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ON THE GRAPH OF MODULES OVER
COMMUTATIVE RINGS

H. ANSARI-TOROGHY AND SH. HABIBI

ABSTRACT. Let M be a module over a commutative
ring and let Spec(M) be the collection of all prime sub-
modules of M. We topologize Spec(M) with quasi-Zariski
topology and, for a subset T of Spec(M), we introduce a
new graph G(77.), called the quasi-Zariski topology-graph. It
helps us to study algebraic (respectively, topological) proper-
ties of M (respectively, Spec(M)) by using graph theoretical
tools. Also, we study the annihilating-submodule graph and
investigate the relation between these two graphs.

1. Introduction. Throughout this paper, R is a commutative ring
with a non-zero identity and M is a unital R-module. By N < M
(respectively N < M) we mean that N is a submodule (respectively
proper submodule) of M and A(M) is the set of all non-zero submodules
of M. For any pair of submodules N C L of M and any element m of
M, we denote L/N and the residue class of m modulo N in M/N by
L and m, respectively.

For a submodule N of M, the colon ideal of M into N is defined
by (N:M)={re R|rM C N} = Ann(M/N). Further if [ is an
ideal of R, the submodule (N :p; I) is defined by {m € M : & C N}.
Moreover, N, Z and Q denote the set of positive integers, the ring of
integers, and the field of rational numbers, respectively.

For a subset T of Spec(M), S(T) is the intersection of all members
of T.

A prime submodule of M is a submodule P # M such that, whenever
re € P for some r € R and e € M, we have r € (P : M) or e € P [13].
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The prime spectrum (or simply, the spectrum) of M is the set of all
prime submodules of M and denoted by Spec(M). Also, the set of all
maximal submodules of M is denoted by Max(M).

The prime radical v/'N is defined to be the intersection of all prime
submodules of M containing N, and in the case of N is not contained
in any prime submodule, /N is defined to be M. Note that the
intersection of all prime submodule M is denoted by rad(M).

The quasi-Zariski topology on X := Spec(M) is described as follows:
put V¥(N) = {P € X : P D N} and &(M) = {V*(N) : N is a
submodule of M}. Then there exists a topology 7* on X having &* as
the set of closed subsets of Spec(M) if and only if £* is closed under
the finite union. When this is the case, 73, is called the quasi-Zariski
topology on Spec(M) and M is called a top module [14].

If Spec(M) # (), the mapping ¥ : Spec(M) — Spec(R/ Ann(M))

such that ¥(P) = (P : M)/Aun(M) = (P: M) for every P €
Spec(M), is called the natural map of Spec(M) [6].

A topological space X is said to be connected if there does not
exist a pair U, V of disjoint non-empty open sets of X whose union
is X. A topological space X is irreducible if, for any decomposition
X = X1 U Xy with closed subsets X; of X with i = 1,2, we have
X = Xy or X = Xy. A subset X’ of X is connected (respectively
irreducible) if it is connected (respectively irreducible) as a subspace
of X.

The zero-divisor graph of R, I'(R), is a graph with the vertex set
Z(R) \ {0}, the set of nonzero zero-divisors of R, and two distinct
vertices = and y are adjacent if and only if xy = 0. The concept of
the zero-divisor graph was first introduced by Beck (see [7]). Since
many properties of a ring are closely tied to the behavior of its ideals,
it is valuable to replace the vertices of the zero-divisor graph by the
non-zero annihilator ideals. The idea of a graph, whose vertices are a
subset of ideals of a ring, was introduced recently in [10]. They defined
AG(R), the annihilating-ideal graph of R, to be a graph whose vertices
are ideals of R with non-zero annihilators and in which two vertices
and J are adjacent if and only if I.J = 0.
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Let N and L be submodules of M. Then the product of N and
L is defined by (N : M)(L : M)M and denoted by NL, and clearly
Nk = (N : M)*M (see [3]).

In [4], the present authors generalized the above idea, introduced
the annihilating-submodule graph AG(M) and investigated some of
its related properties. The (undirected) graph AG(M) is a graph
with vertices V(AG(M)) = {N < M: there exists a non-zero proper
submodule L of M with NL = 0}, where distinct vertices N, L are
adjacent if and only if NL = 0.

As we know, the closed subset V*(N), where N is a submodule of
M, plays an important role in the quasi-Zariski topology on Spec(M).
Our main purpose in this article is to employ these sets and define a
new graph G(7}), called the quasi-Zariski topology-graph. By using
this graph, we study algebraic (respectively, topological) properties of
M (respectively, Spec(M)). Further, we investigate the relationship
between G(71) and AG(M/(T)), where T denotes a non-empty subset
of Spec(M) and ¥(T') is the intersection of all members of T'.

G(r5 ) is an undirected graph with vertices V(G(73)) = {N <
M: there exists K < M such that V*(N) U V*(K) = T and
V*(N),V*(K) # T}, where T is a non-empty subset of Spec(M) and
distinct vertices N and L are adjacent if and only if V*(N)UV*(L) =T
(see Definition 2.1).

Let M be a top module. In Section 2 of this article, among other
results, it is shown that the quasi-Zariski topology-graph G(77) is
connected and diam(G(75)) < 3. Further if G(7}) contains a cycle,
then gr(G(7;)) < 4 (see Theorem 2.6). Also, it is shown that G(7}.)
has a bipartite subgraph (see Theorem 2.14).

In Section 3, we explore more properties of AG(M). In Proposi-
tion 3.4, we show that if M is a non-simple semisimple R-module, then
every non-zero proper submodule of M is a vertex. In Theorem 3.7, we
provide some useful characterizations for those modules M for which
AG(M) = K,, where [A(M)| = a.

In Section 4, the relationship between G(7}) and AG(M/(T)) is
investigated. We show that, if N and L are non-zero proper submodules
of M which are adjacent in G(73), then vVN/X(T) and vVL/S(T) are
adjacent in AG(M/S(T)) (see Proposition 4.5). Also we show that, if
M is a finitely generated module and G(7;) # 0, then AG(M/I(T)) is
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isomorphic with a subgraph of G(7). Further, we prove that, if M is
a fully semiprime module, then G(73) is isomorphic with a subgraph
of AG(M/S(T)) (see Theorem 4.6).

Let us introduce some graphical notation that is used in what follows.
A graph G is an ordered triple (V(G), E(G), 1) consisting of a non-
empty set of vertices, V(G), a set E(G) of edges, and an incident
function ¥ that associates an unordered pair of distinct vertices with
each edge. The edge e joins x and y if ¥g(e) = {z,y}, and we say z
and y are adjacent. The degree dg(z) of a vertex z is the number
of edges incident with z. A path in graph G is a finite sequence
of vertices {zo,%1,...,2Zn}, where x;_1 and xz; are adjacent for each
1 <4 < n and we denote x;_; — x; for an existing edge between x;_1
and z;. The number of edges crossed to get from x to y in a path
is called the length of the path. A graph G is connected if a path
exists between any two distinct vertices. For distinct vertices z and y
of G, let d(z,y) be the length of the shortest path from x to y and,
if there is no such path, then d(z,y) = oco. The diameter of G is
diam(G) = sup{d(z,y) : =,y € V(G)}. The girth of G, denoted by
gr(@), is the length of the shortest cycle in G and, if G contains no
cycles, then gr(G) = oo (see [1]).

A graph H is a subgraph of G if V(H) C V(G), E(H) C E(G) and
vy is the restriction of ¢ to E(H). We denote the complete graph on
n vertices by K,. A bipartite graph is a graph whose vertices can be
divided into two disjoint sets U and V such that every edge connects
a vertex in U to one in V; that is, U and V are each independent sets
and complete bipartite graphs on n and m vertices, denoted by K, r,,
where V and U are of size n and m, respectively, and E(G) connects
every vertex in V' with all vertices in U (see [16]).

In the rest of this article, M denotes a top module, T' a non-empty
subset of Spec(M), I(T') is the intersection of all members of T', M
represents the R-module M/S(T), and for a submodule N of M,

N = N/S(T), where S(T) C N, is a submodule of M.
2. The qausi-Zariski topology-graph.

Definition 2.1. We define a quasi-Zariski topology-graph G(r7) with
vertices V(G (73))= {N < M: there exists K < M such that V*(N) U
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V*(K)=T and V*(N),V*(K) # T}, where distinct vertices N and L
are adjacent if and only if V*(N)UV*(L) =T.

Notation 2.2. By [14, Lemma 2.1], if M is a top module, then for
every pair of submodules N and L of M, we have V*(N) U V*(L) =

V*(VN)uV*(VL) = V*(VNnVL).

Proposition 2.3. The following statements hold.

(i) G(r5) # 0 if and only if T is closed and is not an irreducible
subset of Spec(M).
(ii) G(r3) # 0 if and only if T = V*(I(T)) and T is not an irreducible
subset of Spec(M).
(ii) G(73) # 0 if and only if T = V*(I(T)) and I(T') is not a prime
submodule of M .

Proof.

(i) Straightforward.

(i) Suppose that G(7;) # 0. By part (i), it is enough to show that
T = V*(X(T)) which is a closed set. Clearly, T C V*(X(T)).
Next, let V*(N) be any closed subset of Spec(M) containing 7'
Then P O N for every P € T so that (7)) O N. Hence, for every
Q € V*((T)) and Q D I(T) 2 N, namely, V*(3(T)) C V*(N),
it follows that V*(3(T)) is the smallest closed subset of Spec(M)
containing 7. Hence, V*(3(T)) =T.

(iii) It follows from part (ii) and [8, Theorem 3.4]. O

Example 2.4. Set R :=Z and M := Z ® Z(p*°), where p is a prime
integer of Z. Then, by [6, Examples 3.1], Max(M) = {p;,ZSZ(p*™°) : i €
N}, Spec(M) = Max(M)U{(0) & Z(p>)}, where p; is a prime number
for every i € N, and M is a top module. We have V*((0) & Z(p>)) =
Spec(M). Hence Spec(M) is irreducible and G(7§ ..(n)) = 0.

Example 2.5. Set R:=7 and M := Q & (®ienZ/p;Z). Then by [6,
Examples 3.1],

Max(M) = {Q ® (Dien,iziZ/piZ)},

Spec(M) = Max(M) U {(0) & (ienZ/piZ)},
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and M is a top module. Now, Q & (0) and {(0) & (D;enZ/piZ)} are
adjacent in G(75,.(nr)) 50 that G(7g,..(ar)) # 0

The following theorem illustrates some graphical parameters.

Theorem 2.6. The quasi-Zariski topology-graph G(73) is connected
and diam(G(71)) < 3. Moreover, if G(1}) contains a cycle, then
gr(G(rp)) < 4.

Proof. Suppose N, K € V(G(7})) and they are not adjacent. Then
V*(N)UV*(K) # T, so there exist L,V € V(G(r%)) with V*(v/N N
VL) = V*(VKNVV)=T. If L =V, then N — L — K is a path
of length 2. Thus, we assume that L # V. If V*(VLNVV) = T,
then N — L —V — K is a path of length 3. If V*(VLNVV) # T,
then N — VLN +VV — K is a path of length 2 (if N = /L NV, then
V*(N)UV*(K) = V¥(L) UV*(V)UV*(K) so that T = V*(~/V N
VK) = V*(WLNVV N VK). Thus, V*(WN)NV*(VK) = T, a
contradiction. Similarly, we have K # /L N+/V). Now suppose that
gr(G(ry)) > 4. We can assume that gr(G(r})) = k, where k > 4.
Then N1 —NQ—Ng—N4—N5—~'~—Nk_1 —Nk—Nl is acycle of
length k. Clearly, V*(N2) U V*(Ny_1) # T. Now one can see that
N1 —+v/Nany/Ni_1 — N, — Ny is a 3-cycle, a contradiction. So we have
gr(G(ry)) < 4. Hence, the proof is complete. O

Proposition 2.7. Let M be an R-module, and let 1) : Spec(M) —
Spec(R/ Ann(M)) be the natural map. Suppose Spec(M) is homeo-
morphic to Spec(R/ Ann(M)) under o). Let (N : M)M and (L : M)M
be adjacent in G(7}), and let T' = {(P: M) : P € T}. Then (N : M)
and (L : M) are adjacent in G(73,). Conversely, if I and J are adjacent
in G(13.), then IM and JM are adjacent in G(T7).

Proof. Since 1 is injective, ¢y ~1(T") = T. Also we have V*((N :
MYM)UV*((L: M)M) =T. Hence,

S(VH((N : M)M)) U (V((L - M)M)) =T".

This implies that V(N : M) U V(L: M) = T’ (note that V*((V :
MYM)=T < V(N :M)=T"). Conversely, suppose V(I) UV (J) =
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T'. Then 4~ (V(T)) Uy~ (V(T)) = T so that V*(IM)UV*(JM) =T
(note that V*(I) =T' & V*(IM) =T). O

Lemma 2.8. Let G(7}) # 0 and let P € T. Then P is a vertex if
either of the following statements holds.

(i) There exists a subset T" of T such that P € T", V*(Nger Q) =T,
and V*(HQET’,Q;éPQ) 7& T.

(ii) For a submodule N of M, N € V(G(73)) and VN N P ¢
V(G(7))-

Proof. Straightforward. O

The following theorem shows the situations in which 7" contains some
vertices.

Theorem 2.9. Suppose T is a finite set and G(77.) # 0. Then

() TOV(G(r})) £ 0.
(ii) If T C Max(M), then every P € T is a vertex.
(iii) If P € TNMin(M), then P is a vertex.

Proof.

(i) Let P € T. Then we have V*(P) U V*(Nger,o£rQ) = T. If
V*(Nger,02pQ@) # T, then P is a vertex. Otherwise, we have
V*(Nger,£pQ) = T. Since T is not irreducible, there exists a
non-empty subset 77 of T and P’ € T’ such that

V*(Nper\rP) #T and  V*(Nperr\ruipy P) =T.

Thus, P € TN V(G(Ti’i))
(ii) Clearly, V*(P)UV*(QQeT)CHgPQ) =T and V*(ﬂQeT’Q?gpQ) #T.
(iii) Clearly, V*(P)UV*(Nger,0xrQ) =T and V*(ﬂQenQ#pQ) #T.

Example 2.10. Consider Example 2.4. If |T| > 2 and T C {pZ &
Z(p™®),...,pnZ ® Z(p>)}, then every element of T is a vertex. More-
over, in Example 2.5, if |T'| > 2 and
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T C{Q® (Dien,ix1Z/piZ), ..., QD (DieN,ignl/pil)},

then every element of T is a vertex.

Definition 2.11. We define a subgraph G4 (7) of G(75) with vertices
V((Ga(ry))) = {N < M: there exists L < M such that V*(N) U
V*(L) = T, V*(N),V*(L) # T and V*(N) N V*(L) = 0}, where
distinct vertices N and L are adjacent if and only if V*(N)UV*(L) =
T and V*(N)NV*(L) = 0. It is clear that the degree of every
N € V((Gq4(73))) is the number of submodules K of M such that
V*(L) = V*(K), where L is adjacent to N.

We need the following remark.

Remark 2.12. We recall that the Zariski topology on Spec(M) is the
topology Tas described by taking the set Z(M) = {V(N): N < M} as
the set of closed sets of Spec(M), where V(N) = {P € Spec(M) : (P :
M) D (N : M)} [12]. If M is a multiplication module, then 7py = 73,
by [14, Theorem 3.5].

Proposition 2.13. The following statements hold.

(i) Ga(m5) £ 0 if and only if T = V*(I(T)) and T is disconnected.
(ii) Suppose M is an Artinian module and T is closed. Then Gq(77) =

—

0 if and only if R/ Ann(M) contains no idempotent other than 0
and 1.

Proof.
(i) Straightforward.

(ii) Since M is an Artinian module, then M / rad(]\//f ) is a Noetherian
module by [8, Corollary 2.30]. As M / rad(]/W\ ) is a finitely generated
top module, it is a multiplication module by [14, Theorem 3.5]. It
follows that TNL/ rad(KT) = T]’E[/rad(M) by Remark 2.12. So 7, = TXZ
because M and M / rad(]\//f ) are homeomorphic by Lemma 4.1. Also,
the natural map of M\/ rad(]/w\) is surjective (for, J/W\/ rad(]\?) is finitely
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generated). Hence, the natural map of M is surjective by the above
arguments. Now the result follows from [12, Corollary 3.8]. O

Theorem 2.14. G4(77}) is a bipartite graph.

Proof. At first we assume that G4(7}) contains a cycle. We show
that gr(Gq(r5)) < 4. Now suppose that gr(Gy(my)) > 4. We can
assume that gr(Gq(r})) = k, where k > 4. Then Ny — Ny — N3 — Ny —
Ns—-+-+—Ng_1 — Ni — N is a cycle of length k. Clearly, V*(Ny_1) =
V*(N1). Hence, one can see that Ny — Ny — N3 — -+ — Nj_o — Ny is
a cycle, a contradiction. So we have gr(Gy(75)) < 4. Now, by [16,
Proposition 1.6.1], G is a bipartite graph if and only if it does not
contain an odd cycle. Hence, by Theorem 2.6, it is enough to show
that gr(Gq(r})) # 3. Suppose N — L — K — N is a 3-cycle. Then

0=V (N)NVL) U (V" (N)NV*(K))
=V*(N)N(V(L)UV*(K))=V*(N)NT = V*(N).
Hence, V(N) = 0, a contradiction. O

Corollary 2.15. By Theorem 2.14, if Gq(77) contains a cycle, then
gr(Gq(my)) = 4.

Example 2.16. Set R := Z and M := Z/12Z. So Spec(M) =
Max(M) = {2Z/127,37/12Z}. Set T := Spec(M). Clearly, G(7}) =
Gq(77) is a bipartite graph and Z/(NperP : M) = 7Z/6Z contains
idempotents other than 0 and 1.

Example 2.17. Set R := Z and M := Z/30Z. So Spec(M) =
Max(M) = {2Z/30Z,3Z/30Z,5Z/30Z}. Set T := Spec(M). Clearly,

Ga(73) is a bipartite graph and Z/(NperP : M) = Z/30Z contains
idempotents other than 0 and 1.

The above example shows that G4(77) is not always connected.

Proposition 2.18. The following statements hold.



738 H. ANSARI-TOROGHY AND SH. HABIBI

(i) Ga(73) with two parts U and V is a complete bipartite graph if and
only if for every N, L € U (respectively in V), V*(N) = V*(L).
(ii) Gq(ry) is connected if and only if it is a complete bipartite graph.

Proof. Use the fact that if N and L are two vertices, then d(N, L) =
2 if and only if V*(N) = V*(L). O

We end this section with the following question.

Question 2.19. Let G(r5) # 0, where T is an infinite subset of
Spec(M). Is TNV (G(7)) # 07

3. The annihilating-submodule graph. As we mentioned be-
fore, AG(M) is a graph with vertices V(AG(M)) ={N <M :NL=0
for some 0 # L < M}, where distinct vertices N and L are adjacent
if and only if NL = 0 (here we recall that the product of N and L is
defined by (N : M)(L : M)M).

The following results reflect some basic properties of the annihilating-
submodule graph of a module.

Proposition A (][4, Proposition 3.2]). Let N be a non-zero proper
submodule of M.

(i) N is a vertex in AG(M) if Ann(N) # Ann(M) or (0 :py (N :
M) £0.

(ii) N is a vertex in AG(M), where M is a multiplication module, if
and only if (0 :ps (N : M)) # 0.

Remark 3.1. In the annihilating-submodule graph AG(M), M itself
can be a vertex. In fact M is a vertex if and only if every non-zero
submodule is a vertex if and only if there exists a non-zero proper
submodule N of M such that (N : M) = Ann(M). For example, for
every submodule N of Q (as a Z-module), (N : Q) = 0. Hence, Q is a
vertex in AG(Q).

Theorem B ([4, Theorem 3.3]). Assume that M is not a vertex. Then
the following hold.

(i) AG(M) is empty if and only if M is a prime module.
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(ii) A non-zero submodule N of M is a vertex if and only if (0 :p;
(N:M))#Q0.

Theorem C ([4, Theorem 3.4]). The annihilating-submodule graph
AG(M) is connected and diam(AG(M)) < 3. Moreover, if AG(M)
contains a cycle, then gr(AG(M)) < 4.

Lemma 3.2. Let M be an R-module and Ann(M) a prime ideal. Then
diam(AG(M)) < 2.

Proof. Suppose N and L are adjacent in AG(M). Then (N : M) =
Ann(M) or (L : M) = Ann(M). Assume that (N : M) = Ann(M). So
every non-zero submodule M is a vertex and adjacent to N. Hence,
diam(AG(M)) < 2. O

Proposition 3.3. The following statements hold.

(i) Let M = Rm be a cyclic R-module. Then M is not a vertez.

(ii) Let M = My ® Ms, where My, My are non-zero R-submodules of
M. Then every non-zero submodule of My is adjacent to every
non-zero submodule of Ms.

(iii) Assume that AG(M) = (). Then module M is an indecomposable
module.

Proof.

(i) This follows from Remark 3.1 and the fact that every cyclic R-
module is multiplication.

(ii) Let 0 # N < M; and 0 # K < Ms. Clearly, (N @ (0) : M) =
(N :Mp)N(0: Ms). Hence, (N @ (0) : M) C (0: Ms). Similarly,
((0)® K : M) C (0: My). Therefore, (N & (0))((0) ® K) = 0.
This in turn implies that N and K are adjacent in AG(M).

(iii) The proof follows from part (ii). |

We allow « to be infinite cardinal, where o« = |[A(M)|. (We recall
that A(M) is the set of all non-zero submodules of M)

Proposition 3.4. The following statements hold.
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(i) Let M be a non-simple semisimple R-module. Then every non-
zero proper submodule of M is a verter.

(ii) Let M be a non-simple homogeneous semisimple R-module. Then
AG(M) = K,.

(iii) Let M be a prime module with a non-zero socle. Then AG(M) = ()
or AG(M) = K,.

(iv) Let M be a non-simple module with a mon-zero socle. Then
AG(M) # 0. In particular, AG(M) # O when M is a non-simple

Artinian module.

Proof.

(i) Since M is a semisimple module, we have M = ®,¢;T, where,
for each o € I, T, is a simple submodule of M. Now let N be an
arbitrary non-zero submodule of M. Then, by [2, Proposition 9.4],
there exist a subset I’ C I and a decomposition N = @, Ty. Set
K=onpT, Then NK € NN K = 0. It follows that N is a vertex.

(ii) Since M is a homogeneous semisimple module, it is clear that
Ann(M) is a maximal ideal of R. Hence for every non-zero submodule
N of M, we have (N : M) = (0 : M). We conclude that if N and K
are two non-zero distinct submodules of M, then NK = 0, as desired.

(iii) This follows from part (ii) because every prime module with a
non-zero socle is homogeneous semisimple (see [9, Corollary 1.9]).

(iv) Suppose that M is not a simple module with Soc(M) # 0.
Then there exists a minimal submodule Rm of M, where m is a non-
zero element of M. Now (0 : m) is a maximal ideal of R and we have
(Rm)((0: m)M) = 0. This shows that AG(M) # 0. O

Example 3.5. Put R :=Z and M := ®;enZs. Since M is a direct sum
of isomorphic simple modules, then M is a homogeneous semisimple
module. For every non-zero proper submodule N of M, we have
(N : M) = Ann(M). Hence every non-zero submodule N and K
are adjacent in AG(M).

Proposition 3.6. Let M be a non-simple prime module. Then
AG(M) = K., if and only if every non-zero proper submodule of M is
adjacent to M.



MODULES OVER COMMUTATIVE RINGS 741

Proof. The sufficiency is clear.

To see the converse, let N € V(AG(M)). Then there exists
a non-zero proper submodule L of M such that NL = 0. Since
Ann(M) is a prime ideal of R, it follows that (N : M) = Ann(M)
or (L: M) = Ann(M). So every non-zero submodule M is a vertex by
Remark 3.1. Now, since AG(M) is a complete graph, every non-zero
proper submodule of M is adjacent to M. |

Theorem 3.7. Consider the following statements.

(
(ii) Ewery non-zero proper submodule of M is adjacent to M.

i) Ann(M) is a prime ideal and M is a divisible R/ Ann(M)-module.
)

(iii) For each ideal I of R, we have IM = M or IM = 0.

(i V; G(M) = K,.

i
i
(v) M is a non-simple homogeneous semisimple module.

Then (i) — (i) — (iii)) — (iv) — (1). Moreover, if M is a finitely
generated module then (v) < (i).

Proof. (i) — (ii). Let N be a non-zero proper submodule of M. We
show that (N : M) = Ann(M). Suppose r € (N : M) and rM # 0.
Since M is divisible by R/ Ann(M), we have rM = M. This implies
that N = M, a contradiction. Hence, N is adjacent to M, as desired.

(ii) — (i) and (ii) — (iii) are clear.

(iii) — (ii). Let N be a non-zero proper submodule of M and I an
ideal of R. Then (IM : M) = Ann(M) by hypothesis, where IM £ M.
Now we have (N : M) = (N : M)M : M) = Ann(M). This shows
that IV is adjacent to M, as required.

(i) > (iv). Straightforward.

(ii) — (v). Let M be a finitely generated R-module and let (N :
M) = Ann(M) for every proper submodule N of M. Then M is a
divisible R/ Ann(M)-module. We show that R/ Ann(M) is a field.
Suppose not. Then M has a maximal submodule, say N. So (N : M)
is a maximal ideal R. Hence there exists 0 # r € (N : M). But

rM = M is a contradiction. So Ann(M) is a maximal ideal and hence
M is a homogeneous semisimple module.

(v) — (ii). It is clear by Proposition 3.4 (ii). O
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Note that an R-module M is fully prime (respectively fully semi-
prime) if each proper submodule of M is prime (respectively semiprime).
In [9, Corollary 1.9], it is shown that M is fully prime (respectively,
fully semiprime) if and only if is homogeneous semisimple (respectively,
co-semisimple module).

Corollary 3.8. Let R be an integral domain with dim(R) = 1, and let
M be an R-module. Then every mon-zero proper submodule of M is
adjacent to M if and only if one of the following statements hold:

(i) M is a homogeneous semisimple module.
(ii) M is a divisible module.

Proof. Suppose that every non-zero proper submodule of M is ad-
jacent to M. Then Ann(M) is a prime ideal of R and M is a divisible
R/ Ann(M)-module by Theorem 3.7. If Ann(M) = 0, then M is a di-
visible R-module. Otherwise, since dim(R) = 1, it follows that Ann(M)
is a maximal ideal of R so that (N : M) = Ann(M) for every proper
submodule N of M. Thus every proper submodule of M is prime by
[14, Corollary 1.2]. This means that M is a homogeneous semisim-
ple. Conversely, first we assume that M is a homogeneous semisimple
module. Then Ann(M) is a maximal ideal of R so that every non-zero
proper submodule M is adjacent to M. In case M is a divisible module,
the claim follows from Theorem 3.7. O

4. The relationship between G(7;) and AG(M). A proper sub-
module N of M is said to be semiprime in M if, for every ideal I of
R and every submodule K of M, I?K C N implies that JK C N.
Further, M is called a semiprime module if (0) C M is a semiprime
submodule. Every intersection of prime submodules is a semiprime

submodule. A proper ideal I of R is semiprime if, for every ideal J and
K of R, J?K C I implies that JK C I [17].

Lemma 4.1. Suppose T is a closed subset of Spec(M) equipped with

the natural topology induced from of Spec(M). Then T and Spec(]\//j)
are homeomorphic.

Proof. Let ¢ : Spec(Z/\l\) — T = V*(3(T)) be defined by ¢(Q) = Q,
where @ € Spec(M). Clearly ¢ is a bijection map. We show that ¢ is a
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continuous map. Let U = TNV*(N) be a closed subset of T, where N

is a proper subset of M. Then we have ¢~ 1(U) = V*(N:S\(T)). We

show that ¢ is closed. Suppose U is a closed subset of Spec(M). Then
U=V*(N), where N < M. It is easy to see that ¢(U) = V*(N). O

One may think that since T" and Spec(]\//f ) are homeomorphic, study-
ing G(r7) can be reduced to studying G(7¢,..(r)), where L is a
semiprime module. But the following example shows that this is not
true.

Example 4.2. Set R :=Z, M := Z/12Z, and T := Spec(M). Then
G(r7) = K12 but G(Tékpec(M/ rad(M))) = K.

Remark 4.3. In fact G(7}) is a non-empty graph if and only if
|[E(G(77}))] > 1. The following lemma shows that the graph AG(M)
also has this property (i.e., |E(AG(M))| > 1) if M is a semiprime
module such that it is not a vertex in AG(M).

Lemma 4.4. Assume that M is not a vertex in AG(M). Then M is
a semiprime module if and only if for every non-zero submodule N of
M and each positive integer k, N* # 0.

Proof. The necessity is clear.

To see the converse, let NV be a submodule of M and let I be an ideal
of R. Let I?N = 0 and IN # 0. Then we have (IN)? = (IN : M)>M C
I’ N =0, a contradiction. Hence, M is a semiprime module. O

Proposition 4.5. The following statements hold.

(i) Suppose N and L are adjacent in G(7). Then VN and VL are
adjacent in AG(M).
(il) G(77) is isomorphic with a subgraph of AG(M) or |E(G(1}))| > 2.

Proof.

(i) Straightforward.
(ii) Assume that G(73) is not isomorphic with a subgraph of AG(M).
Hence there exist N,L € V(G(ry)) such that N and L are
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adjacent and N # +/N. Tt follows that N — L — +/N is a path of
length 2. O

Theorem 4.6. The following statements hold.

(i) Let M be a finitely generated module and G(7}) # 0. Then
AG(]\/J\) is isomorphic with a subgraph of G(77.).

(ii) Let M be a fully semiprime module. Then G(73) is isomorphic
with a subgraph of AG(JT/[\).

(iii) Let M be a semisimple module and suppose M is not a vertex in
AG(M). Then G(13) and AG(]\//.T) are isomorphic.

(iv) Let M be a homogeneous semisimple module. Then AG(]\/Z) =
Ko, where oo = |A(M)| and G(rr) =0.

Proof.

(i) By [14, Theorem 3.5], every finitely generated top module is
multiplication. One can see that if N and L are adjacent in AG(M )
then N and L are adjacent in G(7}.).

(ii) By [9, Theorem 2.3], M is a co-semisimple module. So

N:ﬂp

PEV*(N

where N < M. Hence, by Proposition 4.5 (i), it is easy to see that
G(7}) is isomorphic with a subgraph of AG(]\/]).

(iii) Let M be a semisimple module and suppose M is not a vertex in
AG(M). We show that M is a multiplication module. To see this, let
N be a proper submodule of M. Then there exists a family {7;,i € I'}
of minimal submodules of M such that N = @®;c;7;. Now for each
i € I, we have (T; : M)M = M (note that (T; : M)M # 0 because M
is not a vertex in AG(M)). Hence,

N = G?(T : M)M = <G?(T : M))M.

Thus, M is a multiplication module. It follows that, if N and L are
adjacent in AG(M), then N and L are adjacent in G(77). Since M
is a co-semisimple module, by using part (ii), we see that G(r7) is
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isomorphic with a subgraph of AG(]\//.T). Hence G(7}) and AG(]\//.T) are

isomorphic.
(iv) The first assertion follows from Proposition 3.4 (ii). To see the

second assertion, (T') is a prime submodule of M (see [9, Corollary
1.9]), thus G(r}) = by Proposition 2.3 (iii). O

Example 4.7. Put R := Z and M := ®;enZ/p;Z. Then, by [6,
Examples 3.1], Max(M) = Spec(M) = {p;M} = {®ien,iz,Z/piZL},
and M is a top module. G (Té"pec( M)) is an infinite graph, because every
element @;en i Z/p;Z of Spec(M) is adjacent to Z/p;Z. Hence, by
Theorem 4.6 (i), AG(M) is an infinite graph.

Lemma 4.8. Assume that () # V(AG(]\/Z) C Max(]\/l\). Then |T| = 2,
AG(M) = K, and it is isomorphic with a subgraph of G(77).

Proof. Suppose that P is a vertex in AG(]\//.T) such that P € Max(M).
Then there exists a non-zero proper submodule @ of M such that it
is adjacent to P, where, Q € Max(M). One can see that (P : M) C
(P': M)or (Q:M)C (P : M) for every P € T. Now since M
is a top module, by [14, Theorem 3.5] P = P’ or Q = P’. Hence,

—~

V*(P)UV*(Q) = T. It follows that |T'| = 2, AG(M) has only one edge
and it is isomorphic with a subgraph of G(77). O

Proposition 4.9. Assume that G(73) # 0.

(i) If M is a Noetherian R-module, then T = V* (PiN---NP,), where
for each i (1 <i<n), P; is a vertez.

(ii) If M is an Artinian R-module, then T = V*(PiN---NP,), where
for each (1 <i<mn), P; is a vertex. In particular, |T| = n.

Proof.

(1) Since M is a Noetherian module, M has a finite number of
minimal prime submodules by [15, Theorem 4.2]. Hence

Spec(M) = V*(P)U---UV*(P,),
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where each ¢ (1 < i < n), }/51 is a minimal prime submodule of M
and P; is a prime submodule of M. So, by Lemma 4.1, we have
T =V*(P)U---UV*(P,). Now the result follows from Lemma 2.8 (i).

(ii) As in the proof of Proposition 2.13 (ii), ]\//.7/ rad(]\//.T) is a Noe-
therian module. So M /rad(M) has a finite number of minimal prime

submodules. Hence, M has a finite number of minimal prime sub-
modules. So we have T = V*(P,) U --- U V*(P,) by part (i). To

see the second assertion, we note that, since M /rad(M) is a finitely
generated top module, it is a multiplication module by [14, Theorem

3.5]. It follows that J/M\/ rad(M\) is a cyclic Artinian module by [11,
Corollary 2.9], and hence, Spec(M/rad(M)) = Max(M /rad(M)). So

—

Spec(Z/W\) = Max(M). Hence, by the above arguments, we have |T'| = n,
and the proof is completed. |
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