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A NOTE ON EXTREMAL DECOMPOSITIONS
OF COVARIANCES

ZOLTÁN LÉKA

ABSTRACT. We shall present an elementary approach to
extremal decompositions of (quantum) covariance matrices
determined by densities. We give a new proof on former
results and provide a sharp estimate of the ranks of the
densities that appear in the decomposition theorem.

1. Introduction. Let D ∈ Mn(C) denote an n × n (complex)
density matrix (i.e., D ≥ 0 and TrD = 1), and let Xi, 1 ≤ i ≤ k,
stand for self-adjoint matrices in Mn(C). Then the non-commutative
covariance matrix is defined by

VarD(X)ij := TrDXiXj − (TrDXi)(TrDXj)

1 ≤ i, j ≤ k,

where X stands for the tuple (X1, . . . , Xk), see [7, page 13]. We
note that there are more general versions of variances and covariance
matrices. For instance, in [1, 2] Bhatia and Davis introduced them
by means of completely positive maps and applied the concept for
improving non-commutative Schwarz inequalities.

Covariances naturally appear in quantum information theory as well
and it seems that there is a recent interest in order to understand their
extremal properties [8, 9]. More precisely, in [8], Petz and Tóth proved
that any density matrix D can be written as the convex combination
of projections {Pl}, i.e.,

D =
∑
l

λlPl,
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such that
VarD(X) =

∑
l

λlVarPl
(X)

holds, where X denotes a fixed Hermitian. It is worth mentioning
here that, quite recently, Yu pointed out some extremal aspects of the
variances which yield a descriptions of the quantum Fisher information
in terms of variances (for the details, see [11]).

In this short note, we study analogous questions in the multivariable
case. Actually, we are interested in the following problem: let us find
densities Dl ∈ Mn(C) such that

D =
∑
l

λlDl and VarD(X) =
∑
l

λlVarDl
(X),

where ∑
l

λl = 1 and 0 < λl < 1.

Let us call a density D extreme with respect to X = (X1, . . . , Xk) if it
admits only the trivial decomposition, i.e., Dl = D for every l. It was
proved in the cases k = 1 and k = 2 that the extreme densities are
rank-one projections [5, 8]. Furthermore, the number of projections
used, i.e., the length of the decomposition, is polynomial in rank D (see
[5]).

The aim of this note is to present a simple approach to the extremal
problem above and to look at the question from the theory of extreme
correlation matrices (see [3, 4, 6]). In this context, we shall give a new
proof to the decomposition theorems appearing in [5, 8, 9], and we
present a sharp rank-estimate of the extreme densities.

2. Results and examples. First, we collect some basic properties
of the covariance matrix VarD(X). We note that the matrix does not
change by (real) scalar perturbations of the tuple (X1, . . . , Xk). In fact,
an elementary calculation on the entries gives that

(2.1) VarD(X) = VarD(X1 − λ1I, . . . ,Xk − λkI),

where λi ∈ R for every i. Moreover, one can readily check that VarD(X)
is positive. For the sake of completeness, here is a simple proof.
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Lemma 2.1. VarD(X) ≥ 0.

Proof. By equation (2.1), without loss of generality, one can assume
that TrDXi = 0 holds for every 1 ≤ i ≤ k. The density D
defines a semi-inner product ⟨A,B⟩D := TrDA∗B on Mn(C). Since
VarD(X)ij = ⟨Xi, Xj⟩D, for any y = (y1, . . . , yk) ∈ Ck, we get that

yVarD(X)y∗ =
⟨∑

i

yiXi,
∑
i

yiXi

⟩
D

≥ 0,

and the proof is done. �

Next, we show that the covariance is a concave function on the set
of the density matrices.

Lemma 2.2. Let
D =

∑
l

λlDl

be a finite sum of densities Dl ∈ Mn(C) such that∑
l

λl = 1

and 0 ≤ λl ≤ 1. Then

VarD(X) ≥
∑
l

λlVarDl
(X).

Proof. Choose 0 < λ < 1. If D = λD1+(1−λ)D2, a straightforward
calculation gives that

VarD(X)− (λVarD1(X) + (1− λ)VarD2(X)) = λ(1− λ)[xij ]1≤i,j≤k,

where xij = Tr (D1 −D2)XiTr (D1 −D2)Xj . Therefore, [xij ]1≤i,j≤k =
XX∗ ≥ 0 holds with

X =

Tr (D1 −D2)X1 0 · · · 0
...

...
...

Tr (D1 −D2)Xk 0 · · · 0

 ∈ Mk(C),

and the lemma readily follows. �



574 ZOLTÁN LÉKA

The scalar perturbation property VarD(X) = VarD(X− λ) guaran-
tees that it is enough to solve the extremal problem when TrDXi = 0
comes for every 1 ≤ i ≤ k. Then the nonlinear part of the covariance
vanishes; thus, we can simply transform our problem into a geometrical
one: let Xi ∈ Mn(C), 1 ≤ i ≤ k, be self-adjoints, and define the set

D(X) := {D : D ∈ Mn(C) is density and

TrDXi = 0 for every 1 ≤ i ≤ k}.

Clearly, D(X) is a convex, compact set. From the Krein-Milman
theorem, D(X) is the convex hull of its extreme points. Precisely,
these extreme points are the extreme densities we are looking for in the
decomposition of VarD(X).

Notice that there is no restriction if we assume that X1, . . . , Xk are
linearly independent over R. Hence, from here on, we shall use this
assumption on Xi’s.

When k ≥ 3, one can see that it is no longer true that the extreme
points of D(X) are rank-one projections. In fact, look at the following
simple example in M2(C) with k = 3.

Example 2.3. Recall that the Pauli matrices are given by

σx =

[
0 1
1 0

]
, σy =

[
0 -i
i 0

]
, σz =

[
1 0
0 −1

]
.

Any 2× 2 Hermitian Z with TrZ = 1 can be expressed in the form

Z =
1

2
(I2 + xσx + yσy + zσz),

where x, y and z ∈ R. Then the points of the Bloch sphere, i.e.,
x2+y2+z2 = 1, correspond to the rank-one projections. It is standard
that the self-adjoints of trace 1, which are orthogonal to a fixed Z,
form an affine two-dimensional subspace of R3. Hence, one can find
X1, X2 and X3 so that the only density D that satisfies TrDXi = 0,
1 ≤ i ≤ 3, is inside the Bloch ball. Then D(X) = {D} and D is a
density of rank 2.

We shall present a simple characterization of extreme densities or
the extreme points of D(X). We recall that, for any positive operators



EXTREMAL DECOMPOSITIONS OF COVARIANCES 575

D and C, D−εC is positive for some ε > 0 if and only if ranC ≤ ranD
holds. Then we can prove:

Lemma 2.4. The following statements are equivalent :

(i) D is an extreme point of D(X).
(ii) If C ∈ D(X) such that ranC ≤ ranD, then C = D.

Proof. Let us assume that ranC ≤ ranD and D ̸= C ∈ D(X). Then

(1− ε)

(
1

1− ε
(D − εC)

)
+ εC = D,

where 0 < ε < 1; hence, D cannot be an extreme point of D(X).

Conversely, if D is not extreme, then D = 1/2D1 + 1/2D2 which
implies that ran (D−1/2D1) ≤ ranD, since D−1/2D1 is positive. �

To produce a description of extD(X) which is more effective for our
purposes, we need some basic facts about correlation matrices. We
recall that a positive semidefinite matrix is a correlation matrix if its
diagonal entries are ones. Correlation matrices form a convex, compact
set in Mn(C). Its extreme points, or extreme correlation matrices, were
described by several authors, see e.g, [4, 6]. It is well known that an
n× n extreme correlation matrix has rank at most

√
n (see, e.g., [3]).

Later, we shall present an estimate of the rank of extreme density
matrices (with respect to tuples).

The perturbation method used by Li and Tam is relevant for us.
Let us say that a nonzero Hermitian S ∈ Mn(C) is a perturbation of
D if there exists an ε > 0 such that D ± εS are density matrices as
well. Then D is an extreme density with respect to X1, . . . , Xk if and
only if there does not exist a perturbation S of D such that TrS = 0
and TrSXi = 0 for every 1 ≤ i ≤ k. In fact, if D is not extreme,
one can find D1 and D2 densities such that D = 1/2D1 + 1/2D2 and
TrDjXi = 0. It follows that S = D1 −D2 is a perturbation of D. The
converse statement is trivial.

From here on, let Hn(C) denote the real Hilbert space of n × n
complex Hermitian matrices with the usual inner product ⟨A,B⟩ =
TrAB. One can easily conclude that an extreme density D (with
respect to X) must be singular if n2 > k + 1. Actually, the last
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inequality guarantees the existence of a Hermitian perturbation S
which satisfies the orthogonality constraints, i.e., S is orthogonal to
I and Xi’s. Moreover, the continuity of the spectra here gives that any
small perturbation D ± εS is positive if D is invertible.

Let σ(A) denote the spectrum of any A ∈ Mn(C). Suppose that
the matrix D is of rank r. Then there do exist a Y ∈ Mn×r(C) and
R ∈ Hr(C) such that D = Y RY ∗.

Now one can prove the following lemma which is analogous to [6,
Theorem 1 (a)].

Lemma 2.5. Let D = Y RY ∗ ∈ D(X) be a density of rank r. Then S
is a perturbation of D if and only if TrS = 0 and S = Y QY ∗ where
Q ∈ Hr(C).

Proof. First, assume that S = Y QY ∗. Then S is nonzero if and only
if Q ̸= 0. Indeed, we have rankS = rankQ because Y has full column
rank r. Since D = Y RY ∗ is positive, we obtain that R is positive
and invertible. From 0 /∈ σ(R), there does exist an ε > 0 such that
D ± εS = Y (R ± εQ)Y ∗ are positive. Obviously, we get that S is a
perturbation.

Conversely, let us assume that S is a perturbation of D. Clearly,
TrS = 0 must hold. Expand Y with a matrix Z ∈ Mn×(n−r)(C) such
that V = (Y |Z) is invertible and V (R⊕ 0n−r)V

∗ = D holds. Next, let
us write V −1S(V ∗)−1 into blocks that correspond to the block form of
R ⊕ 0n−r. Since V −1(D ± εS)(V −1)∗ are positive for some ε > 0, it
follows that S = V (Q⊕ 0n−r)V

∗ must hold for some Q ∈ Hr(C). �

Here we present our main result which reflects some similarity
with the characterization theorem of extreme correlations, see [6,
Theorem 1].

Theorem 2.6. Let Xi ∈ Hn(C), 1 ≤ i ≤ k, and D = Y RY ∗ ∈ D(X) be
a density of rank r, where Y ∈ Mn×r(C). The following are equivalent :

(i) D is an extreme point of D(X),
(ii) span {Y ∗X1Y, . . . , Y

∗XkY, Y
∗Y } = Hr(C),

(iii) {DX1D, . . . ,DXkD,D2} has (real) rank r2.

Moreover, if D = Y Y ∗, then the above statements are equivalent to:
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(iv) r−1Ir is an extreme density with respect to Y ∗XY , that is,

D(Y ∗XY ) = {r−1Ir}.

Proof.

(i) ⇔ (ii). From Lemma 2.5, D is extreme if and only if there does
not exist 0 ̸= Y QY ∗ such that TrY QY ∗Xi = TrQ(Y ∗XiY ) = 0 and
TrY QY ∗ = TrQ(Y ∗Y ) = 0. We notice that Q = 0 if and only if the
linear span of Y ∗X1Y, . . . , Y

∗XkY and Y ∗Y is the full space Hr(C).

(iii) ⇔ (ii). Let us choose the decomposition D = Y Y ∗, that is,
R = Ir. Note that the self-adjoint Y ∗Y ∈ Mr(C) is invertible. In fact,
σ(Y Y ∗) ∪ {0} = σ(Y ∗Y ) ∪ {0} holds; thus, σ(Y ∗Y ) equals the set of
positive eigenvalues of D (with multiplicities). This implies that

k∑
i=0

αiY
∗XiY = 0

if and only if

k∑
i=0

αiY Y ∗XiY Y ∗ = 0

(αi ∈ R, X0 = In),

so the systems {Y ∗X1Y, . . . , Y
∗XkY, Y

∗Y } and {DX1D, . . . ,DXkD,
D2} have the same rank.

(i) ⇒ (iv). Since D is an extreme point, we get from (ii) that
{Y ∗X1Y, . . . , Y

∗XkY } has rank at least r2 − 1. However, Ir is not
in the linear span of the above system because it is orthogonal to every
matrix Y ∗XiY . Adjusting r−1Ir to Y ∗XY , we get a full rank system
of Hr(C). Hence, by (iii), we conclude that r−1Ir is an extreme point
of D(Y ∗XY ).

(iv) ⇒ (i). If r−1Ir is an extreme point, it has no pertur-
bation S which is orthogonal to every Y ∗XiY . Thus, it follows
that Ir, Y

∗X1Y, . . . , Y
∗XkY must span Hr(C), that is, D(Y ∗XY ) =

{r−1Ir}. Note that Y ∗Y, Y ∗X1Y, . . . , Y
∗XkY span Hr(C) as well be-

cause TrY ∗Y = TrD = 1 and Y ∗XiY s are traceless. Thus, (ii) implies
that D is an extreme point. �
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The theorem gives a straightforward estimate of the rank of extreme
densities.

Corollary 2.7. Let D ∈ Mn(C) be an extreme density with respect to
X1, . . . , Xk ∈ Hn(C). Then

rankD ≤
√
k + 1.

The Krein-Milman theorem implies that VarD(X) can be written as
the convex sum of covariances determined by densities of rank at most√
k + 1. Moreover, one can easily deduce the following result which

first appeared in [5], [8, Theorem] and [9].

Corollary 2.8. Let D ∈ Mn(C) denote a density matrix. In the case
of k = 1 and k = 2, there exist rank-one projections P1, . . . , Pm such
that

D =
m∑
l=1

λlPl and VarD(X) =
m∑
l=1

λlVarPl
(X)

hold, where
m∑
l=1

λl = 1

and 0 ≤ λl ≤ 1.

In the case of k ≥ 3, one might expect that the covariance matrix
still can be decomposed by means of projections if n is large enough.
However, this is not necessarily true. The next example shows that the
estimate of Corollary 2.7 is sharp if n is large enough.

Example 2.9. Let n = ⌊
√
k + 1⌋. The special unitary group SU(n)

has dimension n2 − 1, so let λi, 1 ≤ i ≤ n2 − 1, denote a collection of
its traceless, Hermitian infinitesimal generators. One can also assume
that Trλiλj = 0 holds for every i ̸= j (for the generalized Gell-Mann
matrices, see e.g., [10]). Then the matrices {In, λ1, . . . , λn2−1} span
the real vector space Hn(C). Thus, it follows that

D(λ1, . . . , λn2−1) =

{
In
n

}
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is a singleton; hence, (1/n)In is an extreme density of rank n. If
n2 < k + 1, let us choose arbitrary λn2 , . . . , λk ∈ Mm(C) Hermitians
which are linearly independent wherem is large enough. From Theorem
1 (iii), (1/n)In ⊕ 0m remains extremal with respect to λ = (λ1 ⊕
0m, . . . , λn2−1 ⊕ 0m, 0n ⊕ λn2 , . . . , 0n ⊕ λk); hence, Var(1/n)In⊕0m(λ)
is not decomposable.

Applying direct sums as above, for every large n, one can construct
n× n extreme densities of arbitrary rank between 1 and

√
k + 1.

The method we used is very similar to that of describing extreme
correlations. However, the next example shows that VarD(X) is not
necessarily extreme even if it is a correlation matrix andD is an extreme
density (with respect to some tuple).

Example 2.10. Let D be the projection diag (1, 0, . . . , 0) ∈ Rn+1. We
define the Hermitians in Hn+1(C) as

X1 :=

[
0 1
1 0

]
⊕ 0n−1,

X2 :=

0 0 1
0 0 0
1 0 0

⊕ 0n−2, . . . , Xn :=


0 · · · 0 1
...

...
... 0

0
...

...
...

1 0 · · · 0

 .

Then a simple calculation gives that VarD(X) = In, which is obviously
not an extreme correlation matrix.

Finally, for the converse, we give an example that VarD(X) can be
an extreme correlation matrix while D is not necessarily extremal (with
respect to X).

Example 2.11. Consider D = (1/n)In ⊕ 0n ∈ H2n(C), n > 2. Let us
choose reals x1, . . . , xn such that

n∑
i=1

xi = 0 and
n∑

i=1

nx2
i = 1
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hold. For any X̃i ∈ Hn(C), 1 ≤ i ≤ n, we set

Xi = diag (x1, . . . , xn)⊕ X̃i ∈ H2n(C), 1 ≤ i ≤ n.

Then we get that VarD(X) is the n × n matrix which consists only
of ones, that is, it is a rank-one extreme correlation matrix. From
Corollary 2.7, D cannot be extreme with respect to X.
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