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DETERMINANTAL AND PERMANENTAL
REPRESENTATIONS OF FIBONACCI TYPE

NUMBERS AND POLYNOMIALS

KENAN KAYGISIZ AND ADEM ŞAHİN

ABSTRACT. In this paper, we compute terms of the ma-
trix A∞

(k)
, which contains Fibonacci type numbers and poly-

nomials, with the help of determinants and permanents of
various Hessenberg matrices. In addition, we show that de-
terminants of these Hessenberg matrices can be obtained by
using combinations. The results that we obtain are impor-
tant, since the matrix A∞

(k)
is a general form of Fibonacci

type numbers and polynomials, such as k sequences of the
generalized order-k Fibonacci and Pell numbers, generalized
bivariate Fibonacci p-polynomials, bivariate Fibonacci and
Pell p-polynomials, second kind Chebyshev polynomials and
bivariate Jacobsthal polynomials, etc.

1. Background and notation. In modern science, there is quite an
interest in the theory and applications of Fibonacci numbers, Fibonacci
polynomials and their generalizations. Since finding a requested term of
these sequences and polynomials by recurrence relation is very difficult,
there is a need to find other methods. For this reason, in the past
few decades, researchers have done many studies on determinantal
and permanental representations of these polynomials and sequences
[1, 6, 8, 9, 11, 12, 13, 24, 27].

Miles [22] defined generalized order-k Fibonacci numbers (GOkF)
as:

(1.1) fk,n =

k∑
j=1

fk,n−j
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for n > k ≥ 2, with boundary conditions: fk,1 = fk,2 = fk,3 = · · · =
fk,k−2 = 0 and fk,k−1 = fk,k = 1. Er [2] defined k sequences of the
generalized order-k Fibonacci numbers (f i

k,n). Kılıç and Taşcı [10]

defined k sequences of the generalized order-k Pell numbers (p i
k,n).

Kaygısız and Şahin [4] defined k sequences of the generalized order-
k Van der Laan numbers (vik,n).

The Fibonacci [14], Pell [3], second kind Chebysev [26] and Jacob-
sthal [25] polynomials are defined as:

fn+1(x) = xfn(x) + fn−1(x), n ≥ 2 with f0(x) = 0, f1(x) = 1,

Pn+1(x) = 2xPn(x) + Pn−1(x), n ≥ 2 with P0(x) = 0, P1(x) = x,

Un+1(x) = xUn(x)− Un−1(x), n ≥ 2 with U0(x) = 1, U1(x) = 2x,

Jn+1(x) = Jn(x) + xJn−1(x), n ≥ 2 with J0(x) = 0, J1(x) = 1,

respectively.

The generalized bivariate Fibonacci p-polynomials [25] are, for
n > p,

(1.2) Fp,n(x, y) = xFp,n−1(x, y) + yFp,n−p−1(x, y),

with boundary conditions Fp,0(x, y) = 0, Fp,n(x, y) = xn−1 for n =
1, 2, . . . , p.

MacHenry [15] defined generalized Fibonacci polynomials (Fk,n(t)),
where ti (1 ≤ i ≤ k) are constant coefficients of the core polynomial:

P (x; t1, t2, . . . , tk) = xk − t1x
k−1 − · · · − tk,

which is denoted by the vector t = (t1, t2, . . . , tk). Fk,n(t) is defined
inductively by

Fk,n(t) = 0, n < 0(1.3)

Fk,0(t) = 1

Fk,n(t) = t1Fk,n−1(t) + · · ·+ tkFk,n−k(t).

In addition, in [21], authors obtained Fk,n(t) (n, k ∈ N, n ≥ 1) as:

(1.4) Fk,n(t) =
∑
a⊢n

(
|a|

a1,...,ak

)
ta1
1 . . . tak

k .
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Throughout this paper, the notations a ⊢ n and |a| are used instead
of

k∑
j=1

jaj = n and
k∑

j=1

aj ,

respectively.

In [20], matrices A∞
(k) are defined by using the following matrix:

A(k) =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
tk tk−1 tk−2 . . . t1

 .

They also record the orbit of the k-th row vector of A(k) under the
action of A(k), below A(k), and the orbit of the first row of A(k) under

the action of A−1
(k) on the first row of A(k) is recorded above A(k), and

consider the ∞× k matrix whose row vectors are the elements of the
doubly infinite orbit of A(k) acting on any one of them. For k = 3, A∞

(k)

looks like this:

A∞
(3) =



· · · · · · · · ·
S(−n,12) −S(−n,1) S(−n)

· · · · · · · · ·
S(−3,12) −S(−3,1) S(−3)

1 0 0
0 1 0
0 0 1
t3 t2 t1
· · · · · · · · ·

S(n−1,12) −S(n−1,1) S(n−1)

S(n,12) −S(n,1) S(n)

· · · · · · · · ·


and

An
(k)

=

[
(−1)k−1S(n−k+1,1k−1) · · · (−1)k−jS(n−k+1,1k−j) · · · S(n−k+1)

· · · · · · · · · · · · · · ·
(−1)k−1S(n,1k−1) · · · (−1)k−jS(n,1k−j) · · · S(n)

]
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where

(1.5) S(n−r,1r) = (−1)r
n∑

j=r+1

tjS(n−j), 0 ≤ r ≤ n.

The right hand column of A∞
(k) contains the generalized Fibonacci

polynomials Fk,n(t), that is, Fk,n(t) = S(n). Also in [16, 17, 18, 19],
the authors studied generalized Fibonacci and Lucas polynomials and
obtained very useful properties of them.

Lemma 1.1. Let (−1)rS(n,1r) be the (k − r)-th column of the matrix
A∞

(k). Then:

(1.6) (−1)rS(n+1,1r) = t1(−1)rS(n,1r) + · · ·+ tk(−1)rS(n−k+1,1r)

for n > k ≥ 2 and 0 ≤ r ≤ k − 1, with initial conditions

(−1)rS(n,1r) =

{
1, n = −r;
0, otherwise.

Many researchers studied determinantal and permanental represen-
tations of k sequences of the generalized order-k Fibonacci and Lu-
cas numbers. For example, Minc [23] defined an n × n (0,1)-matrix
F (n, k) and showed that the permanents of F (n, k) are equal to the
generalized order-k Fibonacci numbers (1.1). The authors [12, 13]
defined two (0, 1)-matrices and showed that the permanents of these

matrices are the generalized Fibonacci (1.1) and Lucas numbers. Öcal
et al. [24] gave some determinantal and permanental representations
of k-generalized Fibonacci and Lucas numbers and obtained Binet’s
formula for these sequences. Kılıç and Stakhov [9] gave permanent
representation of Fibonacci and Lucas p-numbers. Kılıç and Taşcı [11]
studied permanents and determinants of Hessenberg matrices. Yılmaz
and Bozkurt [27] derived some relationships between Pell sequences, as
well as permanents and determinants of a type of Hessenberg matrices.
Kaygısız and Şahin [5, 7] gave some determinantal and permanental
representations of generalized bivariate Lucas p-polynomials and Fi-
bonacci type numbers.

The main purpose of this paper is to compute terms of the matrix
A∞

(k), by using determinant and permanent of some Hessenberg matri-

ces. These results are a general form of determinantal and permanental
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representations of many types of polynomials and sequences having lin-
ear recursions.

2. The determinantal representations. An n × n matrix An =
(aij) is called a lower Hessenberg matrix if aij = 0 when j− i > 1, i.e.,

An =



a11 a12 0 · · · 0
a21 a22 a23 · · · 0
a31 a32 a33 · · · 0
...

...
...

...
an−1,1 an−1,2 an−1,3 · · · an−1,n

an,1 an,2 an,3 · · · an,n


.

Lemma 2.1. [1] Let An be the n× n lower Hessenberg matrix for all
n ≥ 1, and define det(A0) = 1. Then, det(A1) = a11 and, for n ≥ 2,
(2.1)

det(An) = an,n det(An−1)+
n−1∑
r=1

[
(−1)n−ran,r

( n−1∏
j=r

aj,j+1

)
det(Ar−1)

]
.

Theorem 2.2. Let k ≥ 2, n ≥ 1 and 0 ≤ r ≤ k − 1 be integers,
(−1)rS(n,1r) the (k− r)-th column of matrix A∞

(k) and Qr
k,n = (quv) an

n× n Hessenberg matrix, given by :

quv =

 i|u−v| · tu−v+1/t
u−v
2 , if − 1 ≤ u− v < k and v ̸= 1,

i(u−1) · tr+u/t
u−1
2 , if 0 < u < k − r + 1 and v = 1,

0, otherwise,

i.e.,

Qr
k,n =



tr+1 it2 0 · · · 0
i(tr+2)

t2
t1 it2 · · · 0

i2
tr+3

t22
i t1 · · · 0

..

.
..
.

..

.
..
.

ik−r−1tk
tk−r−1
2

ik−r−2tk−r−1

tk−r−2
2

ik−r−3(tk−r−2)

tk−r−3
2

· · · 0

0
ik−r−1(tk−r)

tk−r−1
2

ik−r−2(tk−r−1)

tk−r−2
2

· · · 0

..

.
..
.

. . . it2
0 0 0 · · · t1
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where t0 = 1 and i =
√
−1. Then,

(2.2) det(Qr
k,n) = (−1)rS(n,1r).

Proof. To prove (2.2), we use mathematical induction on n. The
result is true for n = 1 by hypothesis.

Assume that it is true for all positive integers less than or equal to
n, namely, det(Qr

k,n) = (−1)rS(n,1r). Then, by using Lemma 2.1, we
have

det(Qr
k,n+1) = qn+1,n+1 det(Q

r
k,n)

+

n∑
s=1

[
(−1)n+1−sqn+1,s

n∏
v=s

qv,v+1 det(Q
r
k,s−1)

]
= t1 det(Q

r
k,n)

+

n−k+1∑
s=1

[
(−1)n+1−sqn+1,s

n∏
v=s

qv,v+1 det(Q
r
k,s−1)

]

+
n∑

s=n−k+2

[
(−1)n+1−sqn+1,s

n∏
v=s

qv,v+1 det(Q
r
k,s−1)

]
= t1 det(Q

r
k,n)

+
n∑

s=n−k+2

[
(−1)n+1−sqn+1,s

n∏
v=s

qv,v+1 det(Q
r
k,s−1)

]
= t1 det(Q

r
k,n)

+
n∑

s=n−k+2

[
(−1)n+1−s · in+1−s tn−s+2

tn−s+1
2

n∏
v=s

it2 det(Q
r
k,s−1)

]
= t1 det(Q

r
k,n)

+

n∑
s=n−k+2

[
(−1)n+1−s · in+1−s tn−s+2

tn−s+1
2

· in+1−s · tn−s+1
2

· det(Qr
k,s−1)

]
= t1 det(Q

r
k,n)

+
n∑

s=n−k+2

[
(−1)n+1−s ·in+1−stn−s+2 ·in+1−s ·det(Qr

k,s−1)

]
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= t1 det(Qk,n) +
n∑

s=n−k+2

tn−s+2 det(Q
r
k,s−1)

= t1 det(Q
r
k,n) + t2 det(Q

r
k,n−1) + · · ·+ tk det(Q

r
k,n−(k−1)).

Thus, from the hypothesis and Lemma 1.1, we obtain

det(Qk,n+1)= t1(−1)rS(n,1r)+· · ·+tk(−1)rS(n−k+1,1r)=(−1)rS(n+1,1r).

Therefore, the result is true for all positive integers. �

Example 2.3. We calculate S(4,12) for k = 5, using Theorem 2.2 as

S(4,12) = det


t3 it2 0 0

(it4)/t2 t1 it2 0
−t5/t

2
2 i t1 it2

0 −t3/t
2
2 i t1


= t31t3 + t23 + 2t1t2t3 + t21t4 + t2t4 + t1t5.

Corollary 2.4. [24]. Let k ≥ 2 be an integer and Ck,n = (crs) an
n× n Hessenberg matrix, where

crs =

{
i|r−s|, if − 1 ≤ r − s < k,
0, otherwise.

Then,
det(Ck,n) = fk,k+n−1

where i =
√
−1.

Proof. It is direct from Theorem 2.2 for ti = 1. �

Theorem 2.5. Let k ≥ 2, n ≥ 1 and 0 ≤ r ≤ k − 1 be integers,
(−1)rS(n,1r) the (k − r)-th column of the matrix A∞

(k) and Br
k,n = (bij)

an n× n Hessenberg matrix, given by

bij =


−t2, if j = i+ 1,
ti−j+1

ti−j
2

, if 0 ≤ i− j < k and j ̸= 1,
tr+i

ti−1
2

, if 0 < i < k − r + 1 and j = 1,

0, otherwise,
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i.e.,

Br
k,n =



tr+1 −t2 0 0 · · · 0
tr+2

t2
t1 −t2 0 · · · 0

tr+3

t22
1 t1 −t2 · · · 0

.

..
.
..

.

..
.
..

.

..
tk

tk−r−1
2

tk−r−1

tk−r−2
2

tk−r−2

tk−r−3
2

tk−r−3

tk−r−4
2

· · · 0

0
tk−r

tk−r−1
2

tk−r−1

tk−r−2
2

tk−r−2

tk−r−3
2

· · · 0

.

..
.
..

.

..
. . . −t2

0 0 0 · · · · · · t1


where t0 = 1. Then,

(2.3) det(Br
k,n) = (−1)rS(n,1r).

Proof. To prove (2.3), we use mathematical induction on m. The
result is true for m = 1 by hypothesis. Assume that it is true for
all positive integers less than or equal to m, namely, det(Br

k,m) =

(−1)rS(m,1r). Then, by using Lemma 2.1, we have

det(Br
m+1,k) = bm+1,m+1 det(B

r
k,m)

+
m∑
s=1

[
((−1)m+1−sbm+1,s

m∏
j=s

bj,j+1 det(B
r
k,s−1))

]
= t1 det(B

r
k,m)

+

m−k+1∑
s=1

[
(−1)m+1−sbm+1,s

m∏
j=s

bj,j+1 det(B
r
k,s−1)

]

+
m∑

s=m−k+2

[
(−1)m+1−sbm+1,s

m∏
j=s

bj,j+1 det(B
r
k,s−1)

]
= t1 det(B

r
k,m)

+

m∑
s=m−k+2

[
(−1)m+1−s · tm−s+2

tm−s+1
2

m∏
j=s

(−t2) det(B
r
k,s−1)

]
= t1 det(B

r
k,m)

+
m∑

s=m−k+2

[
(−1)m+1−s · tm−s+2

tm−s+1
2

· (−1)m+1−stm−s+1
2
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· det(Br
k,s−1)

]
= t1 det(B

r
k,m) +

m∑
s=m−k+2

[
tm−s+2 · det(Br

k,s−1)

]
= t1 det(B

r
k,m)+t2 det(B

r
k,m−1)+ · · ·+tk det(B

r
k,m−(k−1)).

Thus, from the hypothesis and Lemma 1.1, we obtain

det(Br
k,m+1)= t1(−1)rS(m,1r)+· · ·+tk(−1)rS(m−k+1,1r)=(−1)rS(m+1,1r).

Therefore, the result is true for all positive integers. �

Example 2.6. We calculate −S(5,1) for k = 4, using Theorem 2.5 as

−S(5,1) = det


t2 −t2 0 0 0

t3/t2 t1 −t2 0 0
t4/t

2
2 1 t1 −t2 0

0 t3/t
2
2 1 t1 −t2

0 t4/t
3
2 t3/t

2
2 1 t1


= t41t2 + 3t21t

2
2 + t32 + t31t3 + t23 + 4t1t2t3 + t21t4 + 2t2t4.

Corollary 2.7. [24]. Let k ≥ 2 be an integer, fk,n the generalized
order-k Fibonacci numbers (1.1) and Mk,n = (mij) an n × n lower
Hessenberg matrix such that

mij =

 −1, if j = i+ 1,
1, if 0 ≤ i− j < k,
0, otherwise.

Then,
det(Mk,n) = fk,k+n−1.

Proof. It is direct from Theorem 2.5 for ti = 1. �

3. The permanent representations. Let A = (ai,j) be a square
matrix of order n over a ring R. The permanent of A is defined by

per (A) =
∑
σ∈Sn

n∏
i=1

ai,σ(i),

where Sn denotes the symmetric group on n letters.
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Lemma 3.1. [24]. Let An be an n×n lower Hessenberg matrix for all
n ≥ 1, and define per (A0) = 1. Then, per (A1) = a11 and, for n ≥ 2,

per (An) = an,nper (An−1) +

n−1∑
r=1

(an,r

n−1∏
j=r

aj,j+1per (Ar−1)).

Theorem 3.2. Let k ≥ 2, n ≥ 1 and 0 ≤ r ≤ k − 1 be integers,
(−1)rS(n,1r) the (k−r)-th column of the matrix A∞

(k) and Hr
k,n = (huv)

an n× n Hessenberg matrix, given by

huv =


iu−v · tu−v+1

tu−v
2

, if − 1 ≤ u− v < k and v ̸= 1,

iu−1 · tr+u

tu−1
2

, if 0 < u < k − r + 1 and v = 1,

0, otherwise,

i.e.,

Hr
k,n =



tr+1 −it2 · · · 0

i
tr+2

t2
t1 −it2 · · · 0

i2
tr+3

t22
i t1 · · · 0

..

.
..
.

..

.
..
.

ik−r−1 tk
tk−r−1
2

ik−r−2 tk−r−1

tk−r−2
2

ik−r−3 tk−r−2

tk−r−3
2

· · · 0

0 ik−r−1 tk−r

tk−r−1
2

ik−r−2 tk−r−1

tk−r−2
2

· · · 0

..

.
..
.

..

.
. . . −it2

0 0 0 · · · t1


,

where t0 = 1 and i =
√
−1. Then

(3.1) per (Hr
k,n) = (−1)rS(n,1r).

Proof. Since the proof is similar to the proof of Theorem 2.2, by
using Lemma 3.1, we omit the details. �

Corollary 3.3. [24]. Let k ≥ 2 be an integer, fk,n the generalized
order-k Fibonacci numbers and Hk,n = (hrs) an n×n lower Hessenberg
matrix, given by

hrs =

{
ir−s, if − 1 ≤ r − s < k,
0, otherwise.
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Then
per (Hk,n) = fk,k+n−1.

Proof. It is direct from Theorem 3.2 for ti = 1. �

Theorem 3.4. Let k ≥ 2, n ≥ 1 and 0 ≤ r ≤ k − 1 be integers,
(−1)rS(n,1r) the (k − r)-th column of the matrix A∞

(k) and Lr
k,n = (lij)

an n× n Hessenberg matrix, given by

lij =


−t2, if j = i+ 1 and j ̸= 1,
ti−j+1

ti−j
2

, if 0 ≤ i− j < k and j ̸= 1,
tr+i

ti−1
2

, if 0 < i < k − r + 1 and j = 1,

0, otherwise,

i.e.,

Lr
k,n =



tr+1 t2 0 0 · · · 0
tr+2

t2
t1 t2 0 · · · 0

tr+3

t22
1 t1 t2 · · · 0

.

..
.
..

.

..
.
..

.

..
tk

tk−r−1
2

tk−r−1

tk−r−2
2

tk−r−2

tk−r−3
2

tk−r−3

tk−r−4
2

· · · 0

0
tk−r

tk−r−1
2

tk−r−1

tk−r−2
2

tk−r−2

tk−r−3
2

· · · 0

.

..
.
..

.

..
. . . t2

0 0 0 · · · · · · t1


,

where t0 = 1. Then

(3.2) per (Lr
k,n) = (−1)rS(n,1r).

Proof. This is similar to the proof of Theorem 2.5 by using Lemma 3.1.
�

Corollary 3.5. [23]. Let k ≥ 2 be an integer, fk,n the generalized
order-k Fibonacci numbers and Dk,n = (dij) an n×n lower Hessenberg
matrix such that

dij =

{
1, if − 1 ≤ i− j < k
0, otherwise.
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Then
per (Dk,n) = fk,k+n−1.

Proof. It is direct from Theorem 3.4 for ti = 1. �

The next two lemmas show that the matrices A∞
(k) are general forms

of many types of sequences and polynomials having linear recursions.
Some of these have a very wide range of application areas, see papers
[2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 22, 23, 24, 25, 26, 27].

Lemma 3.6. The matrix A∞
(k) involves many types of sequences and

polynomials having linear recursions. We obtain some of them from
A∞

(k) as follows.

(i) (−1)rS(n,1r) = fr+1
k,n for ci = ti (1 ≤ i ≤ k) and 0 ≤ r ≤ k − 1,

(ii) (−1)rS(n,1r) = pr+1
k,n for t1 = 2 and ti = 1 (2 ≤ i ≤ k),

(iii) (−1)rS(n,1r) = vk−r
k,n for t1 = 0 and ti = 1 (2 ≤ i ≤ k),

(iv) S(n+1) = Fp,n(x, y) for t1 = x, tk = y, ti = 0 (2 ≤ i ≤ k − 1) and
k = (p+ 1).

Lemma 3.7. [25]. Fp,n(x, y) is a general form of many popular
sequences and polynomials, such as:

x y p Fp,n(x, y)

x y 1 bivariate Fibonacci polynomials Fn(x, y)
x 1 p Fibonacci p−polynomials Fp,n(x)
x 1 1 Fibonacci polynomials fn(x)
1 1 p Fibonacci p−numbers Fp(n)
1 1 1 Fibonacci numbers Fn

2x y p bivariate Pell p-polynomials Fp,n(2x, y)
2x y 1 bivariate Pell polynomials Fn(2x, y)
2x 1 p Pell p-polynomials Pp,n(x)
2x 1 1 Pell polynomials Pn(x)
2 1 1 Pell numbers Pn

2x −1 1 second kind Chebysev polynomials Un−1(x)
x 2y p bivariate Jacobsthal p-polynomials Fp,n(x, 2y)
x 2y 1 bivariate Jacobsthal polynomials Fn(x, 2y)
1 2y 1 Jacobsthal polynomials Jn(y)
1 2 1 Jacobsthal numbers Jn
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The following corollaries follow from the preceding two lemmas and
theorems concerning determinants and permanents.

Corollary 3.8. By using Lemma 3.6, we rewrite equations (2.2), (2.3),
(3.1) and (3.2):

(i) for 0 ≤ r ≤ k − 1 and ti = ci (1 ≤ i ≤ k), we obtain

det(Qr
k,n) = det(Br

k,n) = per (Hr
k,n) = per (Lr

k,n) = fr+1
k,n ,

(ii) for 0 ≤ r ≤ k − 1, t1 = 2 and ti = 1 for 2 ≤ i ≤ k, we obtain

det(Qr
k,n) = det(Br

k,n) = per (Hr
k,n) = per (Lr

k,n) = pr+1
k,n ,

(iii) for 0 ≤ r ≤ k − 1, t1 = 0 and ti = 1 for 2 ≤ i ≤ k, we obtain

det(Qr
k,n) = det(Br

k,n) = per (Hr
k,n) = per (Lr

k,n) = vk−r
k,n ,

(iv) for t1 = x, tk = y, ti = 0 for 2 ≤ i ≤ k − 1 and k = (p + 1), we
obtain

det(Q0
k,n) = det(B0

k,n) = per (Q0
k,n) = per (B0

k,n) = Fp,n−1(x, y).

Corollary 3.9. By using Lemma 3.7, we rewrite equations (2.2), (2.3),
(3.1) and (3.2) for t1 = x, tk = y, ti = 0 (2 ≤ i ≤ k− 1) and k = p+1.
We obtain the following table:

x y p det(Q0
k,n) = det(B0

k,n) = per (H0
k,n) = per (L0

k,n) = Fp,n−1(x, y),

x y 1 det(Q0
k,n) = det(B0

k,n) = per (H0
k,n) = per (L0

k,n) = Fn−1(x, y),

x 1 p det(Q0
k,n) = det(B0

k,n) = per (H0
k,n) = per (L0

k,n) = Fp,n−1(x),

x 1 1 det(Q0
k,n) = det(B0

k,n) = per (H0
k,n) = per (L0

k,n) = fn−1(x),

1 1 p det(Q0
k,n) = det(B0

k,n) = per (H0
k,n) = per (L0

k,n) = Fp(n − 1),

1 1 1 det(Q0
k,n) = det(B0

k,n) = per (H0
k,n) = per (L0

k,n) = Fn−1,

2x y p det(Q0
k,n) = det(B0

k,n) = per (H0
k,n) = per (L0

k,n) = Fp,n−1(2x, y),

2x y 1 det(Q0
k,n) = det(B0

k,n) = per (H0
k,n) = per (L0

k,n) = Fn−1(2x, y),

2x 1 p det(Q0
k,n) = det(B0

k,n) = per (H0
k,n) = per (L0

k,n) = Pp,n−1(x),

2x 1 1 det(Q0
k,n) = det(B0

k,n) = per (H0
k,n) = per (L0

k,n) = Pn−1(x),

2 1 1 det(Q0
k,n) = det(B0

k,n) = per (H0
k,n) = per (L0

k,n) = Pn−1,

2x −1 1 det(Q0
k,n) = det(B0

k,n) = per (H0
k,n) = per (L0

k,n) = Un(x),

x 2y p det(Q0
k,n) = det(B0

k,n) = per (H0
k,n) = per (L0

k,n) = Fp,n−1(x, 2y),

x 2y 1 det(Q0
k,n) = det(B0

k,n) = per (H0
k,n) = per (L0

k,n) = Fn−1(x, 2y),

1 2y 1 det(Q0
k,n) = det(B0

k,n) = per (H0
k,n) = per (L0

k,n) = Jn−1(y),

1 2 1 det(Q0
k,n) = det(B0

k,n) = per (H0
k,n) = per (L0

k,n) = Jn−1.

Now we show that determinants of Hessenberg matrices can be
obtained by using combinations.
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Corollary 3.10. Let k ≥ 2, n ≥ 1 and 0 ≤ r ≤ k − 1 be integers,
(−1)rS(n,1r) the (k − r)-th column of the matrix A∞

(k). Then,

det(Qr
k,n) = det(Br

k,n) = per (Hr
k,n) = per (Lr

k,n)

= (−1)rS(n,1r) =

k∑
j=r+1

tj

[ ∑
a⊢n−j+r

(
|a|

a1,...,ak

)
ta1
1 . . . tak

k

]
.

Proof. It is direct from equations (2.2), (2.3), (3.1) and (3.2) by
using equations (1.4) and (1.5). �

4. Conclusions. In this paper, we showed how extensive are the
generalized Fibonacci polynomials defined by MacHenry, and the re-
sults obtained by many researchers before are, in fact, special cases
of generalized Fibonacci polynomials. In addition, we obtained any
term of Fibonacci polynomials by using determinants and permanents
of matrices, which are easier to calculate. Moreover, we showed how to
calculate any term of the matrices A∞

(k), and consequently any term of

sequences and polynomials mentioned above.

Acknowledgments. The authors express their sincere gratitude to
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9. E. Kılıç and A.P. Stakhov, On the Fibonacci and Lucas p-numbers, their
sums, families of bipartite graphs and permanents of certain matrices, Chaos Solit.
Fract. 40 (2009), 2210–2221.
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24. A.A. Öcal, N. Tuglu and E. Altinisik, On the representation of k-generalized
Fibonacci and Lucas Numbers, Appl. Math. Comp. 170 (2005), 584–596.

25. N. Tuglu, E.G. Kocer and A. Stakhov, Bivariate fibonacci like p-polynomials,
Appl. Math. Comp. 217 (2011), 10239–10246.

26. G. Udrea, Chebshev polynomials and some methods of approximation, Port.
Math. 55 (1998), 261–269.

27. F. Yılmaz and D. Bozkurt, Hessenberg matrices and the Pell and Perrin

numbers, J. Num. Theory, 131 (2011), 1390–1396.



242 KENAN KAYGISIZ AND ADEM ŞAHİN
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