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RAMANUJAN’S CUBIC TRANSFORMATION
INEQUALITIES FOR ZERO-BALANCED

HYPERGEOMETRIC FUNCTIONS

M.K. WANG, Y.M. CHU AND Y.P. JIANG

ABSTRACT. In this paper, a generalization of Ramanu-
jan’s cubic transformation, in the form of an inequality, is
proved for zero-balanced Gaussian hypergeometric function
F (a, b; a+ b;x), a, b > 0.

1. Introduction. For real numbers a, b and c with c ̸= 0,−1,−2, . . .,
the Gaussian hypergeometric function is defined by

(1.1) F (a, b; c;x) = 2F1(a, b; c;x) =
∞∑

n=0

(a, n)(b, n)

(c, n)

xn

n!
,

for x ∈ (−1, 1), where (a, n) denotes the shifted factorial function
(a, n) = a(a+1)(a+2)(a+3) · · · (a+n−1) for n = 1, 2, . . ., and (a, 0) = 1
for a ̸= 0. Also, F (a, b; c;x) is called zero-balanced if c = a+ b.

It is well known that F (a, b; c;x) has many important applications in
various fields of the mathematical and natural sciences [4, 7], and many
classes of special function in mathematical physics are particular cases
of this function [8]. For a extensive list of F (a, b; c;x), see [1, 2, 3, 9].

As a special case of the Gaussian hypergeometric function, for
r ∈ (0, 1), Legendre’s complete elliptic integrals of the first kind are
defined by

K(r) =

∫ π/2

0

(1− r2 sin2 θ)−1/2dθ =
π

2
F

(
1

2
,
1

2
; 1; r2

)
.
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Some of the most important properties of the elliptic integrals K(r) are
the Landen identities:

K
(

2
√
r

1 + r

)
= (1 + r)K(r),

K
(
1− r

1 + r

)
=

1 + r

2
K(

√
1− r2),

namely,

F

(
1

2
,
1

2
; 1;

4r

(1 + r)2

)
= (1 + r)F

(
1

2
,
1

2
; 1; r2

)
,(1.2)

F

(
1

2
,
1

2
; 1;

(
1− r

1 + r

)2)
=

1 + r

2
F

(
1

2
,
1

2
; 1; 1− r2

)
.(1.3)

For zero-balanced Gaussian hypergeometric functions F (a, b; a +
b;x), a, b > 0, Simić and Vuorinen [10] determined the maximal region
of the ab plane where equations (1.2) and (1.3) turn on respective
inequalities valid for each x ∈ (0, 1).

As is known to all, Ramanujan’s cubic transformation is defined as

F

(
1

3
,
2

3
; 1; 1−

(
1− r

1 + 2r

)3)
= (1 + 2r)F

(
1

3
,
2

3
; 1; r3

)
,(1.4)

F

(
1

3
,
2

3
; 1;

(
1− r

1 + 2r

)3)
=

1 + 2r

3
F

(
1

3
,
2

3
; 1; 1− r3

)
.(1.5)

Inspired by the ideas of Simić and Vuorinen [10], we find the
maximal region of the ab plane for F (a, b; a + b;x), a, b > 0, where
equations (1.4) and (1.5) turn on respective inequalities valid for each
x ∈ (0, 1).

The following asymptotic formulas for the zero-balanced hypergeo-
metric function (see [5, 6]) will be used in this paper.

(1.6) F (a, b; a+ b; r) ∼ − 1

B(a, b)
log(1− r)

and

(1.7) B(a, b)F (a, b; a+ b; r) + log(1− r)

= R(a, b) +O((1− r) log(1− r)),
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as r tends to 1, where

(1.8) B(z, w) =
Γ(z)Γ(w)

Γ(z + w)
, Re z > 0, Re w > 0

is the classical beta function,

(1.9) R(a, b) = −Ψ(a)−Ψ(b)− 2γ, R

(
1

3
,
2

3

)
= log 27,

(1.10) Ψ(z) =
d

dz
(log Γ(z)) =

Γ′(z)

Γ(z)
, Re z > 0,

and γ is the Euler-Mascheroni constant.

Lemma 1.1. (see [10, Lemma 1.1]). Suppose that the power series

f(x) =

∞∑
n=0

anx
n

and

g(x) =

∞∑
n=0

bnx
n

have the radius of convergence r > 0 and an, bn > 0 for all n ∈
{0, 1, 2, . . .}. Let h(x) = f(x)/g(x). Then

(i) if the sequence {an/bn}∞n=0 is (strictly) increasing (decreasing),
then h(x) is also (strictly) increasing (decreasing) on (0, r);

(ii) if the sequence {an/bn} is (strictly) increasing (decreasing) for
0 < n ≤ n0 and (strictly) decreasing (increasing) for n > n0, then
there exists an x0 ∈ (0, r) such that h(x) is (strictly) increasing
(decreasing) on (0, x0) and (strictly) decreasing (increasing) on
(x0, r).

2. Main results. For convenience, we first introduce the following
regions in {(a, b) ∈ R2|a > 0, b > 0} (see Figure 1):

D1 =
{
(a, b)|a, b > 0, ab ≤ 2

9
, ab− 2

9
(a+ b) ≤ 0

}
,

D2 =
{
(a, b)|a, b > 0, ab <

2

9
, ab− 2

9
(a+ b) > 0

}
,
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D6

1

a
+

1

b
=

9

2

ab =
2

9

a+ b = 1

D4

D1
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0.2 0.4 0.6 0.8 1.0
a

0.2

0.4

0.6

0.8

1.0

b

Figure 1. The regions Di, i = 1, 2, . . . , 6.

D3 =
{
(a, b)|a, b > 0, ab ≥ 2

9
, ab− 2

9
(a+ b) ≥ 0

}
,

D4 =
{
(a, b)|a, b > 0, ab >

2

9
, ab− 2

9
(a+ b) < 0

}
,

D5 =
{
(a, b)|a, b > 0, a+ b ≤ 1, ab− 2

9
(a+ b) ≤ 0

}
,

D6 =
{
(a, b)|a, b > 0, a+ b ≥ 1, ab− 2

9
(a+ b) ≥ 0

}
.

Clearly, D1 ∪ D2 ∪ D3 ∪ D4 = {(a, b) ∈ R2 | a > 0, b > 0}, D5 ⊂ D1

and D6 ⊂ D3.

Theorem 2.1. If (a, b) ∈ D1, then the inequality

(2.1) F

(
a, b; a+ b;

9r(1 + r + r2)

(1 + 2r)3

)
≤ (1 + 2r)F (a, b; a+ b; r3)
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holds for all r ∈ (0, 1). Also, if (a, b) ∈ D3, then the reversed inequality

(2.2) F

(
a, b; a+ b;

9r(1 + r + r2)

(1 + 2r)3

)
≥ (1 + 2r)F (a, b; a+ b; r3)

takes place for each r ∈ (0, 1), with equality in each instance if and only
if (a, b) = (1/3, 2/3) or (a, b) = (2/3, 1/3).

In the remaining region (a, b) ∈ D2 ∪ D4, neither of the above
inequalities holds for each r ∈ (0, 1).

Theorem 2.2. If (a, b) ∈ D1, then the double inequality

(2.3) 1 ≤ (1 + 2r)F (a, b; a+ b; r3)

F (a, b; a+ b; 9r(1 + r + r2)/(1 + 2r)3)
≤

√
3B(a, b)

2π

holds for all r ∈ (0, 1). And, if (a, b) ∈ D3, then inequality (2.3) is
reversed,

(2.4)

√
3B(a, b)

2π
≤ (1 + 2r)F (a, b; a+ b; r3)

F (a, b a+ b; 9r(1 + r + r2)/(1 + 2r)3)
≤ 1.

Moreover, both bounds in inequalities (2.3) and (2.4) are sharp and each
equality is reached for a = 1/3 and b = 2/3, or a = 2/3 and b = 1/3.

Corollary 2.3. For r ∈ (0, 1), and (a, b) ∈ D1, one has

2π√
3

1

B(a, b)
F (a, b; a+ b; r3) < F

(
a, b; a+ b;

9r(1 + r + r2)

(1 + 2r)3

)
(2.5)

< 3F (a, b; a+ b; r3).

In the region (a, b) ∈ D3, one has

F (a, b; a+ b; r3) < F

(
a, b; a+ b;

9r(1 + r + r2)

(1 + 2r)3

)
(2.6)

<
6π√
3

1

B(a, b)
F (a, b; a+ b; r3).

Theorem 2.4. Let B = B(a, b) and R = R(a, b) be defined as in (1.8)
and (1.9), respectively. Then for (a, b) ∈ D5, inequality
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0 ≤ (1 + 2r)F (a, b; a+ b; r3)− F

(
a, b; a+ b;

9r(1 + r + r2)

(1 + 2r)3

)
(2.7)

≤ 2(R− log 27)

B

holds for all r ∈ (0, 1). Also, for (a, b) ∈ D6,

0 ≤ F

(
a, b; a+ b;

9r(1 + r + r2)

(1 + 2r)3

)
− (1 + 2r)F (a, b; a+ b; r3)(2.8)

≤ 2(log 27−R)

B
.

Theorem 2.5.

(i) For (a, b) ∈ D1 and each x ∈ (0, 1), one has

(2.9)
1

3
≤ F (a, b; a+ b; ((1− x)/(1 + 2x))3)

(1 + 2x)F (a, b; a+ b; 1− x3)
≤

√
3B(a, b)

6π
.

(ii) For (a, b) ∈ D3 and each x ∈ (0, 1), one has

(2.10)

√
3B(a, b)

6π
≤ F (a, b; a+ b; ((1− x)/(1 + 2x))3)

(1 + 2x)F (a, b; a+ b; 1− x3)
≤ 1

3
.

(iii) For (a, b) ∈ D5 and each x ∈ (0, 1), we have

(1 + 2x)F (a, b; a+ b; 1− x3)(2.11)

≤ 3F

(
a, b; a+ b;

(
1− x

1 + 2x

)3)
≤ (1 + 2x)

[
F (a, b; a+ b; 1− x3) +

2(R(a, b)− log 27)

B(a, b)

]
.

(iv) For (a, b) ∈ D6 and each x ∈ (0, 1), we have

0 ≤ (1 + 2x)F (a, b; a+ b; 1− x3)(2.12)

− 3F

(
a, b; a+ b;

(
1− x

1 + 2x

)3)
≤ 2(1 + 2x)(log 27−R(a, b))

B(a, b)
.
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3. Proofs of theorems. In order to prove our main results, we
introduce several symbols. Throughout this section, we let

F (x) = F (a, b; a+ b;x), G(x) = F (a, b; a+ b+ 1;x),

where a, b > 0 with (a, b) ̸= (1/3, 2/3) and (a, b) ̸= (2/3, 1/3), and

F ∗(x) = F

(
1

3
,
2

3
; 1;x

)
, G∗(x) = F

(
1

3
,
2

3
; 2;x

)
.

Lemma 3.1.

(i) The function f(r) = F (r)/F ∗(r) is strictly decreasing in (0, 1) on
D1, and strictly increasing in (0, 1) on D3. Moreover, if (a, b) ∈
D2 (D3, respectively), then there exists r0 (r∗0, respectively)
such that f(r) is strictly increasing (decreasing, respectively) in
(0, r0) ((0, r∗0), respectively), and strictly decreasing (increasing,
respectively) in (r0, 1) ((r

∗
0 , 1), respectively).

(ii) The function g(r) = G(r)/G∗(r) is strictly decreasing in (0, 1) on
D5 and strictly increasing in (0, 1) on D6.

Proof. For part (i), denote by An = (a, n)(b, n)/[(a + b, n)n!] and
A∗

n = (1/3, n)(2/3, n)/[(n)!]2, then

(3.1) f(r) =
F (r)

F ∗(r)
=

∞∑
n=0

Anr
n∑

n=0
A∗

nr
n
.

Note that the monotonicity of {An/A
∗
n} depends on the sign of

(3.2) Hn =

(
ab− 2

9

)
n+ ab− 2

9
(a+ b).

We divide the proof into four cases.

Case 1. (a, b) ∈ D1. Then equation (3.2) implies Hn < 0 for n = 0,
1, 2, . . ., and f(r) is strictly decreasing on (0, 1) by equation (3.1) and
Lemma 1.1.

Case 2. (a, b) ∈ D3. Then equation (3.2) implies Hn > 0 for n = 0,
1, 2, . . ., and f(r) is strictly increasing on (0, 1) by equation (3.1) and
Lemma 1.1.
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Case 3. (a, b) ∈ D2. Then from equation (3.2) we conclude that the
sequence {An/A

∗
n} is increasing and then decreasing. By equation (3.1)

and Lemma 1.1 (ii), there exists r0 ∈ (0, 1) such that f(r) is strictly
increasing on (0, r0) and strictly decreasing on (r0, 1).

Case 4. (a, b) ∈ D4. Then from equation (3.2) we know that the
sequence {An/A

∗
n} is decreasing and then increasing. By equation (3.1)

and Lemma 1.1 (ii), there exists r∗0 ∈ (0, 1) such that f(r) is strictly
decreasing on (0, r∗0) and strictly increasing on (r∗0 , 1).

For part (ii), denote Bn = (a, n)(b, n)/[(a + b + 1, n)n!] and B∗
n =

(1/3, n)(2/3, n)/[(2, n)(n)!]. Then

(3.3) g(r) =
G(r)

G∗(r)
=

∞∑
n=0

Bnr
n∑

n=0
B∗

nr
n
.

Note that the monotonicity of {Bn/B
∗
n} depends on the sign of

(3.4) H∗
n =

(
a+ b+ ab− 11

9

)
n+

2

9
(9ab− a− b− 1).

We divide the proof into two cases.

Case A. (a, b) ∈ D5. Then a+b+ab−11/9 ≤ 11(a+b)/9−11/9 ≤ 0
and 9ab− a− b− 1 = 9ab− 2(a+ b) + (a+ b)− 1 ≤ 0. Thus, H∗

n < 0
for n = 0, 1, 2, . . . (because (a, b) ̸= (1/3, 2/3) and (a, b) ̸= (2/3, 1/3))
by equation (3.4). Therefore, g(r) is strictly decreasing in (0, 1) by
equation (3.3) and Lemma 1.1 (i).

Case B. (a, b) ∈ D6. Then a+b+ab−11/9 ≥ 11(a+b)/9−11/9 ≥ 0
and 9ab−a− b−1 = 9ab−2(a+ b)+ (a+ b)−1 ≥ 0. Thus, H∗

n > 0 for
n = 0, 1, 2, . . . by equation (3.4). Therefore, g(r) is strictly increasing
in (0, 1) by equation (3.3) and Lemma 1.1 (i). �

Proof of Theorem 2.1. Let x = x(r) = r3 and y = y(r) = 9r(1 +
r + r2)/(1 + 2r)3. Then simple computation leads to 0 < x < y < 1
for 0 < r < 1. Using Lemma 3.1 (i), we get f(x) > f(y) on D1, and
f(x) < f(y) on D3.

For (a, b) ∈ D1, by equation (1.4), one has

F (r3)

F ∗(r3)
>

F (y)

F ∗(y)
,
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F (y) <
F ∗(y)

F ∗(r3)
F (r3) = (1 + 2r)F (r3).

Thus, equation (2.1) follows.

Inequality (2.2) is obtained analogously. The remaining conclusions
easily follow from Lemma 3.1 (i). �

Proof of Theorem 2.2. Let f(r) be defined as in Lemma 3.1 (i), then
f(r) is strictly decreasing on D1. Then asymptotic formula (1.6) leads
to

1 = lim
r→0+

F (r)

F ∗(r)
>

F (r)

F ∗(r)
> lim

r→1−

F (r)

F ∗(r)

=
B(1/3, 2/3)

B(a, b)
=

2
√
3π

3B(a, b)

and
√
3B(a, b)

2π

1

F ∗(y(r))
>

1

F (y(r))
=⇒

√
3B(a, b)

2π

F ∗(x(r))

F ∗(y(r))
>

F (x(r))

F (y(r))
.

Thus, inequality (2.3) is clear.

Inequality (2.4) valid on D3 can be proved similarly. �

Lemma 3.2. The function

J(r) = (1 + 2r1/3)F (a, b; a+ b; r)

− F

(
a, b; a+ b;

9r1/3(1 + r1/3 + r2/3)

(1 + 2r1/3)3

)
is strictly increasing in (0, 1) on D5 and strictly decreasing in (0, 1) on
D6.

Proof. Let z = 9r1/3(1 + r1/3 + r2/3)/(1 + 2r1/3)3. Then

1− z =
(1− r1/3)3

(1 + 2r1/3)3
,

dz

dr
=

3(1− r1/3)2

r2/3(1 + 2r1/3)4
.

Note that

(1− x)F (a+ 1, b+ 1; a+ b+ 1;x) = F (a, b; a+ b+ 1;x).
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Differentiating J(r) gives

r2/3(1− r1/3)J ′(r) =
2

3
(1− r1/3)F (a, b; a+ b; r)

(3.5)

+
ab

a+ b

r2/3(1 + 2r1/3)(1− r1/3)

1− r

× F (a, b; a+ b+ 1; r)− 3ab

(a+ b)(1 + 2r1/3)
F (a, b; a+ b+ 1; z)

=
2

3
(1− r1/3)F (r) +

ab

a+ b

r2/3(1 + 2r1/3)(1− r1/3)

1− r
G(r)

− 3ab

(a+ b)(1 + 2r1/3)
G(z).

On the other hand, differentiating the Ramanujan cubic transforma-
tion, we get

2

3

G∗(z)

1 + 2r1/3
=

2

3
(1− r1/3)F ∗(r)(3.6)

+
2

9

r2/3(1 + 2r1/3)(1− r1/3)

1− r
G∗(r).

Let g(r) be defined as in Lemma 3.1 (ii), then g(r) is strictly
decreasing in (0, 1) onD5. Then from 0 < r < z < 1 we get g(r) > g(z),
namely,

(3.7) G(z) <
G∗(z)

G∗(r)
G(r).

Equations (3.5) and (3.6) together with inequality (3.7) yield

r2/3(1− r1/3)J ′(r)

>
2

3
(1− r1/3)F (r)

+
ab

a+b

r2/3(1+2r1/3)(1−r1/3)

1− r
G(r)− 3ab

(a+b)(1+2r1/3)

G∗(z)

G∗(r)
G(r)

=
2

3
(1− r1/3)F (r) +

ab

a+ b

r2/3(1 + 2r1/3)(1− r1/3)

1− r
G(r)
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− 3ab

(a+ b)(1 + 2r1/3)

×
(
(1− r1/3)(1 + 2r1/3)

F ∗(r)

G∗(r)
+

1

3

r2/3(1+2r1/3)2(1−r1/3)

1− r

)
G(r)

=
2

3
(1− r1/3)F (r)− 3ab

(a+ b)
(1− r1/3)

F ∗(r)

G∗(r)
G(r)

=
2

3
(1− r1/3)

[
F (r)− 9ab

2(a+ b)

F ∗(r)

G∗(r)
G(r)

]
.

Note that
F ′(r)

F ∗′(r)
=

9ab

2(a+ b)

G(r)

G∗(r)
.

Thus,

3

2
r2/3J ′(r) > F (r)− F ′(r)

F ∗′(r)
F ∗(r) =

F 2(r)

F ∗′(r)

(
F ∗(r)

F (r)

)′

.

It follows from Lemma 3.1 (i) and D5 ⊂ D1 that (F ∗(r)/F (r))′ ≥ 0
on D5. Hence, J

′(r) > 0 and J(r) is strictly increasing in (0, 1) on D5.

Since g(r) is strictly increasing in (0, 1) on D6, we have g(z) > g(r),
namely,

G(z) >
G∗(z)

G∗(r)
G(r).

Making use of a similar argument, one has

3

2
r2/3J ′(r) <

F 2(r)

F ∗′(r)

(
F ∗(r)

F (r)

)′

< 0,

since f(r) = F (r)/F ∗(r) is strictly increasing in (0, 1) on D6 ⊂ D3.
Hence, J(r) is strictly decreasing in (0, 1) on D6. �

Proof of Theorem 2.4. From Lemma 3.2, we clearly see that

lim
r→0+

J(r) < J(r) < lim
r→1−

J(r), on D5,

and

lim
r→1−

J(r) < J(r) < lim
r→0+

J(r), on D6.
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Clearly, limr→0+ J(r) = 0, and, by equation (1.7), we have

lim
r→1−

J(r) = lim
r→1−

3R(a,b)−3 log(1−r)−(R(a,b)−3 log[(1−r1/3)/(1+2r1/3)])+o(1)
B(a,b)

=
2(R(a, b)− log 27)

B(a, b)
.

The assertion of Theorem 2.4 follows. �

Proof of Theorem 2.5. Theorem 2.5 follows from Theorems 2.2 and
2.4 with x = (1− r)/(1 + 2r) ∈ (0, 1). �
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