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SURVEY ARTICLE:
CONTINUED FRACTIONS ASSOCIATED WITH
WIENER-LEVINSON FILTERS, FREQUENCY

ANALYSIS, MOMENT THEORY AND POLYNOMIALS
ORTHOGONAL ON THE UNIT CIRCLE

C. BONAN-HAMADA, W.B. JONES AND O. NJÅSTAD

ABSTRACT. This paper surveys the close relationships
among the topics included in the title. Emphasis is given to
the family of positive Perron-Carathéodory continued frac-
tions (PPC-fractions) which play a central role in the theory
of trigonometric moment problems and Szegö polynomials
orthogonal on the unit circle. An important application of
PPC-fractions is frequency analysis of discrete time signals
using Wiener-Levinson digital filters with illustrations given
from computational experiments.

1. Introduction. Continued fractions have played a fundamental
role in the origin and development of moment theory and orthogonal
polynomials. The classical Stieltjes moment problem, posed and solved
in the celebrated memoir [71], made essential use of Stieltjes continued
fractions

(1.1)
a1z

1 +

a2z

1 +

a3z

1 +
· · · , an > 0, n = 1, 2, 3, . . . ,

where z is a complex variable. The first full treatment of the classical
Hamburger moment problem [22] was based on real J-fractions

a1
b1 + z −

a2
b2 + z −

a3
b3 + z − · · · ,(1.2a)

where

an > 0, bn ∈ R, n = 1, 2, 3, . . . .(1.2b)
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It is well documented that the study of orthogonal polynomials
originated in the theory of continued fractions (1.2) [72, page 54].
Other moment theory and orthogonal functions investigated by means
of continued fractions include the strong Stieltjes moment problem
[45], the strong Hamburger moment problem [30, 31] and orthogonal
Laurent polynomials [31, 42, 54].

A family of continued fractions, called positive Perron-Carathéodory
fractions (PPC-fractions) plays a role for the trigonometric moment
problem and Szegö polynomials that is analogous to that of the con-
tinued fractions (1.1) and (1.2) for classical moment problems and or-
thogonal polynomials. The PPC-fractions, introduced in [32, 33, 34],
have the form

(1.3a) δ0 −
2δ0
1 +

1

δ1z +

(1−|δ1|2)z
δ1 +

1

δ2z +

(1−|δ2|2)z
δ2 +

· · · ,

where

(1.3b) δ0 > 0, δn ∈ C, |δn| < 1, n = 1, 2, 3, . . . .

An important application of PPC-fractions and their denominators
of odd order (the Szegö polynomials) is frequency analysis based on
Wiener-Levinson digital filters [5, 20, 47, 52, 66, 76]. Frequency
analysis is the determination of unknown frequencies in a discrete
time signal consisting of a superposition of sinusoidal waves. Speech
processing and other applications in real time are made possible by fast
computational methods such as Levinson’s algorithm for computing
the reflection coefficients δn of the associated PPC-fraction (1.3) and
related algorithms for solving Toeplitz systems of equations [3, 4, 6,
10, 11, 14, 15, 16, 26]. Theoretical foundations for these applications
using PPC-fractions and Szegö polynomials are given in a series of
papers [28, 29, 35, 36, 39, 40, 48, 53, 55, 56, 57, 58, 69]. Some
illustrations from computational experiments are given in Section 9 of
this paper and also in [37, 38, 41].

The study of PPC-fractions and their applications has been pub-
lished in a large number of papers, many of which are not readily
accessible. The purpose of the present article is to provide a unified,
concise and self-contained survey of this work, giving proofs that are
attainable without excessive effort. For the most part, proofs are based
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on elementary and constructive methods; some provide estimates of the
speed of convergence and truncation error bounds.

Equations (1.4)–(1.9) provide some basic notation, definitions and
formulas in continued fraction theory. See, e.g., [9, 23, 42, 49, 50,
59, 75]. We use the standard notation for continued fractions

b0 +
a1
b1 +

a2
b2 +

a3
b3 +

· · · = b0 +
a1

b1 +
a2

b2 +
a3

b3 +
a4

. . .

,(1.4a)

where

0 ̸= an ∈ C, bn ∈ C, n = 0, 1, 2, . . . .(1.4b)

The nth numerator An and nth denominator Bn of the continued
fraction (1.4) are defined by the difference equations

A−1 = 1, B−1 = 0, A0 = b0, B0 = 1,(1.5a) (
An
Bn

)
= bn

(
An−1

Bn−1

)
+ an

(
An−2

Bn−2

)
, n = 1, 2, 3, . . . .(1.5b)

They satisfy the determinant formulas:

(1.6) AnBn−1 −An−1Bn = (−1)n−1
n∏
j=1

aj , n = 1, 2, 3, . . . .

The associated linear fractional transformations

s0(ω) = b0 + ω, sn(ω) =
an

bn + ω
, n = 1, 2, 3, . . . ,(1.7a)

S0(ω) = s0(ω), Sn(ω) = Sn−1(sn(ω)), n = 1, 2, 3, . . . ,(1.7b)

provide the useful relationships

Sn(ω) =
An +An−1ω

Bn +Bn−1ω
= b0 +

a1
b1 +

a2
b2 +

· · ·(1.8)

+

an−1

bn−1 +

an
bn + ω

.
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Therefore, the nth approximant Sn(0) of the continued fraction (1.4) is
given by

(1.9) Sn(0) =
An
Bn

= b0 +
a1
b1 +

a2
b2 +

· · ·
+

an
bn
, n = 0, 1, 2, . . . .

From the difference equations (1.5), it follows that for PPC-fractions
(1.3), the nth numerator Pn(z) and nth denominator Qn(z) are defined
by

(1.10a) P0(z) = δ0, Q0(z) = 1, P1(z) = −δ0, Q1(z) = 1,

and for n = 1, 2, 3, . . .,

(1.10b)

(
P2n(z)
Q2n(z)

)
=δnz

(
P2n−1(z)
Q2n−1(z)

)
+

(
P2n−2(z)
Q2n−2(z)

)
,

and

(1.10c)

(
P2n+1(z)
Q2n+1(z)

)
=δn

(
P2n(z)
Q2n(z)

)
+(1− |δn|2)z

(
P2n−1(z)
Q2n−1(z)

)
.

Hence, Pn(z) and Qn(z) are polynomials in z of the form
(1.11a)

P2n(z) =

n∑
j=0

p2n,jz
j , Q2n(z) =

n∑
j=0

q2n,jz
j , n = 0, 1, 2, . . . ,

(1.11b)

P2n+1(z) =
n∑
j=0

p2n+1,jz
j , Q2n+1(z) =

n∑
j=0

q2n+1,jz
j , n = 0, 1, 2, . . . ,

where pm,j ∈ C, qm,j ∈ C, for m = 0, 1, 2, . . ., and

(1.11c) p2n,0 = δ0, q2n,0 = 1, p2n+1,n = −δ0, q2n+1,n = 1.

Thus, the (2n)th approximant fn(z) = P2n(z)/Q2n(z) is a rational
function holomorphic at z = 0, and the (2n + 1)th approximant
gn(z) = P2n+1(z)/Q2n+1(z) is a rational function holomorphic at
z = ∞. It is shown (Section 2) that {fn(z)}∞n=0 converges to a function
f(z) holomorphic in the disk |z| < 1 that satisfies

(1.12) Re f(z) > 0 for |z| < 1, f(0) > 0.
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Moreover, there exists a sequence {µn}∞n=0 in C such that

(1.13a) f(z) = µ0 + 2
∞∑
k=1

µkz
k, |z| < 1,

and, for each integer n ≥ 0, there exist coefficients µ
(n)
k ∈ C such that

(1.13b) fn(z) = µ0 + 2

n∑
k=1

µkz
k +

∞∑
k=n+1

µ
(n)
k zk,

for all z in a neighborhood of z = 0. Thus, the coefficients of individual
powers of z in equation (1.13b) agree with those in equation (1.13a)
for 0 ≤ k ≤ n, n ≥ 0. An analogous property holds for the sequence
{gn(z)}∞n=0 of odd order approximants of the PPC fraction (1.3). This
remarkable property of PPC-fractions is of great value and is exploited
both for moment theory and for Szegö polynomials.

It is also useful to consider M-terminating PPC-fractions

(1.14a)

δ0 −
2δ0
1 +

1

δ1z +

(
1− |δ1|2

)
z

δ1 +
· · ·

+

1

δM−1z +

(
1− |δM−1|2

)
z

δM−1 +

1

δMz
,

where M is a positive integer and the complex coefficients δn satisfy

(1.14b) δ0 > 0, |δn| < 1 for n = 1, 2, . . . ,M − 1 and |δM | = 1.

For 0 ≤ n ≤ M , the nth numerator Pn(z), nth denominator Qn(z)
and nth approximant Sn(0) of the continued fraction (1.4) are defined
by equations (1.10) and Sn(0) = Pn(z)/Qn(z). The M -terminating
PPC-fraction (1.14) is said to represent the rational function

f(z) =
P2M (z)

Q2M (z)
.

By a distribution function on [−π, π] is meant a real valued, bounded
non-decreasing function ψ(θ) defined on [−π, π] = {θ : −π ≤ θ ≤ π}.
The set of all distribution functions on [−π, π] is denoted by Ψ(−π, π).
We consider the following sets:

Ψ∞(−π, π)={ψ∈Ψ(−π, π) :ψ has infinitely many points of increase},
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ΨM (−π, π) = {ψ ∈ Ψ(−π, π) : ψ has M points of increase},

where M is a positive integer. The trigonometric moment problem
(TMP) for a doubly infinite sequence {µn}∞−∞ in C consists of find-
ing necessary and sufficient conditions for the existence of a ψ ∈
Ψ∞(−π, π), such that

(1.15) µn =
1

2π

∫ π

−π
e−inθdψ(θ), n = 0,±1,±2, . . . .

Such a function ψ is called a solution to the TMP. It is readily shown
[1, Theorem 5.1.2] that, if a solution exists, then it is essentially
unique. The number µn is called the nth moment with respect to
ψ. Akhiezer and Krein [2] were the first to investigate trigonometric
moment problems. Extensive expositions of the TMP can be found in
the books [1, 17, 18, 19, 21, 46, 70].

The approach for moment theory in the present paper establishes
a one-to-one correspondence between PPC-fractions (1.3) and distri-
bution functions ψ ∈ Ψ∞(−π, π). Use is made of the connections
(established by Toeplitz in [73]) between positive definite quadratic
(Toeplitz) forms

(1.16)
n∑

j=−n

n∑
k=−n

ajakµj−k, aj , ak ∈ C

and Toeplitz determinants T
(m)
k associated with the sequence {µn}∞−∞

where, for m = 0,±1,±2, . . . and k = 1, 2, 3, . . .,

(1.17a) T
(m)
0 = 1,

and

(1.17b) T
(m)
k =

∣∣∣∣∣∣∣∣∣
µm µm−1 · · · µm−k+1

µm+1 µm · · · µm−k+2

...
...

...
µm+k−1 µm+k−2 · · · µm

∣∣∣∣∣∣∣∣∣ .
It is shown (Theorem 2.2) that there exists a PPC-fraction whose

sequence of even order approximants converges to a function f(z)
represented by the power series (1.13a) if and only if {µn}∞−∞ satisfies

(1.18) µn = µ−n and T (0)
n > 0 for n = 0, 1, 2, . . . .
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Conditions (1.18) are necessary and sufficient for existence of a solution
to the TMP for {µn}∞−∞. See Theorem 3.1.

Functions belonging to the class C defined by

(1.19)
C = {f : f(z) is holomorphic in |z| < 1, f(0) > 0 and

Ref(z) > 0 for |z| < 1}

are closely related to PPC-fractions and play an important role in
trigonometric moment theory. The functions in C were introduced in
[7, 8] and are called normalized Carathéodory functions. The Herglotz-
Riesz representation theorem ([1, 24, 67, 68]) asserts that for every
f ∈ C there exists a ψ ∈ Ψ(−π, π) such that

(1.20) f(z) =
1

2π

∫ π

−π

eiθ + z

eiθ − z
dψ(θ), |z| < 1.

It is shown (Section 6) that, if ψ ∈ Ψ∞(−π, π), then f(z) is
the limit of the even order approximants of a PPC-fraction and, if
ψ ∈ ΨM (−π, π), then f(z) is represented by an M-terminating PPC-
fraction. Therefore, the class C of functions is completely characterized
by PPC-fractions and M-terminating PPC-fractions.

Polynomials orthogonal on the unit circle were introduced by Szegö
[72] using inner products with respect to a distribution function ψ ∈
Ψ∞(−π, π)

(1.21) ⟨P,Q⟩ψ =
1

2π

∫ π

−π
P (eiθ)Q(eiθ) dψ(θ), P,Q ∈ Λ,

where Λ is the linear space

(1.22) Λ =

{ q∑
k=p

ckz
k : ck ∈ C, p ≤ q

}
.

If Qn(z) is the nth denominator of the PPC-fraction corresponding
to ψ, then the nth degree, monic Szegö polynomial (orthogonal with
respect to ψ) is given by

(1.23a) ρn(z) = Q2n+1(z), n = 0, 1, 2, . . . ,

and the nth reciprocal polynomial ρ∗n(z) = znρn(1/z) is given by

(1.23b) ρ∗n(z) = Q2n(z), n = 0, 1, 2, . . . .
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Since Szegö polynomials are denominators of PPC-fractions, many of
their properties given in Section 4 are immediate consequences of results
on PPC-fractions established in Section 2. This work is essential for the
study of frequency analysis based on Wiener-Levinson filters (Sections
7 and 8).

Let B(t) be a real valued function of the form

(1.24a) B(t) =
I∑

j=−I

αje
2πifjt, t ∈ R, I ∈ {1, 2, 3, . . .},

where the frequencies fj satisfy

(1.24b) 0 = f0 < f1 < f2 < · · · < fI , fj = −f−j , j = 1, 2, . . . , I,

and the amplitudes αj satisfy

(1.24c) α0 > 0, 0 ̸= αj = α−j ∈ C, j = 1, 2, . . . , I.

Frequency analysis consists of determining the unknown frequencies
fj using as input a finite sample of N (observed) values

(1.25a) χN (m) = B(tm) =
I∑

j=−I

αje
iωjm, m = 0, 1, 2, . . . , N − 1,

where the ωj are normalized frequencies defined by

(1.25b) ωj = 2π∆tfj , j = 0,±1,±2, . . . ,±I,

and

(1.25c) 0 < ∆t < 1/(2fI).

Frequency analysis based on Wiener-Levinson filters (Sections 7
and 8) uses a discrete time signal of the form (1.25) to construct
Szegö polynomials ρn(ψN ; z) with the property that, as N → ∞,
the zeros of ρn(ψN ; z) with greatest moduli converge to the critical
points eiωj , j = 0,±1,±2, . . . ,±I on the unit circle. Here, ψN (θ) is

a distribution function defined by the signal {χN (m)}N−1
m=0. Wiener

filters [76] were developed in the context of continuous time signals.
The modification for discrete signals is the work of Levinson [47]. In
the special case that there exists a frequency f such that fj = jf ,
j = 0, 1, . . . , I, then the series (1.24) reduces to an ordinary Fourier
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series and f is the fundamental harmonic. For speech processing and
many other applications, the unknown frequencies fj are not multiples
of a fundamental frequency, see [16, 52, 66].

2. Positive Perron-Carathéodory continued fractions. PPC-
fractions provide the structural framework for developing moment the-
ory and orthogonal polynomials on the unit circle. From the difference
equations (1.10) the nth numerator Pn(z) and nth denominator Qn(z)
satisfy, for n = 0, 1, 2, . . .,

(2.1a) P2n(z) = −znP2n+1(1/z), Q2n(z) = znQ2n+1(1/z),

(2.1b) P2n+1(z) = −znP2n(1/z), Q2n+1(z) = znQ2n(1/z).

Also,

(2.2a) fn(z) = −gn(1/z) and gn(z) = −fn(1/z)

where

(2.2b) fn(z) =
P2n(z)

Q2n(z)
and gn(z) =

P2n+1(z)

Q2n+1(z)
.

It follows from the determinant formulas (1.6) that, for n = 1, 2, 3, . . .,

(2.3a) P2n(z)Q2n−1(z)− P2n−1(z)Q2n(z) = 2δ0

n−1∏
j=1

(1− |δj |2)zn−1,

and

(2.3b) P2n+1(z)Q2n(z)− P2n(z)Q2n+1(z) = −2δ0

n∏
j=1

(1− |δj |2)zn.

For n = 0, 1, 2, . . .,
(2.3c)

P2n+2(z)Q2n(z)− P2n(z)Q2n+2(z) = −2δ0δn+1

n∏
j=1

(1− |δj |2)zn+1,

and
(2.3d)

P2n+3(z)Q2n+1(z)− P2n+1(z)Q2n+3(z) = 2δ0δn+1

n∏
j=1

(1− |δj |2)zn+1.
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In equation (2.3a) when n = 1, the empty product is 1 by definition.

Since P2n(z)/Q2n(z) is holomorphic at z = 0 and P2n+1(z)/Q2n+1(z)
is holomorphic at z = ∞, we can express these functions as convergent
power series

(2.4a)
P2n(z)

Q2n(z)
= µ

(n)
0 + 2

∞∑
k=1

µ
(n)
k zk, µ

(n)
k ∈ C,

for all z in a neighborhood of z = 0, and

(2.4b)
P2n+1(z)

Q2n+1(z)
= −µ(n)

0 − 2
∞∑
k=1

µ
(n)
−kz

−k, µ
(n)
−k ∈ C,

for all z in a neighborhood of z = ∞. Dividing both sides of (2.3c)
by the product Q2n(z)Q2n+2(z) and dividing both sides of (2.3d) by
Q2n+1(z)Q2n+3(z) yields the following theorem from [32]:

Theorem 2.1. Corresponding to each PPC-fraction (1.3), there exists
a unique pair (L0, L∞) of formal power series (fps) of the form

(2.5) L0 = µ0+2
∞∑
k=1

µkz
k, L∞ = −µ0− 2

∞∑
k=1

µ−kz
−k, µk ∈ C,

such that, for n = 0, 1, 2, . . .,

(2.6a) L0 −
P2n(z)

Q2n(z)
= −2δ0

n∏
j=1

(1− |δj |2)zn+1 +O(zn+2),

and

(2.6b) L∞ − P2n+1(z)

Q2n+1(z)
= 2δ0

n∏
j=1

(1− |δj |2)
(
1

z

)n+1

+O

((
1

z

)n+2)
.

It follows from equation (2.4) and Theorem 2.1 that, for n =
0, 1, 2, . . .,

(2.7) µ
(n)
k = µk, k = 0, ±1, ±2, . . . ,±n.

This is a remarkable and useful property of PPC-fractions in view of
the fact (Theorem 2.3) that the rational functions (2.4a) and (2.4b)
converge to functions f(z) and g(z), respectively. Theorem 2.1 not only
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enables us to establish the existence of the corresponding pair (L0, L∞)
of series (2.5) but, in view of equation (2.7), we obtain explicit formulas
for the PPC-fraction coefficients δn and the polynomials Qn(z) in terms
of Toeplitz determinants (1.18).

Theorem 2.2 ([32]).

(A) For a PPC-fraction (1.3), let (L0, L∞) be the corresponding

pair of formal power series (2.5), and let T
(m)
k denote the Toeplitz

determinants (1.17) for the double sequence {µn}∞−∞. Then, for n =
1, 2, 3, . . .,

(2.8) µ0 = δ0 > 0, µn = µ−n, T (0)
n > 0,

δn = (−1)n
T

(−1)
n

T
(0)
n

, δn = (−1)n
T

(1)
n

T
(0)
n

,(2.9)

1− |δn|2 =
T

(0)
n+1T

(0)
n−1(

T
(0)
n

)2 ,

Q2n(z) =
1

T
(0)
n

∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 · · · µn
µ−1 µ0 · · · µn−1

...
...

...
µ−n+1 µ−n+2 · · · µ1

zn zn−1 · · · 1

∣∣∣∣∣∣∣∣∣∣∣
,(2.10a)

Q2n+1(z) =
1

T
(0)
n

∣∣∣∣∣∣∣∣∣∣∣

µ0 µ−1 · · · µ−n
µ1 µ0 · · · µ−n+1

...
...

...
µn−1 µn−2 · · · µ1

1 z · · · zn

∣∣∣∣∣∣∣∣∣∣∣
.(2.10b)

(B) Conversely, let (L0, L∞) be a pair of formal power series (2.5)
such that {µk}∞−∞ satisfies (2.8). Let {δn} be defined by

(2.11) δ0 = µ0, δn = (−1)n
T

(−1)
n

T
(0)
n

, n = 1, 2, 3, . . . .
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Then |δn| < 1 for n = 1, 2, 3, . . ., and hence (1.3a) is a PPC-fraction
whose coefficients δn satisfy equations (2.9), and (1.3) corresponds to
(L0, L∞).

Proof.

(A) Combining equation (2.3c) with Theorem 2.1 yields, for n =
1, 2, 3, . . .,

(2.12a) Q2n(z)L0 −P2n(z) = −2δ0δn+1

n∏
j=1

(1− |δj |2)zn+1 +O(zn+2),

and

(2.12b) Q2n(z)L∞ − P2n(z) = −2δ0

n∏
j=1

(1− |δj |2) +O

(
1

z

)
.

By equating coefficients of like powers of z on both sides of equations
(2.12a) and (2.12b), we arrive at the system of linear equations
(2.13)

µ0+ µ−1q2n,1 + · · ·+ µ−nq2n,n = δ0
∏n
j=1(1− |δj |2)

µ1+ µ0q2n,1 + · · ·+ µ−n+1q2n,n = 0
...

...
...

µn+ µn−1q2n,1 + · · ·+ µ0q2n,n = 0.

Since a unique solution to the system (2.13) is ensured by Theorem 2.1,

the Toeplitz determinants of the system satisfy T
(0)
n+1 ̸= 0. Cramer’s rule

[27] implies

(2.14) T
(0)
n+1 = δ0

n∏
j=1

(1− |δj |2)T (0)
n , n = 1, 2, 3, . . . .

Since T
(0)
1 = µ0 = δ0 > 0, it follows by induction that T

(0)
n > 0 for

n = 1, 2, 3, . . . . The expression for δn given in equation (2.9) can be
obtained by solving the last n equations in the system (2.13) for q2n,n

since δn = q2n,n, µn = µ−n, and hence T
(1)
n = T

(−1)
n . The expression

for (1−|δn|2) in equation (2.9) is a consequence of the Jacobi identities
[23]

(2.15)
(
T (0)
n

)2

= T
(0)
n+1T

(0)
n−1 + T (1)

n T (−1)
n , n = 1, 2, 3, . . . ,
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and the expressions for δn and δn in equation (2.9). The formulas
given in equation (2.10) can be derived from the last n equations in the
system (2.13).

(B) Since {µk} satisfies relationship (2.8), we have T
(1)
n = T

(−1)
n ,

and hence by (2.15),

1− |δn|2 =
T

(0)
n+1T

(0)
n−1(

T
(0)
n

)2 > 0, n = 1, 2, 3, . . . .

Therefore, (1.3a) is a PPC-fraction, and it corresponds to a pair

(L̂0, L̂∞) of the formal power series

L̂0 = µ̂0 + 2
∞∑
k=1

µ̂kz
k, L̂∞ = −µ̂0 − 2

∞∑
k=1

µ̂−kz
−k.

If T̂
(m)
k denotes the Toeplitz determinant associated with {µ̂k}∞−∞,

then one can show that T̂
(m)
K = T

(m)
k , for m = 0, ±1, ±2, . . . and

k = 1, 2, 3, . . . by a standard argument; see, e.g., [42, Theorem 7.2].
Therefore, (3.1a) is a PPC-fraction corresponding to (L0, L∞). �

An important characteristic of continued fractions is that the ap-
proximants can be generated by the composition of a sequence of lin-
ear fractional transformations. This property has been exploited in the
development of continued fraction convergence theory [42, 49, 50].

By use of conformal mapping one can verify the convergence of
the approximant sequences {fn(z)} and {gn(z)} and also estimate the
truncation error.

The linear fractional transformations associated with a PPC-fraction
(1.3) follow from equations (1.7)–(1.9) and are, for n = 1, 2, 3, . . .,

(2.16a) s0(z, ω) := δ0 + ω, s2n(z, ω) :=
1

δnz + ω
,

(2.16b) s1(z, ω) :=
−2δ0
1 + ω

, s2n+1(z, ω) :=
(1− |δn|2)z
δn + ω

,

(2.16c) S0(z, ω) := s0(z, ω), Sn(z, ω) := Sn−1(z, sn(z, ω)),
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(2.16d) r0(z, ω) := s0(z, s1(z, ω
−1)) = δ0

1− ω

1 + ω
,

(2.16e) rn(z, ω) :=
1

s2n(z, s2n+1(z, ω−1))
= z

δn + ω

1 + δnω
,

(2.16f) R0(z, ω) := r0(z, ω), Rn(z, ω) := Rn−1(z, rn(z, ω)).

It follows that, for n = 1, 2, 3, . . .,

(2.17) Sn(z, ω) =
Pn(z) + ωPn−1(z)

Qn(z) + ωQn−1(z)
,

(2.18) Rn(z, ω) = S2n+1(z, ω
−1) =

P2n+1(z)ω + P2n(z)

Q2n+1(z)ω +Q2n(z)
.

Hence, for n = 1, 2, 3, . . .,
(2.19)

fn(z) :=
P2n(z)

Q2n(z)
= Rn(z, 0), gn(z) :=

P2n+1(z)

Q2n+1(z)
= Rn(z,∞).

Theorem 2.3 ([32, 44], Convergence). Let (1.3) be a PPC-fraction
with corresponding pair (L0, L∞) of formal power series (2.5) and
(2n)th approximant fn(z) = P2n(z)/Q2n(z). Then {fn(z)}∞0 converges
uniformly on compact subsets of the unit disk |z| < 1 to a normalized
Carathéodory function f(z) satisfying, for n = 1, 2, 3, . . .,

(2.20) f(0) = δ0 = µ0 > 0, Re f(z) > 0, for |z| < 1,

(2.21) f(z) = µ0 + 2

∞∑
k=1

µkz
k, for |z| < 1,

(2.22)

∣∣∣∣f(z)− δ0
1 + ρ2

1− ρ2

∣∣∣∣ ≤ 2δ0ρ

1− ρ2
, for |z| < ρ < 1,

(2.23) |f(z)− fn(z)| ≤
4δ0|z|n+1

1− |z|2
, for |z| < 1,

(2.24) |f(z)− fn(z)| ≤
4δ0

∏n
j=1(1− |δj |2)|z|n+1

|Q2n(z)|2 − |zQ2n+1(z)|2
, for |z| < 1.
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The inequalities (2.23) and (2.24) provide a priori and a posteriori
truncation error bounds, respectively. Our proof of Theorem 2.3 makes
use of four lemmas.

Lemma 2.4 (Conformal mapping). Let (1.3) be a PPC-fraction with
associated linear fractional transformations (2.16). For R := |z| < 1,
let UR be the open disk in C defined by UR := [u : |u| < R]. Let
(2.25)

Γn :=
δn(1−R2)z

1−R2|δn|2
, ρn :=

(1− |δn|2)R2

1−R2|δn|2
, n = 1, 2, 3, . . . .

Then

(2.26) r0(z, UR) =

[
ξ ∈ C :

∣∣∣∣ξ − δ0
1 +R2

1−R2

∣∣∣∣ < 2δ0R

1−R2

]
and

(2.27) rn(z, UR) = [ξ ∈ C : |ξ − Γn| < ρn] ⊆ UR, n = 1, 2, 3, . . . .

Proof. It is readily shown that, if ξ = r0(z, ω), then ω = (δ0 −
ξ)/(δ0 + ξ), from which one can verify equation (2.26). Similarly, if
ξ = rn(z, ω), then ω = (ξ − δnz)/(z − δnξ), from which one can obtain
the equality relation in (2.27). To prove the inclusion relation in (2.27),
it suffices to show that

(2.28) |Γn|+ ρn ≤ R.

Substituting the expressions for Γn and ρn in the inequality (2.28) and
multiplying both sides by (1−R2|δn|2) yields the equivalent inequality

R(1−R)(1−R|δn|) ≥ 0,

which is clearly valid. �

It follows from Lemma 2.4 and equation (2.16f) that, for |z| < 1 and
n = 1, 2, 3, . . .,

(2.29) Rn(z, UR) ⊆ Rn−1(z, UR) ⊆ · · · ⊆ R0(z, UR) = r0(z, UR).

Therefore, {Rn(z, UR)} is a nested sequence of non-empty circular
disks. Since

(2.30) fn+m(z) = Rn+m(z, 0) ∈ Rn(z, UR), n,m = 0, 1, 2, . . . ,
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we have the following lemma.

Lemma 2.5. If |z| < 1, then

(2.31) |fn+m(z)− fn(z)| ≤ 2 ρ(Rn(z, UR)), n,m = 0, 1, 2, . . . ,

where ρ(D) denotes the radius of a disk D.

It follows that the sequence {fn(z)} converges to a finite value
whenever we have limn→∞ ρ(Rn(z, UR)) = 0.

Lemma 2.6. For R = |z| < 1 and n = 1, 2, 3, . . .,

(2.32) ρ(Rn(z, UR)) =
2δ0

∏n
j=1(1− |δj |2)|z|n+1

|Q2n(z)|2 − |zQ2n+1(z)|2
.

Proof. Let ωn ∈ UR be chosen so that Rn(z, ωn) is the center of the
disk Rn(z, UR). By equation (2.18),

(2.33) Rn(z,−un) = ∞ if un :=
Q2n(z)

Q2n+1(z)
.

Since Rn(z, ωn) and Rn(z,−un) are inverses with respect to the bound-
ary of Rn(z, UR), and since inverses are preserved under linear frac-
tional transformations, it follows that ωn and −un are inverses with
respect to the circle |ω| = R = |z| in the ω-plane. Hence, the ray
extending from ω = 0 to ω = ωn passes through ω = −un and

(2.34) τ := Arg(ωn) = Arg (−un) and |ωn| · |un| = R2 = |z|2 < 1.

Therefore, νn := |z|eiτn is the point of intersection of the circle |ω| = R
and the line segment [ωn,−un]. An application of equation (2.18) and
the determinant formulas (2.3) yields

ρ(Rn(z, UR)) = |Rn(z, ωn)−Rn(z, νn)|

=
2δ0

∏n
j=1(1− |δj |2)|z|n|ωn − νn|

|Q2n(z)|2|ωn + un| · |un + νn|
.

By equations (2.33) and (2.34), we obtain

|ωn − νn| = (|Q2n(z)− |zQ2n+1(z)|) |z| = |un + νn| · |z|
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and

|ωn + un| =
|Q2n(z)|2 − |zQ2n+1(z)|2

|Q2n(z)Q2n+1(z)|
,

from which equation (2.32) is an immediate consequence. �

It is convenient to introduce ϱ0 := 1/µ0 and for n = 1, 2, 3, . . .,

(2.35) ϱn :=
T

(0)
n

T
(0)
n+1

=
ϱn−1

1− |δn|2
=

ϱ0∏n
j=1(1− |δj |2)

,

which follows from equation (2.9).

Lemma 2.7 (Christoffel-Darboux formulas). For x, y ∈ C, xy ̸= 1 and
n = 0, 1, 2, . . .,

(2.36)

n∑
j=0

ϱjQ2j−1(x)Q2j−1(y)

=
ϱn

(
Q2n(x)Q2n(y)− xyQ2n+1(x)Q2n+1(y)

)
1− xy

.

Proof. For n = 1, 2, 3, . . ., the difference equations (1.10) imply

(2.37a) Q2n+1(z) = zQ2n−1(z) + δnQ2n−2(z),

(2.37b) Q2n(z) = δnzQ2n−1(z) +Q2n−2(z),

and hence,

(2.38a) zQ2n−1(z) =
Q2n+1(z)− δnQ2n(z)

1− |δn|2

and

(2.38b) Q2n−2(z) =
Q2n(z)− δnQ2n+1(z)

1− |δn|2
.
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From equations (2.37) and (2.38), it follows that

(2.39)

ϱj

(
Q2j(x)Q2j(y)− xyQ2j+1(x)Q2j+1(y)

)
1− xy

=
ϱj

(
Q2j−2(x)Q2j−2(y)− xyQ2j−1(x)Q2j−1(y)

)
1− xy

+ ϱjQ2j+1(x)Q2j+1(y).

Summing both sides of equation (2.39) yields the Christoffel-Darboux
formulas (2.36). �

Proof of Theorem 2.3. In equation (2.36), we set x = y = z and
obtain

(2.40) ϱ0 ≤
n∑
j=0

ϱj |Q2j+1(z)|2 =
ϱn(|Q2n(z)|2 − |zQ2n+1(z)|2)

1− |z|2
.

Therefore, by equation (2.35),

(2.41) |Q2n(z)|2 − |zQ2n+1(z)|2 ≥
(
1− |z|2

) n∏
j=1

(1− |δj |2).

Combining equation (2.32) and inequality (2.41) yields, for |z| = R < 1,

(2.42) rad ∂ Rn(z, UR) ≤
2δ0

∏n
j=1(1− |δj |2)|z|n+1

|Q2n(z)|2 − |zQ2n+1(z)|2
≤ 2δ0|z|n+1

1− |z|2
.

It follows from inequality (2.42) and Lemma 2.5 that {fn(z)}∞0 con-
verges uniformly on compact subsets of |z| < 1 to a function f(z)
holomorphic in |z| < 1. The mapping properties (2.29) imply that
Re f(z) > 0 for |z| < 1, and hence, f(z) is a normalized Carathéodory
function. The truncation error estimates (2.23) and (2.24) follow from
inequality (2.42). By a convergence theorem for continued fractions
given in [42, Theorem 5.13], assertion (2.21) holds since the pair
(L0, L∞) of power series (2.5) corresponds to the PPC-fraction (1.3)
and the sequence {fn(z)}∞0 is uniformly bounded on compact subsets
of |z| < 1. �
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We note that the convergence theorem [42, Theorem 5.13] makes
essential use of the Stieltjes-Vitali theorem (see, e.g., [25, Theorem
15.3.2], [71], [74, Theorem 20.15]).

From equation (2.2) and Theorem 2.3 it follows that the sequence
{gn(z)} of odd order approximants of a PPC-fraction (1.1) converges
to a function g(z) holomorphic in |z| > 1, satisfying

(2.43) g(0) = −µ0 = −δ0 < 0, Re (g(z)) < 0 for |z| > 1,

and

(2.44) g(z) = −µ0 − 2

∞∑
k=1

µ−kz
−k, |z| > 1.

3. Trigonometric moment problem.

Theorem 3.1 ([32], [34], Trigonometric moment problem). Let
{µn}∞−∞ be a doubly infinite sequence in C with associated Toeplitz

determinants T
(m)
k given by equation (1.17). Then the following three

statements are equivalent.

(A) There exists a distribution function ψ ∈ Ψ∞(−π, π) such that
its moments µn satisfy

(3.1) µn =
1

2π

∫ π

−π
e−inθdψ(θ), n = 0,±1, ±2, . . . .

(B)

(3.2) µn = µ−n and T (0)
n > 0, n = 1, 2, 3, . . . .

(C) There exists a PPC-fraction (1.3) corresponding to the pair
(L0, L∞) of power series (2.5).

Proof. We begin by showing that (A) implies (B). If there exists a
ψ ∈ Ψ∞(−π, π) such that equation (3.1) holds, then clearly µn = µ−n,
n = 0, 1, 2, . . . . If

(3.3) P (z) =
n∑

k=−n

akz
k, ak ∈ C,
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then

(3.4)
1

2π

∫ π

−π
|P (eiθ)|2dψ(θ) =

n∑
j,k=−n

ajakµk−j ≥ 0,

and the left hand side of equation (3.4) equals zero if and only if
P (z) ≡ 0, since ψ(θ) has infinitely many points of increase. Therefore,
the right hand side of equation (3.3) is a positive definite Toeplitz form.

By a well-known property of Toeplitz forms, T
(0)
n > 0, n = 1, 2, 3, . . .,

[21, pages 16–19].

The equivalence of (B) and (C) is implied by Theorem 2.2 (B).

It remains to show that (C) implies (A). By Theorem 2.3, the se-
quence of (2n) approximants {fn(z)} of the PPC-fraction (1.3) con-
verges to a normalized Carathéodory function f(z). It follows from the
Herglotz-Riesz representation theorem [1, page 91] that there exists a
ψ ∈ Ψ(−π, π), such that

(3.5) f(z) =
1

2π

∫ π

−π

eiθ + z

eiθ − z
dψ(θ), |z| < 1.

Expanding the integrand of equation (3.5) in increasing powers of ze−iθ

and integrating term-by-term yields

f(z) = µ0 + 2

∞∑
k=1

µkz
k, for |z| < 1,

where the µk are given by equation (3.1). It remains to show that ψ(θ)
has infinitely many points of increase. It ψ(θ) has only a finite number
of points of increase, then there exists a Laurent polynomial (3.3), not
identically zero, such that the Toeplitz form (3.4) is zero. This implies

that T
(0)
n = 0 for some n ∈ [1, 2, 3, . . .], and hence, the inequality in

(3.2) does not hold. This leads to a contradiction since (B) and (C)
are equivalent. �

The M -definite trigonometric moment problem in which ψ(θ) has
only a finite number M of points of increase is treated in Section 5
using M -terminating PPC-fractions.

4. Szegö polynomials. Since the Szegö polynomials ρn(z) and
reciprocal polynomials ρ∗n(z) can be expressed as denominators of a
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PPC-fraction, one can easily derive many properties of ρn(z) and ρ
∗
n(z)

from corresponding properties of PPC-fractions.

Theorem 4.1. Let ψ ∈ Ψ∞(−π, π) be given, let ⟨·, ·⟩ψ be the associated
inner product (1.21), and let PPC {δn} be the PPC-fraction whose
existence is insured by Theorem 3.1. Let {ρn(z)}∞0 and {ρ∗n(z)}∞0 be
defined by

(4.1) ρn(z) := Q2n+1(z), ρ∗n(z) = Q2n(z), n = 0, 1, 2, . . . .

Then, for n ≥ 0, ρn(z) is a monic polynomial of degree n and

(4.2) ⟨ρn(z), zm⟩ψ =

{
0 m = 0, 1, . . . , n− 1

T
(0)
n+1/T

(0)
n m = n,

(4.3) ⟨ρ∗n(z), zm⟩ψ =

{
T

(0)
n+1/T

(0)
n m = 0,

0 m = 1, 2, . . . , n,

(4.4a) ρn(z) = zρn−1(z) + δnρ
∗
n−1(z),

(4.4b) ρ∗n(z) = δnzρn−1(z) + ρ∗n−1(z),

(4.5) ρ∗n(z) = znρn(1/z) and ρn(z) = znρ∗n(1/z)

(4.6) ρn(z) = 0 =⇒ |z| < 1.

Proof. Let {µn}∞0 be the moment sequence (3.1) associated with ψ.
By equation (4.1) and Theorem 2.2 (A), ρn(z) and ρ∗n(z) can be ex-

pressed in terms of Toeplitz determinants T
(m)
k as in equation (2.10).

It follows from equation (2.10) that ρn(z) is a monic polynomial of
degree n and ρ∗n(z) is a polynomial of degree at most n. The orthogo-
nality properties (4.2) and (4.3) follow from equations (2.10) and (3.1).
Recurrence relations (4.4) are readily derived from equation (4.1), and
the difference equations (1.10). The reciprocity relation (4.5) follows
from equations (2.1) and (4.1). It remains only to verify (4.6). From
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the mapping properties (2.26), (2.27) and (2.29), we have

(4.7)

∣∣∣∣ P2n+1(z)

Q2n+1(z)
− δ0

p2 + 1

p2 − 1

∣∣∣∣ ≤ 2δ0p

p2 − 1
, for |z| ≥ p > 1.

Thus, all zeros of ρn(z) = Q2n+1(z) lie inside |z| ≤ 1. Let

(4.8) ρn(z) =
n∏
j=1

(z − zj) and ρ∗n(z) =
n∏
j=1

(1− zjz),

where z1, z2, . . . , zn are the zeros of ρn(z). Assume that one of the zeros,
say zk = eiθk , lies on |z| = 1. From equation (4.8), we obtain ρn(zk) =
0 = ρ∗n(zk), which leads to a contradiction of equation (2.3a). �

It follows from (4.6) that all n zeros of ρn(z) lie in the open disk
|z| < 1. From equation (4.5), if zk ̸= 0 is a zero of ρn(z), then 1/zk is
a zero of ρ∗n(z). Hence, all zeros of ρ∗n(z) lie in |z| > 1.

Levinson’s algorithm [47] is an efficient procedure for the computa-
tion of the coefficients of individual powers of z in Szegö polynomials
and the δn coefficients of associated PPC-fractions. The algorithm is
of great value for frequency analysis computation. For the Szegö poly-
nomials ρn(z) associated with a distribution function ψ ∈ Ψ∞(−π, π),
we write

(4.9) ρn(z) =
n∑
j=0

q
(n)
j zj , ρ∗n(z) =

n∑
j=0

q
(n)
j zn−j , q(n)n = 1.

Then by equations (4.2) and (4.4a), for n = 1, 2, 3, . . .,

0 = ⟨ρn(z), 1⟩ψ = ⟨zρn−1(z), 1⟩ψ + δn⟨ρ∗n−1(z), 1⟩ψ,

and hence,

(4.10) δn = −
∑n−1
j=0 q

(n−1)
j µ−j−1∑n−1

j=0 q
(n−1)
j µj+1−n

, n = 1, 2, 3, . . . .

Since ρ0(z) = ρ∗0(z) = 1, equation (4.10) yields

δ1 = −µ−1

µ0
.
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From equation (4.4),

q
(1)
1 = q

(1)
1 = 1, q

(1)
0 = −µ−1

µ0
, q

(1)
0 = −µ1

µ0
,

and hence, by equation (4.10),

δ2 =
µ2
−1 − µ0µ−2

µ2
0 − µ1µ−1

.

Continuing in this manner, one can calculate successively the coeffi-

cients δn, q
(n)
j , n = 1, 2, 3, . . . .

Theorem 4.2. Let P (z) be a polynomial in z of the form

P (z) = zn + a1z
n−1 + a2z

n−2 + · · ·+ an, aj ∈ C, n ≥ 1,

and let ψ ∈ Ψ∞(−π, π). Then,

min
aj∈C

1

2π

∫ π

−π
|P (eiθ)|2dψ(θ) = 1

2π

∫ π

−π
|ρn(eiθ)|2dψ(θ) = ⟨ρn, ρn⟩ψ,

where ρn(z) is the nth degree, monic Szegö polynomial with respect to
ψ.

Proof. See, e.g., [72, Theorem 11.1.2]. �

5. M-terminating PPC-fractions. The results of Sections 2, 3
and 4 have immediate counterparts for M-terminating PPC-fractions
(1.14). These are summarized in the present section, with proofs being
given only when they differ significantly from the analogous results for
PPC-fractions.

The nth numerator Pn(z) and denominator Qn(z) are polynomials
defined by the difference equations (1.10) for n = 0, 1, 2, . . . ,M . Since
|δM | = 1, we have

(5.1) P2M+1(z) = δMP2M (z), Q2M+1(z) = δMQ2M (z),

(5.2) P2M (z) = −δMzMP2M (1/z), Q2M (z) = δMz
MQ2M (1/z)

and

(5.3) f(z) :=
P2M (z)

Q2M (z)
=
P2M+1(z)

Q2M+1(z)
= −f(1/z).
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Theorem 5.1. Let f(z) be a rational function represented by an M-
terminating PPC-fraction (1.14). Then:

(A) f(z) is holomorphic for |z| < 1 and for |z| > 1 and satisfies

(5.4) f(0) > 0, Re f(z) > 0 for |z| < 1, Re f(z) < 0 for |z| > 1.

(B) f(z) has power series representations of the form

(5.5) f(z) =

{
µ0 + 2

∑∞
k=1 µkz

k |z| < 1,

−µ0 − 2
∑∞
k=1 µ−kz

−k |z| > 1,

where the coefficients µk satisfy

µn = µ−n and T (0)
n > 0(5.6)

for n = 0, 1, 2, . . .M and T
(0)
M+1 = 0.

(C) The coefficients δn in the M-terminating PPC-fraction (1.14)
satisfy

(5.7a) δ0 = µ0 > 0,

and, for n = 1, 2, . . . ,M ,

(5.7b) δn = (−1)n
T

(−1)
n

T
(0)
n

and 1− |δn|2 =
T

(0)
n+1T

(0)
n−1

(T
(0)
n )2

.

(D) The nth denominators Qn(z) of the M-terminating PPC frac-
tion (1.14) are represented by the determinant formulas (2.10)
for n = 1, 2, . . . ,M .

(E) The M zeros of Q2M+1(z) = δMQ2M (z) lie on the unit circle
|z| = 1. It will be shown (Theorem 5.4) that they are distinct
and non-real zeros occurring in conjugate pairs.

Theorem 5.2. Let {µn}∞−∞ be a doubly infinite sequence in C satisfy-
ing equation (5.6). Let {δn}∞0 be defined by

(5.8) δ0 := µ0 and δn := (−1)n
T

(−1)
n

T
(0)
n

, n = 1, 2, . . .M.

Then {δn}∞0 satisfies equation (1.14b); hence, equation (1.14a) is an
M-terminating PPC-fraction representing a function f(z) with power
series expansions (5.5).



SURVEY ARTICLE: CONTINUED FRACTIONS 25

Theorem 5.3. Let {µn}∞−∞ be an infinite double sequence in C with

Toeplitz determinants T
(m)
k given by equation (1.17). Then the follow-

ing three statements are equivalent :

(A) There exists a distribution function ψ ∈ ΨM (−π, π), for some
M ∈ [1, 2, 3, . . .], such that

(5.9) µn =
1

2π

∫ π

−π
e−inθdψ(θ), n = 0,±1,±2, . . . .

(B)
(5.10)

µn = µ−n and T (0)
n > 0 for n = 0, 1, 2, . . . ,M and T

(0)
M+1 = 0.

(C) There exists an M-terminating PPC-fraction (1.14) represent-
ing a normalized Carathéodory function f(z), such that

(5.11a) f(z) = µ0 + 2

∞∑
k=1

µkz
k for |z| < 1

and

(5.11b) f(z) = −µ0 − 2
∞∑
k=1

µ−kz
−k for |z| > 1.

Proof. It follows from a well-known property of Toeplitz forms [21,
page 19] that (A) and (B) are equivalent. By Theorem 5.1, (A) and
(C) are equivalent. �

If ψ ∈ ΨM (−π, π) for M ∈ [1, 2, 3, . . .], then

(5.12) ⟨P (z), Q(z)⟩ψ :=
1

2π

∫ π

−π
P (eiθ)Q(eiθ) dψ(θ),

defines an M -definite inner product on

(5.13) Λ−M−1,M+1 =

{ n∑
k=−n

ckz
k : ck ∈ C, 0 ≤ n ≤M − 1

}
.

Let Qn(z) denote the nth denominator of the M -terminating PPC-
fraction (1.14) associated with ψ (Theorem 5.3). Then, for n =
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0, 1, 2, . . . ,M , the nth degree monic Szegö polynomial ρn(z) and nth
reciprocal polynomial ρ∗n(z) are given by:

(5.14) ρn(z) = Q2n+1(z), ρ∗n(z) = Q2n(z), n = 0, 1, 2, . . . ,M.

Basic properties of these polynomials are summarized in the following:

Theorem 5.4. The Szegö polynomials ρn(z) associated with an M-
definite inner product (5.12), where ψ ∈ ΨM (−π, π) satisfy the follow-
ing properties for n = 0, 1, 2, . . . ,M :

(5.15) ⟨ρn(z), zk⟩ψ =

{
0 k = 0, 1, . . . , n− 1

T
(0)
n+1/T

(0)
n k = n.

(5.16) ⟨ρ∗n(z), zk⟩ψ =

{
T

(0)
n+1/T

(0)
n k = 0,

0 k = 1, 2, . . . , n.

(5.17a) ρn(z) = zρn−1(z) + δnρ
∗
n−1(z),

(5.17b) ρ∗n(z) = δnzρn−1(z) + ρ∗n−1(z),

(5.18) ρ∗n(z) = znρn(1/z).

(5.19) ρn(z) = 0 =⇒ |z| < 1 for n = 1, 2, . . . ,M − 1.

In addition, ρM (z) has exactly M zeros, all are distinct and lie on the
unit circle. All non-real zeros occur in conjugate pairs.

Proof. Arguments analogous to those used in Section 4 apply, except
for the part about the zeros of ρM (z).

By conditions (5.10) and equation (5.15), ⟨ρM (z), ρM (z)⟩ψ = 0, and
hence, ρM (eit) = 0 at exactly the M points of increase of ψ. �

6. Carathéodory functions. PPC-fractions and M-terminating
PPC-fractions provide a complete characterization of the normalized
Carathéodory functions f(z) ∈ C . From Theorems 2.3 and 5.1, it is
seen that the sequence of (2n)th approximants of every PPC-fractions



SURVEY ARTICLE: CONTINUED FRACTIONS 27

converges to a function f(z) ∈ C, and every M -terminating PPC-
fraction represents a function in C. It is now shown that every f(z) ∈ C
can be represented by one or the other of these two ways.

Theorem 6.1. If f(z) ∈ C, then either there exists a PPC-fraction
with (2n)th approximants {fn(z)} converging to f(z) for |z| < 1 or
there exists an M-terminating PPC-fraction representing f(z).

Proof. By the Herglotz-Riesz representation theorem [1], there ex-
ists ψ ∈ Ψ(−π, π) such that

f(z) =
1

2π

∫ π

−π

eiθ + z

eiθ − z
dψ(θ) = µ0 + 2

∞∑
k=1

µkz
k, |z| < 1,

where µk is the kth moment with respect to ψ. If ψ ∈ Ψ∞(−π, π), then,
by Theorem 3.1, there exists a PPC-fraction with (2n)th approximant
sequence {fn(z)} converging to f(z) uniformly on compact subsets of
|z| < 1. If ψ ∈ ΨM (−π, π) for some positive integer M , then by
Theorem 5.3, there exists anM -terminating PPC-fraction representing
f(z). �

7. Frequency analysis. Let B(t) be a real valued function of
the form (1.24) with normalized frequencies ωj . Let ψ(θ) be a step
function defined on [−π, π] with a jump |αj |2 at each point θ = ωj ,
j = 0, ±1, ±2, . . . ,±I. Then

ψ ∈ ΨM (−π, π), where M = 2I + L,

L =

{
0 if α = 0,

1 if α = 1.

The Herglotz transform [1, page 91]

(7.1) f(z) =
1

2π

∫ π

−π

eiθ + z

eiθ − z
dψ(θ) =

I∑
j=−I

|αj |2
eiωj + z

eiωj − z

is a rational, normalized Carathéodory function. If the kth moment
with respect to ψ is denoted by µk, then

(7.2) f(z) =

{
µ0 + 2

∑∞
k=1 µkz

k |z| < 1,

−µ0 − 2
∑∞
k=1 µ−kz

−k |z| > 1.
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By Theorem 6.1, f(z) has an M -terminating PPC-fraction representa-
tion (1.14)

(7.3)

f(z) = δ0 −
2δ0
1 +

1

δ1z +

(
1− |δ1|2

)
z

δ1 +
· · ·

+

(
1− |δM−1|2

)
z

δM−1 +

1

δMz
.

It follows from equations (7.1) and (7.3) and Theorem 5.4 that the
monic Mth degree Szegö polynomial with respect to ψ is given by

(7.4) ρM (z) = Q2M+1(z) = (z − 1)L
I∏
j=1

(z − eiωj )(z − e−iωj )

where Q2M+1(z) is the (2M+1)th denominator of M-terminating PPC-
fraction (7.3).

The frequency analysis problem can be solved by determining the
critical points eiωj on the unit circle; that is, by finding the zeros of
ρM (z).

Let N be an integer greater thanM , and let {χN (m)}∞−∞ be defined
by

(7.5) χN (m) =

{
B(tm) for m = 0, 1, 2, . . . , N − 1,

0 for m < 0 or m ≥ N.

An absolutely continuous distribution function ψN (θ) ∈ Ψ∞(−π, π) is
determined, up to an additive constant, by

(7.6) ψ′
N (θ) =

∣∣∣∣N−1∑
m=0

χN (m)e−imθ
∣∣∣∣2, −π ≤ θ ≤ π.

For k = 0, ±1, ±2, . . ., the moments µ
(N)
k with respect to ψN (θ) can

be computed by the auto-correlation coefficient formulas

(7.7) µ
(N)
k =

1

2π

∫ π

−π
e−ikθdψN (θ) =

N−1∑
m=0

χN (m)χN (m+ k).

Since the trigonometric moment problem for {µ(N)
k }∞−∞ has a solution
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ψN (θ) (Theorem 3.1), there exists a corresponding PPC-fraction

(7.8a)

δ
(N)
0 − 2δ

(N)
0

1 +

1

δ
(N)
1 z

+

(
1− |δ(N)

1 |2
)
z

δ
(N)
1

+

1

δ
(N)
2 z

+

(
1− |δ(N)

2 |2
)
z

δ
(N)
2

+
· · · ,

where

(7.8b) δ
(N)
0 > 0, |δ(N)

k | < 1, δ
(N)
k ∈ C, n = 1, 2, 3, . . . ,

(7.8c) δ
(N)
k =

(−1)N

T
(0)
k (N)

∣∣∣∣∣∣∣∣∣∣
µ
(N)
−1 µ

(N)
0 · · · µ

(N)
k−2

µ
(N)
−2 µ

(N)
−1 · · · µ

(N)
k−3

...
...

...

µ
(N)
−k µ

(N)
−k+1 · · · µ

(N)
−1

∣∣∣∣∣∣∣∣∣∣
, k = 1, 2, 3, . . . ,

(7.8d) T
(0)
k (N) =

∣∣∣∣∣∣∣∣∣∣
µ
(N)
0 µ

(N)
−1 · · · µ

(N)
−k+1

µ
(N)
1 µ

(N)
0 · · · µ

(N)
−k+2

...
...

...

µ
(N)
k−1 µ

(N)
k−2 · · · µ

(N)
0

∣∣∣∣∣∣∣∣∣∣
, k = 1, 2, 3, . . . .

We let Pn(ψN ; z) and Qn(ψN ; z) denote the nth numerator and denom-
inator of the PPC fraction (7.8a). Then ρn(ψN ; z) = Q2n+1(ψN ; z) and
ρ∗n(ψN ; z) = Q2n(ψN ; z) are the nth Szegö polynomial and reciprocal
polynomial with respect to ψN (θ), and they satisfy the recurrence re-
lations

(7.9a) ρ0(ψN ; z) = ρ∗0(ψN ; z) = 1,

(7.9b) ρn(ψN ; z) = zρn−1(ψN ; z)+δ(N)
n ρ∗n−1(ψN ; z), n = 1, 2, 3, . . . ,

(7.9c) ρ∗n(ψN ; z) = δ
(N)
n zρn−1(ψN ; z)+ρ∗n−1(ψN ; z), n = 1, 2, 3, . . . .

It was shown in [29] that, with M ≥ 1 fixed, the distribution
function ψN (θ) converges in the weak star topology, as N → ∞, to
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the step function ψ(θ), that is,

lim
N→∞

1

2πN

∫ π

−π
h(eiθ) dψN (θ) =

1

2π

∫ π

−π
h(eiθ) dψ(θ)(7.10)

=
I∑

j=−I

|αj |2h(eiωj ),

for every function h(z) continuous on the unit circle |z| = 1. Thus,
it is not surprising that, with fixed n ≥ M , the zeros of ρn(ψN ; z) of
greatest moduli converge, as N → ∞, to the critical points eiωj on
the unit circle. A proof of this result (Theorem 7.1) was given in two
separate papers [35, 58].

Let

(7.11) ∆ =

{
[±1,±2, . . . ,±I] if α0 = 0

[0,±1,±2, . . . ,±I] if α0 > 0.

Theorem 7.1. Let {χN (m)}∞m=−∞ be an N -terminating signal of the
form (1.25). Let n be a fixed integer such that

n ≥M := 2I + L, L =

{
0 if α0 = 0

1 if α0 > 0.

Then

(A) For each N ≥ M , there exist M zeros zj(n,N) of ρn(ψN ; z)
that satisfy

(7.12) lim
N→∞

zj(n,N) = eiωj , j ∈ ∆.

(B) There exists a constant κn such that 0 < κn < 1 and the
remaining n−M zeros of ρn(ψN ; z) satisfy

(7.13) |zj(n,N)| ≤ κn < 1, for all N ≥M.

It follows that M of the zeros of ρn(ψN ; z) converge to the critical
points eiωj as N → ∞, while the remaining (uninteresting) zeros are
bounded away from the unit circle. Hence, for each N ≥M , it suffices
to use theM zeros of ρn(ψN ; z) with greatest moduli as approximations
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of the critical points. We note that, if n > M , then limN→∞ ρn(ψN ; z)
may not exist [58].

Our proof of Theorem 7.1 makes use of the following three lemmas.

Lemma 7.2. For each m = 0, ±1, ±2, . . .,

(7.14)
1

N
µ(N)
m = µm +O

(
1

N

)
, as N → ∞.

Proof. Applying equation (1.25) in equation (7.7) yields

(7.15) µ(N)
m =

N−m−1∑
k=0

[ I∑
j=−I

I∑
n=−I

αjα
i(ωj+ωn)k
n eimωn

]
.

By summing over k in equation (7.15), the terms with fixed j and n
such that ωj ̸= −ωn yield geometric series that can be expressed as

(7.16) Aj,n(m,N) = αjαne
i(ωj+ωn)(N−1)/2 sin[

1
2 (ωj + ωn)(N −m)]

sin[12 (ωj + ωn)]
.

Since the sine term in the denominator does not vanish, there exists a
number A, independent of j, n,m and N such that
(7.17)
sup[Aj,n(m,N) : ωj + ωn ̸= 0, −I ≤ j, n ≤ I, m ∈ Z, N ≥ 1] ≤ A.

The sum of all of the other terms in equation (7.15) (i.e., those with
ωj + ωn = 0) is given by (N −m)µm. Combining these results yields
equation (7.14). �

Lemma 7.3. (A) For n = 1, 2, . . . ,M ,

δ
(N)
0 = Nδ0 +O(1)(7.18)

and

δ(N)
n = δn +O(1/N), as N → ∞.

(B) For n = 0, 1, . . . , 2M + 1,

lim
N→∞

Pn(ψN ; z) = Pn(z)(7.19)
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and

lim
N→∞

Qn(ψN ; z) = Qn(z),

convergence being uniform on compact subsets of C.
(C)

lim
N→∞

ρM (ψN ; z) = lim
N→∞

Q2M+1(ψN ; z)(7.20)

= (z − 1)L
I∏
j=1

(z − eiωj )(z − e−iωj ),

convergence being uniform on compact subsets of C.
(D) If the zeros zj(M,N) of ρM (ψN ; z) are appropriately ordered,

then

(7.21a) lim
N→∞

zj(M,N) = eiωj , j = ±1, ±2, . . . ,±I,

(7.21b) lim
N→∞

z0(M,N) = 1 if L ̸= 0 (i.e., α0 > 0).

Proof.

(A) As N → ∞, we have by equation (7.14),

(7.22) δ
(N)
0 = µ

(N)
0 = Nµ0 +O(1) = Nδ0 +O(1),

and by equations (5.7), (7.8c) and (7.8d),

δ(N)
n =

(−1)n

∣∣∣∣∣∣∣∣∣
µ−1 µ0 · · · µn−2

µ−2 µ−1 · · · µn−3

...
...

...
µ−n µ−n+1 · · · µ−1

∣∣∣∣∣∣∣∣∣+O
(

1
N

)
T

(0)
n +O

(
1
N

)(7.23)

= δn +O

(
1

N

)
.

(B) It follows from the difference equations of the form (1.10) sat-
isfied by Pn(ψN ; z) and Qn(ψN ; z) and the analogous equa-
tions satisfied by Pn(z) and Qn(z) that the coefficients of in-
dividual powers of z in Pn(ψN ; z) and Qn(ψN ; z) (or Pn(z)
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and Qn(z)) are continuous functions of the reflection coef-

ficients δ
(N)
k (or δk), k = 0, 1, . . . , n. Therefore, by equa-

tion (7.18), the coefficients in Pn(ψN ; z) and Qn(ψN ; z) con-
verge as N → ∞ to the corresponding coefficients in Pn(z) and
Qn(z) for n = 0, 1, . . . , 2M+1. Assertion (B) follows from this.

(C) Part (C) is a consequence of (B).
(D) Part (D) is implied by Hurwitz’s theorem [25, Theorem 14.3.4]

and (C). �

Lemma 7.4. Let {Nk}∞k=1 be an arbitrary given sequence of natural
numbers. Then there exists a subsequence {Nkν}∞ν=1 with the following
properties:

(A) For m = 1, 2, 3, . . . and z ∈ C, the limits

(7.24a) lim
ν→∞

1

Nkν
P2M+m

(
ψNkν

; z
)
=: P2M+m ({Nkν}, z)

and

(7.24b) lim
ν→∞

Q2M+m(ψNkν
; z) =: Q2M+m({Nkν}, z)

exist, the convergence being uniform on compact subsets of C.
(B) There exists a sequence of polynomials {Um({Nkν}, z)}∞m=1

such that

(7.25a) P2M+m({Nkν}, z) = Um({Nkν}, z)P2M (z), m = 1, 2, 3, . . . ,

(7.25b)
Q2M+m({Nkν}, z) = Um({Nkν}, z)Q2M (z), m = 1, 2, 3, . . . .

(C) For m = 0, 1, 2, . . .,

(7.26) lim
ν→∞

Q2M+m(ψNkν
; z)

= Um({Nkν}, z)(z − 1)L
I∏
j=1

(z − eiωj )(z − e−iωj ),

the convergence being uniform on compact subsets of C.
(D) For n ≥ M and ν ≥ 1, there exist zeros zj(n,Nkν ) of

ρn(ψNkν
; z) such that

(7.27a) lim
ν→∞

zj(n,Nkν ) = eiωj , j = ±1,±2, . . . ,±I
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and

(7.27b) lim
ν→∞

z0(n,Nkν ) = 1 if L ̸= 0, (i.e., α0 > 0).

Proof.

(A) Since |δ(N)
n | < 1, for all n ≥ 1 and N ≥ 1, the Can-

tor diagonalization process insures the existence of a sub-
sequence {Nkν}∞ν=1 of {Nk}∞k=1 with the property that, for

n = 1, 2, 3, . . ., {δ(Nkν )
n }∞ν=1 is a convergent sequence. We write

(7.28a) δ0 ({Nkν}) := lim
ν→∞

δ
(Nkν )
0

Nkν
= δ0

and

(7.28b) δn ({Nkν}) := lim
ν→∞

δ
(Nkν )
n , n = 1, 2, 3, . . . .

Part (A) follows from this and the fact that, in the polynomials,

1

Nkν
P2M+m(ψNkν

; z) and Q2M+m(ψNkν
; z)

the coefficients of individual powers of z are continuous func-

tions of the reflection coefficients δ
(Nkν )
n .

(B) It follows from the difference equations (1.10) that there exist
polynomials in z of degree at most m denoted for λ = 0, 1 and
m = 1, 2, 3, . . . by

(7.29) U2(M+m)+λ(ψN ; z) and V2(M+m)+λ(ψN ; z)

such that, for m ≥ 1 and λ = 0, 1,

(7.30)
Q2(M+m)+λ(ψN ; z) = U2(M+m)+λ(ψN ; z)Q2M (ψN ; z)

+ (1− |δ(N)
M |2)zV2(M+m)+λ(ψN ; z)Q2M−1(ψN ; z).

The coefficients of individual powers of z in polynomials (7.29)

are continuous functions of δ
(N)
M , δ

(N)
M+1, . . . , δ

(N)
M+m. Therefore,

for m ≥ 1 and λ = 0, 1, the limits

(7.31a) lim
ν→∞

U2(M+m)+λ(ψNkν
; z) =: U2m+λ({Nkν}, z)
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and

(7.31b) lim
ν→∞

V2(M+m)+λ(ψNkν
; z) =: V2m+λ({Nkν}, z)

exist and are polynomials in z of degree at most m. Assertion
(7.25b) follows from Lemma 7.4 (A), |δM | = 0, equations (7.30)
and (7.31). An analogous argument holds for equation (7.25a).

(C) Assertion (C) follows from equation (7.20) and the fact that
ρM (z) = Q2M+1(z).

(D) Part (D) is a consequence of (C) and Hurwitz’s theorem [25,
Theorem 14.3.4]. �

Proof of Theorem 7.1.

(A) For a proof by contradiction, we assume that there exists an
integer M1 > M , one of the frequency points eiωγ where
γ ∈ [0, ±1, ±2, . . . ,±I], and a number ϵ > 0 such that, for
every zero zj(nγ ;Nk) of ρnγ (ψNk

; z),

(7.32) |zj(nγ , Nk)− eiωγ | ≥ ϵ for all k = 1, 2, 3, . . . .

This is contradicted by Lemma 7.4, and so assertion (A) is
valid.

(B) Our proof of (B) is also by contradiction. Let n be a fixed
positive integer greater than or equal to M , and let B(n,N)
denote the set of (n − M) zeros zj(n,N) of ρn(ψN ; z) not
considered in Theorem 7.1 (A). Let

B(n) :=

∞∪
N=M

B(n,N).

Assume that there exists a subsequence {Nm}∞m=M of {Nm}∞m
and, for each m ≥ M , there exists a zero zj(n,Nm) ∈ B(n)
such that

(7.33) |zj(n,Nm)| ≥ m− 1

m
, m =M,M + 1,M + 2, . . . .

Then, by Lemma 7.4, there exist a subsequence {Nmν}∞ν=1 of
{Nm} and a polynomial U({Nmν}, z) of degree n−M such that

lim
ν→∞

ρn(ψNmν
; z) = U({Nmν}, z)ρM (z),
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the convergence being uniform on compact subsets of C. By
a result due to Pan and Saff [58], the (n − M) zeros of
U({Nmν}, z) all lie inside the open disk |z| < 1. Hence, by
Hurwitz’s theorem [25, Theorem 14.3.4], the zeros zj(n,Nmν

)
of ρn(ψNmν

; z) are contained inside a disk of the form [z ∈ C :
|z| < k < 1], that is, the zeros zj(n,Nmν ) are bounded away
from the unit circle |z| = 1. This contradicts conditions (7.33).

�

8. Wiener-Levinson filters. Wiener-Levinson filters are intimately
related to Szegö polynomials and PPC-fractions. Let l denote the lin-
ear space of doubly infinite sequences of real numbers x = {x(m)}∞−∞
(called signals) over the field R. A linear map T of l into l is called a
digital filter if T is shift-invariant, that is,

(8.1a) TS = ST

where the unit shift operator S is defined by

(8.1b) (Sx)(m) = x(m− 1), m = 0, ±1, ±2, . . . , x ∈ l.

We restrict our consideration to signals of the form (1.25) and let
xN = {xN (m)}∞−∞, where

(8.2) xN (m) =

{
B(tm) m = 0, 1, 2, . . . , N − 1

0 if m < 0 or m ≥ N.

Let T be a linear map of the form yN = TxN , where

(8.3) yN (m) =

{
−
∑n
j=1 g

(n)
j xN (m− j) for m ≥ 1, g

(n)
j ∈ R,

0 for m ≤ 0,

for n < N . It can readily be shown that T is a digital filter. The output
yN of the filter is said to be a “linear prediction” of the input xN since
each element yN (m) is a linear combination of the preceding elements
xN (m − 1), xN (m − 2), . . . , xN (0). The filter T is a Wiener-Levinson

filter if the coefficients g
(n)
j are chosen in such a manner as to minimize
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the sum of squares of the residuals

ϵ
(n)
N (m) = xN (m)− yN (m) =

n∑
j=0

g
(n)
j xN (m− j),(8.4)

m = 0, ±1, ±2, . . . ,

where g
(n)
0 = 1. It follows from equation (7.7) that

(8.5)

∞∑
m=−∞

[
ϵ
(n)
N (m)

]2
=

n∑
j=0

n∑
k=0

g
(n)
j g

(n)
k xN (m− j)xN (m− k)

=

n∑
j=0

n∑
k=0

g
(n)
j g

(n)
k µ

(N)
j−k

=
1

2π

∫ π

−π

∣∣∣∣ n∑
j=0

g
(n)
j e−ijθ

∣∣∣∣2dψN (θ)

= ⟨Gn, Gn⟩ψN
,

where

(8.6) Gn(z) =

n∑
j=0

g
(n)
j z−j .

Since znGn(z) is a polynomial in z of degree n, it follows from the
extremal property of Szegö polynomials (Theorem 4.2) that

min
g
(n)
j ∈R

∞∑
m=−∞

[
ϵ
(n)
N (m)

]2
= min
g
(n)
j ∈R

⟨znGn, znGn⟩ψN(8.7)

= ⟨ρn, ρn⟩ψN

where ρn(ψN ; z) is the monic, nth degree Szegö polynomial with respect
to ψN defined by equation (7.6). Therefore, the frequency response
Gn(e

iθ) of the Wiener-Levinson filter is given by

Gn(e
iθ) = e−inθρn(ψN ; eiθ).

9. Illustrations from computational experiments. The theory
and methods for frequency analysis described in the previous sections
are illustrated here by two examples which first appeared in [38].
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For both examples, the input discrete time signals χN (m) in equa-
tion (1.25a) are defined with I = 4. Values of αj and ωj used in these
examples are given as follows:

Example 9.1.
j 0 1 2 3 4

2αj 0 1 1 1 1
ωj 0 π/6 π/3 π/2 3π/4

Example 9.2.
j 0 1 2 3 4

2αj 0 1 1 1 10
ωj 0 π/6 π/3 π/2 3π/4

For each example, the Szegö polynomials ρk(ψN , z) for several values
of the degree k and sample size N have been computed using the
Levinson algorithm (4.10). The zeros zj(k, z) of ρk(ψN , z) have also
been computed.

Figures 1 and 4 are graphs of |zj(k,N) − eiωj | versus N in a log-
to-log scale for six representative values of k and for each of the four
frequencies ωj . In all cases, the zero zj(k,N) nearest to a critical
point eiωj was chosen, and we see that |zj(k,N) − eiωj | appears to
approach zero asN tends to infinity on the order of O(1/N) as expected
from Lemma 7.3. The graphs in Figures 2, 3, 5 and 6 show zeros
zj(k,N) as endpoints of lines radiating from the origin with N = 101
for Figures 2 and 3 and N = 401 for Figures 5 and 6. The trend
in all of the graphical illustrations is that the zeros zj(k,N) appear
to converge to corresponding critical points eiωj as k increases and
also as N tends to infinity. It is of interest to note that, for fixed
k, the “uninteresting zeros” zj(k,N) that are bounded away from the
unit circle as N increases (Theorem 7.1 (B)) appear to be uniformly
distributed around the unit circle which is a characteristic that would
be expected if they were produced mainly by random white noise.
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Figure 1. For Example 1, the graphs of |zj(k,N)−eiωj | versus N in a log–
log scale, where zj(k,N) denotes a zero of the Szegö polynomial ρk(ψN , z),
I = 4.
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Figure 2. For Example 1, zeros zj(k,N) of Szegö polynomial ρk(ψN , z)
are shown as endpoints of lines radiating from the origin; N = 101, I = 4.
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Figure 3. For Example 1, zeros zj(k,N) of Szegö polynomial ρk(ψN , z)
are shown as endpoints of lines radiating from the origin; N = 401, I = 4.
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Figure 4. For Example 2, the graphs of |zj(k,N)−eiωj | versus N in a log–
log scale, where zj(k,N) denotes a zero of the Szegö polynomial ρk(ψN , z),
I = 4.
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Figure 5. For Example 2, zeros zj(k,N) of Szegö polynomial ρk(ψN , z)
are shown as endpoints of lines radiating from the origin, N = 100, I = 4.
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Figure 6. For Example 2, zeros zj(k,N) of Szegö polynomial ρk(ψN , z)
are shown as endpoints of lines radiating from the origin, N = 400, I = 4.
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24. Über Potenzreihen mit positivem reellen Teil im Einheitskreis, Ber. Verh.
Sachs. Ges. Wiss., Leipzig, Math. Phys. 63 (1911), 501–511.

25. E. Hille, Analytic function theory, Volume II, Ginn and Company, 1962.

26. I.I. Hirschmann, Jr., Recent developments in the theory of finite Toeplitz
operators, in Adv. Prob. Rel. Top. 1, P. Ney, ed., Dekker, New York, 1971.

27. K. Hoffman and R. Kunze, Linear algebra, 2nd edition, Prentice Hall, 1971.

28. W.B. Jones and O. Nj̊astad, Applications of Szegö polynomials to digital
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56. , Generalized Szegö theory in frequency analysis, J. Math. Anal.
Appl. 206 (1997), 280–307.

57. K. Pan, Asymptotics for Szegö polynomials associated with Wiener-Levinson
filters, J. Comp. Appl. Math. 46 (1993), 387–394.

58. K. Pan and E.B. Saff, Asymptotics for zeros of Szegö polynomials associated
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69. I. Schur, Über Potenzreihen die im Innern des Einheitskreises beschränkt
sind, J. reine angew. Math. 147 (1917), 205–232; 148 (1918-19), 122–145.

70. B. Simon, Orthogonal polynomials on the unit circle, Parts 1 and 2, Amer.

Math. Soc. Colloq. Pub. 54 (2004), Providence, RI.
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