ON THE GRAPH OF MODULES OVER COMMUTATIVE RINGS

H. ANSARI-TOROGHY AND SH. HABIBI

ABSTRACT. Let M be a module over a commutative ring and let $\operatorname{Spec}(M)$ be the collection of all prime submodules of M. We topologize $\operatorname{Spec}(M)$ with quasi-Zariski topology and, for a subset T of $\operatorname{Spec}(M)$, we introduce a new graph $G(\tau_T^*)$, called the $\operatorname{quasi-Zariski}$ topology-graph. It helps us to study algebraic (respectively, topological) properties of M (respectively, $\operatorname{Spec}(M)$) by using graph theoretical tools. Also, we study the annihilating-submodule graph and investigate the relation between these two graphs.

1. Introduction. Throughout this paper, R is a commutative ring with a non-zero identity and M is a unital R-module. By $N \leq M$ (respectively N < M) we mean that N is a submodule (respectively proper submodule) of M and $\Lambda(M)$ is the set of all non-zero submodules of M. For any pair of submodules $N \subseteq L$ of M and any element m of M, we denote L/N and the residue class of m modulo N in M/N by \overline{L} and \overline{m} , respectively.

For a submodule N of M, the colon ideal of M into N is defined by $(N:M) = \{r \in R \mid rM \subseteq N\} = \operatorname{Ann}(M/N)$. Further if I is an ideal of R, the submodule $(N:_M I)$ is defined by $\{m \in M : \Im \subseteq N\}$. Moreover, \mathbb{N} , \mathbb{Z} and \mathbb{Q} denote the set of positive integers, the ring of integers, and the field of rational numbers, respectively.

For a subset T of Spec(M), $\Im(T)$ is the intersection of all members of T.

A prime submodule of M is a submodule $P \neq M$ such that, whenever $re \in P$ for some $r \in R$ and $e \in M$, we have $r \in (P : M)$ or $e \in P$ [13].

²⁰¹⁰ AMS Mathematics subject classification. Primary 13C13, 13C99.

Keywords and phrases. Prime submodule, top module, quasi-Zariski topology, graph, vertices, annihilating-submodule.

Received by the editors on August 4, 2013, and in revised form on July 11, 2014.

DOI:10.1216/RMJ-2016-46-3-729 Copyright ©2016 Rocky Mountain Mathematics Consortium

The prime spectrum (or simply, the spectrum) of M is the set of all prime submodules of M and denoted by $\operatorname{Spec}(M)$. Also, the set of all maximal submodules of M is denoted by $\operatorname{Max}(M)$.

The prime radical \sqrt{N} is defined to be the intersection of all prime submodules of M containing N, and in the case of N is not contained in any prime submodule, \sqrt{N} is defined to be M. Note that the intersection of all prime submodule M is denoted by $\operatorname{rad}(M)$.

The quasi-Zariski topology on $X := \operatorname{Spec}(M)$ is described as follows: put $V^*(N) = \{P \in X : P \supseteq N\}$ and $\xi^*(M) = \{V^*(N) : N \text{ is a submodule of } M\}$. Then there exists a topology τ^* on X having ξ^* as the set of closed subsets of $\operatorname{Spec}(M)$ if and only if ξ^* is closed under the finite union. When this is the case, τ_M^* is called the quasi-Zariski topology on $\operatorname{Spec}(M)$ and M is called a top module [14].

If $\operatorname{Spec}(M) \neq \emptyset$, the mapping $\psi : \operatorname{Spec}(M) \to \operatorname{Spec}(R/\operatorname{Ann}(M))$ such that $\psi(P) = (P:M)/\operatorname{Ann}(M) = \overline{(P:M)}$ for every $P \in \operatorname{Spec}(M)$, is called the *natural map* of $\operatorname{Spec}(M)$ [6].

A topological space X is said to be *connected* if there does not exist a pair U, V of disjoint non-empty open sets of X whose union is X. A topological space X is irreducible if, for any decomposition $X = X_1 \cup X_2$ with closed subsets X_i of X with i = 1, 2, we have $X = X_1$ or $X = X_2$. A subset X' of X is connected (respectively irreducible) if it is connected (respectively irreducible) as a subspace of X.

The zero-divisor graph of R, $\Gamma(R)$, is a graph with the vertex set $Z(R) \setminus \{0\}$, the set of nonzero zero-divisors of R, and two distinct vertices x and y are adjacent if and only if xy = 0. The concept of the zero-divisor graph was first introduced by Beck (see [7]). Since many properties of a ring are closely tied to the behavior of its ideals, it is valuable to replace the vertices of the zero-divisor graph by the non-zero annihilator ideals. The idea of a graph, whose vertices are a subset of ideals of a ring, was introduced recently in [10]. They defined AG(R), the annihilating-ideal graph of R, to be a graph whose vertices are ideals of R with non-zero annihilators and in which two vertices I and I are adjacent if and only if II = 0.

Let N and L be submodules of M. Then the product of N and L is defined by (N:M)(L:M)M and denoted by NL, and clearly $N^k = (N:M)^k M$ (see [3]).

In [4], the present authors generalized the above idea, introduced the annihilating-submodule graph AG(M) and investigated some of its related properties. The (undirected) graph AG(M) is a graph with vertices $V(AG(M)) = \{N \leq M : \text{ there exists a non-zero proper submodule } L \text{ of } M \text{ with } NL = 0\}$, where distinct vertices N, L are adjacent if and only if NL = 0.

As we know, the closed subset $V^*(N)$, where N is a submodule of M, plays an important role in the quasi-Zariski topology on $\operatorname{Spec}(M)$. Our main purpose in this article is to employ these sets and define a new graph $G(\tau_T^*)$, called the quasi-Zariski topology-graph. By using this graph, we study algebraic (respectively, topological) properties of M (respectively, $\operatorname{Spec}(M)$). Further, we investigate the relationship between $G(\tau_T^*)$ and $AG(M/\Im(T))$, where T denotes a non-empty subset of $\operatorname{Spec}(M)$ and $\operatorname{S}(T)$ is the intersection of all members of T.

 $G(\tau_T^*)$ is an undirected graph with vertices $V(G(\tau_T^*)) = \{N < M : \text{ there exists } K < M \text{ such that } V^*(N) \cup V^*(K) = T \text{ and } V^*(N), V^*(K) \neq T\}$, where T is a non-empty subset of $\operatorname{Spec}(M)$ and distinct vertices N and L are adjacent if and only if $V^*(N) \cup V^*(L) = T$ (see Definition 2.1).

Let M be a top module. In Section 2 of this article, among other results, it is shown that the quasi-Zariski topology-graph $G(\tau_T^*)$ is connected and $\operatorname{diam}(G(\tau_T^*)) \leq 3$. Further if $G(\tau_T^*)$ contains a cycle, then $\operatorname{gr}(G(\tau_T^*)) \leq 4$ (see Theorem 2.6). Also, it is shown that $G(\tau_T^*)$ has a bipartite subgraph (see Theorem 2.14).

In Section 3, we explore more properties of AG(M). In Proposition 3.4, we show that if M is a non-simple semisimple R-module, then every non-zero proper submodule of M is a vertex. In Theorem 3.7, we provide some useful characterizations for those modules M for which $AG(M) = K_{\alpha}$, where $|\Lambda(M)| = \alpha$.

In Section 4, the relationship between $G(\tau_T^*)$ and $AG(M/\Im(T))$ is investigated. We show that, if N and L are non-zero proper submodules of M which are adjacent in $G(\tau_T^*)$, then $\sqrt{N}/\Im(T)$ and $\sqrt{L}/\Im(T)$ are adjacent in $AG(M/\Im(T))$ (see Proposition 4.5). Also we show that, if M is a finitely generated module and $G(\tau_T^*) \neq \emptyset$, then $AG(M/\Im(T))$ is

isomorphic with a subgraph of $G(\tau_T^*)$. Further, we prove that, if M is a fully semiprime module, then $G(\tau_T^*)$ is isomorphic with a subgraph of $AG(M/\Im(T))$ (see Theorem 4.6).

Let us introduce some graphical notation that is used in what follows. A graph G is an ordered triple $(V(G), E(G), \psi_G)$ consisting of a nonempty set of vertices, V(G), a set E(G) of edges, and an incident function ψ_G that associates an unordered pair of distinct vertices with each edge. The edge e joins x and y if $\psi_G(e) = \{x, y\}$, and we say x and y are adjacent. The degree $d_G(x)$ of a vertex x is the number of edges incident with x. A path in graph G is a finite sequence of vertices $\{x_0, x_1, \dots, x_n\}$, where x_{i-1} and x_i are adjacent for each $1 \leq i \leq n$ and we denote $x_{i-1} - x_i$ for an existing edge between x_{i-1} and x_i . The number of edges crossed to get from x to y in a path is called the length of the path. A graph G is connected if a path exists between any two distinct vertices. For distinct vertices x and y of G, let d(x,y) be the length of the shortest path from x to y and, if there is no such path, then $d(x,y) = \infty$. The diameter of G is $diam(G) = sup\{d(x,y) : x,y \in V(G)\}$. The girth of G, denoted by gr(G), is the length of the shortest cycle in G and, if G contains no cycles, then $gr(G) = \infty$ (see [1]).

A graph H is a subgraph of G if $V(H) \subseteq V(G)$, $E(H) \subseteq E(G)$ and ψ_H is the restriction of ψ_G to E(H). We denote the complete graph on n vertices by K_n . A bipartite graph is a graph whose vertices can be divided into two disjoint sets U and V such that every edge connects a vertex in U to one in V; that is, U and V are each independent sets and complete bipartite graphs on U and U are of size U and U (see [16]).

In the rest of this article, M denotes a top module, T a non-empty subset of $\operatorname{Spec}(M)$, $\Im(T)$ is the intersection of all members of T, \widehat{M} represents the R-module $M/\Im(T)$, and for a submodule N of M, $\widehat{N} = N/\Im(T)$, where $\Im(T) \subseteq N$, is a submodule of \widehat{M} .

2. The qausi-Zariski topology-graph.

Definition 2.1. We define a quasi-Zariski topology-graph $G(\tau_T^*)$ with vertices $V(G(\tau_T^*)) = \{N < M : \text{there exists } K < M \text{ such that } V^*(N) \cup \{N < M : \text{there exists } K < M \text{ such that } V^*(N) \cup \{N < M : \text{there exists } K < M \text{ such that } V^*(N) \cup \{N < M : \text{there exists } K < M \text{ such that } V^*(N) \cup \{N < M : \text{there exists } K < M \text{ such that } V^*(N) \cup \{N < M : \text{there exists } K < M \text{ such that } V^*(N) \cup \{N < M : \text{there exists } K < M \text{ such that } V^*(N) \cup \{N < M : \text{there exists } K < M \text{ such that } V^*(N) \cup \{N < M : \text{there exists } K < M \text{ such that } V^*(N) \cup \{N < M : \text{there exists } K < M \text{ such that } V^*(N) \cup \{N < M : \text{there exists } K < M \text{ such that } V^*(N) \cup \{N < M : \text{there exists } K < M \text{ such that } V^*(N) \cup \{N < M : \text{there exists } K < M \text{ such that } V^*(N) \cup \{N < M : \text{there exists } K < M \text{ such that } V^*(N) \cup \{N < M : \text{there exists } K < M \text{ such that } V^*(N) \cup \{N < M : \text{there exists } K < M \text{ such that } V^*(N) \cup \{N < M : \text{there exists } K < M : \text{there exists } K < M \text{ such that } V^*(N) \cup \{N < M : \text{there exists } K < M : \text{there exists } K < M \text{ such that } V^*(N) \cup \{N < M : \text{there exists } K < M : \text{th$

 $V^*(K) = T$ and $V^*(N), V^*(K) \neq T$, where distinct vertices N and L are adjacent if and only if $V^*(N) \cup V^*(L) = T$.

Notation 2.2. By [14, Lemma 2.1], if M is a top module, then for every pair of submodules N and L of M, we have $V^*(N) \cup V^*(L) = V^*(\sqrt{N}) \cup V^*(\sqrt{L}) = V^*(\sqrt{N} \cap \sqrt{L})$.

Proposition 2.3. The following statements hold.

- (i) $G(\tau_T^*) \neq \emptyset$ if and only if T is closed and is not an irreducible subset of $\operatorname{Spec}(M)$.
- (ii) $G(\tau_T^*) \neq \emptyset$ if and only if $T = V^*(\Im(T))$ and T is not an irreducible subset of $\operatorname{Spec}(M)$.
- (iii) $G(\tau_T^*) \neq \emptyset$ if and only if $T = V^*(\Im(T))$ and $\Im(T)$ is not a prime submodule of M.

Proof.

- (i) Straightforward.
- (ii) Suppose that $G(\tau_T^*) \neq \emptyset$. By part (i), it is enough to show that $T = V^*(\Im(T))$ which is a closed set. Clearly, $T \subseteq V^*(\Im(T))$. Next, let $V^*(N)$ be any closed subset of $\operatorname{Spec}(M)$ containing T. Then $P \supseteq N$ for every $P \in T$ so that $\Im(T) \supseteq N$. Hence, for every $Q \in V^*(\Im(T))$ and $Q \supseteq \Im(T) \supseteq N$, namely, $V^*(\Im(T)) \subseteq V^*(N)$, it follows that $V^*(\Im(T))$ is the smallest closed subset of $\operatorname{Spec}(M)$ containing T. Hence, $V^*(\Im(T)) = T$.
- (iii) It follows from part (ii) and [8, Theorem 3.4].

Example 2.4. Set $R := \mathbb{Z}$ and $M := \mathbb{Z} \oplus \mathbb{Z}(p^{\infty})$, where p is a prime integer of \mathbb{Z} . Then, by $[\mathbf{6}, \text{ Examples 3.1}]$, $\operatorname{Max}(M) = \{p_i \mathbb{Z} \oplus \mathbb{Z}(p^{\infty}) : i \in \mathbb{N}\}$, $\operatorname{Spec}(M) = \operatorname{Max}(M) \cup \{(\mathbf{0}) \oplus \mathbb{Z}(p^{\infty})\}$, where p_i is a prime number for every $i \in \mathbb{N}$, and M is a top module. We have $V^*((\mathbf{0}) \oplus \mathbb{Z}(p^{\infty})) = \operatorname{Spec}(M)$. Hence $\operatorname{Spec}(M)$ is irreducible and $G(\tau^*_{\operatorname{Spec}(M)}) = \emptyset$.

Example 2.5. Set $R := \mathbb{Z}$ and $M := \mathbb{Q} \oplus (\bigoplus_{i \in \mathbb{N}} \mathbb{Z}/p_i \mathbb{Z})$. Then by [6, Examples 3.1],

$$\operatorname{Max}(M) = \{ \mathbb{Q} \oplus (\bigoplus_{i \in \mathbb{N}, i \neq j} \mathbb{Z}/p_i \mathbb{Z}) \},$$

$$\operatorname{Spec}(M) = \operatorname{Max}(M) \cup \{ (\mathbf{0}) \oplus (\bigoplus_{i \in \mathbb{N}} \mathbb{Z}/p_i \mathbb{Z}) \},$$

and M is a top module. Now, $\mathbb{Q} \oplus (\mathbf{0})$ and $\{(\mathbf{0}) \oplus (\oplus_{i \in \mathbb{N}} \mathbb{Z}/p_i \mathbb{Z})\}$ are adjacent in $G(\tau^*_{\mathrm{Spec}(M)})$ so that $G(\tau^*_{\mathrm{Spec}(M)}) \neq \emptyset$.

The following theorem illustrates some graphical parameters.

Theorem 2.6. The quasi-Zariski topology-graph $G(\tau_T^*)$ is connected and diam $(G(\tau_T^*)) \leq 3$. Moreover, if $G(\tau_T^*)$ contains a cycle, then $gr(G(\tau_T^*)) \leq 4$.

Proof. Suppose $N, K \in V(G(\tau_T^*))$ and they are not adjacent. Then $V^*(N) \cup V^*(K) \neq T$, so there exist $L, V \in V(G(\tau_T^*))$ with $V^*(\sqrt{N} \cap \sqrt{L}) = V^*(\sqrt{K} \cap \sqrt{V}) = T$. If L = V, then N - L - K is a path of length 2. Thus, we assume that $L \neq V$. If $V^*(\sqrt{L} \cap \sqrt{V}) = T$, then N - L - V - K is a path of length 3. If $V^*(\sqrt{L} \cap \sqrt{V}) \neq T$, then $N - \sqrt{L} \cap \sqrt{V} - K$ is a path of length 2 (if $N = \sqrt{L} \cap \sqrt{V}$, then $V^*(N) \cup V^*(K) = V^*(L) \cup V^*(V) \cup V^*(K)$ so that $T = V^*(\sqrt{V} \cap \sqrt{K}) = V^*(\sqrt{L} \cap \sqrt{V} \cap \sqrt{K})$. Thus, $V^*(\sqrt{N}) \cap V^*(\sqrt{K}) = T$, a contradiction. Similarly, we have $K \neq \sqrt{L} \cap \sqrt{V}$. Now suppose that $\operatorname{gr}(G(\tau_T^*)) > 4$. We can assume that $\operatorname{gr}(G(\tau_T^*)) = K$, where K > 4. Then $N_1 - N_2 - N_3 - N_4 - N_5 - \cdots - N_{k-1} - N_k - N_1$ is a cycle of length K. Clearly, $V^*(N_2) \cup V^*(N_{k-1}) \neq T$. Now one can see that $N_1 - \sqrt{N_2} \cap \sqrt{N_{k-1}} - N_k - N_1$ is a 3-cycle, a contradiction. So we have $\operatorname{gr}(G(\tau_T^*)) \leq 4$. Hence, the proof is complete.

Proposition 2.7. Let M be an R-module, and let ψ : $\operatorname{Spec}(M) \to \operatorname{Spec}(R/\operatorname{Ann}(M))$ be the natural map. Suppose $\operatorname{Spec}(M)$ is homeomorphic to $\operatorname{Spec}(R/\operatorname{Ann}(M))$ under ψ . Let (N:M)M and (L:M)M be adjacent in $G(\tau_T^*)$, and let $T' = \{\overline{(P:M)} : P \in T\}$. Then $\overline{(N:M)}$ and $\overline{(L:M)}$ are adjacent in $G(\tau_{T'}^*)$. Conversely, if \overline{I} and \overline{J} are adjacent in $G(\tau_T^*)$, then IM and JM are adjacent in $G(\tau_T^*)$.

Proof. Since ψ is injective, $\psi^{-1}(T') = T$. Also we have $V^*((N:M)M) \cup V^*((L:M)M) = T$. Hence,

$$\psi(V^*((N:M)M)) \cup \psi(V^*((L:M)M)) = T'.$$

This implies that $V(\overline{N}:\overline{M}) \cup V(\overline{L}:\overline{M}) = T'$ (note that $V^*((N:M)M) = T \Leftrightarrow V(\overline{N}:\overline{M}) = T'$). Conversely, suppose $V(\overline{I}) \cup V(\overline{J}) = T'$

$$T'$$
. Then $\psi^{-1}(V(\overline{I})) \cup \psi^{-1}(V(\overline{J})) = T$ so that $V^*(IM) \cup V^*(JM) = T$ (note that $V^*(\overline{I}) = T' \Leftrightarrow V^*(IM) = T$).

Lemma 2.8. Let $G(\tau_T^*) \neq \emptyset$ and let $P \in T$. Then P is a vertex if either of the following statements holds.

- (i) There exists a subset T' of T such that $P \in T'$, $V^*(\cap_{Q \in T'}Q) = T$, and $V^*(\cap_{Q \in T', Q \neq P}Q) \neq T$.
- (ii) For a submodule N of M, $N \in V(G(\tau_T^*))$ and $\sqrt{N} \cap P \notin V(G(\tau_T^*))$.

The following theorem shows the situations in which T contains some vertices.

Theorem 2.9. Suppose T is a finite set and $G(\tau_T^*) \neq \emptyset$. Then

- (i) $T \cap V(G(\tau_T^*)) \neq \emptyset$.
- (ii) If $T \subseteq Max(M)$, then every $P \in T$ is a vertex.
- (iii) If $P \in T \cap Min(M)$, then P is a vertex.

Proof.

(i) Let $P \in T$. Then we have $V^*(P) \cup V^*(\cap_{Q \in T, Q \neq P} Q) = T$. If $V^*(\cap_{Q \in T, Q \neq P} Q) \neq T$, then P is a vertex. Otherwise, we have $V^*(\cap_{Q \in T, Q \neq P} Q) = T$. Since T is not irreducible, there exists a non-empty subset T' of T and $P' \in T'$ such that

$$V^*(\cap_{P \in T \setminus T'} P) \neq T$$
 and $V^*(\cap_{P \in (T \setminus T') \cup \{P'\}} P) = T$.

Thus, $P' \in T \cap V(G(\tau_T^*))$.

- (ii) Clearly, $V^*(P) \cup V^*(\cap_{Q \in T, Q \neq P} Q) = T$ and $V^*(\cap_{Q \in T, Q \neq P} Q) \neq T$.
- (iii) Clearly, $V^*(P) \cup V^*(\cap_{Q \in T, Q \neq P} Q) = T$ and $V^*(\cap_{Q \in T, Q \neq P} Q) \neq T$.

Example 2.10. Consider Example 2.4. If $|T| \geq 2$ and $T \subseteq \{p_1 \mathbb{Z} \oplus \mathbb{Z}(p^{\infty}), \ldots, p_n \mathbb{Z} \oplus \mathbb{Z}(p^{\infty})\}$, then every element of T is a vertex. Moreover, in Example 2.5, if $|T| \geq 2$ and

$$T \subseteq \{ \mathbb{Q} \oplus (\bigoplus_{i \in \mathbb{N}, i \neq 1} \mathbb{Z}/p_i \mathbb{Z}), \dots, \mathbb{Q} \oplus (\bigoplus_{i \in \mathbb{N}, i \neq n} \mathbb{Z}/p_i \mathbb{Z}) \},$$

then every element of T is a vertex.

Definition 2.11. We define a subgraph $G_d(\tau_T^*)$ of $G(\tau_T^*)$ with vertices $V((G_d(\tau_T^*))) = \{N < M : \text{ there exists } L < M \text{ such that } V^*(N) \cup V^*(L) = T, \ V^*(N), V^*(L) \neq T \text{ and } V^*(N) \cap V^*(L) = \emptyset \}, \text{ where distinct vertices } N \text{ and } L \text{ are adjacent if and only if } V^*(N) \cup V^*(L) = T \text{ and } V^*(N) \cap V^*(L) = \emptyset. \text{ It is clear that the degree of every } N \in V((G_d(\tau_T^*))) \text{ is the number of submodules } K \text{ of } M \text{ such that } V^*(L) = V^*(K), \text{ where } L \text{ is adjacent to } N.$

We need the following remark.

Remark 2.12. We recall that the Zariski topology on $\operatorname{Spec}(M)$ is the topology τ_M described by taking the set $Z(M) = \{V(N) : N \leq M\}$ as the set of closed sets of $\operatorname{Spec}(M)$, where $V(N) = \{P \in \operatorname{Spec}(M) : (P : M) \supseteq (N : M)\}$ [12]. If M is a multiplication module, then $\tau_M = \tau_M^*$ by [14, Theorem 3.5].

Proposition 2.13. The following statements hold.

- (i) $G_d(\tau_T^*) \neq \emptyset$ if and only if $T = V^*(\Im(T))$ and T is disconnected.
- (ii) Suppose \widehat{M} is an Artinian module and T is closed. Then $G_d(\tau_T^*) = \emptyset$ if and only if $R/\operatorname{Ann}(\widehat{M})$ contains no idempotent other than $\overline{0}$ and $\overline{1}$.

Proof.

- (i) Straightforward.
- (ii) Since \widehat{M} is an Artinian module, then $\widehat{M}/\operatorname{rad}(\widehat{M})$ is a Noetherian module by [8, Corollary 2.30]. As $\widehat{M}/\operatorname{rad}(\widehat{M})$ is a finitely generated top module, it is a multiplication module by [14, Theorem 3.5]. It follows that $\tau_{\widehat{M}/\operatorname{rad}(\widehat{M})} = \tau_{\widehat{M}/\operatorname{rad}(\widehat{M})}^*$ by Remark 2.12. So $\tau_{\widehat{M}} = \tau_{\widehat{M}}^*$ because \widehat{M} and $\widehat{M}/\operatorname{rad}(\widehat{M})$ are homeomorphic by Lemma 4.1. Also, the natural map of $\widehat{M}/\operatorname{rad}(\widehat{M})$ is surjective (for, $\widehat{M}/\operatorname{rad}(\widehat{M})$ is finitely

generated). Hence, the natural map of \widehat{M} is surjective by the above arguments. Now the result follows from [12, Corollary 3.8].

Theorem 2.14. $G_d(\tau_T^*)$ is a bipartite graph.

Proof. At first we assume that $G_d(\tau_T^*)$ contains a cycle. We show that $\operatorname{gr}(G_d(\tau_T^*)) \leq 4$. Now suppose that $\operatorname{gr}(G_d(\tau_T^*)) > 4$. We can assume that $\operatorname{gr}(G_d(\tau_T^*)) = k$, where k > 4. Then $N_1 - N_2 - N_3 - N_4 - N_5 - \cdots - N_{k-1} - N_k - N_1$ is a cycle of length k. Clearly, $V^*(N_{k-1}) = V^*(N_1)$. Hence, one can see that $N_1 - N_2 - N_3 - \cdots - N_{k-2} - N_1$ is a cycle, a contradiction. So we have $\operatorname{gr}(G_d(\tau_T^*)) \leq 4$. Now, by [16, Proposition 1.6.1], G is a bipartite graph if and only if it does not contain an odd cycle. Hence, by Theorem 2.6, it is enough to show that $\operatorname{gr}(G_d(\tau_T^*)) \neq 3$. Suppose N - L - K - N is a 3-cycle. Then

$$\emptyset = (V^*(N) \cap V^*(L)) \cup (V^*(N) \cap V^*(K))$$

= $V^*(N) \cap (V^*(L) \cup V^*(K)) = V^*(N) \cap T = V^*(N).$

Hence, $V(N) = \emptyset$, a contradiction.

Corollary 2.15. By Theorem 2.14, if $G_d(\tau_T^*)$ contains a cycle, then $gr(G_d(\tau_T^*)) = 4$.

Example 2.16. Set $R := \mathbb{Z}$ and $M := \mathbb{Z}/12\mathbb{Z}$. So $\operatorname{Spec}(M) = \operatorname{Max}(M) = \{2\mathbb{Z}/12\mathbb{Z}, 3\mathbb{Z}/12\mathbb{Z}\}$. Set $T := \operatorname{Spec}(M)$. Clearly, $G(\tau_T^*) = G_d(\tau_T^*)$ is a bipartite graph and $\mathbb{Z}/(\cap_{P \in T} P : M) \cong \mathbb{Z}/6\mathbb{Z}$ contains idempotents other than $\overline{0}$ and $\overline{1}$.

Example 2.17. Set $R := \mathbb{Z}$ and $M := \mathbb{Z}/30\mathbb{Z}$. So $\operatorname{Spec}(M) = \operatorname{Max}(M) = \{2\mathbb{Z}/30\mathbb{Z}, 3\mathbb{Z}/30\mathbb{Z}, 5\mathbb{Z}/30\mathbb{Z}\}$. Set $T := \operatorname{Spec}(M)$. Clearly, $G_d(\tau_T^*)$ is a bipartite graph and $\mathbb{Z}/(\cap_{P \in T} P : M) \cong \mathbb{Z}/30\mathbb{Z}$ contains idempotents other than $\overline{0}$ and $\overline{1}$.

The above example shows that $G_d(\tau_T^*)$ is not always connected.

Proposition 2.18. The following statements hold.

- (i) $G_d(\tau_T^*)$ with two parts U and V is a complete bipartite graph if and only if for every $N, L \in U$ (respectively in V), $V^*(N) = V^*(L)$.
- (ii) $G_d(\tau_T^*)$ is connected if and only if it is a complete bipartite graph.

Proof. Use the fact that if N and L are two vertices, then d(N, L) = 2 if and only if $V^*(N) = V^*(L)$.

We end this section with the following question.

Question 2.19. Let $G(\tau_T^*) \neq \emptyset$, where T is an infinite subset of $\operatorname{Spec}(M)$. Is $T \cap V(G(\tau_T^*)) \neq \emptyset$?

3. The annihilating-submodule graph. As we mentioned before, AG(M) is a graph with vertices $V(AG(M)) = \{N \leq M : NL = 0 \text{ for some } 0 \neq L < M\}$, where distinct vertices N and L are adjacent if and only if NL = 0 (here we recall that the product of N and L is defined by (N:M)(L:M)M).

The following results reflect some basic properties of the annihilatingsubmodule graph of a module.

Proposition A ([4, Proposition 3.2]). Let N be a non-zero proper submodule of M.

- (i) N is a vertex in AG(M) if $Ann(N) \neq Ann(M)$ or $(0:_M (N:M)) \neq 0$.
- (ii) N is a vertex in AG(M), where M is a multiplication module, if and only if $(0:_M(N:M)) \neq 0$.

Remark 3.1. In the annihilating-submodule graph AG(M), M itself can be a vertex. In fact M is a vertex if and only if every non-zero submodule is a vertex if and only if there exists a non-zero proper submodule N of M such that $(N:M) = \operatorname{Ann}(M)$. For example, for every submodule N of \mathbb{Q} (as a \mathbb{Z} -module), $(N:\mathbb{Q}) = 0$. Hence, \mathbb{Q} is a vertex in $AG(\mathbb{Q})$.

Theorem B ([4, Theorem 3.3]). Assume that M is not a vertex. Then the following hold.

(i) AG(M) is empty if and only if M is a prime module.

(ii) A non-zero submodule N of M is a vertex if and only if $(0:_M(N:M)) \neq 0$.

Theorem C ([4, Theorem 3.4]). The annihilating-submodule graph AG(M) is connected and $\operatorname{diam}(AG(M)) \leq 3$. Moreover, if AG(M) contains a cycle, then $\operatorname{gr}(AG(M)) \leq 4$.

Lemma 3.2. Let M be an R-module and Ann(M) a prime ideal. Then $diam(AG(M)) \leq 2$.

Proof. Suppose N and L are adjacent in AG(M). Then $(N:M) = \operatorname{Ann}(M)$ or $(L:M) = \operatorname{Ann}(M)$. Assume that $(N:M) = \operatorname{Ann}(M)$. So every non-zero submodule M is a vertex and adjacent to N. Hence, $\operatorname{diam}(AG(M)) \leq 2$.

Proposition 3.3. The following statements hold.

- (i) Let M = Rm be a cyclic R-module. Then M is not a vertex.
- (ii) Let $M = M_1 \oplus M_2$, where M_1 , M_2 are non-zero R-submodules of M. Then every non-zero submodule of M_1 is adjacent to every non-zero submodule of M_2 .
- (iii) Assume that $AG(M) = \emptyset$. Then module M is an indecomposable module.

Proof.

- (i) This follows from Remark 3.1 and the fact that every cyclic *R*-module is multiplication.
- (ii) Let $0 \neq N \leq M_1$ and $0 \neq K \leq M_2$. Clearly, $(N \oplus (\mathbf{0}) : M) = (N : M_1) \cap (0 : M_2)$. Hence, $(N \oplus (\mathbf{0}) : M) \subseteq (0 : M_2)$. Similarly, $((\mathbf{0}) \oplus K : M) \subseteq (0 : M_1)$. Therefore, $(N \oplus (\mathbf{0}))((\mathbf{0}) \oplus K) = 0$. This in turn implies that N and K are adjacent in AG(M).
- (iii) The proof follows from part (ii). $\hfill\Box$

We allow α to be infinite cardinal, where $\alpha = |\Lambda(M)|$. (We recall that $\Lambda(M)$ is the set of all non-zero submodules of M.)

Proposition 3.4. The following statements hold.

- (i) Let M be a non-simple semisimple R-module. Then every non-zero proper submodule of M is a vertex.
- (ii) Let M be a non-simple homogeneous semisimple R-module. Then $AG(M) = K_{\alpha}$.
- (iii) Let M be a prime module with a non-zero socle. Then $AG(M) = \emptyset$ or $AG(M) = K_{\alpha}$.
- (iv) Let M be a non-simple module with a non-zero socle. Then $AG(M) \neq \emptyset$. In particular, $AG(M) \neq \emptyset$ when M is a non-simple Artinian module.

Proof.

- (i) Since M is a semisimple module, we have $M = \bigoplus_{\alpha \in I} T_{\alpha}$ where, for each $\alpha \in I$, T_{α} is a simple submodule of M. Now let N be an arbitrary non-zero submodule of M. Then, by [2, Proposition 9.4], there exist a subset $I' \subseteq I$ and a decomposition $N \cong \bigoplus_{\alpha \in I'} T_{\alpha}$. Set $K \cong \bigoplus_{I \setminus I'} T_{\alpha}$. Then $NK \subseteq N \cap K = 0$. It follows that N is a vertex.
- (ii) Since M is a homogeneous semisimple module, it is clear that Ann(M) is a maximal ideal of R. Hence for every non-zero submodule N of M, we have (N:M)=(0:M). We conclude that if N and K are two non-zero distinct submodules of M, then NK=0, as desired.
- (iii) This follows from part (ii) because every prime module with a non-zero socle is homogeneous semisimple (see [9, Corollary 1.9]).
- (iv) Suppose that M is not a simple module with $Soc(M) \neq 0$. Then there exists a minimal submodule Rm of M, where m is a non-zero element of M. Now (0:m) is a maximal ideal of R and we have (Rm)((0:m)M) = 0. This shows that $AG(M) \neq \emptyset$.
- **Example 3.5.** Put $R := \mathbb{Z}$ and $M := \bigoplus_{i \in \mathbb{N}} \mathbb{Z}_2$. Since M is a direct sum of isomorphic simple modules, then M is a homogeneous semisimple module. For every non-zero proper submodule N of M, we have (N : M) = Ann(M). Hence every non-zero submodule N and K are adjacent in AG(M).

Proposition 3.6. Let M be a non-simple prime module. Then $AG(M) = K_{\alpha}$, if and only if every non-zero proper submodule of M is adjacent to M.

Proof. The sufficiency is clear.

To see the converse, let $N \in V(AG(M))$. Then there exists a non-zero proper submodule L of M such that NL = 0. Since $\operatorname{Ann}(M)$ is a prime ideal of R, it follows that $(N:M) = \operatorname{Ann}(M)$ or $(L:M) = \operatorname{Ann}(M)$. So every non-zero submodule M is a vertex by Remark 3.1. Now, since AG(M) is a complete graph, every non-zero proper submodule of M is adjacent to M.

Theorem 3.7. Consider the following statements.

- (i) Ann(M) is a prime ideal and M is a divisible R/Ann(M)-module.
- (ii) Every non-zero proper submodule of M is adjacent to M.
- (iii) For each ideal I of R, we have IM = M or IM = 0.
- (iv) $AG(M) = K_{\alpha}$.
- (v) M is a non-simple homogeneous semisimple module.

Then (i) \rightarrow (ii) \rightarrow (iii) \rightarrow (iv) \rightarrow (i). Moreover, if M is a finitely generated module then (v) \leftrightarrow (i).

- *Proof.* (i) \rightarrow (ii). Let N be a non-zero proper submodule of M. We show that $(N:M) = \operatorname{Ann}(M)$. Suppose $r \in (N:M)$ and $rM \neq 0$. Since M is divisible by $R/\operatorname{Ann}(M)$, we have rM = M. This implies that N = M, a contradiction. Hence, N is adjacent to M, as desired.
 - (ii) \rightarrow (i) and (ii) \rightarrow (iii) are clear.
- (iii) \rightarrow (ii). Let N be a non-zero proper submodule of M and I an ideal of R. Then $(IM:M) = \operatorname{Ann}(M)$ by hypothesis, where $IM \neq M$. Now we have $(N:M) = ((N:M)M:M) = \operatorname{Ann}(M)$. This shows that N is adjacent to M, as required.
 - (ii) \leftrightarrow (iv). Straightforward.
- (ii) \rightarrow (v). Let M be a finitely generated R-module and let $(N:M) = \operatorname{Ann}(M)$ for every proper submodule N of M. Then M is a divisible $R/\operatorname{Ann}(M)$ -module. We show that $R/\operatorname{Ann}(M)$ is a field. Suppose not. Then M has a maximal submodule, say N. So (N:M) is a maximal ideal R. Hence there exists $0 \neq r \in (N:M)$. But rM = M is a contradiction. So $\operatorname{Ann}(M)$ is a maximal ideal and hence M is a homogeneous semisimple module.
 - $(v) \rightarrow (ii)$. It is clear by Proposition 3.4 (ii).

Note that an R-module M is fully prime (respectively fully semiprime) if each proper submodule of M is prime (respectively semi-prime). In [9, Corollary 1.9], it is shown that M is fully prime (respectively, fully semi-prime) if and only if is homogeneous semi-simple (respectively, co-semi-simple module).

Corollary 3.8. Let R be an integral domain with $\dim(R) = 1$, and let M be an R-module. Then every non-zero proper submodule of M is adjacent to M if and only if one of the following statements hold:

- (i) M is a homogeneous semisimple module.
- (ii) M is a divisible module.

Proof. Suppose that every non-zero proper submodule of M is adjacent to M. Then $\operatorname{Ann}(M)$ is a prime ideal of R and M is a divisible $R/\operatorname{Ann}(M)$ -module by Theorem 3.7. If $\operatorname{Ann}(M)=0$, then M is a divisible R-module. Otherwise, since $\dim(R)=1$, it follows that $\operatorname{Ann}(M)$ is a maximal ideal of R so that $(N:M)=\operatorname{Ann}(M)$ for every proper submodule N of M. Thus every proper submodule of M is prime by [14, Corollary 1.2]. This means that M is a homogeneous semisimple. Conversely, first we assume that M is a homogeneous semisimple module. Then $\operatorname{Ann}(M)$ is a maximal ideal of R so that every non-zero proper submodule M is adjacent to M. In case M is a divisible module, the claim follows from Theorem 3.7.

4. The relationship between $G(\tau_T^*)$ and AG(M). A proper submodule N of M is said to be semiprime in M if, for every ideal I of R and every submodule K of M, $I^2K \subseteq N$ implies that $IK \subseteq N$. Further, M is called a semiprime module if $(0) \subseteq M$ is a semiprime submodule. Every intersection of prime submodules is a semiprime submodule. A proper ideal I of R is semiprime if, for every ideal I and I of I implies that I implies tha

Lemma 4.1. Suppose T is a closed subset of $\operatorname{Spec}(M)$ equipped with the natural topology induced from of $\operatorname{Spec}(M)$. Then T and $\operatorname{Spec}(\widehat{M})$ are homeomorphic.

Proof. Let $\phi : \operatorname{Spec}(\widehat{M}) \to T = V^*(\Im(T))$ be defined by $\phi(\widehat{Q}) = Q$, where $Q \in \operatorname{Spec}(M)$. Clearly ϕ is a bijection map. We show that ϕ is a

continuous map. Let $U = T \cap V^*(N)$ be a closed subset of T, where N is a proper subset of M. Then we have $\phi^{-1}(U) = V^*(\widehat{N} + \Im(T))$. We show that ϕ is closed. Suppose U is a closed subset of $\operatorname{Spec}(\widehat{M})$. Then $U = V^*(\widehat{N})$, where $N \leq M$. It is easy to see that $\phi(U) = V^*(N)$. \square

One may think that since T and $\operatorname{Spec}(\widehat{M})$ are homeomorphic, studying $G(\tau_T^*)$ can be reduced to studying $G(\tau_{\operatorname{Spec}(L)}^*)$, where L is a semiprime module. But the following example shows that this is not true.

Example 4.2. Set $R := \mathbb{Z}$, $M := \mathbb{Z}/12\mathbb{Z}$, and $T := \operatorname{Spec}(M)$. Then $G(\tau_T^*) = K_{1,2}$ but $G(\tau_{\operatorname{Spec}(M/\operatorname{rad}(M))}^*) = K_2$.

Remark 4.3. In fact $G(\tau_T^*)$ is a non-empty graph if and only if $|E(G(\tau_T^*))| \geq 1$. The following lemma shows that the graph AG(M) also has this property (i.e., $|E(AG(M))| \geq 1$) if M is a semiprime module such that it is not a vertex in AG(M).

Lemma 4.4. Assume that M is not a vertex in AG(M). Then M is a semiprime module if and only if for every non-zero submodule N of M and each positive integer k, $N^k \neq 0$.

Proof. The necessity is clear.

To see the converse, let N be a submodule of M and let I be an ideal of R. Let $I^2N=0$ and $IN\neq 0$. Then we have $(IN)^2=(IN:M)^2M\subseteq I^2N=0$, a contradiction. Hence, M is a semiprime module. \square

Proposition 4.5. The following statements hold.

- (i) Suppose N and L are adjacent in $G(\tau_T^*)$. Then $\widehat{\sqrt{N}}$ and $\widehat{\sqrt{L}}$ are adjacent in $AG(\widehat{M})$.
- (ii) $G(\tau_T^*)$ is isomorphic with a subgraph of $AG(\widehat{M})$ or $|E(G(\tau_T^*))| \geq 2$.

Proof.

- (i) Straightforward.
- (ii) Assume that $G(\tau_T^*)$ is not isomorphic with a subgraph of $AG(\widehat{M})$. Hence there exist $N, L \in V(G(\tau_T^*))$ such that N and L are

adjacent and $N \neq \sqrt{N}$. It follows that $N - L - \sqrt{N}$ is a path of length 2.

Theorem 4.6. The following statements hold.

- (i) Let M be a finitely generated module and $G(\tau_T^*) \neq \emptyset$. Then $AG(\widehat{M})$ is isomorphic with a subgraph of $G(\tau_T^*)$.
- (ii) Let M be a fully semiprime module. Then $G(\tau_T^*)$ is isomorphic with a subgraph of $AG(\widehat{M})$.
- (iii) Let M be a semisimple module and suppose M is not a vertex in AG(M). Then $G(\tau_T^*)$ and $AG(\widehat{M})$ are isomorphic.
- (iv) Let M be a homogeneous semisimple module. Then $AG(\widehat{M}) = K_{\alpha}$, where $\alpha = |\Lambda(\widehat{M})|$ and $G(\tau_T^*) = \emptyset$.

Proof.

- (i) By [14, Theorem 3.5], every finitely generated top module is multiplication. One can see that if \widehat{N} and \widehat{L} are adjacent in $AG(\widehat{M})$, then N and L are adjacent in $G(\tau_T^*)$.
 - (ii) By [9, Theorem 2.3], M is a co-semisimple module. So

$$N = \bigcap_{P \in V^*(N)} P,$$

where N < M. Hence, by Proposition 4.5 (i), it is easy to see that $G(\tau_T^*)$ is isomorphic with a subgraph of $AG(\widehat{M})$.

(iii) Let M be a semisimple module and suppose M is not a vertex in AG(M). We show that M is a multiplication module. To see this, let N be a proper submodule of M. Then there exists a family $\{T_i, i \in I\}$ of minimal submodules of M such that $N = \bigoplus_{i \in I} T_i$. Now for each $i \in I$, we have $(T_i : M)M = M$ (note that $(T_i : M)M \neq 0$ because M is not a vertex in AG(M)). Hence,

$$N = \bigoplus_{i \in I} (T_i : M)M = \left(\bigoplus_{i \in I} (T_i : M)\right)M.$$

Thus, M is a multiplication module. It follows that, if \widehat{N} and \widehat{L} are adjacent in $AG(\widehat{M})$, then N and L are adjacent in $G(\tau_T^*)$. Since M is a co-semisimple module, by using part (ii), we see that $G(\tau_T^*)$ is

isomorphic with a subgraph of $AG(\widehat{M})$. Hence $G(\tau_T^*)$ and $AG(\widehat{M})$ are isomorphic.

(iv) The first assertion follows from Proposition 3.4 (ii). To see the second assertion, $\Im(T)$ is a prime submodule of M (see [9, Corollary 1.9]), thus $G(\tau_T^*) = \emptyset$ by Proposition 2.3 (iii).

Example 4.7. Put $R := \mathbb{Z}$ and $M := \bigoplus_{i \in \mathbb{N}} \mathbb{Z}/p_i \mathbb{Z}$. Then, by [6, Examples 3.1], $\operatorname{Max}(M) = \operatorname{Spec}(M) = \{p_j M\} = \{\bigoplus_{i \in \mathbb{N}, i \neq j} \mathbb{Z}/p_i \mathbb{Z}\}$, and M is a top module. $G(\tau^*_{\operatorname{Spec}(M)})$ is an infinite graph, because every element $\bigoplus_{i \in \mathbb{N}, i \neq j} \mathbb{Z}/p_i \mathbb{Z}$ of $\operatorname{Spec}(M)$ is adjacent to $\mathbb{Z}/p_j \mathbb{Z}$. Hence, by Theorem 4.6 (ii), AG(M) is an infinite graph.

Lemma 4.8. Assume that $\emptyset \neq V(AG(\widehat{M}) \subseteq Max(\widehat{M})$. Then |T| = 2, $AG(\widehat{M}) = K_2$, and it is isomorphic with a subgraph of $G(\tau_T^*)$.

Proof. Suppose that \widehat{P} is a vertex in $AG(\widehat{M})$ such that $P \in \operatorname{Max}(M)$. Then there exists a non-zero proper submodule \widehat{Q} of \widehat{M} such that it is adjacent to \widehat{P} , where, $Q \in \operatorname{Max}(M)$. One can see that $(P:M) \subseteq (P':M)$ or $(Q:M) \subseteq (P':M)$ for every $P' \in T$. Now since \widehat{M} is a top module, by $[\mathbf{14}, \text{ Theorem 3.5}]$ P = P' or Q = P'. Hence, $V^*(P) \cup V^*(Q) = T$. It follows that |T| = 2, $AG(\widehat{M})$ has only one edge and it is isomorphic with a subgraph of $G(\tau_T^*)$.

Proposition 4.9. Assume that $G(\tau_T^*) \neq \emptyset$.

- (i) If \widehat{M} is a Noetherian R-module, then $T = V^*(P_1 \cap \cdots \cap P_n)$, where for each i $(1 \le i \le n)$, P_i is a vertex.
- (ii) If \widehat{M} is an Artinian R-module, then $T = V^*(P_1 \cap \cdots \cap P_n)$, where for each $(1 \le i \le n)$, P_i is a vertex. In particular, |T| = n.

Proof.

(i) Since \widehat{M} is a Noetherian module, \widehat{M} has a finite number of minimal prime submodules by [15, Theorem 4.2]. Hence

$$\operatorname{Spec}(\widehat{M}) = V^*(\widehat{P_1}) \cup \cdots \cup V^*(\widehat{P_n}),$$

where each i $(1 \le i \le n)$, \widehat{P}_i is a minimal prime submodule of \widehat{M} and P_i is a prime submodule of M. So, by Lemma 4.1, we have $T = V^*(P_1) \cup \cdots \cup V^*(P_n)$. Now the result follows from Lemma 2.8 (i).

(ii) As in the proof of Proposition 2.13 (ii), $\widehat{M}/\operatorname{rad}(\widehat{M})$ is a Noetherian module. So $\widehat{M}/\operatorname{rad}(\widehat{M})$ has a finite number of minimal prime submodules. Hence, \widehat{M} has a finite number of minimal prime submodules. So we have $T = V^*(P_1) \cup \cdots \cup V^*(P_n)$ by part (i). To see the second assertion, we note that, since $\widehat{M}/\operatorname{rad}(\widehat{M})$ is a finitely generated top module, it is a multiplication module by [14, Theorem 3.5]. It follows that $\widehat{M}/\operatorname{rad}(\widehat{M})$ is a cyclic Artinian module by [11, Corollary 2.9], and hence, $\operatorname{Spec}(\widehat{M}/\operatorname{rad}(\widehat{M})) = \operatorname{Max}(\widehat{M}/\operatorname{rad}(\widehat{M}))$. So $\operatorname{Spec}(\widehat{M}) = \operatorname{Max}(\widehat{M})$. Hence, by the above arguments, we have |T| = n, and the proof is completed.

Acknowledgments. We would like to thank the referee for valuable comments and a careful reading of our manuscript.

REFERENCES

- 1. D.F. Anderson and P.S. Livingston, *The zero-divisor graph of a commutative ring*, J. Algebra **217** (1999), 434–447.
- 2. W. Anderson and K.R. Fuller, Rings and categories of modules, Springer-Verlag, New York, 1974.
- 3. H. Ansari-Toroghy and F. Farshadifar, Product and dual product of submodules, Far East J. Math. Sci 25 (2007), 447–455.
- 4. H. Ansari-Toroghy and Sh. Habibi, The Zariski topology-graph of modules over commutative rings, Comm. Algebra. 42 (2014), 3283-3296.
- 5. H. Ansari-Toroghy and R. Ovlyaee-Sarmazdeh, On the prime spectrum of X-injective modules, Comm. Algebra 38 (2010), 2606–2621.
- **6**. _____, On the prime spectrum of a module and Zariski topologies, Comm. Algebra **38** (2010), 4461–4475.
 - 7. I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), 208–226.
- 8. M. Behboodi and M.R. Haddadi, Classical Zariski topology of modules and spectral spaces I, Int. Electr. J. Algebra, 4 (2008), 104–130.
- 9. M. Behboodi, O.A.S. Karamzadeh and H. Koohy, *Modules whose certain ideals are prime*, Vietnamese J. Math. **32** (2004), 303–317.
- 10. M. Behboodi and Z. Rakeei, *The annihilating-ideal graph of commutative rings* I, J. Alg. Appl. 10 (2011), 727–739.
- 11. Z.A. El-Bast and P.F. Smith, *Multiplication modules*, Comm. Alg. 16 (1988), 755–779.

- 12. Chin-Pi Lu, The Zariski topology on the prime spectrum of a module, Houston J. Math. 25 (1999), 417–432.
- 13. R.L. McCasland and M.E. Moore, *Prime submodules*, Comm. Alg. 20 (1992), 1803–1817.
- 14. R.L. McCasland, M.E. Moore and P.F. Smith, On the spectrum of a module over a commutative ring, Comm. Alg. 25 (1997), 79–103.
- 15. R.L. McCasland and P.F. Smith, *Prime submodules Noetherian modules*, Rocky Mountain J. Math. 23 (1993), 1041–1062.
 - 16. D. Reinard, Graph theory, Grad. Texts Math., Springer, New York, 2005.
- 17. H.A. Tavallaee and R. Varmazyar, Semi-radicals of submodules in modules, IUST Inter. J. Eng. Sci. 19 (2008), 21–27.

DEPARTMENT OF PURE MATHEMATICS, FACULTY OF MATHEMATICAL SCIENCES, UNIVERSITY OF GUILAN, P.O. BOX 41335-19141 RASHT, IRAN

Email address: ansari@guilan.ac.ir

DEPARTMENT OF PURE MATHEMATICS, FACULTY OF MATHEMATICAL SCIENCES, UNIVERSITY OF GUILAN, P.O. BOX 41335-19141 RASHT, IRAN

Email address: sh.habibi@phd.guilan.ac.ir