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LOCAL M-ESTIMATION FOR CONDITIONAL
VARIANCE FUNCTION WITH DEPENDENT DATA

YUNYAN WANG AND MINGTIAN TANG

ABSTRACT. In this paper, a local M -estimation for the
conditional variance function in heteroscedastic regression
models under stationary α-mixing dependent samples is
developed. The local M -estimator is based on the local
linear smoothing technique and the M -estimation technique,
and it is shown to be not only asymptotically equivalent
to the local linear estimator but also robust. The weak
consistency as well as the asymptotic normality of the
local M -estimator for the conditional variance function are
obtained under mild conditions.

1. Introduction. Let {(Yi, Xi)} be a two-dimensional strictly sta-
tionary process with the same marginal distribution as (Y,X). Let
m(x) = E(Y |X = x) and σ2(x) = Var (Y |X = x) ̸= 0 be the con-
ditional mean function and conditional variance function, respectively.
Consider the nonparametric heteroscedastic regression model:

(1.1) Yi = m(Xi) + σ(Xi)εi,

where E(εi|Xi) = 0 and Var (εi|Xi) = 1.

As is known, there is much literature concerning the estimation of
the conditional mean function m(x), for example, [8, 19, 41] and the
references therein. Here, we are interested in the nonparametric robust
estimation of the conditional variance function σ2(x) under stationary
α-mixing dependent samples.

Conditional variance estimation plays an important role in many ap-
plications. It is crucial in inference for the parameters in the conditional
mean function. For example, Holst et al. [30] used local polynomial
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regression for evaluation of the concentration of atmospheric atomic
mercury measured with the LIght Detection And Ranging (LIDAR)
technique; because of severe heteroscedasticity, the variance function
must be estimated to obtain a satisfactory bandwidth for the deriv-
ative of the mean function. In a time series context, Hansen [26]
developed parameter estimation of the conditional mean function by
incorporating nonparametric conditional variance estimates.

The variance function is of interest in its own right. Local variability
of the data is often described by the conditional variance function
in a statistical model. For example, measuring volatility or risk in
finance (Andersen and Lund [2]), identifying homoscedastic transforms
in regression (Carroll and Ruppert [9]) and monitoring the signal-to-
noise ratios in quality control of experimental design (Box [7]).

Moreover, the conditional variance function is crucial for statistical
analysis. It can be used to construct confidence intervals. In finance,
conditional variance is also called volatility, which refers to the charac-
teristic of the non-constant variation and is directly related to option
pricing and risk measure quantification.

Since the conditional variance function σ2(x) can model the vari-
ability of statistical data and its applications in financial risk man-
agement, its estimation has become increasingly popular. In nonpara-
metric theory, various methods of estimation of the volatility function
have appeared. For example, Ruppert et al. [38] studied the condi-
tional variance function in a nonparametric heteroscedastic regression
model by linear smoothing of squared residuals. Fan and Yao [20]
proposed a local linear estimator for the conditional variance of model
(1.1). Vilar-Fernández and Francisco-Fernández [42] studied two non-
parametric estimators of the conditional variance previously studied in
Härdle and Tsybakov [29] and Fan and Yao [20] in different contexts,
and showed that the leading term of the asymptotic variance of these
estimators is different from that obtained in Härdle and Tsybakov [29]
and Fan and Yao [20]. Chen et al. [12] applied variance reduction
techniques to the estimator of Fan and Yao [20] to improve the infer-
ence for the conditional variance. Chan et al. [10] applied empirical
likelihood methods to construct confidence intervals for the conditional
variance based on the estimator of Fan and Yao [20] and the reduced
variance modification of Chen et al. [12]. Xu and Phillips [44] devel-
oped a reweighted local constant estimator of the conditional variance



LOCAL M -ESTIMATION 335

function based on an empirical likelihood modification of conventional
local level nonparametric regression applied to squared mean regression
residuals. Kulik and Wichelhaus [32] studied the asymptotic properties
of a nonparametric kernel estimator of conditional variance function in
nonparametric regression models with long memory errors and predic-
tors, and obtained the nonparametric estimator of the error density.
Moreover, this paper showed that the Nadaraya-Watson estimation of
the conditional mean had influence on the estimation of the conditional
variance and the error density.

However, the nonparametric methods mentioned above focus mainly
on the independent identically distributed case. There are many sta-
tistical analysis problems about high-dimensional, dependent and in-
complete data in many areas, such as modern science, technology and
socioeconomic. With the development of computer technology, statis-
tics is facing unprecedented challenges and opportunities, in which the
statistical analysis of dependent data is a universal highlight problem.
For example, the signal data which are received and transmitted by
the radar network and information network are dependent. Thus, the
study of dependent random variables has attracted the attention of
statistical workers. The book by Györfi et al. [24] studied the non-
parametric curve estimation from time series. Roussas [37] considered
the nonparametric estimation for regression function under four kinds
of mixing conditions, i.e. ψ-mixing, ϕ (or uniform)-mixing, ρ-mixing
and α (or strong)-mixing, developed the strongly consistency of the
estimator, and obtained the rates of convergence. Yoshihara [45] con-
sidered weakly dependent stochastic sequences and studied the curve
estimation based on weakly dependent data. Masry and Fan [34] stud-
ied the local polynomial estimation for conditional mean functions and
their derivatives in regression functions under strongly mixing and ρ-
mixing conditions. Liang [33] established the asymptotic normality of
nonparametric kernel estimator of the regression function for the left-
truncation model when the data exhibit some kind of dependence (it
is assumed that the lifetime observations with multivariate covariates
form a stationary α-mixing sequence), and obtained a uniform weak
convergence rate for the product-limit estimator of the lifetime and
truncated distributions under dependence, which is interesting inde-
pendently.

Moreover, the nonparametric methods mentioned above are based
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on local polynomial regression smoothers, and they are not robust. Un-
noticed or difficult to detect unforeseen circumstances often happened
in the process of accessing data, and all these unforeseen circumstances
will make the data inevitably contain more or less abnormal values;
hence, these abnormal observations are observed very often in economic
time series and finance as well as in many other applied fields. Since
individual outliers will make larger changes to the results of statistical
inference and lead to unreasonable or wrong conclusions, such statisti-
cal methods are not “robust” and cannot adapt to complex changes in
the actual situation.

In order to fine tune the abnormal observations, there is a growing
literature on robust methods. Among the authors with the most in-
teresting contributions in the area is Graciela Boente. For example,
Boente et al. [5] introduced a family of robust estimates for the para-
metric and nonparametric components under a generalized partially
linear model and established the consistency and asymptotic normal-
ity of the proposed estimators. Boente et al. [6] considered the local
M -estimators of the scale function based on consecutive differences of
the responses and developed the asymptotic behavior of the local M -
estimators for general weight functions. Bianco et al. [4] presented two
families of nonparametric and robust estimators of regression function
in the presence of anomalous data, and studied the asymptotic behavior
of the robust estimators.

One popular robust technique is the so-called M -estimators. M -
estimation has been studied by many authors in parametric, semipara-
metric and nonparametric settings, for example, Delecroix et al. [15],
Davis et al. [14], Hall and Jones [25] and the references therein. Fur-
thermore, some modifiedM -estimators were proposed, such as the local
M -estimator, which is a combination of the local linear smoothing tech-
nique and theM -estimation technique. The localM -estimators inherit
nice properties from not only M -estimators but also from local linear
estimators. For example, Fan and Jiang [19] developed local linear M -
estimator with variable bandwidth for regression function and Jiang
and Mack [31] considered a robust estimator of the regression function
by using local polynomial regression techniques.

The paper is structured as follows. Section 2 introduces the local
M -estimator of the conditional variance function in heteroscedastic re-
gression models under stationary α-mixing dependent samples. The
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consistency and asymptotic normality of the new estimator are devel-
oped under some mild conditions in Section 3. Some technical lemmas
and all mathematical proofs of our main results are presented in Sec-
tion 4. Section 5 is the conclusion.

2. Local M-estimator and assumptions. Our main interest in
this work is in estimating the conditional variance function σ2(·). The
local linear estimator of σ2(x) proposed by Fan and Yao [20] is defined
as the solution to the following problem: find α0 and α1 to minimize
the following weighted sum

(2.1)
n∑

i=1

(
[Yi − m̂(Xi)]

2 − α0 − α1(Xi − x)
)2
K

(
Xi − x

h

)
,

where K(·) is kernel function and h is a sequence of positive numbers
tending to zero, called the smoothing parameter or bandwidth, and m̂(x)
is the local linear estimator of the conditional mean functionm(x), that
is,

m̂(x) =

n∑
i=1

ω1iWh̄(Xi − x)Yi

n∑
i=1

ω1iWh̄(Xi − x)
,

where W (·) is a kernel function and h is a bandwidth,

ω1i = Sn,2 − (Xi − x)Sn,1

with

Sn,j =

n∑
i=1

(Xi − x)jWh̄(Xi − x), j = 1, 2

and Wh̄(·) =W (·/h)/h.

In fact, the local linear estimator which is obtained from (2.1) is
based on the least-squares principle and is not robust. Therefore, we
propose to choose a and b to minimize

(2.2)
n∑

i=1

ρ
(
[Yi − m̂(Xi)]

2 − a− b(Xi − x)
)
K

(
Xi − x

h

)
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or to satisfy the local estimation equations:

(2.3)
n∑

i=1

ψ
(
[Yi − m̂(Xi)]

2 − a− b(Xi − x)
)
K

(
Xi − x

h

)(
1

Xi − x/h

)
=

(
0
0

)
,

where ρ(·) is a given outlier-resistant loss function and ψ(·) is the
derivative of ρ(·).

Let σ̇2(x) be the first order derivative of the conditional variance
σ2(x), and the M -type estimators of σ2(x) and σ̇2(x) are denoted as

σ̂2(x) = â and ̂̇σ2
(x) = b̂, which are the solutions of (2.3).

Let p(·) be the marginal density function of X, and let x0 be a
given point in [−1, 1]. The conditions that are necessary in deriving
the asymptotic properties of the local M -estimators are as follows.

Assumption 1.

(i) The marginal density function p(x) of the process X is continuous
at x0, and p(x0) > 0.

(ii) The second derivative m̈(x) = d2[m(x)]
/
dx2 and σ̈2(x) =

d2[σ2(x)]
/
dx2 are continuous at the point x0.

Assumption 2. Assume that the kernel functions W (·) and K(·)
are continuous probability density functions each with bounded support
on [−1, 1].

Assumption 3. Assume that n → ∞, h → 0 and h→ 0 such that
nh→ ∞ and nh→ ∞.

Assumption 4. E[ψ(ui)|Xi = x] = o(1) with ui = [Yi−m̂(Xi)]
2−

σ2(Xi).

Assumption 5. The function ψ′(·) satisfies

E[ sup
|z|≤δ

|ψ′(ui + z)− ψ′(ui)||Xi = x] = o(1)

and
E[ sup

|z|≤δ

|ψ(ui + z)− ψ(ui)− ψ′(ui)z||Xi = x] = o(δ)
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as δ → 0 uniformly in x in a neighborhood of x0;

Assumption 6. The function ψ(·) is continuous and has a deriva-
tive ψ′(·) almost everywhere. Furthermore, it is assumed that functions

E[ψ′(ui)|Xi = x] > 0, E[ψ2(ui)
∣∣Xi = x] > 0,

E[ψ′2(ui)
∣∣∣Xi = x] > 0,

and continuous at the point x0, and there exists a constant γ > 0 such
that

E[ |ψ(ui)|2+γ
∣∣∣Xi = x], E[ |ψ′(ui)|

2+γ
∣∣∣Xi = x]

are bounded in a neighborhood of x0.

Assumption 7. For any i, j,

E[ψ2(ui) + ψ2(uj)
∣∣Xi = x,Xj = y],

E[ψ′2(ui) + ψ′2(uj)
∣∣∣Xi = x,Xj = y]

are bounded in the neighborhood of x0.

Remark 2.1. The conditions in Assumptions 4–7 imposed on ψ(·) and
ψ′(·) are mild and satisfied for many applications. Particularly, they
are fulfilled for Huber’s ψ(·) function. In this paper, unlike Härdle
[27, 28], we do not need the monotonicity and boundedness of ψ(·)
nor the convexity of the function ρ(·). In the paper, the function ρ(·)
can choose ρ(x) = x2; in other words, the well-known least square
estimator (LSE) can be used in practice and satisfies all the technical
conditions above. For more details about these conditions we refer to
Fan and Jiang [19] or Cai and Ould-Said [8].

Assumption 8. Assume that {(Xj , Yj)} is a stationary α-mixing
process, and the mixing coefficient α(n) satisfies∑

n≥1

na(α(n))
γ/(2+γ)

<∞

for some a > γ/(2 + γ), where γ is given in Assumption 6.

Assumption 9. Assume that there exists a sequence of positive
integers qn such that qn → ∞, qn = o((nh)1/2) and (n/h)1/2α(qn) → 0
as n→ ∞.
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Assumption 10. There exists τ > 2 + γ, where γ is given in
Assumption 6, such that E{|ψ(ui)|τ |Xi = x} is bounded for all x in a
neighborhood of x0, and α(n) = O(n−θ), where θ ≥ (2 + γ)τ/{2(τ −
2− γ)}.

Assumption 11. n−γ/4h(2+γ)/τ−1−γ/4 = O(1), where γ is given in
Assumption 6 and τ is given in Assumption 10.

3. Main results. Throughout the whole paper, let

Kl =

∫
ulK(u) du, Jl =

∫
ulK2(u) du, for l ≥ 0,

U =

(
K0 K1

K1 K2

)
, V =

(
J0 J1
J1 J2

)
, A =

(
K2

K3

)
,

G1(x) = E[ψ′(ui)|Xi = x],

G2(x) = E[ψ2(ui)
∣∣Xi = x],

G3(x) = E[ψ′2(ui)
∣∣∣Xi = x].

Our main results are as follows:

Theorem 3.1. Under Assumptions 1–8, there exist solutions σ̂2(x0)

and ̂̇σ2
(x0) to equations (2.3) such that(

σ̂2(x0)− σ2(x0)

h[̂̇σ2
(x0)− σ̇2(x0)]

)
P−→ 0, n→ ∞.

Theorem 3.2. Under Assumptions 1–11, for the solutions given in
Theorem 3.1, we have

√
nh

[(
σ̂2(x0)− σ2(x0)

h[̂̇σ2
(x0)− σ̇2(x0)]

)
− h2σ̈2(x0)

2
U−1A

]
D−→N(0,Σ),

where

Σ =
G2(x0)

G2
1(x0)p(x0)

U−1V U−1.

4. Lemmas and proofs. In order to prove Theorems 3.1 and 3.2,
we need to establish the following lemmas.
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Lemma 4.1. Under Assumptions 1–8, we have

n∑
i=1

ψ′(ui)K

(
Xi − x0

h

)
(Xi − x0)

l = nhl+1G1(x0)p(x0)Kl(1 + op(1)),

and

n∑
i=1

ψ′(ui)R(Xi)K

(
Xi − x0

h

)
(Xi − x0)

l

=
nhl+3

2
G1(x0)σ̈

2(x0)p(x0)Kl+2(1 + op(1)),

where R(Xi) = σ2(Xi)− σ2(x0)− σ̇2(x0)(Xi − x0).

Proof of Lemma 4.1. Since the second part of the lemma can be
proved by the same arguments as the first one, we only prove the first
part. Let

Zn,i = ψ′(ui)K

(
Xi − x0

h

)
(Xi − x0)

l.

By continuation at the point x0 of K(·), G1(·) and p(·), we obtain

E(Zn,1) =

∫
G1(x)K

(
x− x0
h

)
(x− x0)

l
p(x) dx

=

∫
G1(x0 + yh)K (y) (yh)

l
p(x0 + yh)h dy

= hl+1G1(x0)p(x0)

∫
K (y) yl dy(1 + o(1))

= hl+1G1(x0)p(x0)Kl(1 + o(1)).

Therefore, we have

E

( n∑
i=1

ψ′(ui)K

(
Xi − x0

h

)
(Xi − x0)

l

)
=nhl+1G1(x0)p(x0)(x0)Kl(1+o(1)).

Note that

n∑
i=1

Zn,i = E

( n∑
i=1

Zn,i

)
+Op

(√√√√Var

( n∑
i=1

Zn,i

))
,
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and

Var

( n∑
i=1

Zn,i

)
= nEZ2

n,1 + 2
n∑

j=2

(n− j + 1)Cov (Zn,1, Zn,j).

By continuation at the point x0 of K(·), G3(·) and p(·), we obtain

EZ2
n,1 =

∫
G3(x)K

2

(
x− x0
h

)
(x− x0)

2l
p(x) dx

=

∫
G3(x0 + yh)K2 (y) (yh)

2l
p(x0 + yh)h dy

= h2l+1G3(x0)p(x0)

∫
K2 (y) y2ldy(1 + o(1)) = O(h2l+1).

Let dn be a sequence of positive integers satisfying dn → ∞ and
hdn → 0. Then we have

n∑
j=2

|Cov (Zn,1, Zn,j)| =
dn∑
j=2

|Cov (Zn,1, Zn,j)|+
n∑

j=dn+1

|Cov (Zn,1, Zn,j)|.

By Assumption 7 and the bounded support of K(·), we have

|EZn,iZn,j | ≤ E |Zn,iZn,j | = E

∣∣∣∣E[ψ′(ui)ψ
′(uj)|Xi, Xj ]

·K
(
Xi − x0

h

)
(Xi − x0)

l
K

(
Xj − x0

h

)
(Xj − x0)

l

∣∣∣∣
≤ C1E

∣∣∣∣K(Xi − x0
h

)
(Xi − x0)

l
K

(
Xj − x0

h

)
(Xj − x0)

l

∣∣∣∣
0 ≤ C2h

2l+2,

where C1 and C2 are constants. Therefore, we have

dn∑
j=2

|Cov (Zn,1, Zn,j)| ≤ C2h
2l+2

dn∑
j=2

1 = o(nh2l+1).

By using Davydov’s inequality, we have

|Cov (Zn,1, Zn,j)| ≤ C3[α(j − 1)]γ/(2+γ)
(
E|Zn,1|2+γ

)2/(2+γ)

,
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and, by Assumption 6, we have

E|Zn,i|2+γ
= E

∣∣∣∣E [ψ′(ui)|Xi]K

(
Xi − x0

h

)
(Xi − x0)

l

∣∣∣∣2+γ

≤ C4E

∣∣∣∣K(Xi − x0
h

)
(Xi − x0)

l

∣∣∣∣2+γ

≤ C5h
(2+γ)l+1,

where C3, C4 and C5 are constants. Therefore, by using Assumption 8
and choosing dn such that danh

γ/(2+γ) = O(1), we have

n∑
j=dn+1

|Cov (Zn,1, Zn,j)| ≤ C6

n∑
j=dn+1

[α(j − 1)]
γ/(2+γ)

(
h(2+γ)l+1

)2/(2+γ)

= C6h
2l+2/(2+γ)

n∑
k=dn

[α(k)]
γ/(2+γ)

≤ C6d
−a
n h2l+2/(2+γ)

n∑
k=dn

ka[α(k)]
γ/(2+γ)

= o(nh2l+1),

where C6 is a constant. In summary, we have

Var

( n∑
i=1

Zn,i

)
= O(nh2l+1).

Therefore,

n∑
i=1

ψ′(ui)K

(
Xi − x0

h

)
(Xi − x0)

l = nhl+1G1(x0)p(x0)Kl(1 + op(1)).

This completes the proof of Lemma 4.1. �

Lemma 4.2. Under Assumptions 1–4 and 6–11, we have

1√
nh


n∑

i=1

ψ(ui)K
(
Xi−x0

h

)
n∑

i=1

ψ(ui)K
(
Xi−x0

h

)
Xi−x0

h

 D−→N(0,Σ1),

where Σ1 = G2(x0)p(x0)V .
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Proof of Lemma 4.2. Let

Wn =

n∑
i=1

Wn,i =

n∑
i=1

ψ(ui)K

(
Xi − x0

h

)(
1

Xi−x0

h

)
,

then by Assumption 4, we have EWn = o(1), and

VarWn = Var

( n∑
i=1

Wn,i

)
= nEW 2

n,1+2

n∑
j=2

(n−j+1)Cov(Wn,1,Wn,j).

Using the same lines of arguments as in Lemma 4.1, we have

VarWn = nhG2(x)p(x0)V (1 + o(1)). �

Next, we will prove the asymptotic normality of 1/
√
nhWn, and this

can be shown by using similar methods as in Cai and Ould-Said [8,
Theorem 2]. This completes Lemma 4.2.

Proof of Theorem 3.1. We prove the consistency of the local M -
estimators of σ2(x) and σ̇2(x). Let

r = (a, hb)T , r0 = (σ2(x0), hσ̇
2(x0))

T ,

ri = (r − r0)
T

(
1

Xi−x0

h

)
,

and

Ln(r) =
n∑

i=1

ρ
(
(Yi − m̂(Xi))

2 − a− b(Xi − x0)
)
K

(
Xi − x0

h

)
.

Then we have

ri = (r − r0)
T

(
1

Xi−x0

h

)
= (a− σ2(x0), hb− hσ̇2(x0))

(
1

Xi−x0

h

)
= a− σ2(x0) + (hb− hσ̇2(x0))

Xi − x0
h

= a− σ2(x0) + (b− σ̇2(x0))(Xi − x0)

= a+ b(Xi − x0)− σ2(x0)− σ̇2(x0)(Xi − x0)

= a+ b(Xi − x0) +R(Xi)− σ2(Xi)
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= a+ b(Xi − x0) +R(Xi)− [(Yi − m̂(Xi))
2 − ui].

Let Sδ be the circle centered at r0 with radius δ. We will show that,
for any sufficiently small δ,

(4.1) lim
n→∞

P

{
inf
r∈Sδ

Ln(r) > Ln(r0)

}
= 1.

In fact, for r ∈ Sδ, we have

Ln(r)− Ln(r0)

=
n∑

i=1

ρ
(
(Yi − m̂(Xi))

2 − a− b(Xi − x0)
)
K

(
Xi − x0

h

)

−
n∑

i=1

ρ
(
(Yi − m̂(Xi))

2 − σ2(x0)− σ̇2(x0)(Xi − x0)
)
K

(
Xi − x0

h

)

=

n∑
i=1

K

(
Xi − x0

h

)
[ρ(ui +R(Xi)− ri)− ρ(ui +R(Xi))]

=
n∑

i=1

K

(
Xi − x0

h

)∫ ui+R(Xi)−ri

ui+R(Xi)

ψ(t) dt

=
n∑

i=1

K

(
Xi − x0

h

)∫ ui+R(Xi)−ri

ui+R(Xi)

ψ(ui) dt

+
n∑

i=1

K

(
Xi − x0

h

)∫ ui+R(Xi)−ri

ui+R(Xi)

ψ′(ui)(t− ui) dt

+
n∑

i=1

K

(
Xi − x0

h

)∫ ui+R(Xi)−ri

ui+R(Xi)

[ψ(t)− ψ(ui)− ψ′(ui)(t− ui)] dt

:= Ln1 + Ln2 + Ln3.

Next, we will show that

(4.2) Ln1 = op(nhδ),

(4.3) Ln2 =
nh

2
(r − r0)

TG1(x0)p(x0)U(1+op(1))(r−r0)+Op(nh
3δ),
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(4.4) Ln3 = op(nhδ
2).

For (4.2), we have

Ln1 =

n∑
i=1

K

(
Xi − x0

h

)∫ ui+R(Xi)−ri

ui+R(Xi)

ψ(ui) dt

=

n∑
i=1

K

(
Xi − x0

h

)
ψ(ui)(−ri)

= −(r − r0)
T

n∑
i=1

K

(
Xi − x0

h

)
ψ(ui)

(
1

Xi−x0

h

)
=−(r−r0)TWn,

where

Wn =


n∑

i=1

ψ(ui)K

(
Xi−x0

h

)
n∑

i=1

ψ(ui)K

(
Xi−x0

h

)
Xi−x0

h

 .

By Assumption 4 and Lemma 4.2, we have EWn = o(1), and

VarWn = nhG2(x)p(x0)V (1 + o(1)),

which implies that (4.2) holds.

For (4.3), we have

Ln2 =
n∑

i=1

K

(
Xi − x0

h

)∫ ui+R(Xi)−ri

ui+R(Xi)

[ψ′(ui)(t− ui)] dt

=
1

2

n∑
i=1

K

(
Xi − x0

h

)
ψ′(ui)(r

2
i − 2R(Xi)ri)

=
1

2

n∑
i=1

K

(
Xi − x0

h

)
ψ′(ui)(r − r0)

T

(
1 Xi−x0

h
Xi−x0

h
(Xi−x0)

2

h2

)
(r−r0)

−
n∑

i=1

K

(
Xi − x0

h

)
ψ′(ui)R(Xi)ri

:= Ln21 + Ln22.
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From Lemma 4.1 with l = 0, l = 1 and l = 2, respectively, we have

Ln21 =
1

2

n∑
i=1

K

(
Xi − x0

h

)
ψ′(ui)(r − r0)

T

(
1 Xi−x0

h
Xi−x0

h
(Xi−x0)

2

h2

)
(r−r0)

=
nh

2
(r − r0)

TG1(x0)p(x0)

(
K0 K1

K1 K2

)
(1 + op(1))(r − r0)

=
nh

2
(r − r0)

TG1(x0)p(x0)U(1 + op(1))(r − r0)

and

Ln22 = −
n∑

i=1

K

(
Xi − x0

h

)
ψ′(ui)R(Xi)ri

= −(r − r0)
T

n∑
i=1

K

(
Xi − x0

h

)
ψ′(ui)R(Xi)

(
1

Xi−x0

h

)
= −nh

3

2
(r − r0)

TG1(x0)σ̈
2(x0)p(x0)

(
K2

K3

)
(1 + op(1))

= Op(nh
3δ).

Therefore,

Ln2 = Ln21 + Ln22

=
nh

2
(r − r0)

TG1(x0)p(x0)U(1 + op(1))(r − r0) +Op(nh
3δ).

For (4.4), we have

Ln3 =
n∑

i=1

K

(
Xi − x0

h

)∫ ui+R(Xi)−ri

ui+R(Xi)

[ψ(t)− ψ(ui)− ψ′(ui)(t− ui)] dt

=
n∑

i=1

K

(
Xi − x0

h

)∫ R(Xi)−ri

R(Xi)

[ψ(t+ ui)− ψ(ui)− ψ′(ui)t] dt

=
n∑

i=1

K

(
Xi − x0

h

)
[ψ(zi + ui)− ψ(ui)− ψ′(ui)zi](−ri)
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= −(r − r0)
T

n∑
i=1

·K
(
Xi − x0

h

)
[ψ(zi + ui)− ψ(ui)− ψ′(ui)zi]

(
1

Xi−x0

h

)
,

where the second-to-last equality follows from the integral mean value
theorem, and zi lies between R(Xi) and R(Xi)− ri, for i = 1, 2, . . . , n.
Since, for |Xi − x0| ≤ h, we have

max
i

|zi| ≤ max
i

|R(Xi)|+
∣∣∣∣(r − r0)

T

(
1

Xi−x0

h

)∣∣∣∣(4.5)

≤ max
i

|R(Xi)|+ 2δ,

and, by Taylor’s expansion,

max
i

|R(Xi)| = max
i

∣∣σ2(Xi)− σ2(x0)− σ̇2(x0)(Xi − x0)
∣∣(4.6)

= max
i

∣∣∣∣12 σ̈2(ξi)(Xi − x0)
2

∣∣∣∣ ≤ Op(h
2),

where ξi lies between Xi and x0, for i = 1, 2, . . . , n.

For any given η > 0, let Dη = {(δ1, δ2, . . . , δn)T : |δi| ≤ η, ∀i ≤ n},
by Assumption 5 and |Xi − x0| ≤ h, we have

E

[
sup
Dη

∣∣∣∣ n∑
i=1

[ψ(δi + ui)− ψ(ui)− ψ′(ui)δi]K

(
Xi − x0

h

)
(Xi − x0)

l

∣∣∣∣]

≤ E

[ n∑
i=1

sup
Dη

|ψ(δi + ui)− ψ(ui)− ψ′(ui )δi|K
(
Xi − x0

h

)
|Xi − x0|l

]

≤ aηδE

[ n∑
i=1

K

(
Xi − x0

h

)
|Xi − x0|l

]
≤ bηδ,

where aη and bη are two sequences of positive numbers, tending to zero
as η → 0. Therefore, by (4.5) and (4.6), we have

n∑
i=1

[ψ(zi+ui)−ψ(ui)−ψ′(ui)zi]K

(
Xi − x0

h

)
(Xi − x0)

l = op(nh
l+1δ),

which implies that (4.4) holds.
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Let λ be the smallest eigenvalue of the positive definite matrix U .
Then, for any r ∈ Sδ, we have

Ln(r)− Ln(r0) = Ln1 + Ln2 + Ln3

=
nh

2
G1(x0)p(x0)(r − r0)

TU(r − r0)(1 + op(1))

+Op(nh
3δ)

≥ nh

2
G1(x0)p(x0)λδ

2(1 + op(1)) +Op(nh
3δ).

So, as n→ ∞, we have

P
{
inf
r∈Sδ

Ln(r)− Ln(r0) >
nh

2
G1(x0)p(x0)λδ

2 > 0
}
−→ 1,

which implies that (4.1) holds. From (4.1), we know that Ln(r) has
a local minimum in the interior of Sδ, so there exist solutions to

equations (2.3). Let (σ̂2(x0), ĥ̇σ2
(x0))

T be the closest solutions to
r0 = (σ2(x0), hσ̇

2(x0))
T . Then

lim
n→∞

P

{
(σ̂2(x0)− σ2(x0))

2
+ h2(̂̇σ2

(x0)− σ̇2(x0))
2

≤ δ2
}

= 1,

which implies the consistency of the local M -estimators of σ2(x) and
σ̇2(x). This completes the proof. �

Proof of Theorem 3.2. We prove the asymptotic normality of the
local M -estimators of σ2(x) and σ̇2(x). Let

(4.7) η̂i = R(Xi)− (σ̂2(x0)− σ2(x0))− (̂̇σ2
(x0)− σ̇2(x0))(Xi − x0).

Then, we have

[Yi − m̂(Xi)]
2 = σ2(Xi) + ui

= ui + σ2(Xi)− σ2(x0)− σ̇2(x0)(Xi − x0) + σ2(x0)

+ σ̇2(x0)(Xi − x0)

= ui +R(Xi) + σ̂2(x0) + ̂̇σ2
(x0)(Xi − x0) + η̂i −R(Xi)

= σ̂2(x0) + ̂̇σ2
(x0)(Xi − x0) + ui + η̂i.
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Therefore, by (2.3), we have

(4.8)

n∑
i=1

ψ(ui + η̂i)K

(
Xi − x0

h

)(
1

Xi−x
h

)
=

(
0
0

)
.

Let

Tn1 =
n∑

i=1

ψ(ui)K

(
Xi − x0

h

)(
1

Xi−x
h

)
=Wn,

Tn2 =
n∑

i=1

ψ′(ui)η̂iK

(
Xi − x0

h

)(
1

Xi−x
h

)
,

Tn3 =
n∑

i=1

[ψ(ui + η̂i)− ψ(ui)− ψ′(ui)η̂i]K

(
Xi − x0

h

)(
1

Xi−x
h .

)
Then, by (4.8), we have Tn1 + Tn2 + Tn3 = 0. And, by (4.7), we have

Tn2 =
n∑

i=1

ψ′(ui)R(Xi)K

(
Xi − x0

h

)(
1

Xi−x
h

)
−

n∑
i=1

ψ′(ui)K

(
Xi − x0

h

)

·

(
(σ̂2(x0)− σ2(x0)) + (̂̇σ2

(x0)− σ̇2(x0))(Xi − x0)
Xi−x

h [(σ̂2(x0)− σ2(x0)) + (̂̇σ2
(x0)− σ̇2(x0))(Xi − x0)]

)

=
n∑

i=1

ψ′(ui)R(Xi)K

(
Xi − x0

h

)(
1

Xi−x
h

)

−
n∑

i=1

ψ′(ui)K

(
Xi − x0

h

)(
1 Xi−x

h
Xi−x

h
(Xi−x)2

h2

)

·

(
σ̂2(x0)− σ2(x0)

h(̂̇σ2
(x0)− σ̇2(x0))

)

=
nh3

2
G1(x0)σ̈

2(x0)p(x0)

(
K2

K3

)
(1 + op(1))

− nhG1(x0)p(x0)

(
K0 K1

K1 K2

)
(1 + op(1))

·

(
σ̂2(x0)− σ2(x0)

h(̂̇σ2
(x0)− σ̇2(x0))

)

=
nh3G1(x0)σ̈

2(x0)p(x0)

2
A(1 + op(1))− nhG1(x0)p(x0)U(1 + op(1))
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·

(
σ̂2(x0)− σ2(x0)

h(̂̇σ2
(x0)− σ̇2(x0))

)
:= Tn21 + Tn22,

where the third equality follows from Lemma 4.1.

Noting that, for |Xi − x0| ≤ h, we have

sup
i

|η̂i| = sup
i

∣∣∣R(Xi)−(σ̂2(x0)−σ2(x0))−(̂̇σ2
(x0)−σ̇2x0))(Xi−x0)

∣∣∣
≤ sup

i
|R(Xi)|+

∣∣σ̂2(x0)− σ2(x0)
∣∣+ h

∣∣∣̂̇σ2
(x0)− σ̇2(x0)

∣∣∣
= Op(h

2 + (σ̂2(x0)− σ2(x0)) + h(̂̇σ2
(x0)− σ̇2(x0))) = op(1),

where the last equality follows from the consistency of (σ̂2(x0), ĥ̇σ2
(x0)).

Then, by Assumption 5 and the same argument as that in Theorem 3.1,
we have

Tn3 =
n∑

i=1

[ψ(ui + η̂i)− ψ(ui)− ψ′(ui)η̂i]K

(
Xi − x0

h

)(
1

Xi−x
h

)
= op(nh)[h

2 + (σ̂2(x0)− σ2(x0)) + h(̂̇σ2
(x0)− σ̇2(x0))] = op(Tn22).

Therefore, by Tn1 + Tn2 + Tn3 = 0, we have(
σ̂2(x0)− σ2(x0)

h(̂̇σ2
(x0)− σ̇2(x0))

)
=

1

nh
G−1

1 (x0)p
−1(x0)U

−1(1 + op(1))Wn

+
h2

2
σ̈2(x0)U

−1A(1 + op(1)).

It follows that

√
nh

[(
σ̂2(x0)− σ2(x0)

h(̂̇σ2
(x0)− σ̇2(x0))

)
− h2σ̈2(x0)

2
U−1A(1 + op(1))

]

= G−1
1 (x0)p

−1(x0)U
−1(1 + op(1))

1√
nh
Wn.

So, by Lemma 4.2 and Slutsky’s theorem, we have

√
nh

[(
σ̂2(x0)− σ2(x0)

h(̂̇σ2
(x0)− σ̇2(x0))

)
− h2σ̈2(x0)

2
U−1A

]
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D−→G−1
1 (x0)p

−1(x0)U
−1N(0,Σ1)

= N

(
0,

G2(x0)

G2
1(x0)p(x0)

U−1V U−1

)
= N(0,Σ).

This completes the proof. �

5. Conclusions. This paper concentrates exclusively on the uni-
variate predictor; the robust approach considered here is available if X
is multivariate dimensional, and the method of proof of consistency and
asymptotic normality is similar to the one-dimensional case, but more
cumbersome. Chen and Zhang [11] considered the case of the two-
dimensional predictor; they investigated the local linear M -estimation
for regression function in a fixed-design model when the errors are from
a strongly mixing random field. Moreover, our robust method is also
available in the case of functional data. Functional data are more and
more frequently involved in statistical problems, so many statistical
methods in this special framework have been proposed during the last
few years, particularly with the book by Ferraty and Vieu [23], which
presented in an original way new nonparametric statistical methods
for functional data analysis. In addition, Ferraty et al. [22] proposed
a functional nonparametric model for time series prediction, and the
paper used an infinite number of past values as predictors. Barrientos-
Marin et al. [3] proposed a new local modelling approach for dealing
with the nonparametric regression of a scalar response on a functional
variable, and obtained an explicit expression of a kernel-type estimator
which makes its computation easy and fast while keeping good predic-
tive performance. Moreover, a functional approach in the same spirit
as local linear ideas in nonparametric regression was introduced in the
same paper. Delsol [16] developed some nonparametric methods for
α-mixing functional random variables.

To employ the local M -estimator in the paper, one needs to choose
the kernel function and the bandwidth. It is well known, both empir-
ically and theoretically, that the choice of kernel functions is not very
important. Thus, a large bandwidth produces an oversmooth estimate,
that is, the estimate can create large biases when a large bandwidth is
used. While a small bandwidth produces undersmooth estimate, that
is, there are not many local data points available to reduce the variance
of the estimate when a small bandwidth is used. The usual important
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techniques for selecting the bandwidth are cross-validation (CV) and
plug-in bandwidth selectors. The cross-validation method uses ideas of
Allen [1] and Stone [40], it is very useful for assessing the performance
of an estimator via estimating its prediction error, but, it is computa-
tionally intensive. In order to facilitate the computation, Wahba [43]
and Craven and Wahba [13] proposed the generalized cross-validation
(GCV). The GCV method also has its disadvantages; one is its inherent
variability, another is that it cannot be directly applied to select band-
widths for estimating derivative curves. The plug-in method avoids
these problems as it is considered to be a conceptually simple tech-
nique, with theoretical justification and a good empirical performance
method. The plug-in method was proposed by Ruppert et al. [38];
it is an asymptotic substitution method. More details on bandwidth
selections can be found in Fan and Gijbels [18] and Fan and Yao [20].

The volatility function and the nonparametric local M -estimators
introduced can be used in a variety of applications. For example, Poon
and Granger [36] provided comprehensive coverage of the status of
volatility forecasting. Patton [35] derived explicit analytical results
for the distortions that may arise when some common loss functions
are employed, provided necessary and sufficient conditions on the
functional form of the loss function, and volatility forecasting was the
focus as a specific case of the more general problem of latent variable
forecasting in the same paper.

In this paper, a localM -estimation for the conditional variance func-
tion in heteroscedastic regression models under stationary α-mixing
dependent samples is developed. Long memory structure is a more
general dependence structure than mixing; long memory process con-
stitutes a broad class of models for stationary and nonstationary time
series data in economics, finance, and other fields, so it has become a
rapidly developing subject. Estéveza and Vieu [17] considered a gen-
eral form of long dependence processes, studied asymptotic behavior of
the nonparametric kernel estimators under this dependence structure
and obtained the rates of weak consistency and of mean squared consis-
tency. The roust method under stationary α-mixing dependent samples
developed in our paper can be used to establish roust estimator under
long memory structure if one can get similar results with Lemma 4.1
and Lemma 4.2 in this paper under some mild conditions.
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30. U. Holst, O. Hössjer, C. Björklund, P. Ragnarson and H. Edner, Locally
weighted least squares kernel regression and statistical evaluation of LIDAR mea-

surements, Environmetrics 7 (1996), 401–416.

31. J.C. Jiang and Y.P. Mack, Robust local polynomial regression for dependent
data, Stat. Sinica 11 (2001), 705–722.

32. R. Kulik and C. Wichelhaus, Nonparametric conditional variance and error
density estimation in regression models with dependent errors and predictors,
Electr. J. Stat. 5 (2011), 856–898.

33. H.Y. Liang, Asymptotic normality for regression function estimate under
truncation and α-mixing conditions, Comm. Stat. Theor. Meth. 40 (2011), 1999–
2021.

34. E. Masry and J. Fan, Local polynomial estimation of regression functions
for mixing processes, Scandinavian J. Stat. 24 (1997), 165–179.

35. A.J. Patton, Volatility forecast comparison using imperfect volatility proxies,
J. Econometrics 160 (2011), 246–256.

36. S.-H. Poon and C.W.J. Granger, Forecasting volatility in financial markets:
A review, J. Econ. Lit. 41 (2003), 478–539.



356 YUNYAN WANG AND MINGTIAN TANG

37. G.G. Roussas, Nonparametric regression estimation under mixing condi-
tions, Stoch. Proc. Appl. 36 (1990), 107–116.

38. D. Ruppert, S.J. Sheather and M.P. Wand, An effective bandwidth selector
for local least squares regression, J. Amer. Stat. Assoc. 90 (1995), 1257–1270.

39. D. Ruppert, M.P. Wand, U. Holst and O. Hössjer, Local polynomial variance
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