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THE GEOMETRY OF CYCLIC
HYPERBOLIC POLYGONS

JASON DEBLOIS

ABSTRACT. We will call a hyperbolic polygon cyclic,
horocyclic, or equidistant if its vertices lie on a metric
circle, a horocycle, or a component of the equidistant locus
to a hyperbolic geodesic, respectively. Such convex n-gons
are parametrized by the subspaces of (R+)n that contain
their side length collections, and area and circumcircle or
“collar” radius determine symmetric, smooth functions on
these spaces. We give formulas for and bounds on the
derivatives of these functions and make some observations
on their behavior. Notably, the monotonicity properties of
area and circumcircle radius exhibit qualitative differences
on the collection of centered vs non-centered cyclic polygons,
where a cyclic polygon is centered if it contains the center of
its circumcircle in its interior.

An n-tuple (d0, . . . , dn−1) of positive real numbers is the side length
collection of a compact, convex n-gon P in the hyperbolic plane, H2,
that is cyclic or horocyclic, or has all vertices equidistant from a fixed
geodesic, as long as

di ≤
∑
j ̸=i

dj , for each i.

Moreover, such a polygon, P , is uniquely prescribed up to orientation-
preserving isometry of H2 by this n-tuple up to cyclic permutation. It
is cyclic if and only if, for each i,

sinh

(
di
2

)
<
∑
j ̸=i

sinh

(
dj
2

)
;

and P is horocyclic if and only if, for some i, di is the sum of the other
side lengths.
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This fact seems to have been independently rediscovered several
times. It was recorded by the late Stothers [13], then by Schlenker
(see [12, page 2175]) as part of a larger project. Schlenker’s results
on cyclic polygons were reproved by Walter [15, 16]. Propositions
1.14, 3.4 and 4.6 of this paper combine for a self-contained case-by-case
proof. Our approach is standard, compare, e.g., Robbins [11] (in the
Euclidean setting). All aspects are elementary, but the cyclic case is
somewhat subtle; see the discussion at the beginning of Section 1.

Our main goal is to make some observations on the qualitative
behavior of area and circumcircle radius, thought of as functions
on a subset ACn of (R+)n that parametrizes cyclic n-gons by side
length, for each n ≥ 3. We also record relatively simple formulas
for their derivatives and give useful bounds in some cases. Letting
d = (d0, . . . , dn−1) ∈ (R+)n, in view of the facts above, we define:

ACn =

{
d | sinh

(
di
2

)
<
∑
j ̸=i

sinh

(
dj
2

)
for each i ∈ {0, . . . , n− 1}

}
.

One of our key themes is that the functions on ACn determined by
area and circumcircle radius exhibit qualitatively different behaviors
on centered versus non-centered cyclic n-gons. We say a cyclic polygon
is centered if it contains its circumcircle center in its interior.

The collection Cn ⊂ ACn defined below parametrizes centered n-
gons. Here, for J ≥ d/2, let θ(d, J) = 2 sin−1(sinh(di/2)/ sinh J):

Cn =

{
d | n−1∑

i=0

θ

(
di,

D

2

)
> 2π, where D = max{di}n−1

i=0

}
.

The qualitative differences we mentioned above are visible in the
following bounds:

Proposition 1.20. For n ≥ 3, the function J : ACn → R+ that records
the circumcircle radius is smooth and symmetric. For d ∈ ACn,

0 < (∂J/∂di)(d) < 1/2 if d ∈ Cn, for any i,
(∂J/∂di0)(d) > 1/2 if d ∈ ACn − (Cn ∪ BCn)

and di0 = max{di}n−1
i=0 ,

(∂J/∂dj)(d) < 0 if d ∈ ACn − (Cn ∪ BCn)

and dj ̸= max{di}n−1
i=0 .
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If d = (d0, . . . , dn−1) and di > dj , then∣∣∣∣ ∂J∂di (d)
∣∣∣∣ > ∣∣∣∣ ∂J∂dj (d)

∣∣∣∣.
The subspace BCn of ACn referenced above is the frontier of Cn

in ACn, a codimension-one submanfold that parametrizes semicyclic
n-gons: those whose longest edge is a diameter of their circumcircle.
(See Propositions 1.17 and 1.18. The term “semicyclic” is due to Maley,
Robbins and Roskies in the Euclidean setting [6].) Values of the ∂J/∂di
on BCn are thus determined by continuity and the formulas above.

We also give a Schläfli-type formula on areas of cyclic n-gons.
Whereas the classical Schläfli formula expresses change in the area of a
first-order deformation of polygons in terms of angle variations, ours is
in terms of side length. And, since cyclic polygons are parametrized by
their side length collections, we can simply record partial derivatives.

Proposition 2.3. For n ≥ 3, the function D0 : ACn → R+ that
records hyperbolic area is smooth and symmetric. Its partial derivative
∂D0/∂di with respect to di is given at d = (d0, . . . , dn−1) ∈ ACn by:

−
√
[1/cosh2(di/2)]− [1/cosh2 J(d)] if d ∈ ACn − Cn and

di = max{dj}n−1
j=0 ,√

[1/cosh2(di/2)]− [1/cosh2 J(d)] otherwise.

Note that the circumcircle radius of a semicyclic n-gon is half
its longest side length, so the two formulas above are compatible
with continuous partial derivatives of D0; in particular, the first is 0
everywhere on BCn. One consequence of Proposition 2.3 is that the area
of centered and semicyclic n-gons is monotonic in their side lengths.

Corollary 2.4. For n ≥ 3, d = (d0, . . . , dn−1) and d′ = (d′0, . . . , d
′
n−1)

in Cn ∪ BCn if, after a permutation di ≤ d′i for all i, and di < d′i for
some i, then D0(d) < D0(d

′).

Section 3 extends the above considerations to horocyclic polygons in
H2. We parametrize horocyclic n-gons by a codimension-1 submanifold
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HCn of (0,∞)n, which is the frontier there of ACn. The function
J : ACn → R+ blows up approaching HCn, see Proposition 3.6,
suggesting the geometric interpretation that horocyclic n-gons are
limits of sequences of cyclic n-gons whose circumcircle radii go to
infinity.

Section 3 also describes horocyclic ideal polygons, which have all
vertices on a horocycle except one at its ideal point, see Definition 3.3.
These are natural limits for families of cyclic polygons with certain edge
lengths going to infinity, and the area function D0 extends continuously
to their parameter space HIn. See Propositions 3.7 and 3.9.

Below, again taking d = (d0, . . . , dn−1) ∈ (R+)n, we define:

En =

{
d | there exists i0 with sinh(di0/2)

>
∑
i ̸=i0

sinh(di/2) but di0 ≤
∑
i ̸=i0

di

}
.

In Section 4, it is shown that En parametrizes equidistant polygons.
Like ACn, it has nonempty interior in (0,∞)n, and its closure there
intersects that of ACn in HCn.

There is a collar radius function J : En → [0,∞) analogous to
the circumcircle radius function on ACn, with similar behavior, see
Proposition 4.7. The area function D0 extends continuously to ACn ∪
HCn ∪ En by Propositions 3.7 and 4.9. Proposition 4.9 also gives a
Schläfli-type formula similar to the one above for D0 on En. Combining
Propositions 2.3 and 4.9 with Schlenker’s results yields:

Corollary 4.11. For fixed positive real numbers d1, . . . , dn−1, among
all hyperbolic n-gons with n − 1 sides of these lengths, the area is
maximized by the semicyclic ones with final side length greater than
max{di}.

The analogous result for Euclidean polygons is mentioned by Maley,
Robbins and Roskies [6, page 672]. We do not know a reference for a
proof.

Finally, in Section 5, we describe how cyclic n-gons degenerate to
cyclic m-gons (for m < n) as some side lengths approach 0. In terms of



THE GEOMETRY OF CYCLIC HYPERBOLIC POLYGONS 805

our parameter spaces, the frontier of ACn ∪HCn in [0,∞)n is a union
of copies of ACm ∪ HCm, for 3 ≤ m < n, and a degenerate part (see
Lemma 5.1). The main results are that the radius and area functions
on ACn extend continuously to those on ACm, see Lemma 5.3 and
Corollary 5.5, respectively.

The results here are an important tool in [4], on Delaunay tessella-
tions of hyperbolic surfaces. The 2-cells of such a decomposition are
cyclic, horocyclic or equidistant polygons, see [3].

In the Euclidean setting, a body of work giving explicit formulas for
area and circumcircle radius reaches back to classical times. Heron’s
formula, recorded circa A.D. 60, and Brahmagupta’s formula from
the seventh century give the areas of cyclic Euclidean triangles and
quadrilaterals, respectively, as functions of their side lengths. In
1828, Möbius gave formulas for circumcircle radius [8]. More recently,
Robbins gave a series of conjectures on a polynomial relation extending
the Heron and Brahmagupta formulas to arbitrary n-gons [11], which
were subsequently proved in the independent work of several authors,
see e.g., [9].

A hyperbolic version of Heron’s formula was only recorded in 1969
by Bilinski [1], then independently rediscovered by Stothers. Even
more recently, Mednykh found a hyperbolic Brahmagupta formula [7].
We know of no other literature on cyclic hyperbolic polygons beyond
what has been cited above. Conversely, we are not aware of recorded
Euclidean analogs to our results.

1. Calculus (and some geometry). A straightforward method of
continuity approach to proving existence of cyclic polygons with given
side lengths is neatly sketched by Robbins in the Euclidean setting [11,
page 526]:

Imagine a circle of variable radius and let us try to
inscribe a polygon with sides of the given lengths in the
circle by picking an arbitrary starting point and laying
out the edges, one at a time, with the given lengths.
When the radius is too large, we will not reach the
starting point when we have used up all the sides. As
we decrease the radius there will come a time when we
return exactly to our starting point.
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Figure 1. From left to right, circle radius decreases then increases, but
distance between endpoints of the union of edges continues to decrease.

This only works given two assumptions (both pointed out by Rob-
bins). First, that all side lengths are nearly equal, and second, that all
edges go in the same direction, that is, each edge joins its initial vertex
xi to the possibility for xi+1 which is closer on the circle to xi in the
direction of some fixed orientation.

If one drops the first assumption, but keeps the second, then some-
times the circle radius can decrease as far as possible without the start-
ing point being reached. But, on dropping the second assumption,
uniqueness can fail since, if the circle radius is J and d < 2J , then
there are two possible edges of length d with any given initial point.

However, for convex polygons, it is not hard to see that all edges
except possibly the longest must go in the same direction, and Robbins’
strategy can be successfully modified as follows:

Having laid out all edges in the same direction, if on
decreasing the radius as far as we can (to half the length
of the longest side) we have not yet returned to our
starting point then re-inflate the circle, now forcing the
longest edge to go in the opposite direction from the
others. As we increase the radius there will come a time
when we return exactly to our starting point (assuming
the edge lengths satisfy the proper inequality).

See Figure 1. Below we prove existence and uniqueness of convex
cyclic hyperbolic n-gons by formalizing a slight variation on this ap-
proach. Rather than laying out all n edges, we lay out n − 1, and we
vary the circle radius until the distance between start and end points
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equals the length of the omitted edge. Proceeding in this way helps
with the calculus.

Before we begin, we note that, in [11], Robbins considers Euclidean
cyclic n-gons with no convexity requirement whereupon uniqueness
does indeed fail, see [11, Diagram 1]. In fact, the extent of its failure
determines the degree of the “generalized Heron polynomials” that are
the main objects of study in [11].

1.1. Existence and uniqueness. Let us begin by specifying a model
of the hyperbolic plane and recalling a few basic facts, which can be
found in, e.g., [10].

Definition 1.1. The upper half-plane model of the hyperbolic plane is
the open subset,

H2 .
= {z ∈ C | ℑz > 0}

of C, which inherits the standard orientation and is endowed with the
Riemannian metric (dx2 + dy2)/y2 (identifying C with R2). For x and
x′ in H2 let dist(x, x′) refer to the distance from x to x′ in the resulting
path metric.

The orientation-preserving isometry group of H2 is PSL2(R), acting
by Möbius transformations. This action is transitive on H2, hence
also on hyperbolic circles of fixed radius. Each hyperbolic circle is
an Euclidean circle contained in H2, alalthough its hyperbolic and
Euclidean center and radius do not coincide.

Definition 1.2. For points x and y on a circle C, the counterclockwise
arc [x, y] from x to y is the arc of C bounded by x and y that points
from x to y in the counterclockwise orientation on C. The angle from
x to y is the angle subtended by [x, y] at the center of C. We will say
a collection {x0, . . . , xn−1} ⊂ C is cyclically ordered if, for all i > 0,
(xi−1, xi] contains no xj for j ̸= i.

A (convex) cyclic n-gon with side length collection (d0, . . . , dn−1) ∈
(0,∞)n is a cyclically ordered collection {x0, . . . , xn−1} on a fixed
hyperbolic circle, called the circumcircle, such that dist(xi−1, xi) = di
for each i > 0 and dist(x0, xn−1) = d0. An isometry from a cyclic
n-gon {x′0, . . . , x′n−1} to {x0, . . . , xn−1} is an isometry of H2 that takes
x′i to xσ(i) for each i, where σ is a fixed cyclic permutation.
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Remark 1.3. If an isometry takes x′i to xσ(i) for each i, where σ
is a fixed cyclic permutation, then also d′i = dσ(i) for each i. In
particular, cyclically relabeling a cyclic n-gon {x0, . . . , xn−1} by a cyclic
permutation σ produces a cyclic n-gon {xσ(0), . . . , xσ(n−1)}, isometric
to the original via the identity map, with the side length collection that
of the original relabeled by σ.

Hyperbolic trigonometry relates the distance between points on a
circle to the angle from one to another as well as the circle radius.
Here is the key function:

Lemma 1.4. For d > 0 and J ≥ d/2, let T be a hyperbolic triangle
with two sides of length J and a third of length d. Its interior angle at
the vertex opposite the side of length d is:

θ(d, J) = 2 sin−1(sinh(d/2)/sinh J) ∈ [0, π].

This is a continuous function on {(d, J) | 0 < d ≤ 2J}, smooth on
its interior. For fixed d > 0, θ(d, J) decreases in J on [d/2,∞), with
θ(d, d/2) = π, limJ→∞ θ(d, J) = 0 and

∂θ(d, J)/∂J =
−2 sinh(d/2) cosh J

sinh J
√

sinh2 J − sinh2(d/2)

= −2 coth J tan(θ(d, J)/2).

Proof. Applying the hyperbolic law of sines (see [10, Theorem
3.5.2]) to a triangle obtained from T by dropping a perpendicular to
the side with length d from the vertex opposite it yields:

sinh(d/2) = sin(θ(d, J)/2) sinh J.(1.1)

The formula for θ(d, J) follows. Continuity and smoothness of θ follow
from the fact that the inverse sine is continuous on [−1, 1] and smooth
on (−1, 1). By direct computation, θ(d, d/2) = 2 sin−1(1) = π and, for
fixed d > 0, limJ→∞ θ(d, J) = 2 sin−1(0) = 0. That θ(d, J) decreases
in J for fixed d > 0 follows from the partial derivative computation,
which is straightforward. �

The result below describes the two ways to put a cyclic n-gon in a
circle of fixed radius, specifying all but one of its side lengths.
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Proposition 1.5. For any d1, . . . , dn−1 ∈ (0,∞), J ≥ max{di/2}, and
any hyperbolic circle C of radius J , there exists {x0, . . . , xn−1} ⊂ C
such that dist(xi−1, xi) = di for each i > 0. One such collection has
the angle θi from xi−1 to xi equal to θ(di, J) for each i > 0. For any
fixed i0, there is another such that θi0 = 2π−θ(di0 , J), but θi = θ(di, J)
for each i ̸= i0. Each of these collections is determined, up to hyperbolic
isometry, by the choice of θi. The former is cyclically ordered if and
only if

n−1∑
i=1

θ(di, J) < 2π,

the latter if and only if

θ(di0 , J) >
∑
i ̸=i0

θ(di, J).

If {x0, . . . , xn−1} is a convex cyclic n-gon with side length collection
(d0, . . . , dn−1) on a hyperbolic circle of radius J , then J ≥ max{di/2}
and, for each i, the angle θi from xi−1 to xi is either θ(di, J) or
2π − θ(di, J). If θi = θ(di, J) for all i > 0, then:

d0 = ℓn(J, d1, . . . , dn−1)
.
= 2 sinh−1

[
sinh J sin

(
1

2

n−1∑
i=1

θ(di, J)

)]
.

If θi = 2π − θ(di0 , J) for some i0 > 0, then∑
i ̸=i0

θ(di, J) < θ(di0 , J),

so, in particular, di0 > di for all i ̸= i0. In this case,

d0 = ℓs(J, d1, . . . , dn−1)

.
= 2 sinh−1

[
sinh J sin

(
1

2
θ(di0 , J)−

1

2

∑
i ̸=i0

θ(di, J)

)]
.

The letters “n” and “s” decorating ℓ above stand for “non-separating”
and “separating,” respectively, and correspond to the left and right
sides of Figure 1. On the right, the longest arc separates the others
from the center of the circumcircle, whereas no arc on the left has this
property.
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Proof. We begin by stipulating some basic facts. First, for any J > 0
and θ1, . . . , θn−1 ∈ (0, 2π), it is easy to see that any circle C of radius
J contains a collection {x0, . . . , xn−1} such that the angle from xi−1 to
xi is θi, for each i > 0, and that this collection is cyclically ordered if
and only if

n−1∑
i=1

θi < 2π.

Second, any such collection is determined up to isometry by the θi.
The orientation preserving isometry group of H2 acts transitively on
circles of a fixed radius and includes all rotations around the center
of C, and for another such collection {x′0, . . . , x′n−1} on a circle C ′ of
radius J , the orientation-preserving isometry taking C ′ to C and x′0 to
x0 takes x′i to xi for all i.

Finally, for any x and y at distance d > 0 on a circle C of radius J ,
d ≤ 2J by the triangle inequality, and the angle from x to y is θ(d, J)
or 2π − θ(d, J). This follows upon applying Lemma 1.4 to the triangle
T spanned by x, y and the center v of C. The interior angle of T at v
faces the counterclockwise arc from x to y in the former case, and the
clockwise arc in the latter.

Now, given d1, . . . , dn−1 ∈ (0,∞) and J ≥ max{di/2}, for any
circle C of radius J the relation (1.1) from the proof of Lemma 1.4
implies that a collection {xi} ⊂ C, with the property that the angle
θi from xi−1 to xi is θ(di, J) for each i > 0, has dist(xi−1, xi) = di for
each i > 0. This still holds if θi0 = 2π − θ(di0 , J) for some i0 since, in
this case, the interior angle of the triangle determined by xi−1, xi and
the center of C faces the clockwise arc from xi0−1 to xi0 and hence still
equals θ(di0 , J). Note also in this case that∑

θi < 2π,

if and only if,

θ(di0 , J) >
∑
i ̸=i0

θ(di, J).

Now suppose {x0, . . . , xn−1} is a convex cyclic n-gon with side length
collection (d0, . . . , dn−1) on a hyperbolic circle C of radius J and, for
each i > 0, let θi be the angle from xi−1 to xi. From above we have
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θi = θ(di, J) or θi = 2π − θ(di, J) for each i > 0, and∑
θi < 2π.

Since θ(di, J) ∈ (0, π], θi can be 2π − θ(di, J) for at most one i > 0.
Moreover, if i0 is such an index, then∑

i ̸=i0

θ(di, J) < θ(di0 , J),

as above. In particular, di0 > di for each i ̸= i0 since one easily sees
that θ(d, J) increases with d for fixed J .

Below, let us say that {x0, . . . , xn−1} satisfies case n if θi < π for
each i, and case s otherwise. In case n, the angle from xn−1 to x0 is

2π −
n−1∑
i=1

θ(di, J),

whereas, in case s, this angle is

θ(di0 , J)−
∑
i ̸=i0

θ(di, J).

Appealing to Lemma 1.4 translates this angle measure into the func-
tions ℓn and ℓs recorded above (in cases n and s, respectively).

Note that, in case n, the triangle determined by x0, xn−1 and the
circle center v has interior angle

θ = 2π −
n−1∑
i=1

θ(di, J)

at v if θ ≤ π, but the interior angle here is 2π − θ if θ > π. But this
makes no difference in ℓn since sinx = sin(π − x). �

Proposition 1.6. The functions ℓn and ℓs from Proposition 1.5 are
continuous on their domain:{
(J, d1, . . . , dn−1) | n ≥ 3, di > 0 for all i, and J ≥ max{di/2}n−1

i=1

}
.

They are smooth on its interior, with identical values on its frontier :{
(J, d1, . . . , dn−1) | J = max{di/2}n−1

i=1

}
.
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Now fix (d1, . . . , dn−1) ∈ (R+)n−1 for n ≥ 3, let D = max{di}n−1
i=1

and, restricting ℓn and ℓs to [D/2,∞)×{(d1, . . . , dn−1)}, take them as
functions of J . Then

∂ℓn

∂J
(J) > 0 for all J > J0,

defined by :

J0 = min

{
J ≥ D/2 | n−1∑

i=1

θ(di, J) ≤ 2π

}
.

Moreover,

lim
J→∞

ℓn(J) = 2 sinh−1

( n−1∑
i=1

sinh(di/2)

)
.

For i0 ∈ {0, . . . , n− 1}, there exists J ≥ D/2 such that

θ(di0 , J) ≥
∑
i ̸=i0

θ(di, J),

if and only if di0 = D and

n−1∑
i=1

θ(di, D/2) ≤ 2π.

In particular, J0 = D/2. If this is the case, then{
J ≥ D

2
| θ(di0 , J) ≥ ∑

i ̸=i0

θ(di, J)

}
is an interval, I, and

∂ℓs

∂J
(J) < 0,

for J in its interior.

If

sinh

(
di0
2

)
≥
∑
i ̸=i0

sinh

(
di
2

)
,
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then
n−1∑
i=1

θ

(
di,

D

2

)
≤ 2π,

I, as defined above, is [di0/2,∞), and

lim
J→∞

ℓs(J) = 2 sinh−1

(
sinh

(
di0
2

)
−
∑
i ̸=i0

sinh

(
di
2

))
.

If sinh(di0/2) <
∑

i̸=i0
sinh(di/2), but

∑n−1
i=1 θ(di, D/2) ≤ 2π, then

I = [di0/2, J1] for some J1 <∞, and ℓs(J1) = 0.

Remark 1.7. Below, when a value of (d1, . . . , dn−1) is clear from
the context, we will frequently abbreviate ℓn(J, d1, . . . , dn−1) to ℓ

n(J)
without comment, and likewise for ℓs.

Proof. The continuity and smoothness properties of ℓn and ℓs, and
the description of their domain, follow directly from those of the
functions involved in their definition. In particular, see Lemma 1.4
for those of θ(d, J). That ℓn(J) = ℓs(J) if J = max{di/2} follows from
the fact that θ(d, d/2) = π and sin(π/2− x) = sin(π/2 + x) for any x.

We now fix (d1, . . . , dn−1) ∈ (R+)n−1, let D = max{di} and, taking
the restriction of ℓn to [D/2,∞) × {(d1, . . . , dn−1} as a function of J ,
prove its properties described in the statement. We first use Lemma 1.4
to compute its derivatives. Take

θ0(J) =

n−1∑
i=1

θ(di, J),

below. Then ∂ℓn/∂J is:

2 cosh J

cosh(ℓn(J)/2)

[
sin

(
θ0(J)

2

)
− cos

(
θ0(J)

2

) n−1∑
i=1

tan

(
θ(di, J)

2

)]
.

(1.2)
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Subclaim 1.8. For

J > J0 = min

{
J ≥ max

{
di
2

} | n−1∑
i=1

θ(di, J) ≤ 2π

}
,

∂

∂J
ℓn(J) > 0.

If θ0(J0) < π, let J1 = J0; otherwise, define J1 > J0 by the equation
θ0(J1) = π. If J1 > J0, then for J0 < J ≤ J1, the derivative (1.2)
is positive since cos(θ0(J)/2) ≤ 0 for such J . On (J1,∞) we use the
following claim.

Claim 1.9. If

0 <
n∑

i=1

αi < π/2,

then

tan

( n∑
i=1

αi

)
>

n∑
i=1

tan (αi) .

Proof of Claim 1.9. For 0 ≤ α ≤ β with α+ β < π/2, we have:

tan(α+ β) =
tanα+ tanβ

1− tanα tanβ
,

a standard angle-addition identity. Since α < π/2 − β and sine is
increasing on (0, π/2) we have sinα < sin(π/2− β) = cosβ. Similarly,
cosα > sinβ, and so 0 < tanα tanβ < 1. Hence, tanα + tanβ <
tan(α+ β), and the claim follows by induction. �

The claim implies that

n−1∑
i=1

tan

(
θ(di, J)

2

)
< tan

(
θ0(J)

2

)
;

hence, ∂/∂Jℓn(J) > 0 on (J1,∞). This proves Subclaim 1.8. We next
show:
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Subclaim 1.10.

lim
J→∞

ℓn(J) = 2 sinh−1

( n−1∑
i=1

sinh

(
di
2

))
.

Again, let

θ0(J) =
n−1∑
i=1

θ(di, J).

The limit of sinhJ sin(θ0(J)/2) is of the form ∞ · 0 by Lemma 1.4, so
replacing sinh J by 1/(1/ sinh J) and applying l’Hôpital’s rule gives:

lim
J→∞

sinh J sin (θ0(J)/2)= lim
J→∞

cos (θ0(J)/2)
n−1∑
i=1

sinh J sinh(d/2)√
sinh2 J−sinh2(d/2)

.

Here we have used a formula from Lemma 1.4. Evaluating the limit
gives Subclaim 1.10.

We now turn our attention to ℓs.

Claim 1.11. For positive real numbers d1, . . . , dn−1, n ≥ 3, and any
fixed i0,

lim
J→∞

∑
i ̸=i0

θ(di, J)

θ(di0 , J)
= lim

J→∞

∑
i̸=i0

(∂/∂J)θ(di, J)

(∂/∂J)θ(di0 , J)
=

∑
i ̸=i0

sinh(di/2)

sinh(di0/2)
.

Moreover, if di0 > di for all i ̸= i0, then∑
i ̸=i0

(∂/∂J)θ(di, J)

(∂/∂J)θ(di0 , J)

is strictly increasing, and it is less than 1 for every J > di0/2, such
that θ(di0 , J) ≥

∑
i ̸=i0

θ(di, J).

Proof of Claim 1.11. Since each θ(di, J) → 0 as J → ∞, the left-
hand equation above follows from l’Hôpital’s rule. Directly substituting
the formulas of Lemma 1.4 gives:∑

i ̸=i0
(∂/∂J)θ(di, J)

(∂/∂J)θ(di0 , J)
=
∑
i ̸=i0

sinh(di/2)

sinh(di0/2)

√
sinh2 J − sinh2(di0/2)

sinh2 J − sinh2(di/2)
.
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One can easily verify the limit computation. Moreover, a slight re-
arrangement gives:∑

i ̸=i0
(∂/∂J)θ(di, J)

(∂/∂J)θ(di0 , J)
=
∑
i ̸=i0

sinh(di/2)

sinh(di0/2)

√
1− sinh2(di0/2)−sinh2(di/2)

sinh2 J−sinh2(di/2)
.

This makes it clear that the derivative ratio is increasing. To prove the
final assertion we rewrite it using the tangent formula of Lemma 1.4
and apply Claim 1.9. �

Subclaim 1.12. If sinh(di0/2) ≥
∑

i ̸=i0
sinh(di/2), then θ(di0 , J) >∑

i̸=i0
θ(di, J), for all J ≥ di0/2, and

lim
J→∞

ℓs(J) = 2 sinh−1

(
sinh(di0/2)−

∑
i ̸=i0

sinh(di/2)

)
.

If sinh(di0/2) ≥
∑

i ̸=i0
sinh(di/2), then by Claim 1.11, the derivative

ratio ∑
i ̸=i0

(∂/∂J)θ(di, J)

(∂/∂J)θ(di0 , J)
,

is less than 1 for all J > di0/2, so θ(di0 , J) decreases more quickly
than

∑
i ̸=i0

θ(di, J) on the entire interval (di0/2,∞). It follows that, if

θ(di0 , J) ≤
∑

i ̸=i0
θ(di, J), for any J ≥ di0/2, then for any ϵ > 0, there

exists a δ > 0 such that

θ(di0 , J) <
∑
i ̸=i0

θ(di, J)− δ on [J + ϵ,∞).

But, this would violate the fact that both of these functions limit to 0
(by Lemma 1.4), a contradiction.

The limit computation is an application of l’Hôpital’s rule analogous
to Subclaim 1.10.

Subclaim 1.13. If θ(di0 , J) ≥
∑

i ̸=i0
θ(di, J), for some J ≥ di0/2, then

the set I of all J for which this inequality holds is an interval with left
endpoint di0/2. If

sinh(di0/2) <
∑
i ̸=i0

sinh(di/2),
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then I = [di02, J1] is compact, with ℓs(J1) = 0.

These assertions follow from Claim 1.11. The final assertion im-
plies that I is “open to the left” on [di0/2,∞) so, since it is also
closed, it is of the form [di0/2,∞) or [di0/2, J1], for some J1 < ∞.
But, if sinh(di0/2) <

∑
i ̸=i0

sinh(di/2), then the limit computation of
Claim 1.11 implies

lim
J→∞

∑
i ̸=i0

θ(di, J)

θ(di0 , J)
> 1,

so I must be of the latter form. In this case, ℓs(J1) = 0 by continuity
since ℓs(J) < 0 for all J > J1.

It remains to show that ∂ℓs/∂J < 0 in the interior of I. Here, let

θ0(J) = θ(di0 , J)−
∑
i ̸=i0

θ(di, J).

Then (∂/∂J)ℓs(J) has the following description:

2 cosh J

cosh(ℓs(J)/2)

[
sin(θ0(J)/2)− cos(θ0(J)/2)

·
(
tan(θ(di0 , J)/2)−

∑
i ̸=i0

tan(θ(di, J)/2)

)]
.

One shows that

tan(θ(di0 , J)/2)−
∑
i̸=i0

tan(θ(di, J)/2) > tan(θ0/2)

in two steps, first applying Claim 1.9 to∑
i ̸=i0

tan(θ(di, J)/2),

then using the inequality tan(α − β) < tanα − tanβ (which follows
from the angle-addition identity for tangent). This shows that

∂

∂J
ℓs(J) < 0. �

Proposition 1.14. For positive real numbers d0, . . . , dn−1, n ≥ 3,
there is a cyclic n-gon with side length collection (d0, . . . , dn−1) if
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and only if, for each i, sinh(di/2) <
∑

j ̸=i sinh(dj/2). Two cyclic

n-gons, with side length collections (d0, . . . , dn−1) and (d′0, . . . , d
′
n−1),

are isometric if and only if, d′i = dσ(i) for a cyclic permutation σ. In
particular, circumcircle radius is uniquely determined by (d0, . . . , dn−1).
Moreover, it is symmetric as a function of (d0, . . . , dn−1).

Proof. We first prove existence. For a fixed collection d0, . . . , dn−1,
n ≥ 3, of positive real numbers such that sinh(di/2) <

∑
j ̸=i sinh(dj/2),

for each i, we fix i0 > 0 such that di0 is maximal among d1, . . . , dn−1,
and consider the following three cases.

(i)
n−1∑
i=1

θ(di, di0/2) > 2π,

(ii)
n−1∑
i=1

θ(di, di0/2) ≤ 2π,

but sinh(di0/2) <
∑n−1

i=1, i ̸=i0
sinh(di/2),

(iii) sinh(di0/2) ≥
n−1∑
i=1

i ̸=i0

sinh(di/2);

hence,
∑n−1

i=1 θ(di, di0/2) ≤ 2π, by Proposition 1.6.

If d1, . . . , dn−1 satisfies (i), then for J0 as in Proposition 1.6,

ℓn(J0) = 0. Since ℓn limits to 2 sinh−1(
∑n−1

i=1 sinh(di/2)), and, since

sinh(d0/2) <
∑n−1

i=1 sinh(di/2), there exists J > J0 such that d0 =

ℓn(J). Since J > J0,
∑n−1

i=1 θ(di, J) < 2π. For this J , Proposition 1.5
thus implies that a collection, x0, . . . , xn−1, arranged on a circle of ra-
dius J , such that the angle from xi−1 to xi is θ(di, J) for each i > 0 is
a cyclic n-gon with side length collection (d0, . . . , dn−1).

In case (ii), let D0 = ℓn(di0/2) = ℓs(di0/2). Proposition 1.6 implies

that the range of ℓn is [D0, 2 sinh
−1(
∑n−1

i=1 sinh(di/2))), and that of
ℓs is [0, D0], so as in case (i) there exists J ≥ di0/2 such that either
d0 = ℓn(J) or ℓs(J). In the former instance, we arrange x0, . . . , xn−1,
so that the angle from xi to xi−1 is θ(di, J) for all i; and, in the latter,
so that this holds for all i but i0, with the angle from xi0−1 to xi0 equal
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to 2π − θ(di0 , J). Proposition 1.5 again implies that x0, . . . , xn−1, is a
cyclic n-gon with the requisite side lengths.

Case (iii) parallels case (ii). We must only note in addition that, re-
arranging the inequality sinh(di0/2) <

∑
j ̸=i0

sinh(dj/2), for j between
0 and n− 1, gives

sinh(d0/2) > sinh(di0/2)−
∑
i̸=i0

sinh(di/2),

for i between 1 and n − 1. This proves existence of a cyclic n-gon
with side length collection, d0, . . . , dn−1, provided that sinh(di/2) <∑

j ̸=i sinh(dj/2), for each i.

If there is a cyclic n-gon with side length collection d0, . . . , dn−1,
then by Proposition 1.5, either d0 = ℓn(J) or d0 = ℓs(J) for ℓn and ℓs,
as defined there, where J is the circumcircle radius. The range of ℓn

has supremum

2 sinh−1

( n−1∑
i=1

sinh(di/2)

)
,

which is not attained, and if ℓs is defined, it decreases from the
minimum D0, defined above, of ℓn. It follows that

sinh(d0/2) <
n−1∑
i=1

sinh(di/2).

Moreover, if di0 is maximal among d1, . . . , dn−1, we claim that

sinh(d0/2) > sinh(di0/2)−
∑
i ̸=i0

sinh(di0/2).

If d1, . . . , dn−1 satisfies case (iii) above, this holds because the range of
ℓs is bounded below by

2 sinh−1

(
sinh(di0/2)−

∑
i ̸=i0

sinh(di/2)

)
,

by Proposition 1.6, and that of ℓn by D0. In case (ii), the right-hand
side of the claimed inequality is less than 0 by hypothesis. This also
holds in case (i) since, by Proposition 1.6,

∑n−1
i=1 θ(di, di0/2) ≤ 2π,

if sinh(di0/2) ≥
∑

i ̸=i0
sinh(di/2). The claim is thus proved, and it

follows that sinh(di/2) <
∑

j ̸=i sinh(dj/2), for all i.



820 JASON DEBLOIS

For a given d0, . . . , dn−1 with sinh(di/2) ≤
∑

j ̸=i sinh(dj/2), for all

i, we claim that there is only one J such that d0 = ℓn(J) or ℓs(J), i.e.,
that the circumcircle radius is uniquely determined by the side length
collection. To this end, we note first that cases (i), (ii) and (iii) above
are mutually exclusive. Moreover, ℓn and ℓs are each strictly monotone,
and their ranges intersect only at the single point,

D0 = ℓn(di0/2) = ℓs(di0/2).

The claim follows.

It is further evident by inspecting the definitions of ℓn and ℓs

that they are symmetric in d1, . . . , dn−1, so the circumcircle radius
J determined by d0, . . . , dn−1 is invariant under any reordering of the
final n − 1 side lengths. We claim it is also invariant under cyclic
permutations of (d0, . . . , dn−1).

The key here is that Proposition 1.6 also applies to the restrictions
of ℓn and ℓs to [D1/2,∞){(d2, . . . , dn−1, d0)}, where D1 = max{di}i ̸=1.
The arguments above thus imply that

d1 = ℓn(J1, d2, . . . , dn−1, d0) or d1 = ℓs(J1, d2, . . . , dn−1, d0),

for a unique J1 ∈ [D1/2,∞). J1 = J follows from uniqueness with a
little case-matching.

If d0 = ℓn(J, d1, . . . , dn−1), then, plugging into the definition of
θ(d, J) from Lemma 1.4, gives:

θ(d0, J) =
n−1∑
i=1

θ(di, J) or θ(d0, J) = 2π −
n−1∑
i=1

θ(di, J).

The ambiguity arises because sin−1 takes values in [−π/2, π/2]. For
x ∈ [0, π], sin−1(sinx) = x if x ≤ π/2 and π − x otherwise. Thus,∑n−1

i=1 θ(di, J) is at most π in the former case and at least π in the
latter. In the former, rearranging gives:

θ(d1, J) = θ(d0, J)−
n−1∑
i=2

θ(di, J) ∈ (0, π).

Therefore, d1 = ℓs(J, d2, . . . , dn−1, d0) in this case. In the latter case,
we have θ(d1, J) = 2π −

∑
i ̸=1 θ(di, J), so d1 = ℓn(J, d2, . . . , dn−1, d0).
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Here we use sin(π − x) = sinx. In either case, we conclude from
uniqueness that J = J1.

If d0 = ℓs(J, d1, . . . , dn−1), then for di0 maximal among d1, . . . , dn−1:

θ(d0, J) = θ(di0 , J)−
∑
i>0
i ̸=i0

θ(di, J).

There are two cases, handled similarly to the above. If i0 = 1, then
d1 = ℓn(J, d2, . . . , dn−1, d0), otherwise d1 = ℓs(J, d2, . . . , dn−1, d0). In
each case, we again conclude J = J1, which proves the claim and also
shows that J = J(d0, . . . , dn−1) is symmetric.

We finally show that cyclic n-gons with side length collections
(d0, . . . , dn−1) and (d′0, . . . , d

′
n−1) are isometric if and only if d′i = dσ(i),

for each i, where σ is a fixed cyclic permutation. The “only if”
direction is in Remark 1.3, so let us suppose for cyclic n-gons {xi}
and {x′i} with respective side length collections above that there is
a cyclic permutation σ so that d′i = dσ(i) for all i. Upon cyclically
reordering the xi we may assume that d′i = di for each i (again see
Remark 1.3). We have already shown that {xi} and {x′i} have the same
circumcircle radius J , and moreover, that d0 is only one of ℓn(J) or
ℓs(J). Proposition 1.5 now implies that {xi} and {x′i} are isometric. �

Having established existence and uniqueness of cyclic polygons by
carefully analyzing the functions ℓn and ℓs, we will use the following
lemma to avoid further consideration of ℓs.

Lemma 1.15. Suppose, for n ≥ 3, that a cyclic n-gon with side
length collection (d0, . . . , dn−1) and circumcircle radius J has d0 =
max{di}n−1

i=0 . Then the following hold : d0 = ℓn(J, d1, . . . , dn−1), for

ℓn as defined in Proposition 1.5; and J > D/2, for D = max{di}n−1
i=1 .

Furthermore, both assertions hold for all side length collections of cyclic
n-gons near (d0, . . . , dn−1) in Rn.

Proof. By Proposition 1.5, either d0 = ℓn(J, d1, . . . , dn−1) or d0 =
ℓs(J, d1, . . . , dn−1) as defined there. But ℓs is decreasing in J and
defined only for J ≥ D/2 by Proposition 1.6, whereD = max{di}n−1

i=1 ≤
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d0 by hypothesis. We calculate:

ℓs(D/2, d1, . . . , dn−1) < 2 sinh−1

[
sinh(D/2) sin

(
1

2
θ(D,D/2)

)]
= D.

Since ℓs is continuous, this inequality holds on a neighborhood of
(d1, . . . , dn−1) in Rn, and it follows that there is a neighborhood of
(d0, . . . , dn−1) such that d0 = ℓn(J) for each side length collection in
this neighborhood.

By Proposition 1.6, we have ℓn(D/2, d1, . . . , dn−1) = ℓs(D/2, d1, . . . ,
dn−1) < D, so, since ℓn is continuous, this inequality also holds on
an entire neighborhood of (d0, . . . , dn−1). It implies that J > D/2
here. �

1.2. Parametrizing cyclic polygons. Having proved the existence
and uniqueness of cyclic hyperbolic n-gons, in this section, we will first
parametrize them by side length using an open set in (R+)n. Then we
will describe some subspaces of this set corresponding to subclasses of
cyclic polygons that turn out to be geometrically significant.

Corollary 1.16. For n ≥ 3, the collection

ACn =

{
d | sinh(di/2) <

∑
j ̸=i

sinh(dj/2) for each i ∈ {0, . . . , n− 1}
}
,

(taking d = (d0, . . . , dn−1) ∈ (R+)n) parametrizes isometry classes of
marked cyclic n-gons in H2 by their side length collections, where a
marking is the choice of a vertex to label x0.

This is a direct consequence of Proposition 1.14 since the marking
takes care of the cyclic ambiguity of side length collections.

Proposition 1.17. For n ≥ 3, a cyclic n-gon {x0, . . . , xn−1} is
centered if the angle from xi−1 to xi is less than π, for each i, or
equivalently, if

∑
i ̸=i0

θ(di, J) > π, where (d0, . . . , dn−1) is its side
length collection, with di0 maximal, and J is its circumcircle radius.
Again, taking d = (d0, . . . , dn−1) ∈ (R+)n, the collection,

Cn =

{
d | n−1∑

i=0

θ(di, di0/2) > 2π,where di0 = max{di}n−1
i=0

}
⊂ ACn,
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parametrizes marked, centered n-gons in H2 up to hyperbolic isometry.
The collection,

BCn =

{
d | n−1∑

i=0

θ(di, di0/2) = 2π,where di0 = max{di}n−1
i=0

}
⊂ ACn,

parametrizes marked, semicyclic n-gons in H2 up to hyperbolic isom-
etry. Here, a cyclic n-gon is semicyclic if its circumcircle radius J is
di0/2, or equivalently, if

∑
i ̸=i0

θ(di, J) = π.

Proof. We first comment on equivalent definitions of centeredness.
Recall from Proposition 1.5 that, for each i, the angle from xi to
xi−1 is either θ(di, J), as defined in Lemma 1.4, or 2π − θ(di, J).
For each i, such that this angle is less than π it must equal θ(di, J)
(recall that θ(d, J) ∈ [0, π] for all possible d and J). If this holds for
all i, then since these angles sum to 2π it follows in particular that∑

i̸=i0
θ(di, J) = 2π − θ(di0 , J) > π.

On the other hand, if
∑

i̸=i0
θ(di, J) > π, for i0 such that di0 is

maximal, then the same inequality holds for any other i0, since θ(d, J)
increases in d for fixed J . It follows that, for each i,

2π − θ(di, J) +
∑
j ̸=i

θ(dj , J) > 2π,

so the angle from xi−1 to xi is θ(di, J) < π.

Now suppose a centered or semicyclic n-gon has side length collection
(d0, . . . , dn−1) and circumcircle radius J . We may assume that d0
is maximal among the di, since circumcircle radius is symmetric in
side lengths and the centeredness criterion is invariant under their
permutation. Then, by Lemma 1.15, d0 = ℓn(J, d1, . . . , dn−1), so
manipulating the definition of ℓn gives:

sinh(d0/2) = sinh J sin

(
1

2

n−1∑
i=1

θ(di, J)

)
≤ sinhJ.

It follows that J ≥ d0/2 (with equality here and above if and only if
the n-gon is semicyclic); hence, since θ(d, J) decreases in J ,

n−1∑
i=0

θ(di, di0/2) = π +
n−1∑
i=1

θ(di, di0/2) ≥ π +
n−1∑
i=1

θ(di, J) ≥ 2π.
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Again, equality holds if and only if the original n-gon is semicyclic,
and we find that the side length collection of a centered or semicyclic
collection lies in Cn or BCn, respectively.

Now, suppose that (d0, . . . , dn−1) ∈ Cn∪BCn has d0 maximal. Then,

since
∑n−1

i=0 θ(di, d0/2) ≥ 2π, there exists a unique J ≥ d0/2 such that∑n−1
i=0 θ(di, J) = 2π, with J = d0/2 if and only if

∑n−1
i=0 θ(di, d0/2) =

2π.

For this J , directly substituting 2π − θ(d0, J) for
∑n−1

i=1 θ(di, J) in
the definition of ℓn and, applying θ, we find that θ(d0, J) = θ(ℓn(J), J),
so d0 = ℓn(J). Therefore, J is the circumcircle radius of a cyclic
n-gon with side length collection (d0, . . . , dn−1). If J = d0/2, then
the n-gon in question is semi-cyclic; otherwise, θ(d0, J) < π, so∑n−1

i=1 θ(di, J) > π, and it is centered.

We note further that, for (d0, . . . , dn−1) ∈ Cn∪BCn, since d0 = ℓn(J)
and ℓn increase toward an asymptote of

2 sinh−1

( n−1∑
i=1

sinh(di/2)

)
, (d0, . . . , dn−1) ∈ ACn.

We finally comment on equivalence of the definitions of semicyclicity.
For a cyclic n-gon with side length collection (d0, . . . , dn−1), such that
d0 is maximal, d0 = ℓn(J) by Lemma 1.4. Directly substituting either

J = di0/2 or
∑n−1

i=1 θ(di, J) = π into the formula for ℓn(J) allows one
to conclude the other condition. �

Proposition 1.18. For each n ≥ 3, BCn is the frontier of Cn in ACn.
It is the orbit of

graph(b0)
.
= {(b0(d),d) | d ∈ (R+)n−1},

under cyclic permutation of entries, where b0 : (R+)n−1 → R is defined
by :

n−1∑
i=1

θ(di, b0(d)/2) = π.

This function is symmetric, smooth and strictly increasing in each vari-
able. It further satisfies b0(d1, . . . , dn−1) > max{di}n−1

i=1 . In particular,
BCn has n connected components.
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Proof. Proposition 1.17 directly implies that BCn is the frontier of
Cn in ACn, since the quantities involved in the definitions of these sets
vary continuously over ACn.

If (d0, . . ., dn−1)∈BCn has maximal entry di0 , then, since θ(di0 , di0/
2) = π, so does

∑
i ̸=i0

θ(di, di0/2). For D = max{di}i ̸=i0 , we have∑
i̸=i0

θ(di, D/2) > π, so, since θ(d, J) strictly decreases in J for each

(d0, . . . , d̂i0 , . . . , dn−1) ∈ (R+)n−1, the equation
∑

i ̸=i0
θ(di, di0/2) = π

uniquely determines di0 > D.

The above implies in particular that b0 : (R+)n−1 → R is uniquely
determined by its defining equation, that b0(d1, . . . , dn−1) > max{di},
and that BCn is the orbit of graph (b0) under cyclic permutation of
entries. Furthermore, since b0 > max{di}, no distinct translates of
graph (b0) under this action intersect each other. We will thus finish
the proof by showing that b0 is smooth and strictly increasing in each
variable.

This is a direct application of the implicit function theorem, which
shows that, for each i,

∂

∂di
b0(d1, . . . , dn−1) = − (∂θ/∂d)(di, b0(d1, . . . , dn−1))∑n−1

i=1 (∂θ/∂J)(di, b0(d1, . . . , dn−1))
.

Since θ strictly increases in d and decreases in J , the result follows. �

1.3. Smoothness. Having parametrized cyclic n-gons by the space
ACn, we turn our attention to describing associated geometric quan-
tities as functions on ACn: circumcircle radius in Proposition 1.20,
diagonal lengths in Corollary 1.21, and what turns out to be area
in Corollary 1.23. The main result in each case is that the function
in question is smooth, although Proposition 1.20 also describes some
qualitative features of the circumcircle radius.

Lemma 1.19. For n ≥ 3, suppose d = (d0, . . . , dn−1) ∈ ACn has
d0 ≥ di for all i. The function, J : ACn → R+, that records
circumcircle radius is smooth at d, and

∂J

∂di
(d) =

1

2

± cosh(di/2) tanh J
√

sinh2 J−sinh2(d0/2)
sinh2 J−sinh2(di/2)

sinh(d0/2)±
∑n−1

j=1 sinh(dj/2)
√

sinh2 J−sinh2(d0/2)
sinh2 J−sinh2(dj/2)

.
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Above, each ± should be taken as + if d ∈ Cn and − otherwise,
with one exception: if d ∈ ACn − Cn and i = 0, the numerator is
cosh(d0/2) tanh J .

Proof. Since d0 is maximal, Lemma 1.15 gives a neighborhood U
of d in ACn on which the equation d0 = ℓn(J, d0, . . . , dn−1) holds
everywhere, for J = J(d0, . . . , dn−1). We will thus obtain the desired
conclusions by applying the implicit function theorem to

F (d0, . . . , dn−1, J) = ℓn(J, d1, . . . , dn−1)− d0.

Since J > D/2, by Lemma 1.15, where D = max{di}n−1
i=1 , using

Lemma 1.4 and inspecting the definition of ℓn, we find that F is smooth
near (d, J). Its derivative vector is(

− 1,
∂

∂d1
ℓn, . . . ,

∂

∂dn−1
ℓn,

∂

∂J
ℓn
)
.

Since J(d) > J0, as defined in Proposition 1.6, that result gives
(∂/∂J)ℓn(J(d)) > 0. The implicit function theorem thus guarantees
that J is smooth at d, and the following relations hold:

0 =
∂J

∂d0

∂ℓn

∂J
− 1(1.3)

0 =
∂J

∂di

∂ℓn

∂J
+
∂ℓn

∂di
, i > 0.(1.4)

We will substitute for ∂ℓn/∂J in the relations above using (1.2). In
that formula,

θ0(J) =
n−1∑
i=1

θ(di, J),

and, using the definition of ℓn and the fact that d0 = ℓn(J(d)), we
obtain:

sin(θ0(J)/2) =
sinh(d0/2)

sinh J

cos(θ0(J)/2) = ±

√
sinh2 J − sinh2(d0/2)

sinh J
.

The ± above is a − if θ0(J) > π and a + otherwise; by Proposition 1.17,
these cases correspond respectively to d ∈ Cn and d ∈ ACn − Cn. We
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further substitute
sinh(di/2)√

sinh2 J − sinh2(di/2)

for tan(θ(di, J)/2), yielding the following formula for ∂ℓn/∂J :

2 coth J

cosh(d0/2)

[
sinh(d0/2)±

n−1∑
i=1

sinh(di/2)

√
sinh2 J − sinh2(d0/2)

sinh2 J − sinh2(di/2)

]
.

Here the ± is a + if d ∈ Cn and − otherwise. With the same dichotomy
below, a similar calculation gives:

−∂ℓ
n

∂di
= ± cosh(di/2)

cosh(d0/2)

√
sinh2 J − sinh2(d0/2)

sinh2 J − sinh2(di/2)
.

The formula from the statement thus follows from equations (1.3) and
(1.4). �

The bounds below distill a useful consequence of the formulas of
Lemma 1.19.

Proposition 1.20. For n ≥ 3, the function J : ACn → R+ that records
the circumcircle radius is smooth and symmetric. For d ∈ ACn,

0 < (∂J/∂di)(d) < 1/2 if d ∈ Cn, for any i,

(∂J/∂di0)(d) > 1/2 if d ∈ ACn − (Cn ∪ BCn)

and di0 = max{di}n−1
i=0 ,

(∂J/∂dj)(d) < 0 if d ∈ ACn − (Cn ∪ BCn)

and dj ̸= max{di}n−1
i=0 .

If d = (d0, . . . , dn−1) and di > dj, then∣∣∣∣ ∂J∂di (d)
∣∣∣∣ > ∣∣∣∣ ∂J∂dj (d)

∣∣∣∣.
Proof. Circumcircle radius J is symmetric by Proposition 1.14, so

Lemma 1.19 actually implies that it is smooth on all of ACn. To obtain
the bounds above we will fix d = (d0, . . . , dn−1) ∈ ACn and assume that
d0 is maximal among the di by rearranging if necessary. Then we will
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use equations (1.3) and (1.4) from the proof of Lemma 1.19, which hold
with this hypothesis.

Applying equation (1.2) from the proof of Proposition 1.6 to equa-

tion (1.3), with θ0(J) =
∑n−1

i=1 θ(di, J), yields:

∂J

∂d0
=

[
∂ℓn

∂J
(J)

]−1

=
cosh(d0/2)

2 cosh J

1

sin(θ0(J)/2)− cos(θ0(J)/2)
∑n−1

i=1 tan(θ(di, J)/2)
.

Note that, if θ0(J) = π, then d0 = 2J and ∂J/∂d0 = 1/2. We
accordingly divide the remaining cases into two subcases: θ0(J) < π
and θ0(J) > π.

If θ0(J) < π, then, since cos(θ0(J)/2) > 0, the denominator of the
right-hand quantity above is less than sin(θ0(J)/2). By the definition
of ℓn, sin(θ0(J)/2) = sinh(ℓn(J)/2)/ sinh(J), so since ℓn(J) = d0, we
have the following inequality:

∂J

∂d0
>

cosh(d0/2)

2 cosh J

sinh J

sinh(d0/2)
=

tanh(J)

2 tanh(d0/2)
.

The hyperbolic tangent is increasing and J > d0/2, so ∂J/∂d0 > 1/2.
This is case d ∈ ACn − (Cn ∪ BCn) by Proposition 1.17.

If θ0(J) > π, then, since cos(θ0(J)/2) < 0 and tanx > x on (0, π/2),

sin(θ0(J)/2)− cos(θ0(J)/2)
n−1∑
i=1

tan(θ(di, J)/2)

> sin(θ0(J)/2)− cos(θ0(J)/2) · π/2.

Since sinx − cosx > 1 on (π/2, π), in this case (which, by Proposi-
tion 1.17, is d ∈ Cn) we have ∂J/∂d0 < cosh(d0/2)/(2 coshJ) < 1/2.

For i > 1, solving equation (1.4) for ∂J/∂di, gives ∂J/∂di =
−(∂/∂di)ℓ

n(J)/(∂/∂J)ℓn(J). Let us record the numerator of this



THE GEOMETRY OF CYCLIC HYPERBOLIC POLYGONS 829

quantity:

∂ℓn

∂di
(J) =

sinh J cos (θ0(J)/2)

cosh(ℓn(J)/2)

∂θ

∂d
(di, J) =

cosh(di/2)

cosh(d0/2)

cos(θ0(J)/2)

cos(θ(di, J)/2)
.

The second equation above follows from the definition in Lemma 1.4
after taking a partial derivative with respect to d. All terms here
are positive, except possibly cos(θ0(J)/2), so ∂J/∂di is negative if
θ0(J) < π (i.e., d ∈ ACn − (Cn ∪ BCn)) and positive if θ0(J) > π,
d ∈ Cn.

For fixed J , f(d) = cosh(d/2)/ cos(θ(d, J)/2) is increasing since
θ(d, J) increases in d on (0, 2J). Thus, for i, j ≥ 1, we have |∂J/∂di| >
|∂J/∂dj | if di > dj . We also claim that | cosh(d0/2)/ cos(θ0(J)/2)| ≥
f(di). Manipulating the definition of ℓn(J) gives:

cos(θ0(J)/2) = ±

√
sinh2 J − sinh2(d0/2)

sinh(J)
.

By Lemma 1.4, cos(θ(di, J)/2) satisfies the same equation upon taking
an absolute value and substituting di for d0 on the right-hand side.
Since d0 ≥ di, we have | cos(θ0(J)/2)| < cos(θ(di, J)/2), and the claim
follows. This implies the result. �

Corollary 1.21. For any n ≥ 4 and i, j ∈ {0, . . . , n − 1} such
that |i − j| ≥ 2 (mod 4), defining ℓi,j(d0, . . . , dn−1) = dist (xi, xj),
where {x0, . . . , xn−1} is a cyclic n-gon with side length collection
(d0, . . . , dn−1), yields a smooth function ACn → R+.

Proof. Let us suppose, without loss of generality, that i < j,
fix (d0, . . . , dn−1) ∈ ACn, and let {x0, . . . , xn−1} be a cyclic n-gon
with side length collection (d0, . . . , dn−1) and circumcircle radius J =
J(d0, . . . , dn−1). For i0 such that di0 is maximal, let us also assume for
now that i0 /∈ {i+ 1, . . . , j}. Then, by Proposition 1.5, the angle from
xk−1 to xk is θ(dk, J) < π for each k ∈ {i+ 1, . . . , j}.

Applying Proposition 1.5, mutatis mutandis, to the cyclically or-
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dered collection {xi, . . . , xj} now gives:

ℓi,j(d0, . . . , dn−1) = 2 sinh−1

[
sinhJ sin

(
1

2

j∑
k=i+1

θ(dk, J)

)]
.

We claim that the same formula holds near (d0, . . . , dn−1), whence
smoothness of ℓi,j follows from smoothness of J as well as the functions
above. If it did not hold, then, for some i1 ∈ {i+1, . . . , j}, there would
be points (d′0, . . . , d

′
n−1) arbitrarily close to (d0, . . . , dn−1) such that, for

a cyclic n-gon {x′0, . . . , x′n−1} on a circle of radius J ′ with side length
collection (d′0, . . . , d

′
n−1), the angle from xi1−1 to xi is 2π − θ(d′i1 , J

′).

If this were the case, then we would have θ(d′i1 , J
′) =

∑
i ̸=i1

θ(d′i, J
′),

for any such (d′0, . . . , d
′
n−1) which, upon taking a limit, would also

hold for (d0, . . . , dn−1). But this would contradict the fact that di0
is maximal among the di. This proves the claim and hence establishes
the result in the case i0 /∈ {i+ 1, . . . , j}.

The case i0 ∈ {i + 1, . . . , j} is analogous to the other, but in the
formula for ℓi,j above, we replace the sum over {i+ 1, . . . , j} with one
over {j + 1, . . . , n− 1, 0, . . . , i}. �

Lemma 1.22. Let U be the set of points in (R+)3 such that each
coordinate is less than the sum of the others. For (a, b, c) ∈ U , define:

α(a, b, c) = cos−1

(
cosh b cosh c− cosh a

sinh b sinh c

)
.

The function,

A(a, b, c) = π − α(a, b, c)− α(b, c, a)− α(c, a, b),

is smooth on U . It records the hyperbolic area of a triangle in H2, with
sides of length a, b and c.

Proof. Since the inverse cosine is smooth on (−1, 1), the only thing
to note is that the quantity in parentheses above lies in this interval,
i.e., that:

− sinh b sinh c < cosh b cosh c− cosh a < sinh b sinh c.

This follows from the angle sum identity for hyperbolic cosine and
the fact that (a, b, c) ∈ U . The hyperbolic law of cosines (see [10,
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Theorem 3.5.3]) implies that α(a, b, c) is the angle of a hyperbolic
triangle with sides of length a, b and c at the vertex opposite the side
with length a. That A(a, b, c) measures the area of such a triangle
follows from the Gauss-Bonnet formula for hyperbolic area, see [10,
Theorem 3.5.5]. �

Corollary 1.23. For d = (d0, d1, d2) ∈ AC3, define D0(d) =
A(d0, d1, d2), where A is as defined in Lemma 1.22. For d =
(d0, d1, d2, d3) ∈ AC4, define:

D0(d) = A(d0, d1, ℓ0,2(d)) +A(ℓ0,2(d), d2, d3).

Here ℓi,j is as defined in Corollary 1.21. For n ≥ 5 and d = (d0, . . . ,
dn−1) ∈ ACn, define:

D0(d) = A(d0, d1, ℓ0,2(d)) +

[ n−2∑
i=3

A(ℓ0,i−1(d), di, ℓ0,i(d))

]
+A(ℓ0,n−2(d), dn−2, dn−1).

For each n ≥ 3, the function D0 : ACn → R+ so defined is smooth.

Proof. Since the functions ℓi,j are smooth by Lemma 1.21, and the
function A from Lemma 1.22 is smooth on the domain U described
there, to establish smoothness of D0 we must only show that each of
the different inputs to A that occur in its definition lie in U . This follows
from the fact that each is the side length collection of a cyclic triangle;
for instance, given d = (d0, . . . , dn−1) ∈ ACn, n ≥ 5, and a cyclic n-gon
{x0, . . . , xn−1}, with side length collection d, (ℓ0,i−1(d), di, ℓ0,i(d)) is
the side length collection of the cyclic triangle {x0, xi−1, xi}.

If (a, b, c) is the side length collection of a cyclic triangle, then
sinh(a/2) < sinh(b/2) + sinh(c/2) by Proposition 1.14. Since the
hyperbolic sine has positive first and second derivatives on (0,∞), it is
superadditive there, so

sinh(b/2) + sinh(c/2) < sinh((b+ c)/2),

and we conclude that a < b+c. Reordering and repeating this argument
shows (a, b, c) ∈ U . �
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2. Geometry (and more calculus). As it currently stands, fol-
lowing Definition 1.2, a convex cyclic n-gon is simply a sequence of
points on a hyperbolic circle. Here we will first show that such a col-
lection is the vertex set of a convex polygon in the classical sense, a
finite intersection of hyperbolic half-spaces, which is compact, with area
measured by the function, D0, of Corollary 1.23.

Lemma 2.1. For n ≥ 3, a cyclic n-gon {x0, . . . , xn−1} in a hyperbolic
circle C is the vertex set of its convex hull, a compact, convex polygon
P contained in the disk bounded by C. The edges of P are the geodesic
arcs γi joining xi−1 to xi for each i > 0, together with γ0 joining xn−1

to x0. The area of P is D0(d0, . . . , dn−1), where di is the length of γi
for each i.

Conversely, if the vertex set of a compact, convex polygon P lies in
a hyperbolic circle, then enumerating it {x0, . . . , xn−1} so that with the
boundary orientation from P , an edge points from xi−1 to xi for each
i > 0, and from xn−1 to x0, which yields a cyclic n-gon in the sense of
Definition 1.2.

Proof. For each i > 0, let Hi be the half-space bounded by the
geodesic through xi−1 and xi such that Hi ∩ [xi−1, xi] = {xi−1, xi}.
Define H0 analogously so that H0 ∩ [xn−1, x0] = {xn−1, x0}, and let

P =
n−1∩
i=0

Hi.

Since the Hi are closed and convex in H2, so is P .

The criterion that {x0, . . . , xn−1} be cyclically ordered ensures for
each i that all xj other than xi−1 and xi are contained in the inte-
rior of Hi, since ∂Hi intersects C only in {xi−1, xi}. In particular,
{x0, . . . , xn−1} ⊂ P . The frontier ∂P of P in H2 is contained in

n−1∪
i=0

∂Hi,

and, by the above, γi = Hi ∩ ∂P for each i, since ∂Hi exits Hi+1 at xi
and Hi−1 at xi−1.

We will appeal to [10] for basic results on polygons. P satisfies the
definition of polygon in subsection 6.3: it is closed, convex and non-
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empty, and its collection of sides (defined in subsection 6.2) is {γi}n−1
i=0 .

The γi are thus its edges (“1-faces” in the notation of [10, subsection
6.3]), and the xi are its vertices, being endpoints of the γi. Moreover,
P satisfies the compactness criterion of [10, Theorem 6.3.7], so by
[10, Theorem 6.3.17], it is the convex hull of its vertex set. Therefore,
{x0, . . . , xn−1} uniquely determines P , and, since it is contained in the
(convex) disk bounded by C, so is P .

The diagonals from x0 to each of x2, . . . , xn−2 divide P into a non-
overlapping union of cyclic triangles, whose area sums to the area of
P . The diagonal lengths are ℓ0,i(d) for i ∈ {2, . . . , n − 2}, where
d = (d0, . . . , dn−1) is the side length collection of {x0, . . . , xn−1}.
Therefore, Lemma 1.22 implies that D0(d) is the area of P .

The key observation in showing the converse statement is that, given
a polygon P inscribed in a circle C, any edge γ of P bounds a bigon
outside P with an arc γ of C, and the initial and terminal vertices
of γ in the boundary orientation from P agree with those of γ in the
counterclockwise orientation on C. �

Below we recharacterize the “centeredness” condition from Proposi-
tion 1.17 in geometric terms, and we describe an isosceles decomposition
which will be useful in analyzing D0.

Proposition 2.2. For n ≥ 3, a cyclic n-gon {x0, . . . , xn−1} is centered
if and only if the center, v, of its circumcircle is contained in the
interior of its convex hull, P . If this is so, then P decomposes as the
non-overlapping union

∪n−1
i=0 Ti, where Ti is the triangle with vertices

v, xi and xi−1 for i > 0 and T0 has vertices v, x0 and xn−1.

If {x0, . . . , xn−1} is not centered, then P has a unique longest side
γi0 , characterized by the fact that the geodesic containing γi0 has v and
P in opposite half-spaces. In this case, P ∩ Ti0 = γi0 , and P ∪ Ti0 is a
convex polygon that decomposes as the non-overlapping union

∪
i≠i0

Ti.

If {x0, . . . , xn−1} is semicyclic, then v is the midpoint of γi0 , Ti0 =
γi0 , and also

P =

n−1∪
i=0

Ti.
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Proof. Let {x0, . . . , xn−1} have side length collection (d0, . . . , dn−1).
Lemma 1.4 implies that the triangle Ti defined above has interior angle
θ(di, J) ∈ (0, π] at v, where J is the radius of the circumcircle C.
The edge of Ti opposite v, which is the geodesic arc γi joining xi to
xi−1, divides C into two arcs: [xi−1, xi] and [xi, xi−1] in the notation
of Definition 1.2. If Ti is not degenerate, i.e., if θ(di, J) ̸= π, then
the shorter of these arcs lies on the opposite side of the geodesic δi
containing γi from v.

It follows that, for each i such that the angle from xi−1 to xi is less
than π, it is θ(di, J), and v lies in the interior of the half-space Hi

bounded by δi that intersects [xi−1, xi] only in {xi−1, xi}. If the angle
from xi−1 to xi is greater than π, then it is 2π − θ(di, J), and v lies
in the interior of the half-space H′

i bounded by δi opposite Hi. The
angle from xi−1 to xi is π if and only if v is the midpoint of γi (the
degenerate case mentioned above), so in this case, v is in Hi ∩ H′

i but
in the interior of neither.

Recall from Proposition 1.17 that {x0, . . . , xn−1} is centered if and
only if the angle from xi−1 to xi is less than π for each i. By
the paragraph above, this holds if and only if v is in the interior of
P =

∩n−1
i=0 Hi (compare the proof of Lemma 2.1). In this case, the

decomposition of P as a non-overlapping union of Ti is obtained by
simply coning from v to ∂P (which, by Lemma 2.1, is the union of
the γi). Again, by Proposition 1.17, {x0, . . . , xn−1} is semicyclic if and
only if J = di0/2, where di0 is maximal among the di. In this case,
γi0 is a diameter of C, so v is its midpoint and Ti0 = γi0 as claimed.
Again, coning from v, gives P =

∪
Ti.

If the angle from xi0−1 to xi0 is at least π for some i0, this i0 is
unique since the angles from xi−1 to xi sum to 2π ({x0, . . . , xn−1}
being cyclically ordered). Therefore, this angle is 2π− θ(di0 , J); for all
other i, the angle from xi−1 to xi is θ(di, J) < π, and

θ(di0 , J) =
∑
i ̸=i0

θ(di, J).

In particular, θ(di0 , J) > θ(di, J), so di0 > di for all i ̸= i0. In this
case, v lies in H′

i0
; hence, so do Ti0 and Ti0 ∩ P = γi0 . But, v is in the

interior of Hi for all i ̸= i0.
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Because the angle from xi0−1 to xi0 is at least π, the diameters of C
through xi0−1 and xi0 bound half-spaces H′

i0−1 and H′
i0
, respectively,

which contain all xi, and hence, P . It follows as in the proof of
Lemma 2.1 that

P ∪ Ti0 = H′
i0−1 ∩H′

i0 ∩
∩
i ̸=i0

Hi

is a convex polygon, and its decomposition as
∪

i ̸=i0
Ti follows by coning

from v. �

Proposition 2.3. For n ≥ 3, the function D0 : ACn → R+ that
records hyperbolic area is smooth and symmetric. Its partial derivative
∂D0/∂di with respect to di is given at d = (d0, . . . , dn−1) ∈ ACn by :

−
√
[1/cosh2(di/2)]− [1/cosh2 J(d)] if d ∈ ACn − Cn and

di = max{dj}n−1
j=0 ,√

[1/cosh2(di/2)]− [1/cosh2 J(d)] otherwise.

Proof. We have already shown in Corollary 1.23 that D0 is smooth
and, in Lemma 2.1, that, for a given d = (d0, . . . , dn−1) ∈ ACn, D0(d)
is the area of the convex hull of a cyclic n-gon with side length collection
(d0, . . . , dn−1) . Using the decomposition of Proposition 2.2 and taking
J = J(d) and di0 = max{di}, we can rewrite its formula as follows:

(2.1) D0(d) =


n−1∑
i=0

A(J, J, di) if d ∈ Cn,(∑
i ̸=i0

A(J, J, di)

)
−A(J, J, di0) otherwise.

This follows from Lemma 1.22 and the fact that each of the triangles
Ti of Proposition 2.2 is isosceles, with two sides of length J(d) and one
of length di. It implies that D0 is symmetric in (d0, . . . , dn−1).

Comparing the function α of Lemma 1.22 with θ from Lemma 1.4,
we note that α(d, J, J) = θ(d, J) for any d < 2J . Moreover, a little
hyperbolic trigonometry shows that

α(J, d, J) = α(J, J, d) = cos−1(cothJ tanh(d/2)).
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These facts and some trigonometric identities can be used to show the
following:

cos(A(J, J, di)/2) =
cosh2(di/2) + cosh J

cosh(di/2)(cosh J + 1)
.

Taking derivatives and doing some more trigonometry, we obtain the
following formulas for ∂A/∂dj(J, J, di):

(2 sinh J/cosh J+1)[sinh(di/2)]
/[√

sinh2 J−sinh2(di/2)
]
(∂J/∂dj)

j ̸= i,

(2 sinh J/cosh J+1)[sinh(dj/2)]
/[√

sinh2 J−sinh2(dj/2)
]
(∂J/∂dj)

−[cosh2(dj/2)− coshJ ]
/[

cosh(dj/2)
√

sinh2 J − sinh2(dj/2)
]

j = i.

Note that this formula is only defined for di < 2J . This is because
the inverse cosine is smooth only on (−1, 1). We will use it below
to compute partial derivatives of D0 at d = (d0, . . . , dn−1) ∈ ACn,
but, due to this issue, we will assume that J(d) < max{di}, i.e.,
that d /∈ BCn (recall Proposition 1.17). Since BCn is a codimension-
one submanifold (Proposition 1.18), values there are determined by
continuity.

Using symmetricity of D0, we will assume below that d0 is maximal
among the di. Applying the formula of Lemma 1.19, we divide out a

factor of
√

sinh2 J − sinh2(d0/2). This gives the formula for ∂J/∂dj(d)

below:

±(1/2) cosh(dj/2) tanh J√
sinh2 J − sinh2(dj/2)[sinh(d0/2)]/[

√
sinh2 J − sinh2(d0/2)]

· ±(1/2) cosh(dj/2) tanh J

±
n−1∑
i=1

[sinh(di/2)]/[

√
sinh2 J − sinh2(di/2)]

.

We recall from Lemma 1.19 that each ± above should be read as +
if d ∈ Cn and − if d ∈ ACn −Cn, except that the numerator is positive
in the latter case for j = 0.
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We finally come to the derivative computation. We use the formula
above for D0 and consider three cases. For the first, d ∈ Cn, and we
have:

∂

∂dj
D0(d) =

2 sinh J

coshJ + 1

∂J

∂dj

( n−1∑
i=0

sinh(di/2)√
sinh2 J − sinh2(di/2)

)

− cosh2(dj/2)− coshJ

cosh(dj/2)
√
sinh2 J − sinh2(dj/2)

=
1√

sinh2 J−sinh2(dj/2)

[
sinh2 J cosh(dj/2)
cosh J(cosh J+1) −

cosh2(dj/2)−cosh J
cosh(dj/2)

]
=

1√
sinh2 J − sinh2(dj/2)

[
cosh2 J−cosh2(dj/2)
cosh J cosh(dj/2)

]

=

√
cosh2 J − cosh(dj/2)

cosh J cosh(dj/2)
.

For d ∈ ACn − Cn, we first treat the case ∂D0/∂dj for j > 0, where:

∂

∂dj
D0(d) =

2 sinh J

coshJ + 1

∂J

∂dj

[(
n−1∑
i=1

sinh(di/2)√
sinh2 J − sinh2(di/2)

)

− sinh(d0/2)√
sinh2 J − sinh2(d0/2)

]
− cosh2(dj/2)− coshJ

cosh(dj/2)
√
sinh2 J − sinh2(dj/2)

=

√
cosh2 J − cosh(dj/2)

cosh J cosh(dj/2)
.

Intermediate steps parallel the previous computation. Finally, again
for d ∈ ACn − Cn,

∂

∂d0
D0(d) =

2 sinh J

coshJ + 1

∂J

∂d0

[(
n−1∑
i=1

sinh(di/2)√
sinh2 J − sinh2(di/2)

)

− sinh(d0/2)√
sinh2 J − sinh2(d0/2)

]
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+
cosh2(d0/2)− coshJ

cosh(d0/2)
√
sinh2 J − sinh2(d0/2)

= −

√
cosh2 J − cosh(dj/2)

cosh J cosh(d0/2)
.

This proves the result. �

Corollary 2.4. For n ≥ 3, d = (d0, . . . , dn−1) and d′ = (d′0, . . . , d
′
n−1)

in Cn ∪ BCn if, after a permutation di ≤ d′i for all i, and di < d′i for
some i, then D0(d) < D0(d

′).

Proof. Given such (d0, . . . , dn−1) and (d′0, . . . , d
′
n−1) in Cn ∪ BCn,

since D0 is symmetric, we may assume di ≤ d′i for each i. Further-
more, we will take d0 maximal among the di. We will produce a path
(d0(t), . . . , dn−1(t)) from (d0, . . . , dn−1) to (d′0, . . . , d

′
n−1), with its inte-

rior in Cn, that is piecewise-smooth and has each di(t) non-decreasing.
The result will thus follow directly from the chain rule and Proposi-
tion 2.3.

In defining the path, we will take d = mini{di} and D = maxi{d′i}.
Then,

di(t) =


di d+ t ≤ di,

d+ t di ≤ d+ t ≤ d′i,

d′i otherwise,

for 0 ≤ t ≤ D − d. It is clear by inspection that di(t) is non-
decreasing and piecewise-smooth. Thus it remains only to check that
(d0(t), . . . , dn−1(t)) ∈ Cn. We break this up into cases.

For 0 ≤ t ≤ d0 − d, d0 = d0(t) is maximal among the di(t) by
construction, since d0 is maximal among the di. Here, we have:

n−1∑
i=0

θ(di(t), d0(t)/2) =

n−1∑
i=0

θ(di(t), d0/2) >

n−1∑
i=0

θ(di, d0/2) ≥ 2π.

The first inequality above follows from the fact that θ(d, J) (introduced
in Lemma 1.4) increases in d. The second follows from Proposition 1.17
and the hypothesis that (d0, . . . , dn−1) ∈ Cn ∪ BCn, which thus also
implies that (d0(t), . . . , dn−1(t)) ∈ Cn.
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If d0 = D, then the above case completes the proof. So assume
D > d0. Let i0 ∈ {0, . . . , n − 1} be such that D = d′i0 , and let d′i1 be
maximal among the d′i with i ̸= i0.

First suppose that d0 < d′i1 . Then, for d0 − d ≤ t ≤ d′i1 − d, at least
di0(t) and di1(t), take the maximum value d+t among the entries di(t),
so:

n−1∑
i=0

θ(di(t), (d+ t)/2) = 2π +
∑

i ̸=i0,i1

θ(di(t), (d+ t)/2) > 2π.

Thus, (d0(t), . . . , dn−1(t)) ∈ Cn for d0 − d ≤ t ≤ d′i1 − d.

We finally consider the interval d′i1 − d ≤ t < D − d. Note that, if
d0 ≥ d′i1 , then this and the interval 0 ≤ t ≤ d0 − d cover the domain
of the di(t), and we can skip the case above. On the other hand, if
d′i1 = d′i0 , then the previous two cases cover the entire domain, and we
are done.

Let us therefore assume that d′i1 < d′i0 = D. Then, on the interval
in question, di(t) = d′i for each i ̸= i0, and di0(t) = d+ t is the unique
maximal di(t). For t < D − d, we have:

n−1∑
i=0

θ(di(t), di0(t)/2) = π +
∑
i ̸=i0

θ(d′i, di0(t)/2) > π +
∑
i ̸=i0

θ(d′i, d
′
i0/2).

The final quantity is at least 2π, so (d0(t), . . . , dn−1(t)) ∈ Cn for
d′i1 − d ≤ t < D − d, and the result is proved. �

3. To infinity...

Definition 3.1. Let H2
be the closure of the upper half-plane H2 in

the one-point compactification C ∪ {∞} of C. The ideal boundary of

H2 is H2 −H2 = R ∪ {∞}.

In this section, we will show that ACn, which parametrizes cyclic
hyperbolic n-gons, has as its frontier in (0,∞)n a space HCn that
parametrizes horocyclic n-gons, those with vertices on a “horocycle”
(defined below). We will also describe horocyclic ideal n-gons, which
are natural limits for certain families of cyclic n-gons with edge lengths
approaching infinity.
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Definition 3.2. Let C∞ = R + i and B∞ = {z ∈ C | ℑz ≥ 1}, and
note that, in C ∪ {∞}, {∞} = C∞ − C∞. A horocycle of H2 is a
PSL(2,R)-translate of C∞, and its ideal point and the horoball that it
bounds are the corresponding translates of ∞ and B∞, respectively.

The action of PSL2(R) is transitive on R ∪ {∞}, the stabilizer of

∞ acts transitively on horizontal lines in H2 via
{(

r 0
0 1/r

)}
, and the

stabilizer {( 1 r
0 1 )} of C∞ acts transitively on it.

The horocycles are thus the horizontal straight lines and the non-
empty intersections with H2 of circles tangent to R. The horoball that
one bounds is the region above the line in the former case and inside the
circle in the latter. So it is natural to orient horocycles counterclockwise
by giving them the boundary orientation from their horoballs.

Definition 3.3. If C is a horocycle with ideal point v, then C ∪{v} is
a circle. We may thus define the notions of counterclockwise and cyclic
order by analogy with Definition 1.2.

A horocyclic n-gon is a collection {x0, . . . , xn−1} of distinct points on
a horocycle C with ideal point v that is cyclically ordered on C∪{v}. A
horocyclic ideal n-gon is a cyclically ordered collection {x0, . . . , xn−1}
on some C ∪ {v} with an ideal vertex xi = v.

The side length collection of a horocyclic n-gon {x0, . . . , xn−1} is
(d0, . . . , dn−1), where di = dist (xi−1, xi) for each i > 0 and d0 =
dist(x0, xn−1). It is defined analogously for a horocyclic ideal n-gon
{x0, . . . , xn−1}, except that di = ∞ if xi or xi−1 is the ideal vertex.

Proposition 3.4. For n ≥ 3, (d0, . . . , dn−1) ∈ (0,∞)n is the side
length collection of a horocyclic n-gon if and only if sinh(di/2) =∑

j ̸=i sinh(dj/2) for some i, and (d0, . . . , dn−1) ∈ (0,∞]n is the side
length collection of a horocyclic ideal n-gon if and only if di0 = di0+1 =
∞ for a unique i0 (taking i0 + 1 = 0 if i0 = n − 1). Two horocyclic
or horocyclic ideal n-gons are isometric if and only if their side length
collections differ by a cyclic permutation.

Proof. Since the isometry group of H2 acts transitively on horo-
cycles, given a horocyclic n-gon, {x0, . . . , xn−1}, we may assume it
lies on C∞. The key fact here follows from a short explicit calcula-
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tion (or an appeal to, e.g., [5, Theorem 1.2.6 (iii)]): for x, y ∈ C∞,
sinh(dist(x, y)/2) = |x− y|/2.

For the unique i such that the counterclockwise arc from xi−1 to xi
contains {∞}, the real coordinate of xi is minimal among the xj , and
real coordinates increase along the sequence xi, . . . , xn−1, x0, . . . , xi−1.
The key fact thus implies that

sinh(di/2) =
∑
j ̸=i

sinh(dj/2).

On the other hand, given (d0, . . . , dn−1) such that sinh(di/2) =∑
j ̸=i sinh(dj/2), a collection {x0, . . . , xn−1} on C∞, laid out in the

order above, has side length collection (d0, . . . , dn−1), if the real coor-
dinates of successive points xi−1 and xi differ by ℓi = 2 sinh(di/2).

It is clear that the condition for (d0, . . . , dn−1) ∈ (0,∞]n to be the
side length collection of a horocyclic ideal n-gon is necessary. Existence
follows the strategy above: we put xi0 at ∞ for the unique i0 such that
di0 = di0+1 = ∞ and arrange xi0+1, . . . , xn−1, x0, . . . , xi0−1 on C∞ with
real coordinates in increasing order. �

Corollary 3.5. For each n ≥ 3, the set of marked, horocyclic n-gons
in H2 is parametrized by the frontier of ACn (defined in Corollary 1.16)
in (0,∞)n. Taking d = (d0, . . . , dn−1) below, this is:

HCn =

{
d | sinh(di0/2) =

∑
i ̸=i0

sinh(di0/2), where di0 = max{di}n−1
i=0

}
.

It is the orbit of graph (h0)
.
= {(h0(d),d) | d ∈ (R+)n−1} under cyclic

permutation of entries, where

h0(d) = 2 sinh−1

( n−1∑
i=1

sinh(di/2)

)

is symmetric, smooth and strictly increasing in each variable. More-
over, h0(d) > b0(d) for each d ∈ (R+)n−1, where b0 is as in Proposi-
tion 1.18, so HCn has a neighborhood disjoint from Cn∪BCn in (0,∞)n.
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The set of marked, horocyclic ideal n-gons is parametrized by:

HIn =
{
d | di0 = di0+1 = ∞ for a unique i0, 0 ≤ i0 < n

}
.

It is the orbit of {(∞,∞)}×Rn−2 under cyclic permutation of entries.

Proof. Most of the above is obvious and/or a consequence of Propo-
sition 3.4, but we will prove that h0(d) > b0(d). Recall from Proposi-

tion 1.18 that b0(d) is defined by the equation
∑n−1

i=1 θ(di, b0(d)/2) = π,
for θ as in Lemma 1.4. Plugging into ℓn from Proposition 1.5 gives
ℓn(b0(d)/2,d) = b0(d). The inequality thus follows from the fact that
fixing d, ℓn increases in J to a limit of h0(d), by Proposition 1.6. �

Proposition 3.6. For n ≥ 3, values of the circumcircle radius function
J approach ∞ on a sequence in ACn approaching HCn or HIn.

Proof. Suppose d = (d0, . . . , dn−1) ∈ HCn is approached by a
sequence in ACn. The unique maximal entry of d is di0 such that
sinh(di0/2) =

∑
i ̸=i0

sinh(di/2), so the i0 entry is also maximal for all
but finitely many points in the sequence. Using symmetricity of J , we
will assume that i0 = 0, so Lemma 1.15 implies that d0 = ℓn(J) for
each point in the sequence.

If it is not true that J(d) → ∞, then upon passing to a subsequence
we could ensure that J(d) → J0 for some real J0. But ℓ

n is continuous
as a function of (d1, . . . , dn−1, J) such that J ≥ 2max{di} (cf., Propo-
sition 1.6), so since the initial coordinate also converges this would im-
ply that d0 = ℓn(J0, d1, . . . , dn−1) at d ∈ HCn. But this is not possible
since ℓn increases toward its asymptote, which is d0 = h0(d1, . . . , dn−1)
(recall Proposition 1.6).

That values of J approach infinity on a sequence approaching
HIn is an immediate consequence of the fact that J(d0, . . . , dn−1) ≥
max{di}/2. �

Proposition 3.7. For n ≥ 3, the formulas below define a symmet-
ric, continuous extension of D0 to ACn ∪ HCn ∪ HIn. For d =
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(d0, . . . , dn−1) ∈ HCn with maximal entry di0 , define:

D0(d) = (n−2)π+2

[
sin−1

(
1

cosh(di0/2)

)
−
∑
i ̸=i0

sin−1

(
1

cosh(di/2)

)]
.

For d = (d0, . . . , dn−1) ∈ HIn with di0 = di0+1 = ∞, take

D0(d) = (n− 2)π − 2
∑

i̸=i0,i0+1

sin−1

(
1

cosh(di/2)

)
.

Given (d0, . . . , dn−1) and (d′0, . . . , d
′
n−1) in HCn ∪ HIn, if, up to a

fixed permutation di ≤ d′i for each i, and di < d′i for some i, then
D0(d0, . . . , dn−1) < D0(d

′
0, . . . , d

′
n−1).

Proof. Both cases of this result follow from:

Claim 3.8. For sequences {ak}, {bk} and {ck} of positive real numbers
such that ak → a ∈ (0,∞) and bk → ∞ as k → ∞, and | sinh(ck/2)−
sinh(bk/2)| < sinh(ak/2), for all k, the area function A of Lemma 1.22
satisfies:

lim
k→∞

A(ak, bk, ck) = π − 2 sin−1

(
1

cosh(a/2)

)
.

This claim is a consequence of the definition of A and the following
limit computation:

lim
k→∞

α(ak, bk, ck) = 0

lim
k→∞

α(bk, ck, ak) = lim
k→∞

α(ck, ak, bk)

= cos−1

(
cosh a− 1

sinh a

)
= sin−1

(
1

cosh(a/2)

)
.

This in turn is a calculus exercise using the definition of α(a, b, c) (again
in Lemma 1.22).

In the case that a sequence approaches (d0, . . . , dn−1) ∈ HCn, by
Corollary 3.5, we may assume that all but finitely many terms lie in
ACn − Cn with maximal i0 entry, where di0 is maximal among the di.
We therefore apply the claim to formula (2.1), with bk = ck = J .
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For a sequence in ACn approaching (d0, . . . , dn−1) ∈ HIn, where
di0 = di0+1 = ∞, an arbitrary element is the side length collection of
a cyclic polygon {x0, . . . , xn−1} with longest sides containing xi0 . We
divide the convex hull of {x0, . . . , xn−1} into a non-overlapping union
of cyclic triangles using diagonals from xi0 , with side lengths given by
the diagonal functions ℓi0,j of Corollary 1.21, for j ̸= i0, i0 + 1. We
compute values of D0 by summing the areas of these triangles. Since
they are cyclic, their side lengths satisfy the hypotheses of the claim.

The resulting extensions ofD0 are clearly symmetric and continuous.
For (d0, . . . , dn−1) and (d′0, . . . , d

′
n−1) ∈ HCn such that di ≤ d′i for each

i, if di0 is maximal among the di and d
′
i1
is maximal among the d′i, then

d′i1 > d′i0 ≥ di0 and d′i0 ≥ di0 > di1 .

Thus, exchanging d′i1 with d′i0 does not change the fact that di ≤ d′i
for all i. Having made the exchange, and assuming without loss of
generality that i0 = 0, some calculus shows that D0 increases along the
graph of the straight-line path from (d1, . . . , dn−1) to (d′1, . . . , d

′
n−1) in

graph (h0) (recall Corollary 3.5).

The corresponding monotonicity property of D0 on HIn follows by
direct comparison. For (d0, . . . , dn−1) ∈ HCn and (d′0, . . . , d

′
n−1) ∈

HIn, we note that, if di ≤ d′i for all i, then for i0 such that di0 is
maximal among the di, d

′
i0

= ∞. �

Proposition 3.9. Let C be a horocycle with ideal point v, and for some
n ≥ 3, suppose {x0, . . . , xn−1} ⊂ C ∪ {v} is a horocyclic ideal n-gon
with ideal vertex xi0 = v. For each i > 0, there is a unique half-space
Hi bounded by the geodesic through xi and xi−1 such that xj ∈ Hi for

all j, where Hi is the closure of Hi in C ∪ {∞}. Similarly, there is a
unique half-space H0 bounded by the geodesic through x0 and xn−1 such
that xj ∈ H0 for all j.

Say

P =

n−1∩
i=0

Hi

is the convex hull of {x0, . . . , xn−1}. It is a convex polygon contained
in the horoball bounded by C, with vertex set {x0, . . . , x̂i0 , . . . , xn−1}
and edge set {γi}, where γi is the geodesic joining xi to xi−1 for each i.
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P decomposes as the non-overlapping union∪
i ̸=i0
i0+1

Ti,

where Ti is the convex hull of xi, xi−1 and v for each such i.

Now suppose {x0, . . . , xn−1} ⊂ C is a horocyclic n-gon with maximal
side length di0 = dist (xi0−1, xi0). It is the vertex set of its convex hull,
a compact, convex polygon, P , contained in the horoball bounded by
C. The edges of P are the geodesic arcs γi joining xi−1 to xi for each
i > 0, together with γ0 joining xn−1 to x0. Taking Ti as in the previous
case for each i,

P ∪ Ti0 =
∪
i̸=i0

Ti,

is a convex polygon.

In each case above, the area of P is given by D0(d0, . . . , dn−1) from
Proposition 3.7, where di = dist(xi, xi−1) for each i (in particular,
di = ∞ if xi or xi−1 is v).

Proof. The geodesics of the upper half-plane H2 are the intersections
with H2 of vertical Euclidean straight lines and Euclidean circles
centered in R. It follows from this description that any two distinct
points of H2 are contained in the closure in C ∪ {∞} of a unique
geodesic. (In particular, the closure of a vertical Euclidean straight
line contains ∞.)

Now taking C = C∞, we address the case that {x0, . . . , xn−1} is a
horocyclic ideal polyhedron. If xi0 = ∞, then, in order of increasing
real parts,

xi0+1, . . . , xn−1, x0, . . . , xi0−1,

lie on C∞. The half-spaceHi0+1, described above is therefore the region
to the right of the vertical Euclidean straight line through xi0+1, and
Hi0 is to the left of the vertical line through xi0−1. For each i ̸= i0
or i0 + 1, Hi is the region outside the Euclidean circle through xi and
xi−1 (xn−1 if i = 0) that is centered in R.

It is now easy to see that the edges of P =
∩
Hi are the γi described

above, and the vertices consist of all xi except xi0 (compare the proof
of Lemma 2.1). P is divided into the Ti, i ̸= i0, i0 + 1, by the vertical
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lines through the xi, i ̸= i0, i0 ± 1. This is because Ti is bounded by
the vertical lines through xi and xi−1, and the circular arc containing
both of these points, for each i.

If {x0, . . . , xn−1} is horocyclic but not horocyclic ideal, then the
proof that it is the vertex set of its convex hull P follows that of
Lemma 2.1, along with the fact that P is compact and the description
of the edge set. Again, taking C = C∞, the key difference between
this case and the previous one is that, since all xi lie on C∞, all
edges are compact circular arcs. In particular, if di0 is maximal among
the di, then xi0 has minimal real coordinate, xi0−1 has maximal real
coordinate, and Hi0 is the region inside the Euclidean circle through
xi0 and xi0−1 that is centered in R.

Given this fact, we note that P ∪ Ti0 is the convex hull of

{x0, . . . , xi0−1, v, xi0 , . . . , xn−1},

a horocyclic ideal (n + 1)-gon, so its decomposition follows from the
previous case.

That the area of either P above isD0(d0, . . . , dn−1) follows from their
decompositions and the fact that Ti has area π−2 sin−1(1/ cosh(di/2))
for each i. This in turn follows again from the Gauss-Bonnet formula
for the area of hyperbolic triangles, see [10, Theorem 3.5.5]. Ti is a
“generalized hyperbolic triangle” in the terminology of [10, subsection
3.5], with ideal vertex v, so its angle at v is defined to be 0. An exercise
in Euclidean geometry (recalling from the proof of Proposition 3.4
that sinh(di/2) = |xi − xi−1|/2, and noting that the hyperbolic and
Euclidean metrics on H2 are conformal; see Definition 1.1) establishes
that its angles at xi and xi−1 are each α satisfying sinα = 1/ cosh(di/2).
(Compare [14, 2.6.12].) �

4. ...and beyond! To this point, we have proved that a tuple
(d0, . . . , dn−1) ∈ (0,∞)n is the side length collection of a unique cyclic
or horocyclic n-gon in H2 if and only if sinh(di/2) ≤

∑
j ̸=i sinh(dj/2),

for all i. This condition implies that di <
∑

j ̸=i dj , since the hyperbolic

sine has positive first and second derivatives on (0,∞).

Here, we address the remaining case: any (d0, . . . , dn−1) ∈ (0,∞)n

such that sinh(di/2) >
∑

j ̸=i sinh(dj/2), but di ≤
∑

j ̸=i dj , for some
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i is the side length collection of an equidistant polygon, with vertices
equidistant from a fixed geodesic.

In the upper half-plane model, such an equidistant locus is the

intersection with H2 of a circle in C not entirely contained in H2
. It is

literally beyond infinity!

Definition 4.1. For J ≥ 0, the J-equidistant locus to a geodesic γ
in H2 is the collection of points that have distance J from γ. For
n ≥ 3, a collection {x0, . . . , xn−1} of distinct points on a component C
of the J-equidistant locus to γ is an equidistant n-gon if, for some i0,
the collection {xi0 , . . . , xn−1, x0, . . . , xi0−1} is linearly ordered on C. In
the orientation that C inherits as a boundary component of the region
it bounds with γ, the compact arc of C is bounded by xi and xi−1

points from xi−1 to xi for each i ̸= i0. Here, we take 0− 1 to be n− 1.
We say xi0 is first among the xi.

The collar radius of {x0, . . . , xn−1} is the distance from the xi
to γ. Its side length collection is (d0, . . . , dn−1) ∈ (0,∞)n, where
di = dist(xi−1, xi) for i > 0 and d0 = dist(xn−1, x0).

We prove existence and uniqueness of equidistant n-gons by a strat-
egy parallel to the one for cyclic n-gons. The role of the circle center is
played here by the geodesic γ, and the angle from x to y by the distance
from the orthogonal projection of x to the projection of y.

Lemma 4.2. If points x and y in H2 with dist(x, y) = d ≥ 0 each
have distance J ≥ 0 from a hyperbolic geodesic γ, then the orthogonal
projections of x and y to γ are at distance:

ψ(d, J) = 2 sinh−1(sinh(d/2)/ coshJ).

This is a continuous function on [0,∞)2, smooth in its interior. For
fixed d > 0, ψ(d, J) decreases in J on [0,∞) with ψ(d, 0) = d,
limJ→∞ ψ(d, J) = 0, and the partial derivative (∂/∂J)ψ(d, J) is given
by :

−2 sinh(d/2) sinh J

cosh J
√
cosh2 J + sinh2(d/2)

= −2 tanh J tanh(ψ(d, J)/2).
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Proof. Let p and q be the orthogonal projections of x and y to γ,
respectively. The arc joining x to p meets γ perpendicularly (hence the
term orthogonal projection), as does the arc joining y to q, so these arcs
and hence also x and y are exchanged by reflection in the perpendicular
bisector of the arc of γ joining p to q. If Q is the quadrilateral with
vertices at x, y, p, and q, this perpendicular bisector thus divides Q
into isometric quadrilaterals Q0 and Q1 with three right angles each.

Suppose Q0 contains x. If α is its angle at x, then hyperbolic trigo-
nometry gives the following relations between α and the side lengths:

cosα = sinhh sinh(ψ(d, J)/2)(4.1)

cosh(d/2) =
cosh(ψ(d, J)/2)

sinα

coshJ =
coshh

sinα
.

Here h is the length of the side of Q0 that lies in the perpendicular
bisector of the geodesic from x to y. Equation 4.1 follows from [10,
Theorem 3.5.10] and the other two from [10, Theorem 3.5.7]. Some
manipulations give the formula for ψ(d, J), and also:

sinα =

√
cosh2 J + sinh2(d/2)

coshJ cosh(d/2)
.(4.2)

The remaining assertions are straightforward. �

Lemma 4.3. If {x0, . . . , xn−1} is an equidistant n-gon with collar
radius J and side length collection (d0, . . . , dn−1), such that xi0 is first
among the xi, then

di0 = L(J, d0, . . . , d̂i0 , . . . , dn−1)

.
= 2 sinh−1

[
coshJ sinh

(
1

2

∑
i ̸=i0

ψ(di, J)

)]
.

Moreover, given any fixed collection of di > 0, for i ̸= i0, and J ≥ 0,
there is an equidistant n-gon {x0, . . . , xn−1} satisfying the hypotheses
above, and any two such are isometric.

Proof. Given di > 0 for i ̸= i0, and J ≥ 0, fix a hyperbolic geodesic
γ, a component C of the J-equidistant locus to γ, and xi0 ∈ C. Let
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p : H2 → γ be the orthogonal projection, and for each y ∈ γ, let p−1(y)
be the unique intersection point of C with the preimage of y under p.

Let yi0 = p(xi0). We will recursively produce the xi for i ̸= i0,
starting at i = i0 + 1 and taking i modulo n. Let yi be the point
on γ at distance ψ(di, J) from yi−1 (mod n) with the property that
the compact arc bounded by yi and yi−1 points toward yi−1 in the
boundary orientation that γ inherits from the region it bounds with C.
Note that the restriction of p to C → γ reverses this orientation, so
taking xi = p−1(yi) for each i we obtain a cyclic n-gon on C with xi0
first among the xi.

Lemma 4.2 implies that dist(xi, xi−1) = di for each i ̸= i0. By
construction, the distance from yi0 to yi0−1 is

∑
i ̸=i0

ψ(di, J), so another

application of Lemma 4.2 implies that dist(xi0 , xi0−1) satisfies the
formula for di0 described above. It follows that {x0, . . . , xn−1} is
an equidistant n-gon with side length collection (d0, . . . , dn−1). By
construction, it has collar radius J and xi0 first among the xi.

Another equidistant n-gon with the properties of {x0, . . . , xn−1}, on
a component of the equidistant locus to a hyperbolic geodesic γ′, can be
taken to {x0, . . . , xn−1} by the following sequence of isometries: take
γ′ to γ, apply an order-2 rotation around a point of γ if necessary
(to exchange components of the J-equidistant locus), then translate
in γ. �

Lemma 4.4. For any n ≥ 3, the function L, defined in Lemma 4.3,
is continuous on [0,∞)n and smooth on (0,∞)n. Fixing (d1, . . . , dn−1)
and taking the restriction of L to [0,∞)×{(d1, . . . , dn−1)} as a function
of J , we have

∂

∂J
L(J) < 0 for all J > 0,

L(0) =
n−1∑
i=1

di

and

lim
J→∞

L(J) = 2 sinh−1

( n−1∑
i=1

sinh(di/2)

)
.
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Proof. The value of L(0) follows directly from its definition, as does
the computation below:

1

2
cosh(L(J)/2)

∂L

∂J
= sinh J

[
sinh

(
1

2

n−1∑
i=1

ψ(di, J)

)(4.3)

− cosh

(
1

2

n−1∑
i=1

ψ(di, J)

) n−1∑
i=1

tanh(ψ(di, J)/2)

]
.

We also appealed to Lemma 4.2 for the derivative of ψ with respect
to J . That ∂L/∂J < 0 now follows from the fact that

∑
tanhxi >

tanh (
∑
xi). This follows by induction along the lines of Claim 1.9

in the proof of Proposition 1.6, using the angle addition identity for
hyperbolic tangent:

tanh(x+ y) =
tanhx+ tanh y

1 + tanhx tanh y
.

For the limit J → ∞, we note that the quantity in brackets in the
definition of L is of the form ∞·0, so rewriting coshJ as 1/(1/ cosh J),
applying l’Hôpital’s rule and simplifying, gives:

lim
J→∞

cosh J sinh

(
1

2

n−1∑
i=1

ψ(di, J)

)
= lim

J→∞
cosh

(
1

2

n−1∑
i=1

ψ(di, J)

)
n−1∑
i=1

sinh(di/2) cosh J√
cosh2 J + sinh2(di/2)

=
n−1∑
i=1

sinh(di/2).

It follows that the limit of L is as described. �

Proposition 4.5. If (d0, . . . , dn−1) is the side length collection of an
equidistant n-gon with di0 maximal among the di, then di0 ≤

∑
i ̸=i0

di,

but sinh(di0/2) >
∑

i ̸=i0
sinh(di/2). For n ≥ 3, any (d0, . . . , dn−1) ∈

(0,∞)n satisfying the above inequalities is the side length collection of
a unique equidistant n-gon, up to isometry. In particular, the collar
radius is uniquely determined by, and moreover, a symmetric function
of, (d0, . . . , dn−1). Two equidistant n-gons are isometric if and only if
their side length collections differ by a cyclic permutation.
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Proof. For an equidistant polygon {x0, . . . , xn−1}, with side length
collection (d0, . . . , dn−1) and collar radius J , if xi0 is first among the
xi, then Lemma 4.3 implies that

di0 = Li0(J)
.
= 2 sinh−1

[
coshJ sinh

(
1

2

∑
i ̸=i0

ψ(di, J)

)]
.

By Lemma 4.4, Li0 is continuous and strictly decreasing on [0,∞),
with Li0(J) ≤

∑
i ̸=i0

di and sinh(Li0(J)/2) >
∑

i̸=i0
sinh(di/2), for all

J . The same inequalities therefore hold for di0 , which in particular is
maximal among the di.

On the other hand, given (d0, . . . , dn−1), such that the maximal
entry di0 satisfies di0 ≤

∑
i ̸=i0

di and sinh(di0/2) >
∑

i ̸=i0
sinh(di/2),

since Li0 as defined above is continuous on [0,∞), there exists some
J ≥ 0 such that di0 = Li0(J). Therefore, by Lemma 4.3, there is an
equidistant n-gon B with side length collection (d0, . . . , dn−1) and collar
radius J . Moreover, since Li0 is strictly decreasing, this J is uniquely
determined by (d0, . . . , dn−1). Therefore, by Lemma 4.3 again, P is
unique up to isometry.

We note that cyclically relabeling the vertices of an equidistant poly-
gon produces an isometric (by the identity map) equidistant polygon,
whose side length collection is obtained from the original by the same
cyclic relabeling. On the other hand, it is clear that an isometry of
equidistant polygons takes the side length collection of one to a cyclic
permutation of the side length collection of the other.

We note that L(J) is symmetric in (d1, . . . , dn−1). This is clear
by inspecting its definition in Lemma 4.4. Since the collar radius
J(d0, . . . , dn−1) of an equidistant n-gon with side length collection
(d0, . . . , dn−1) is determined by the equation,

d0 = L(J, d0, . . . , d̂i0 , . . . , dn−1),

it is therefore invariant under any permutation of the entries fixing the
i0 place. But we have already shown that cyclically permuting side
lengths yields isometric equidistant polygons, thus with identical collar
radii. Symmetricity of collar radius follows. �

The following corollary is immediate. Here we use marked as in
Corollary 1.16.
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Corollary 4.6. For n ≥ 3, marked equidistant n-gons in H2 are
parametrized up to isometry by:

En =
{
d | sinh(di0/2) >

∑
i̸=i0

sinh(di/2) but di0 ≤
∑
i ̸=i0

di, for some i0

}
.

Above, we take d = (d0, . . . , dn) ∈ (R+)n. The topological frontier of
En in (0,∞)n is

HCn ⊔
{
(d0, . . . , dn−1) | di =∑

j ̸=i

dj for some i

}
.

Proposition 4.7. The function J : En → Rn that records the collar
radius of equidistant n-gons is symmetric and continuous on En and
smooth on its interior. If di0 is maximal among the di, then:

∂J

∂di
(d) =

1

2

± cosh(di/2) coth J
√

cosh2 J+sinh2(di0/2)

cosh2 J+sinh2(di/2)

sinh(di0/2)−
∑

j ̸=i0
sinh(dj/2)

√
cosh2 J+sinh2(di0/2)

cosh2 J+sinh2(dj/2)

.

Here the ± is + for i = i0 and − otherwise. Values of J approach
infinity on sequences approaching HCn, and J(d0, . . . , dn−1) = 0, if
and only if di0 =

∑
i̸=i0

di for some i.

Proof. Collar radius J satisfies the equation di0 = L(J, d0, . . . , d̂i0 ,
. . . , dn−1), by Lemma 4.3. Applying Lemma 4.4 and the implicit
function theorem, we find that J is smooth on En, with:

∂J

∂di0
=

1

∂L/∂J

∂J

∂di
= −∂L/∂di

∂L/∂J
, i ̸= i0,

compare the proof of Lemma 1.19. Keeping in mind that di0 = L at
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the point in question, the computation from (4.3) yields:

∂L

∂J
= 2

sinhJ
√
cosh2 J + sinh2(di0/2)

coshJ cosh(di0/2) sinh(di0/2)√
cosh2 J + sinh2(di0/2)

−
∑
i ̸=i0

sinh(di/2)√
cosh2 J + sinh2(di/2)

 .
Another computation gives:

∂L

∂di
=

cosh(di/2)

cosh(di0/2)

√
cosh2 J + sinh2(di0/2)

cosh2 J + sinh2(di/2)
.

The derivative computation described above follows. That J takes
the value 0 at (d0, . . . , dn−1), if and only if, di0 =

∑
i ̸=i0

di0 for

some i0, follows from Lemma 4.4, since L satisfies L(0) =
∑

i ̸=i0
di

and ∂/∂JL < 0, on (0,∞), with di0 = L(J, d0, . . . , d̂i0 , . . . , dn−1) by
Lemma 4.3.

The argument that J → ∞ approaches HCn is essentially identical
to the proof of Lemma 3.6. It again uses Lemma 4.4, since

lim
J→∞

L(J) = 2 sinh−1

(∑
i ̸=i0

sinh(di/2)

)
. �

Proposition 4.8. For n ≥ 3, an equidistant n-gon {x0, . . . , xn−1} in
a component, C, of the J-equidistant locus to a geodesic γ in H2, is the
vertex set of its convex hull, a compact, convex polygon, P , contained
region between C and γ. The edges of P are the geodesic arcs γi joining
xi−1 to xi for each i > 0, together with γ0 joining xn−1 to x0.

For each i, let Qi be the quadrilateral with vertices at xi−1, xi (if
i = 0, at x0 and xn−1) and their projections to γ. Then, if xi0 is
first among the xi, P ∪ Qi0 decomposes as the non-overlapping union∪

i ̸=i0
Qi.

Proof. The description of P follows as in Lemma 2.1. The key fact is
that, for any x and y on C, the geodesic through x and y intersects C in
{x, y}; and it intersects the region bounded by C and γ in the geodesic
arc joining x to y. In particular, this region is convex. This in turn
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follows from convexity of the hyperbolic metric (see e.g., the discussion
at the beginning of [2, Chapter II.2], in particular, Proposition 2.2
there).

The decomposition of P ∪Qi0 follows similarly to the non-centered
case of Proposition 2.2. �

Proposition 4.9. The function D0 : En → R+ that records area of
equidistant n-gons is symmetric and continuous on En and smooth on
its interior. It satisfies:

∂D0

∂di
=

−
√
(1/sinh2 J) + (1/cosh2(di0/2)) i = i0,√

(1/sinh2 J) + (1/cosh2(di/2)) otherwise,

where di0 is maximal among the di. D0(d0, . . . , dn−1) = 0 if and only
if di0 =

∑
i̸=i0

di for some i0, and D0 extends continuously to HCn by
the formula of Proposition 3.7.

Proof. The proof follows our strategy from the cyclic case. Let
{x0, . . . , xn−1} be an equidistant polygon with side length collection
(d0, . . . , dn−1), and suppose xi0 is first among the xi. For each i, let Qi

be the quadrilateral defined in Proposition 4.8. As we observed in the
proof of Lemma 4.2, Qi admits a reflection exchanging xi−1 with xi,
so it has identical angles there. Call this angle αi. It is determined by
formula (4.2) with di substituted for d. Note that αi is continuous in
d and J on [0,∞)2 and smooth on (0,∞)2. Since Qi has right angles
at its vertices on γ, it has area π − 2αi.

Assuming that J depends on d, a computation gives:

∂

∂di
area (Qi) =

(sinh J/cosh(di/2)) + 2(sinh(di/2)/coshJ)(∂J/∂di)√
cosh2 J + sinh2(di/2)

.

For j ̸= i, the derivative ofQi with respect to dj is identical to the above
except that the numerator lacks the term sinh J/ cosh(di/2), and there
∂J/∂dj replaces ∂J/∂di. Here J = J(d0, . . . , dn−1) is the collar radius
of {x0, . . . , xn−1}.
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The decomposition of Proposition 4.8 gives

D0(d0, . . . , dn−1) =

(∑
i ̸=i0

area (Qi)

)
− area (Qi0).

By Proposition 4.7, J(d0, . . . , dn−1) = 0 if and only if di0 =
∑

i ̸=i0
di

for some i0, so it follows from that result and properties of area (Qi)
described above that D0 is smooth on the interior of En. Taking
derivatives now yields:

∂D0

∂dj
=



2

coshJ

∂J

∂di0

∑
i ̸=i0

sinh(di/2)√
cosh2 J + sinh2(di/2)


− sinh(di0/2)√

cosh2 J + sinh2(di0/2)


− sinhJ

cosh(di0/2)
√
cosh2 J + sinh2(di0/2)

j = i0,

2

coshJ

∂J

∂dj

∑
i ̸=i0

sinh(di/2)√
cosh2 J + sinh2(di/2)


− sinh(di0/2)√

cosh2 J + sinh2(di0/2)


+

sinh J

cosh(dj/2)
√
cosh2 J + sinh2(dj/2)

j ̸= i0.

Substituting for ∂J/∂dj and simplifying yields the formulas claimed,

noting in particular that cosh2(dj/2)+ sinh2 J = sinh2(dj/2)+ cosh2 J
by trading a sum with one from one term to the other.

If (d0, . . . , dn−1) ∈ En has di0 =
∑

i ̸=i0
di for some i, then, by

Proposition 4.7, J(d0, . . . , dn−1) = 0, so for each i, αi = π/2 by
formula (4.2). It follows thatQi as described in Proposition 4.8 has area
0, so by that result D0(d0, . . . , dn−1) = 0 as well. By the results above,

D0 is strictly decreasing along the ray, (d0, . . . , di0−1)×
(
h0,
∑

i ̸=i0
di

]
×

(di0+1, . . . , dn−1), so it takes the value 0 only where di0 =
∑

i ̸=i0
di.



856 JASON DEBLOIS

Finally, since values of J limit to infinity on sequences approaching
HCn by Proposition 4.7, values of the αi determined by (4.2) limit to
sin−1(tanh(di/2)) = cos−1(1/ cosh(di/2)). �

Corollary 4.10. For n ≥ 3, d = (d1, . . . , dn−1) ∈ (R+)n−1, and
d0 ≥ D = max{di}, (d0,d) lies in:

Cn if D ≤ d0 < b0(d),

BCn if d0 = b0(d), defined in Proposition 1.18,

ACn − (Cn ∪ BCn) if b0(d) < d0 < h0(d),

HCn if d0 = h0(d), defined in Corollary 3.5,

En if h0(d) < d0 ≤
∑n−1

i=1 di.

Moreover, as a function of d0, D0(d0,d) is continuous, strictly increas-
ing on [D, b0(d)] and strictly decreasing on[

b0(d),

n−1∑
i=1

di

]
.

Proof. The breakdown of where points on the ray [D,
∑
di] lie

follows from Proposition 1.17 (for Cn and BCn), Corollaries 1.16 (for
ACn), 3.5 (for HCn), and 4.6 (for En). Continuity follows from
Propositions 3.7 and 4.9, monotonicity from Propositions 2.3 and
4.9. �

Corollary 4.11. For fixed positive real numbers d1, . . . , dn−1, among
all hyperbolic n-gons with n − 1 sides of these lengths, the area is
maximized by the semicyclic ones with final side length greater than
max{di}.

Proof. The minimal possible final side length of a hyperbolic n-gon
is

D0 = max

{
0, di0 −

∑
i ̸=i0

di

}
,

where di0 is maximal among the di. Let us take d = (d1, . . . , dn−1) ∈
(0,∞)n−1), and consider the values of the area function D0 at points

(d0,d) for d0 ∈ [D0,
∑n−1

i=1 di]. These are maximized at d0 = b0(d)
since, by Corollary 4.10, this point maximizes the value of D0(d0,d) for
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d0 ≥ D = max{di}, and Propositions 2.3 and 4.9 imply that D0(d0,d)
increases for D0 ≤ d0 ≤ D.

The point (b0(d),d) ∈ BCn represents a semicyclic n-gon with
n − 1 sides of length d1, . . . , dn−1 (see Corollary 4.10 above). Its area
maximizes areas of all cyclic, horocyclic or equidistant n-gons with
n − 1 sides of length d1, . . . , dn−1, since D0 is symmetric. But, by
Schlenker’s Theorem C [12, pp. 2159–2160], the area of all hyperbolic
n-gons with a fixed side length collection is maximized by the cyclic,
horocyclic, or equidistant n-gon with that side length collection. Our
result follows. �

5. Degenerations. This section describes the closure ACn of ACn

in [0,∞)n. By Corollary 3.5, ACn ∪ HCn is the closure of ACn in
(0,∞)n. It thus remains to describe limits of Cauchy sequences in ACn

that have some entries approaching 0. The limit of most such sequences
lies in copies of ACm, for m < n.

Lemma 5.1. Fix n ≥ 3. For each m with 0 < m < n, let Im,n be
the collection of I = (i0, . . . , im−1) ∈ Nm such that 0 ≤ i1 < i2 <
· · · < im ≤ n − 1. For such an m and I, define ϕI : Rm → Rn by
ϕI(x0, . . . , xm−1) = (y0, . . . , yn−1) where, for 0 ≤ i ≤ n− 1,

yi =

{
xij if i = ij , for some 0 ≤ j ≤ m− 1,

0 otherwise.

Taking ∆ = {(r, r) | r ≥ 0}, the closure of ACn in [0,∞)n is:

ACn ⊔HCn ⊔
( ⊔

3≤m<n

I∈Im,n

ϕI(ACm ∪HCm)

)
⊔
( ∪

I∈I2,n

ϕI(∆)

)
.

Call this union ACn. Any two ϕI(∆) intersect only at (0, . . . , 0).
The closure of Cn has an entirely analogous description, but with each
instance of AC above replaced by C and each instance of HC replaced
by BC.

Proof. For a sequence in ACn converging in [0,∞)n to a point
(d0, . . . , dn−1) /∈ ACn ∪ HCn at least one entry di is equal to 0. Note
that, if all di = 0, then trivially, (d0, . . . , dn−1) ∈ ϕI(∆) for any
I ∈ I2,n, so we may assume this does not hold. Let di0 , di1 , . . . , dim
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be the non-zero entries, ordered so that i0 < i1 < · · · < im, and let
I = (i0, . . . , im) ∈ Im,n.

By construction, (d0, . . . , dn−1) ∈ ϕI((R+)m), and it is not hard to
see that m and I are unique with this property. The key observation
is that, for each j between 0 and m − 1, by definition of ACn (recall
Corollary 1.16) and continuity of the hyperbolic sine:

sinh(dij/2) ≤
∑
k ̸=j

sinh(dik/2).

It follows in short order that m > 1. If m = 2, then di0 = di1 ,
i.e., (d0, . . . , dn−1) ∈ ϕI(∆), and if m ≥ 3, then (d0, . . . , dn−1) ∈
ϕI(ACm ∪HCm). Moreover, (d0, . . . , dn−1) lies in ϕI(HCm) if and only
if equality holds for some j above (recall Corollary 3.5).

A similar argument using the definition of Cn (see Proposition 1.17)
shows that a limit point of Cn outside Cn is in ϕI(∆) or ϕI(Cm ∪BCm)
for some I in I2,n or Im,n for m ≥ 3, respectively.

Finally, it is not difficult to show, for each m ≥ 3 and I ∈ Im,n,
that each point of ϕI(ACm) (or ϕI(Cm)) is approached by a sequence
in ACn (respectively, Cn); and, moreover, that each point of ϕI(∆) is
approached by a sequence in Cn for any I ∈ I2,n. �

The parametrizations of BCn andHCn extend similarly to the closure
of (R+)n−1 in Rn−1.

Lemma 5.2. For n ≥ 3, the functions b0 and h0 on (R+)n−1

from Propositions 1.18 and 3.5, respectively, extend continuously to
[0,∞)n−1. For 3 ≤ m < n and I ∈ Im−1,n−1 (as in Lemma 5.1),
b0 = b0 ◦ ϕI and h0 = h0 ◦ ϕI on (R+)m−1.

Proof. For 3 ≤ m < n and d = (d1, . . . , dm−1) ∈ (R+)m−1, the

equation
∑m−1

i=1 θ(di, J) = π, is uniquely solved by J = b0(d)/2 >
max{di}/2. Since θ(d, J) decreases in J for any d > 0, it follows that

n−1∑
i=1

θ(di, J0) > π >

m−1∑
i=1

θ(di, J1),

for any J0 and J1 with max{di}/2 < J0 < b0(d)/2 < J1. Fixing
I ∈ Im−1,n−1, it follows that values of the corresponding sum on a
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fixed sequence in (R+)n−1 approach ϕI(d) greater than π at all J ≤ J0
and less than π for J ≥ J1. Therefore, values of b0 on this sequence
are eventually contained in (2J0, 2J1).

The above implies that b0 on (R+)n−1 extends continuously by b0◦ϕI
at ϕI(d). The proof for h0 is similar. Let us also note that b0(d) → 0
and h0(d) → 0 if d → 0. This is because the value of either function is
bounded above by (n − 1)max{di} at (d1, . . . , dn−1), a side length of
an n-gon whose other side lengths are the di.

It remains to consider limits with exactly one nonzero entry. Directly
applying the definitions in this case implies that the extensions must
satisfy:

b0(0, . . . , 0, d, 0, . . . , 0) = d = h0(0, . . . , 0, d, 0, . . . , 0).

Arguing as above establishes that the so-defined extensions are contin-
uous. �

The radius function J does not extend continuously to ACn since
it blows up near HCn. Moreover, it is not hard to show that
limx→0 h0(d, x) = d, and, by consequence, that (d, d, 0) (or indeed any
point of any ϕI(∆)) is a limit of horocyclic polygons. Because ϕI(∆) is
also in Cn, it follows that J does not have a well-defined limit on this
set. It does on the remainder of ACn, although .

Lemma 5.3. For any n ≥ 3, J : ACn → R+ extends continuously to⊔
ϕI(ACm), where I runs over index sets in Im,n with 2 < m < n, and

for such I that J ◦ ϕI = J . Here the left-hand J acts on ACn but the
right-hand J acts on ACm.

Proof. Since J : ACn → R is symmetric, it suffices to consider se-
quences in ACn converging to some (d, 0, . . . , 0) for d ∈ ACm, 2 < m <
n, i.e., to restrict attention to ϕI(ACm), where I = (0, 1, 2, . . . ,m− 1).
Moreover, we will assume that d has maximal first entry. Lemma 1.15
then implies that the equation d0 = ℓn(J, d1, . . . , dn−1) holds on a
neighborhood of d in ACm. We claim that, in fact, it holds on a
neighborhood of (d, 0, . . . , 0) ∈ ACn.

The key fact is that one of d0 = ℓn(J, d1, . . . , dn−1) or d0 =
ℓs(J, d1, . . . , dn−1) holds at each point of any such neighborhood, where
J = J(d0, . . . , dn−1). But, ℓs decreases in J on [D/2,∞), and
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ℓs(D/2) < D for D = max{di}n−1
i=1 , as calculated in the proof of

Lemma 1.15. The claim follows.

Lemma 1.15 asserts that J(d) > D/2, where D = max{di}m−1
i=1 .

Since ℓn increases in J we have ℓn(J0) < d0 < ℓn(J1) for any J0, J1
with D/2 < J0 < J(d) < J1, taking d0 here to be the initial entry of
d. But, on inspecting the definition of ℓn, it is clearly a continuous
function of (d1, . . . , dn−1, J), on a neighborhood of (d, 0, . . . , 0, J(d)),
so the inequality above holds for all (d0, . . . , dn−1) ∈ ACn sufficiently
near (d, 0, . . . , 0). It follows that J0 < J(d0, . . . , dn−1) < J1 at such
points. �

Below, we show that the area function D0 extends continuously to
all of ACn. Since the radius function J extends continuously to

ACn ∪
∪
ϕI(ACm),

the diagonal functions ℓi,j of Corollary 1.21 do too, so by its definition
in Corollary 1.23, D0 does as well. Proposition 3.7 further handles the
extension to HCn, so what we address below is the ϕI(∆).

Lemma 5.4. For any n ≥ 4 and 0 ≤ i0 < i1 ≤ n− 1, let I = (i0, i1).
For any d ≥ 0,

lim
d→ϕI(d,d)

ℓi,j(d) =

{
0 if i and j are cyclically between i0 and i1; or

d otherwise.

Here we say i and j are cyclically between i0 and i1 if either i0 ≤ i, j <
i1, or if each of i and j is less than i0 − 1 (taken to be n− 1 if i0 = 0)
or at least i1.

Proof. One simply observes that, for any cyclic polygon {x0, . . . , xn−1}
with side length collection (d0, . . . , dn−1) near ϕI(d, d), there is a se-
quence of edges joining xi to xj , such that all but at most one has
length near zero; and there is one with length near d if and only if i
and j are not cyclically between i0 and i1. The result thus follows from
the triangle inequality. �

Corollary 5.5. For any n ≥ 3, D0 : ACn → R+ extends continuously
to ACn, satisfying D0 ◦ϕI = D0 for any I ∈ Im,n with 2 < m < n, and
D0 ≡ 0 on ϕI(∆) for any I ∈ I2·n.
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Proof. For A as in Lemma 1.22 it is straightforward to compute:

lim
(x,y,z)→(0,0,0)

A(x, y, z) = 0 = lim
(x,y,z)→(d,d,0)

A(x, y, z).

Inspecting the definition of D0 in Proposition 2.3, one sees that its
values on a sequence approaching ϕI(d, d) are sums of limits of the
forms above. �
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