µ(γ1 + γ2) = (σ − 1)µγ1 + (σ − 1)µγ2 = 0.

Moreover, if ℓ(γ1) < ℓ(γ2), then for any ℓ(γ1) ≤ v < ℓ(γ2), we have

(σ − 1)v(γ1 + γ2) = (σ − 1)vγ1 + (σ − 1)vγ2 = (σ − 1)vγ2 ̸= 0.
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Hence, we see that

ℓ(γ1 + γ2) ≤ max{ℓ(γ1), ℓ(γ2)},

with equality if ℓ(γ1) ̸= ℓ(γ2). In what follows, we will refer to this as
the ultrametric property.

For 1 ≤ ℓ ≤ pn, we define the Fp[Gn]-module Aℓ as Fp[Gn]/⟨(σ−1)ℓ⟩;
the action of σ on Aℓ is simply multiplication by σ. Each of the

modules from {Aℓ}p
n

ℓ=1 is indecomposable, and any indecomposable
Fp[Gn]-module is isomorphic to some Aℓ. For any Fp[Gn]-module A,
there is a unique (unordered) collection of positive integers {ℓi}i∈I
(where possibly ℓi = ℓj for i ̸= j) so that A ≃

⊕
i∈I Aℓi . (For more

details, see [1], [25, subsection 2.3], or [31, subsection 1.1].)

Remark. The Aℓ’s are exactly the indecomposable representations of
the cyclic group Gn over the field Fp.

Remark. By a slight abuse of notation, we denote elements of Aℓ

as elements of Fp[Gn]. In these cases, it should be understood that
we intend the given element modulo the ideal of Fp[Gn] generated by
(σ − 1)ℓ.

3.1. Parameterizing spaces of elementary p-abelian exten-
sions. When K, and therefore F , contains a primitive pth root of
unity ξp, Kummer theory tells us that elementary p-abelian extensions
of K correspond to Fp-subspaces of K

×/K×p; these extensions are ad-
ditionally Galois over F if and only if they are modules over the group
ring Fp[Gn]. In this case, we define J(K) = K×/K×p.

When K has characteristic p, Artin-Schreier theory gives a cor-
respondence between elementary p-abelian extensions of K and Fp-
subspaces of K/℘(K), where ℘(K) = {kp − k : k ∈ K}. Again, such
an extension is Galois over F if and only if the corresponding Fp-space
is a module over Fp[Gn]. In this case, we define J(K) = K/℘(K).

Finally, if K has characteristic different from p but ξp /∈ K, and
therefore ξp /∈ F , then elementary p-abelian extensions of K corre-
spond to Fp-subspaces of a particular eigenspace of K(ξp)

×/K(ξp)
×p.

Specifically, if τ is a generator for Gal(K(ξp)/K) and τ(ξp) = ξtp, then
the space parametrizing elementary p-abelian extensions of K is the



GALOIS p-GROUPS AND GALOIS MODULES 1421

subspace on which τ acts as exponentiation by t (the “t-eigenmodule”).
As before, such an extension is Galois over F if and only if the corre-
sponding Fp-space is a module over the group ring Fp[Gn] (where here
we identify Gal(K/F ) and Gal(K(ξp)/F (ξp))). In this case, we define
J(K) as the t-eigenmodule of K(ξp)

×/K(ξp)
×p. (These parameterizing

spaces are also reviewed in [53].)

It is worth noting that, in this latter case, one can describe a
morphism T which projects subspaces of K(ξp)

×/K(ξp)
×p to J(K).

Let s = [K(ξp) : K], and note that 1 < s ≤ p − 1. Choose z ∈ Z so
that zsts−1 ≡ 1 mod p, and, again using the notation τ(ξp) = ξtp, set

(3.1) T = z
s∑

i=1

ts−iτ i−1 ∈ Z[⟨τ⟩].

Notice that (t− τ)T ≡ 0 mod p, and so the image of T is contained in
the t-eigenspace for τ . Conversely, if an element is in the t-eigenspace
for τ , then T acts as the identity. Hence, we have T projects Fp-
subspaces of K(ξp)

×/K(ξp)
×p onto J(K). (For more details, see [35,

Section 4] or [32, Proof of Theorem 2].)

Before moving on, we make a brief comment on notation. Our goal
is to prove statements about certain embedding problems within the
uniform framework provided by J(K). For this reason, whenever we
discuss J(K), we will assume it has an underlying additive structure
(and therefore Gal(K/F ) acts multiplicatively).

3.2. Module structures and Galois groups. Because Gal(K/F )
induces an action on J(K), it is natural to consider what this additional
structure tells us about elementary p-abelian extensions of K. The
first answer to this question was given by Waterhouse [53], where
he considered cyclic submodules of J(K) when char (K) ̸= p. The
question was answered for non-cyclic modules, as well as in the case
char (K) = p, by [32, 45]; there the Fp[Gn]-module J(K) is exhibited
as a parameterizing space for solutions to embedding problems over
K/F which arise from extensions of Gn by elementary p-abelian groups.
Since we are focusing on groups related to Hp3 and Mp3 in this paper,
it will be sufficient for us to focus our attention on cyclic Fp[Gn]-
submodules.
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Therefore, let L/K be an elementary p-abelian extension which
corresponds to a cyclic Fp[Gn]-submodule ⟨γ⟩ ⊆ J(K). Then L/F
is Galois and Gal(L/F ) is an extension of

Gal(K/F ) ≃ Gn

by Gal(L/K). Using the appropriate parameterizing theory (e.g.,
Kummer theory if char (K) ̸= p and ξp ∈ K), one can show that there
is an equivariant pairing Gal(L/K)× ⟨γ⟩ → Fp, and hence, Gal(L/K)
is dual to ⟨γ⟩. One can show that Fp[Gn]-modules are self-dual, and so
we conclude that Gal(L/F ) is an extension of Gal(K/F ) ≃ Gn by ⟨γ⟩.

With this in mind, we now describe the possible extensions of Gn

by a cyclic Fp[Gn]-module.

Proposition 3.1 ([53, Theorem 2]). There is only one group extension
of Gn by Apn , namely, the semi-direct product Apn oGn. For 1 ≤ i <
pn, there are two possible group extensions of Gn by Ai. One of them
is the semi-direct product Ai oGn, where we have:

(f1, σ
j1)(f2, σ

j2) = (f1 + σj1f2, σ
j1+j2).

The second extension of Gn by Ai will be written Ai • Gn; the
elements of this group again come from Ai × Gn, but the operation
is given by

(f1, σ
j1)(f2, σ

j2)=

{
(f1 + σj1f2, σ

j1+j2) if j1 + j2 < pn

(f1 + σj1f2 + (σ − 1)i−1, σj1+j2) if j1 + j2 ≥ pn.

(Here the numbers j1 and j2 are taken from {0, . . . , pn − 1}.)

Example 3.2. Let σ, τ ∈ Hp3 be nontrivial elements which generate
Hp3 . Then we have that

[σ, τ ] = στσ−1τ−1

is an element of order p which generates Z(Hp3). Now consider the
Fp[⟨σ⟩]-module B which is the Fp-span of {τ, [σ, τ ]} (where the action
of σ is by conjugation). The computation,

(σ − 1) · τ = στσ−1τ−1 = [σ, τ ],
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shows that ⟨τ⟩ = B as an Fp[⟨σ⟩]-module, and so B ≃ A2. Because
⟨σ⟩∩B = {1} and ⟨σ⟩ ≃ G1, we conclude that Hp3 ≃ A2oG1. Phrased
slightly differently, this example tells us that, if N is any subgroup of
Hp3 with |N | = p2 and Q := Hp3/N , then N ≃ A2 as an Fp[Q]-module
and Hp3 ≃ N oQ.

Now recall that

Mp3 =
⟨
y, x | yp

2

= xp = 1, [x, y] = yp
⟩
= ⟨y⟩o ⟨x⟩.

The subgroups ⟨ykx⟩ for k ∈ {1, . . . , p−1}, together with the subgroup
⟨y⟩, provide p distinct subgroups isomorphic to Z/p2. On the other
hand, we claim that the subgroup N = ⟨yp, x⟩ can be the only subgroup
ofMp3 isomorphic to Z/p×Z/p. To see this, note that the p subgroups
isomorphic to Z/p2 provide us with p ·ϕ(p2) = p3−p2 elements of order
p2, and so the number of elements of order less than p2 within Mp3 is
at most p2. Since N already contains p2 elements of this type, it can
be the only subgroup isomorphic to Z/p × Z/p. On the other hand, a
direct computation shows that [yp, x] = 1, so that N ≃ Z/p× Z/p.

Now let
Q =Mp3/N = ⟨yN⟩ ≃ G1.

We have that N is generated by x under the action of yN , and
hence, N ≃ A2 as an Fp[G1]-module. In this case, however, one has
Mp3 ≃ A2•G1 (one can verify this directly, or simply note that A2oG1

has no elements of order p2).

Example 3.3. Let n ≥ 3, and consider the group A2 • Gn−2. Using
the notation from Proposition 3.1, we have

(0, σ)p
n−2

= (σ − 1, 1)

(0, σ)p
n−1

=
(
(0, σ)p

n−2
)p

= (σ − 1, 1)p = (0, 1).

Hence, A2 •Gn−2 is a nonabelian p-group with order pn that contains
an element of order pn−1. Since we have already observed that there is
only one such p-group, which we previously called Mpn , we must have
Mpn ≃ A2 •Gn−2.

If L/K corresponds to ⟨γ⟩, all that is left to determine is which
extension of Gn by ⟨γ⟩ corresponds to Gal(L/F ). To do this, one uses
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the so-called index function. The index is a function

e : J(K) ∩ ker((σ − 1)p
n−1)→ Fp,

defined by

e(γ) =

 p

√
NK̂/F̂ (γ)

σ−1
if char(K) ̸= p,

(σ − 1)ρ(TrK/F (γ)) if char(K) = p.

(In the first case we have identified µp with Fp by selecting a particular
root of unity ξp to act as a generator of µp.) With the index in hand,
we obtain the following.

Proposition 3.4 ([45], Theorem 4.4). Suppose Gal(K/F ) ≃ Gn. So-
lutions to the embedding problem ApnoGn � Gn are in correspondence
with submodules ⟨γ⟩ ⊆ J(K) such that ℓ(γ) = pn. For i < pn, solutions
to the embedding problem

Ai oGn � Gn

over K/F are in correspondence with the submodules ⟨γ⟩ ⊆ J(K) such
that ℓ(γ) = i and e(γ) = 0; solutions to the embedding problem

Ai •Gn � Gn

over K/F are in correspondence with the submodules ⟨γ⟩ ⊆ J(K) such
that ℓ(γ) = i and e(γ) ̸= 0.

Example 3.5. Suppose that L/F has Gal(L/F ) ≃ Hp3 , and let K/F
be any Z/p-subextension. Then, L/K is Galois with Gal(L/K) ≃
Z/p × Z/p, and hence, L corresponds to some submodule M ⊆ J(K).
Since Gal(L/F ) is nonabelian, it must be the case that M ̸≃ A1 ⊕A1,
and soM ≃ A2. If ⟨γ⟩ =M , we must have e(γ) = 0 by Proposition 3.4.
Conversely, if K/F is an extension with Gal(K/F ) ≃ Z/p and ⟨γ⟩ ⊆
J(K) satisfies ℓ(γ) = 2 and e(γ) = 0, then ⟨γ⟩ corresponds to an
extension L/K with Gal(L/F ) ≃ Hp3 .

Suppose now that L/F has Gal(L/F ) ≃Mp3 . Then there is a unique
subextension K/F with Gal(K/F ) ≃ Z/p and Gal(L/K) ≃ Z/p×Z/p.
Within J(K), there exists a submodule M corresponding to L/K,
and again, it must be the case that M = ⟨γ⟩ with ℓ(γ) = 2 and
e(γ) ̸= 0. Conversely, if K/F is an extension with Gal(K/F ) ≃ Z/p
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and ⟨γ⟩ ⊆ J(K) satisfies ℓ(γ) = 2 and e(γ) ̸= 0, then ⟨γ⟩ corresponds
to an extension L/F containing K with Gal(L/F ) ≃Mp3 .

The structure of J(K) was computed when ξp ∈ K [31, Theorem 2],
when ξp ̸∈ K but char (K) ̸= p [32, Theorem 2], and when char (K) = p
[45, Proposition 6.2]. (Note that, in the case of char (K) = p and
ξp /∈ F , there is a module decomposition for K×/K×p provided by
[31, Theorem 1]; in this case, however, J(K) ̸= K×/K×p, so this is
not the decomposition we provide below.) Although there are some
distinctions between the structure of J(K) in these cases, certain
qualitative information about these modules is common in all cases.
We summarize the important characteristics in the following.

Proposition 3.6. If Gal(K/F ) ≃ Gn, then J(K) = ⟨χ⟩ ⊕
⊕n

i=0 Yi,
where:

• ℓ(χ) = pi(K/F ) + 1 for some i(K/F ) ∈ {−∞, 0, 1, · · · , n − 1},
and e(χ) ̸= 0; and
• for each 0 ≤ i ≤ n, there exists di so that Yi≃

⊕
di
Fp[Gi], and

if i < n, then Yi ⊆ ker e.

The invariant i(K/F ) from this theorem has a variety of interpreta-
tions, although there are two that are important for our purposes. The
first has an embedding problem flavor. IfK/F embeds in a cyclic exten-
sion of degree pn+1, then i(K/F ) = −∞. Otherwise, write Ki for the
subextension of degree pi over F , and choose s minimally so that K/Ks

embeds in a cyclic extension of degree pn−s+1; then i(K/F ) = s − 1.
Note, in particular, that i(K/F ) = −∞ whenever char (K) = p, since
Witt’s [55] theorem on embedding problems in characteristic p tells
us that any Z/pn-extension embeds in a Z/pn+1-extension in this set-
ting. The second interpretation of i(K/F ) concerns the dimensions of
modules generated by elements with nontrivial index: if e(γ) ̸= 0, then
ℓ(γ) ≥ ℓ(χ) = pi(K/F ) + 1.

In light of this correspondence, one of the immediate observations
to make from Proposition 3.6 is the following.

Corollary 3.7 (cf. [11, Proposition 10.2]). If K/F is a Z/p-extension,
then either Z/p2 � Z/p or Mp3 � Z/p is solvable over K/F .
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More generally, if K/F is a Z/pn-extension, then, for some i ∈
{−∞, 0, 1, . . . , n − 1}, the embedding problem Api+1 • Z/pn � Z/pn
is solvable over K/F .

Proof. By Proposition 3.6, there exists an element χ ∈ J(K) so that
e(χ) ̸= 0 and ℓ(χ) = pi(K/F ) + 1 for some i(K/F ) ∈ {−∞, 0, 1, . . . ,
n − 1}. By Proposition 3.4, this module corresponds to a solution to
the embedding problem Api(K/F )+1 •Gn � Gn. �

Corollary 3.8. If K/F is a Z/pn-extension so that, for some j > i,
both Ai •Z/pn � Z/pn and Aj •Z/pn � Z/pn are solvable over K/F ,
then Aj o Z/pn � Z/pn is also solvable over K/F .

Proof. Solutions to the embedding problems Ai •Gn � Gn and Aj •
Gn � Gn correspond to elements γi, γj ∈ J(K) with nontrivial index
and satisfying ℓ(γi) = i and ℓ(γj) = j. By choosing an appropriate
c ∈ Z \ pZ, one has e(cγi + γj) = 0; furthermore, ℓ(cγi + γj) = j by
the ultrametric property. Hence, ⟨cγi + γj⟩ corresponds to a solution
to Aj oGn � Gn. �

Remark. One cannot make this statement stronger by saying that
the appearance of Ai • Gn and Aj • Gn over a field F forces the
appearance of Aj o Gn over F since there are fields F which admit
both Z/p2 ≃ A1 •G1- and Mp3 ≃ A2 •G1-extensions, but which do not
admit an Hp3 ≃ A2 oG1-extension. See, for example, [6, page 167].

4. Automatic realizations related to Hp3 ⇒Mp3 . The last two
results show that the appearance of certain groups as Galois groups over
a field F can force the appearance of other groups as Galois groups over
F as well in a non-trivial way. In this section, we will consider other
results in this vein. For a group G and a field F , we write ν(G,F ) for
the number of extensions L/F with Gal(L/F ) ≃ G in a fixed algebraic
closure of F . In the same way, ν(G � Q,K/F ) counts the number of
solutions L/F to a given embedding problem G� Q over K/F .

A group G is said to automatically realize a group H if ν(G,F ) > 1
implies ν(H,F ) > 1 for any field F . The classic automatic realization
theorem is Whaples’s result [54] that, if p is an odd prime number,
then Z/pi automatically realizes Z/pj for all i < j. One can also
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consider automatic realizations for embedding problems: G � Q is
said to automatically realize H � Q if ν(G � Q,K/F ) ≥ 1 implies
ν(H � Q,K/F ) ≥ 1.

Brattström was the first to consider automatic realizations between
Hp3 and Mp3 [6]. She showed that Hp3 automatically realizes Mp3

[6, Theorem 2] and that Mp3 does not automatically realize Hp3 in
general [6, page 167]. (The fact that Hp3 automatically realizes Mp3

was also proved in a different way in [11, Corollary 12].) However, she
does argue that the solvability of the embedding problem Mp3 � G1

over a field K/F will imply the solvability of the embedding problem
Hp3 � G1 over K/F if either char (K) = p or ξp ∈ NK/F (K

×) [6,
Theorem 2]. (There are some other known automatic realization results
associated with Hp3 and Mp3 . For instance, in [20, Theorem 1.4A],
it was observed that, for any finite group G, the group Hp3 × G
automatically realizes Mp3 × G. In [20, Proposition 1.5], it was also
observed that, if

A =
⟨
x, y | xp

2

= yp
2

= 1, xy = yx1+p
⟩
,

then Mp3 automatically realizes A.)

By interpreting Hp3 as A2 o G1 and Mp3 as A2 • G1, we now
show Brattström’s results can be viewed from the perspectives of
Propositions 3.4 and 3.6. Indeed, if the embedding problem A2oG1 �
G1 is solvable, then there exists ⟨γ⟩ ⊆ J(K) with ℓ(γ) = 2 and
e(γ) = 0. Using the notation of Proposition 3.6, if ℓ(χ) = 2, then
⟨χ⟩ corresponds to a solution to A2 • G1 � G1, and we are done.
Otherwise, ℓ(χ) = 1, and so ℓ(γ + χ) = 2 by the ultrametric property.
Since e(γ+χ) = e(χ) ̸= 0, it therefore follows that ⟨γ+χ⟩ corresponds
to a solution to A2 •G1 � G1 over K/F .

On the other hand, suppose that L/F is an Mp3-extension, and let
K/F be the unique Z/p-subextension. If we assume ξp ∈ NK/F (K

×),

then by Albert’s famous result, we know that K/F embeds in a Z/p2-
extension, whereas if char (F ) = p, then it is Witt’s theorem which
tells us that K/F embeds in a Z/p2-extension. In either case, we
conclude that χ from Proposition 3.6 must satisfy ℓ(χ) = 1. Now,
let ⟨γ⟩ correspond to the given Mp3 extension. Then ℓ(γ) = 2 and
e(γ) ̸= 0. By choosing an appropriate c ∈ Z\pZ, one has e(γ+ cχ) = 0
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and ℓ(γ + cχ) = 2. Hence, this element corresponds to a solution to
A2 oG1 � G1.

Using this same line of reasoning we fit this result into a family
of similar results which we phrase in the slightly stronger language of
automatic realizations of embedding problems.

Proposition 4.1. We have the following automatic realization results:

(1) Aℓ oGn � Gn automatically realizes Aℓ+1 oGn � Gn for ℓ ̸= pk

with k ∈ {0, 1, . . . , n− 1};
(2) Aℓ •Gn � Gn automatically realizes Aℓ oGn � Gn for ℓ ̸= pk +1

with k ∈ {0, 1, . . . , n− 1};
(3) Aℓ•Gn � Gn automatically realizes Aℓ−1•Gn � Gn for ℓ ̸= pk+1

with k ∈ {0, 1, . . . , n− 1}; and
(4) Apn−1+1oGn � Gn automatically realizes Apn−1+k •Gn � Gn for

1 ≤ k < pn − pn−1.

Proof. Proposition 4.1 (1) was essentially the subject of [32], but
we again prove the result here. A solution to the embedding problem
Aℓ oGn � Gn corresponds to a submodule ⟨γ⟩ ⊆ J(K) with ℓ(γ) = ℓ
and e(γ) = 0. By Proposition 3.6, we can find an Fp[Gn]-basis
{χ} ∪ {αi}i∈I for J(K) so that e(χ) ̸= 0 and ℓ(χ) = pi(K/F ) + 1,
and so that, for all i ∈ I, we have ℓ(αi) = pℓi for ℓi ∈ {0, . . . , n} and
e(αi) = 0 when ℓ(αi) < pn. Express

γ = fχ+
∑
i∈I

fiαi

with f, fi ∈ Fp[Gn]; since e(γ) = 0, it must be the case that f ∈ ⟨σ−1⟩.
Likewise, since ℓ(γ) = ℓ < pn, we must have fi ∈ ⟨σ − 1⟩ for all i ∈ I
such that ℓ(αi) = pn. Now we have ℓ(γ) = max{ℓ(fχ), {ℓ(fiαi) :
i ∈ I}} using the ultrametric property together with the Fp[Gn]-
independence of the set {χ} ∪ {αi}i∈I .

We consider two cases. If ℓ(γ) = ℓ(fχ), then since ℓ ̸= pk, for any
k ∈ {0, 1, . . . , n − 1} and ℓ(fχ) = pi(K/F ) + 1 − v(f), we must have
v(f) ≥ 2. Hence, ℓ((σ − 1)v(f)−1χ) = ℓ+ 1 and e((σ − 1)v(f)−1χ) = 0.
Therefore, Aℓ+1 oGn � Gn has a solution.

On the other hand, if ℓ(γ) = ℓ(fiαi) for some i ∈ I, then since
ℓ(αi) = pℓi , it must be the case that v(fi) ≥ 1. But then ℓ((σ
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− 1)v(fi)−1αi) = ℓ + 1 and e((σ − 1)v(fi)−1αi) = 0. Again, we have
a solution to Aℓ+1 oGn � Gn.

Proposition 4.1 (2) has two potential proofs. From the group-
theoretic perspective, Aℓ−1 o Gn is a quotient of Aℓ • Gn, and hence
Aℓ • Gn � Gn trivially automatically realizes Aℓ−1 o Gn � Gn.
Then item (1) tells us that Aℓ−1 o Gn � Gn automatically realizes
Aℓ oGn � Gn.

Alternatively, one could prove this result module-theoretically. In
this case, a solution to Aℓ • Gn � Gn implies the existence of a
submodule ⟨γ⟩ ⊆ J(K) with ℓ(γ) = ℓ and e(γ) ̸= 0. Choose an
appropriate value c ∈ Z \ pZ so that e(cχ + γ) = 0, and note that
ℓ(cχ + γ) = ℓ(γ) by the ultrametric property (recall that, if e(γ) ̸= 0,
then ℓ(γ) ≥ ℓ(χ), and our hypothesis forces this inequality to be strict).
Hence, ⟨cχ+ γ⟩ corresponds to a solution to Aℓ oGn � Gn.

For the proof of Proposition 4.1 (3), suppose that ⟨γ⟩ ⊆ J(K)
corresponds to a solution to the embedding problem Aℓ • Gn � Gn.
The module-theoretic proof of item (2) gives us a module ⟨cχ+γ⟩ with
e(cχ + γ) = 0 and ℓ = ℓ(cχ + γ) > ℓ(χ). If ℓ(χ) = ℓ − 1, then ⟨χ⟩
corresponds to a solution to the embedding problem Aℓ−1 •Gn � Gn.
Otherwise, ℓ(χ + (σ − 1)(cχ + γ)) = ℓ − 1, and of course, this module
is generated by an element of nontrivial index. Hence, it corresponds
to a solution to the embedding problem Aℓ−1 •Gn � Gn.

Finally, to prove Proposition 4.1 (4), we use item (1) to conclude
that there is a solution to Apn−1+k o Gn � Gn over K/F . Write
⟨γ⟩ ⊆ J(K) for the module that corresponds to a solution to the
embedding problem Apn−1+koGn � Gn. Obviously, e(χ+γ) ̸= 0, and,
if we can show ℓ(χ+ γ) = pn−1 + k, then this module will correspond
to a solution to the embedding problem Apn−1+k •Gn � Gn. We know

that ℓ(χ + γ) ≤ max{pn−1 + k, pi(K/F ) + 1} = pn−1 + k with equality
if either k > 1 or i(K/F ) ̸= n− 1. Hence, ℓ(χ+ γ) < pn−1 + k implies
both k = 1 and i(K/F ) = n − 1. But, since e(χ + γ) ̸= 0 and χ is an
element of minimal length amongst elements of non-trivial index, we
must also have

pn−1 + 1 > ℓ(χ+ γ) ≥ ℓ(χ) = pn−1 + 1,

a contradiction. �
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Finally, we give a proposition which builds on Proposition 4.1 (4)
but doesn’t require the underlying Fp[Gn]-module to have such a
large dimension. Recall that Ki denotes the intermediate field in the
extension K/F such that [Ki : F ] = pi.

Proposition 4.2. Let i ∈ {0, 1, . . . , n− 1} be given. If the embedding
problems Gn−i � Gn−i−1 over K/Ki+1 and Api+1 o Gn � Gn over
K/F are both solvable, then the embedding problem Api+k •Gn � Gn

is also solvable over K/F for 1 ≤ k ≤ pi+1 − pi.

Proof. The proof of this result is essentially the same as the proof of
Proposition 4.1 (4), although our additional hypothesis concerning the
solvability of Gn−i � Gn−i−1 over K/Ki+1 tells us that i(E/F ) ≤ i,
so that ℓ(χ) ≤ pi + 1. To find a solution to the desired embedding
problem, we note that the solvability of Api+1 o Gn � Gn over K/F
implies the solvability of Api+k o Gn � Gn over K/F . Let ⟨γ⟩ be
a module in J(K) which corresponds to a solution to this embedding
problem. Then the module ⟨γ+χ⟩ will be a solution to the embedding
problem Api+k •Gn � Gn. �

5. Enumerating Galois extensions related to Hp3 and Mp3 .
We now shift focus and concentrate on enumeration results related to
Hp3 and Mp3 , particularly within the family of groups Ai o G1 and
Ai • G1. One of the results already known in this vein comes from a
paper by Brattström ([6, Theorem 5]) where it is shown that

ν(Mp3 , F ) = (p2 − 1)ν(Hp3 , F )

if ξp2 ∈ F or char (F ) = p.

Here we present a stronger result that drops the assumption that
ξp2 ∈ F when char (F ) ̸= p and gives a closed formula for the difference
ν(Mp3 , F )− (p2 − 1)ν(Hp3 , F ).

Before arriving at this result, we will first need to consider the
following Fp-subspace of J(F ):

N =


NF (ξ

p2
)/F (F (ξp2 )

×) F×p

F×p when ξp ∈ F
J(F ) when char (F ) = p

T
(
NF (ξ

p2
)/F (ξp)(F (ξp2 )

×) F (ξp)
×p

F (ξp)×p

)
when char (F ) ̸=p and ξp /∈F.
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Recall that, in the latter case, we write τ for the generator of
Gal(F (ξp)/F ), and that T ∈ Z[⟨τ⟩]. Because gcd(|τ |, p) = 1, we have
that

(NF (ξp2 )/F (ξp)(α))
T = NF (ξp2 )/F (ξp)(α

T )

for any α ∈ F (ξ×p2). It follows that N is the t-eigenspace for τ within

NF (ξp2 )/F (ξp)(F (ξp2)×) F (ξp)
×p

F (ξp)×p
.

The importance of this space is that it parameterizes those elements
of J(F ) whose corresponding G1-extensions admit a solution to the
embedding problem G2 � G1.

Proposition 5.1. Suppose that f ∈ J(F ) corresponds to the Z/p-
extension K/F . Then the embedding problem G2 � G1 has a solution
over K/F if and only if f ∈ N.

Proof. This result is [2, Theorem 1] if ξp ∈ F ; when ξp /∈ F and
char (F) ̸= p, the result follows by descent. If char (F) = p, then the
embedding problem G2 � G1 is always solvable. �

We are now prepared to give a generalization of Brattström’s result
connecting ν(Hp3 , F ) and ν(Mp3 , F ). In the statement of this theorem

we use
(
n
m

)
p
for the p-binomial coefficient which counts the number of

m-dimensional subspaces within an ambient n-dimensional Fp-space.
It is a nice exercise in linear algebra to show that(

n

m

)
p

=
(pn − 1) · · · (pn−m+1 − 1)

(pm − 1) · · · (p− 1)

(see, e.g., [22, Chapter 7]). It is also worth remarking that, by changing
the prime p to a variable q, one gets the quantum binomial coefficient[
n
m

]
q
introduced by Gauss. Observe also that

(
n
1

)
p
= (pn − 1)/(p− 1).

Theorem 5.2. Let p be an odd prime, and let N be the subspace of
J(F ) defined above. Then
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ν(Mp3 , F ) = (p2 − 1)ν(Hp3 , F )

+

((
dimFp J(F )

1

)
p

−
(
dimFp N

1

)
p

)
|J(F )|
p2

.

Before proving this result, we observe that, when char (F) ̸= p, then
|J(F )| < p2 is only possible when p = 2 and n = 1. Since we are
focusing on the case p > 2, the term |J(F )|/p2 is therefore an integer
in this case. On the other hand, when char (F) = p, then |J(F )| < p2

is possible, but in this case, the term,(
dimJ(F )

1

)
p

−
(
dimN

1

)
p

,

vanishes.

Proof. Suppose that K/F is a G1-extension. From Proposition 3.4,
we know that there is a bijection Fp[G1]-submodules

M ⊆ J(K) with
M ≃ A2 and M ⊆ ker(e)

←→
 Solutions to

Hp3 � G1

over K/F

 .

Now, since any given module M ≃ A2 satisfies

|{m ∈M : ℓ(m) = 2}| = p2 − p,

and since any element m ∈ J(K) ∩ ker(e) with ℓ(m) = 2 generates a
submodule corresponding to a solution to Hp3 � G1, we get

ν(Hp3 � G1,K/F ) =
1

p2 − p
|{γ ∈ J(K) ∩ ker(e) : ℓ(γ) = 2}| .

Since any Hp3 extension has p + 1 quotients isomorphic to Z/p, we
therefore conclude:

ν(Hp3 , F ) =
1

p+ 1

∑
K/F

1

p2 − p
|{γ ∈ J(K) ∩ ker(e) : ℓ(γ) = 2}| .

Now, we will consider Mp3 extensions, so again, let K/F be a given
G1-extension. We will fix an element χ as in Proposition 3.6. According
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to Proposition 3.4, we know that there is a bijection Fp[G1]-submodules
M ⊆ J(K) with

M ≃ A2 and M ̸⊆ ker(e)

←→
 Solutions to

Mp3 � G1

over K/F

 .

Again, any module M ≃ A2 satisfies |{m ∈ M : ℓ(m) = 2}| = p2 − p,
and, if the module satisfies M ̸⊆ ker(e), then it must be that any
element from {m ∈ M : ℓ(m) = 2} has e(m) ̸= 0. (One can see this
in several ways, but here is an embedding problem argument: if there
were an element with ℓ(m) = 2 and e(m) = 0, then M = ⟨m⟩ would
solve Hp3 � G1 instead of Mp3 � G1.) Hence, we conclude that

ν(Mp3 � G1,K/F ) =
1

p2 − p
|{α ∈ J(K) : α /∈ ker(e), ℓ(α) = 2}| .

We claim that {α ∈ J(K) : α ̸∈ ker(e), ℓ(α) = 2} is equal to

(5.1)



p−1∪
c=1

cχ+ {γ ∈ J(K) ∩ ker(e) : ℓ(γ) = 2} if ℓ(χ) = 1,

p−1∪
c=1

cχ+ {γ ∈ J(K) ∩ ker(e) : ℓ(γ) = 2}

∪
p−1∪
c=1

cχ+
(
J(K)G ∩ ker(e)

)
if ℓ(χ) = 2.

It will be convenient to translate these two conditions into equivalent
statements. In the language of Proposition 3.6, the condition ℓ(χ) =
1 is equivalent to i(K/F ) = −∞, whereas in the language of the
embedding problem, this condition says that G2 � G1 is solvable over
K/F . On the other hand, ℓ(χ) = 2 translates to i(K/F ) = 0 in the
language of Proposition 3.6, or to the embedding problem statement
that G2 � G1 does not have a solution over K/F .

If we assume the equality of sets from equation (5.1) for the time
being, then, since any given Mp3 -extension has a unique Z/p-quotient,
it will follow that:

ν(Mp3 , F ) =
∑
K/F

ν(Mp3 � G1,K/F )

=
∑
K/F

1

p2 − p
|{α ∈ J(K) : α /∈ ker(e), ℓ(α) = 2}|
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=
p− 1

p2 − p

( ∑
K/F

|{γ ∈ J(K) ∩ ker(e) : ℓ(γ) = 2}|

+
∑

i(K/F )=0

|J(K)G ∩ ker(e)|
)

= (p2 − 1)ν(Hp3 , F ) +
1

p

∑
i(K/F )=0

|J(K)G ∩ ker(e)|.

We connect this expression to the desired formula for ν(Mp3 , F ) by
considering two cases. First, suppose char (F) = p. In this case, we
have i(K/F ) = −∞ for any G1-extension K/F , and hence, the latter
sum is empty. But, in this case, note that the second summand from
the desired formula for ν(Mp3 , F ) also vanishes since J(F ) = N. Hence,
we have the desired result in this case. (Note that, when ξp2 ∈ F , we
also have N = J(F ) so that the latter term vanishes; this proves the
other case of Brattström’s result.)

Now suppose that char (F) ̸= p. If K/F is a Z/p-extension, let
ι : J(F ) → J(K) be the map induced by the natural inclusion; from
[31, Lemma 8], we have that J(K)G ∩ ker(e) = ι(J(F )), and from the
Kummer theory, we have that |ι(J(F ))| = |J(F )|/p. Hence, we can
continue our chain of equalities by writing:

ν(Mp3 , F ) = (p2 − 1)ν(Hp3 , F )

+
|J(F )|
p2

|{K/F : G2 � G1 is not solvable}| .

The only thing left to argue, then, is that the number of extensions
K/F for which G2 � G1 is not solvable is given by(

dimJ(F )

1

)
p

−
(
dimN

1

)
p

,

although this is straightforward given Proposition 5.1:
(
dim J(F )

1

)
p

counts all Z/p-extensions, and
(
dimN

1

)
p
counts all Z/p-extensions which

admit a solution to the embedding problem G2 � G1.

To finish the proof, then, we simply need to show that {α ∈ J(K) :
α /∈ ker(e), ℓ(α) = 2} is equal to the expression from equation (5.1).
Suppose first that ℓ(χ) = 1. Let α ∈ J(K) be given which satisfies
e(α) ̸= 0 and ℓ(α) = 2. Then, there exists some c ∈ F×

p so that
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α − cχ ∈ ker(e), and the ultrametric property gives ℓ(α − cχ) = 2.
This gives one containment. For the other, if γ ∈ J(K) ∩ ker(e) and
ℓ(γ) = 2, then the ultrametric property tells us that, for any c ∈ F×

p ,
we have ℓ(cχ+ γ) = 2, and of course, e(cχ+ γ) ̸= 0.

Now suppose that ℓ(χ) = 2. Let α ∈ J(K) be given which satisfies
e(α) ̸= 0 and ℓ(α) = 2. Then there exists some c ∈ F×

p so that
α− cχ ∈ ker(e), although this time the ultrametric property only gives
ℓ(α − cχ) ≤ 2. Hence, either α − cχ has length 2 or α − cχ ∈ J(K)G.
This proves one containment. For the other, the ultrametric property
makes it clear that, if γ ∈ J(K)G and e(γ) = 0, then for any c ∈ F×

p

we have that e(cχ + γ) ̸= 0 and ℓ(cχ + γ) = 2. We claim that, for
γ ∈ ker(e) with ℓ(γ) = 2, it is still true that, for all c ∈ F×

p , we have
e(cχ + γ) ̸= 0 and ℓ(cχ + γ) = 2. The first statement is clear; for the
second, note that if ℓ(cχ + γ) < 2, then this implies that cχ + γ is an
element of nontrivial index with length 1, a contradiction to the fact
that χ is an element of nontrivial index with minimal length. �

Notice that, in the previous theorem, we had to be careful in
using our methodology to enumerate extensions since our modules
naturally parameterize solutions to embedding problems over a given
Z/p-extension K/F . In the case of Hp3 extensions of F , we had to
account for the fact that a given Hp3 extension of F solves embedding
problems over p + 1 distinct Z/p-extensions of F . To adapt the
methodology of the previous theorem to a broader class of groups,
we will be interested in determining when groups of the form Ai oGn

or Ai • Gn have precisely one normal subgroup which is elementary
p-abelian and whose quotient is isomorphic Z/pn.

Lemma 5.3. Suppose that Gal(L/F ) ≃ AioGn for i ≥ pn−1+2. Then
there is a unique intermediate Z/pn-extension K/F so that L/K is
elementary p-abelian. Likewise, if Gal(L/F ) ≃ Ai•Gn for i ≥ pn−1+1,
then there is a unique intermediate Z/pn-extension K/F so that L/K
is elementary p-abelian.

Proof. In each case, it is obvious that T = {(f, 1) : f ∈ Ai} is a
normal subgroup which is elementary p-abelian. Equally clear is that
the fixed field is a Z/pn-extension. Before proceeding, we observe that
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the collection of elements in AioGn with order p are those of the form
(f, σj) where pn−1 | j.

For the sake of contradiction, suppose that H ̸= T is an elementary
p-abelian normal subgroup of Ai oGn with quotient Z/pn; this forces
|H| = pi and H \T ̸= ∅. Choose (f, σj) ∈ H \T so that ℓ(f) is maximal
amongst elements withinH\T . After taking a suitable power of (f, σj),

if necessary, we can assume that our element is (f, σpn−1

). (Note that

(f, σj)t = (
∑t−1

i=0 σ
itf, σjt), and that

∑t−1
k=0 σ

jk is a unit in Fp[G] for

1 ≤ t ≤ p− 1, so that ℓ(f) = ℓ
(∑t−1

k=0 σ
jkf

)
.)

Since H is normal, we know that the commutator [(0, σ), (f, σj)] =
((σ − 1)f, 1) is an element of H; repeating this procedure shows

{(g, 1) : ℓ(g) < ℓ(f)} ⊆ H. By the maximality of (f, σpn−1

), there
exists no (g, σk) ∈ H with k ̸= pn and ℓ(g) > ℓ(f). We argue that
there are also no elements (g, 1) ∈ H with ℓ(g) > ℓ(f); otherwise,

(h, 1)(f, σpn−1

) = (h+ f, σpn−1

) ∈ H,

and the ultrametric property gives ℓ(h + f) = ℓ(h), violating the
maximality condition defining f . Notice also that, since ((σ− 1)f, 1) ∈
H and H is assumed to be abelian, we must have

(f + (σ − 1)f, σpn−1

) = ((σ − 1)f, 1)
(
f, σpn−1

)
= (f, σpn−1

)((σ − 1)f, 1)

=
(
f + σpn−1

(σ − 1)f, σpn−1
)
.

It therefore follows that (σ − 1)f is fixed by σpn−1

, and so ℓ(f) ≤
pn−1 + 1.

Now suppose that H contains no elements of the form (g, σk) with
k ̸= pn and ℓ(g) < ℓ(f). Then we have

H =
⟨
(f, σpn−1

), ((σ − 1)f, 1), ((σ − 1)2f, 1), · · · , ((σ − 1)ℓ(f)−1f, 1)
⟩
Fp

,

and hence, |H| = pℓ(f) ≤ ppn−1+1 < pi, a contradiction.

On the other hand, suppose that H does contain an element (g, σk)
with k ̸= pn and ℓ(g) < ℓ(f). One can argue that (g, σk) can be

chosen to take the form (g, σpn−1

) as before, and, since we have already
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established (g, 1) ∈ H, we conclude that (0, σpn−1

) ∈ H. This gives

(f, σpn−1

)(0, σpn−1

)−1 = (f, 1) ∈ H as well. The commutativity of H
implies

(f, σpn−1

) = (f, 1)(0, σpn−1

) = (0, σpn−1

)(f, 1) = (σpn−1

f, σj).

We conclude that f is fixed by the action of σpn−1

, so that, in fact,
ℓ(f) ≤ pn−1 in this case. But then

H =
⟨
(f, 1), ((σ − 1)f, 1), . . . , ((σ − 1)ℓ(f)−1f, 1), (0, σpn−1

)
⟩
Fp

,

contradicting the fact that i ≥ pn−1 + 2 in this case. This completes
the proof for Ai oGn.

Now suppose that H ̸= T is an elementary p-abelian normal sub-
group of Ai • Gn with quotient Z/pn; this forces |H| = pi. Again, we
will choose (f, σj) ∈ H \ T so that ℓ(f) is maximal amongst elements
within H \ T , and we again observe that we can assume that this ele-

ment is of the form (f, σpn−1

). We begin our argument in this case by
claiming that ℓ(f) > pn−pn−1 is necessary. To do so, we first establish
some notation. For an integer a, we write a for the least non-negative
residue of a modulo pn. For m ∈ N, we then define cj(m) inductively:
cj(1) = 0, and

cj(m+ 1) =

{
cj(m) if mj + j < pn,

cj(m) + 1 if mj + j ≥ pn.

Then one can use induction to show that

(f, σpn−1

)m =

(m−1∑
k=0

σkpn−1

f + cpn−1(m)(σ − 1)i−1, σmpn−1

)
.

Take m = p, and observe that 1 ≤ cpn−1(p) < p (the first inequality
follows because pn−1p ≥ pn, and the latter because cpn−1(1) = 0 and
cpn−1(m + 1) − cpn−1(m) ≤ 1 for all m). If ℓ(f) ≤ pn−1(p − 1), this
means, contrary to the assumption thatH is elementary p-abelian, that

(f, σpn−1

)p =

( p−1∑
k=0

σkpn−1

f + cpn−1(p)(σ − 1)i−1, 1

)
=

(
(σpn−1

− 1)p−1f + cpn−1(p)(σ − 1)i−1, 1
)

= (cpn−1(p)(σ − 1)i−1, 1) ̸= (0, 1).
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Now observe that [(0, σ), (f, σpn−1

)] ∈ H, and hence, should com-

mute with (f, σpn−1

). But a computation reveals

[(f, σpn−1

), [(0, σ), (f, σpn−1

)]] = ((σ − 1)(σpn−1

− 1)f, 1).

Provided either p > 3 or n = 1, this element is nontrivial because
ℓ(f) ≥ pn − pn−1 > pn−1 + 1, and so H is not commutative.

We will handle the remaining cases p = 3 and n = 1 directly. We
have the group Ai • Z/3Z, where 2 ≤ i ≤ 3, and we want to show
that this group has a unique Z/p-quotient whose corresponding normal
subgroup is Z/p × Z/p. When i = 2, then the group is simply M33 ,
and we already know the result for this group. When i = 3, then
Ai •Z/3 ≃ AioZ/3, and we have already established the desired result
from the first part of this theorem. �

Theorem 5.4. For an extension K/F ≃ Z/pn and pn−1+2 ≤ i < pn,

ν(Ai •Gn � Gn,K/F ) = (p− 1)ν(Ai oGn � Gn,K/F ).

Moreover, for a field F and pn−1 + 2 ≤ i < pn,

ν(Ai •Gn, F ) = (p− 1)ν(Ai oGn, F ).

Proof. We begin by noting that Lemma 5.3 tells us that the second
statement follows from the first, since a given Ai o Gn or Ai • Gn

extension of F has a unique Z/pn-subextension K/F such that L/K
is elementary p-abelian. Hence, such an extension is parameterized
uniquely as a module within J(K), and so we have

ν(Ai oGn, F ) =
∑

Gal(K/F )≃Gn

ν(Ai oGn � Gn,K/F ),

and likewise for the non-semidirect product. Hence, we will focus on
proving the first result.

To do so, we note that, using Proposition 3.4 and the fact that any
cyclic module of dimension i has pi − pi−1 many generators, one has:

ν(Ai oGn � Gn,K/F ) =
1

pi − pi−1
|{γ∈J(K) : γ∈ker(e), ℓ(γ)= i}|

ν(Ai •Gn � Gn,K/F ) =
1

pi − pi−1
|{α∈J(K) : α /∈ker(e), ℓ(α)= i}| .
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The desired result will follow if we can show that, for the element
χ ∈ J(K) from Proposition 3.6, one has

{α ∈ J(K) : α /∈ ker(e), ℓ(α) = i}

=

p−1∪
c=1

cχ+ {γ ∈ J(K) : γ ∈ ker(e), ℓ(γ) = i}.

For this, note that ℓ(χ) = pi(E/F ) + 1 < i, and so if ℓ(γ) = i, then
the ultrametric property gives ℓ(cχ + γ) = i. Of course, if γ ∈ ker(e),
as well, then e(cχ + γ) ̸= 0. This gives one containment. For the
other, note that, if α /∈ ker(e), then there exists some c ∈ F×

p so that
α − cχ ∈ ker(e); when ℓ(α) = i, the ultrametric property again gives
ℓ(α − cχ) = i, and hence, α = cχ + α − cχ ∈ cχ + {γ ∈ J(K) : γ ∈
ker(e), ℓ(γ) = i}. �

If one is willing to settle for counting only solutions to embed-
ding problems, one can extend these same ideas to express ν(Aℓ o
G1 � G1,K/F ) in terms of ν(Hp3 � G1,K/F ) and ν(Z/p × Z/p �
Z/p,K/F ).

Theorem 5.5. For 2 ≤ ℓ ≤ p− 1, and a Z/p-extension K/F , we have

ν(Aℓ o Z/p� Z/p,K/F )

= ν(Hp3 �Z/p,K/F )
(
1

p
+

(p−1)ν(Hp3 �Z/p,K/F )
1+(p−1)ν(Z/p×Z/p�Z/p,K/F )

)ℓ−2

.

Proof. We know that

ν(Hp3 � Z/p,K/F ) =
1

p2 − p
|{γ ∈ J(K) : ℓ(γ) = 2 and γ ∈ ker(e)}| .

Likewise, we have

ν(Aℓ o Z/p� Z/p,K/F )

=
1

pℓ − pℓ−1
|{γ ∈ J(K) : ℓ(γ) = ℓ and γ ∈ ker(e)}| .
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By Proposition 3.6, we know that the Fp[G1]-structure of ker(e) is

ker(e) ≃
d0⊕

Fp ⊕
d1⊕

Fp[G1]/(σ − 1)p−2.

Hence, it is relatively simple to see that, for 1 ≤ ℓ ≤ p− 1, we have

|{γ ∈ J : ℓ(γ) ≤ ℓ and γ ∈ ker(e)}| = pd0+ℓd1 .

Hence, for 2 ≤ ℓ ≤ p− 1, we have

|{γ ∈ J : ℓ(γ) = ℓ and γ ∈ ker(e)}| = pd0+ℓd1 − pd0+(ℓ−1)d1

= pd0+(ℓ−1)d1
(
pd1 − 1

)
,

and, for ℓ = 1, we get

|{γ ∈ J : ℓ(γ) = 1 and γ ∈ ker(e)}| = pd0+d1 − 1.

Hence, for 2 ≤ ℓ ≤ p− 1, one calculates

ν(Aℓ o Z/p� Z/p,K/F ) =
1

pℓ − pℓ−1
|{γ ∈ ker(e) : ℓ(γ) = ℓ}|

=
1

pℓ−1(p− 1)
pd0+(ℓ−1)d1

(
pd1 − 1

)
(5.2)

= pd0+d1−1 p
d1 − 1

p− 1

(
pd1−1

)ℓ−2
.

Of course, the case ℓ = 1 follows in a similar way:

ν(Z/p× Z/p� Z/p,K/F ) =
pd0+d1 − 1

p− 1
.(5.3)

Because it will be particularly useful in a moment, let us also note that

ν(Hp3 � Z/p,K/F ) = pd0+d1−1 p
d1 − 1

p− 1
.(5.4)

One can solve for pd0+d1 and pd1 using equations (5.3) and (5.4),
and ultimately recover

pd0+d1 = 1 + (p− 1)ν(Z/p× Z/p� Z/p,K/F )

pd1 = 1 +
p(p− 1)

pd0+d1
ν(Hp3 � Z/p,K/F )

= 1 +
p(p− 1)ν(Hp3 � Z/p,K/F )

1 + (p− 1)ν(Z/p× Z/p� Z/p,K/F )
.
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With these in hand, we can reexpress (5.2) to satisfy the statement
of Proposition 3.6:

ν(Aℓ o Z/p� Z/p,K/F )= pd0+d1−1 p
d1 − 1

p− 1

(
pd1−1

)ℓ−2

=ν(Hp3 � Z/p,K/F )
(
1

p
+

(p−1)ν(Hp3 � Z/p,K/F )
1+(p−1)ν(Z/p×Z/p� Z/p,K/F )

)ℓ−2

. �

We finish with some realization multiplicity results for groups from
the family Ai o G1 and Ai • G1. The realization multiplicity of G,
written ν(G), is the minimal positive value for ν(G,F ) as F ranges
over all fields; likewise, the realization multiplicity for an embedding
problem G � Q, written ν(G � Q), is the minimal positive value
for ν(G� Q,K/F ) as K/F ranges over all fields with Gal(K/F ) ≃ Q.
There are very few realization multiplicity results known for nonabelian
p-groups; the known results come from [20] and are ν(Mp3) = p,

ν(Mp3 × Z/p) = p2 − 1 and ν((Z/p)k ×Hp3) = 1 for k ∈ Z≥0.

Example 5.6. Consider a field F with char (F ) ̸= p and dimFp(J(F ))
= 2 and such that GF := Gal(Fsep/F ) is the free pro-p group on two
generators. (Such a field exists as seen in [14, Corollary 23.1.2].) Now
we claim that ξp ∈ F , since otherwise, we would have F (ξp) ⊆ Fsep

and 1 < [F (ξp) : F ] ≤ p− 1 < p. But this would imply that GF has a
quotient whose order is not a power of p, a clear contradiction.

Since GF is a free pro-p group we have H2(F ) = 0, and therefore,
(f1) ∪ (f2) = 0 for each f1, f2 ∈ J(F ). Then we conclude that

f1 ∈ NF ( p
√
f2)/F

(F ( p
√
f2)) for all f1, f2 ∈ F×.

Suppose then, that f1, f2 are generators for J(F ). If we let α ∈ F ( p
√
f2)

be given so that
NF ( p

√
f2)/F

(α) = f1,

and if we write σ for the generator of the G1-extension F (
p
√
f2)/F , then

α̂ = α(σ−1)p−2

has ℓ(α̂) = 2 and e(α̂) = 0. Hence, ⟨α̂⟩ corresponds to a
solution to the embedding problem Hp3 � Z/p.
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Corollary 5.7.

(1) ν(Hp3) = 1;
(2) ν(Ap o Z/p) = p2 − 1;
(3) ν(Ai o Z/p) = p+ 1 for 2 < i < p− 1;
(4) ν(Ai • Z/p) = p2 − 1 for 2 < i < p− 1.

Remark. Although it is already known, we reprove statement (1)
for two reasons: to again showcase a module-theoretic perspective
and because statement (1) provides the necessary example in proving
statements (2)–(4).

Proof. Statement (1) is a consequence of Example 5.6. In that
example, we are told that there is a Z/p-extension K/F for which
the embedding problem Hp3 � Z/p is solvable; call this the Hp3 -
extension L/F . Combined with the fact that ker |J(F ) → J(K)| = p,
one can use this to show that J(K) ≃ X ⊕Fp[G1], with dimFp(X) = 1.
But note that, in fact, L/F is a solution to the embedding problem

Hp3 � Z/p for any Z/p-extension K̃/F , from which we can deduce

that J(K̃) ≃ J(K). Hence, over each Z/p-extension of F , there is a
unique module isomorphic to A2 and generated by an element of trivial
index. Each of these modules corresponds to the same Hp3 extension
L/F .

One can also prove this result by thinking of Hp3 as an extension
of Z/p × Z/p by Z/p. Consider the field F from Example 5.6 again,
and note that F has a unique Z/p × Z/p extension K. Because any
Hp3-extension of F contains a unique Z/p × Z/p quotient extension
over F , we see that any Hp3 extension of F contains K/F .

Now recall that [21, Theorem 6.6.1] tells us that, ifK = F ( p
√
a, p
√
b),

and if w ∈ F ( p
√
a) is an element so that L = F ( p

√
w, p
√
b) is an Hp3

extension of F , then all other solutions to the Hp3 embedding problem
over K/F take the form:

Lf := K( p
√
fw,

p
√
b).

But notice that, since K/F is the unique Z/p × Z/p extension of F ,
we have p

√
f ∈ K; it follows that Lf = L, and so F has a unique Hp3

extension.
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The proofs of Corollary 5.7 (2)–(4) are all relatively similar and use
Example 5.6 to establish upper bounds; we will prove statement (2) and
leave the verification of the other two statements to the reader. So, let
F be the field from Example 5.6, and note that, for each Z/p-extension
K/F , there are p modules isomorphic to Ap. Each of these corresponds
to a distinct solution to the embedding problem Ap o G1 � G1. By
Lemma 5.3, the solutions to this embedding problem over each of the
Z/p-extensions of F are distinct. Hence, we have ν(Ap oG1) ≤ p2 + p.

For the lower bound, observe that, if there is a single Ap o G1-
extension of a field F , then the Z/p-subextension K/F corresponding
to the natural projection Ap o G1 � G1 has the property that J(K)
contains a module ⟨γ⟩ isomorphic to Ap. If we choose an element χ as
in Proposition 3.6, then each of the modules ⟨γ + cχ⟩ for c ∈ {0, 1, . . . ,
p− 1} are also isomorphic to Ap. Observe additionally that any of the
other p Z/p-extensions of F admit a solution to the embedding problem
A2oG1 (i.e., theHp3 subextension from the original ApoG1 extension),
and hence by Proposition 4.1 (1), also admits at least one solution to the
embedding problem ApoG1 � G1. Since we have already argued that
one such solution forces the appearance of p solutions, this tells us that
F must have at least p2 + p extensions with Galois group Ap oG1. �
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