PRIME DIVISORS OF IRREDUCIBLE CHARACTER DEGREES

HUNG P. TONG-VIET

ABSTRACT. Let G be a finite group. We denote by $\rho(G)$ the set of primes which divide some character degrees of G and by $\sigma(G)$ the largest number of distinct primes which divide a single character degree of G. We show that $|\rho(G)| \leq 2\sigma(G) + 1$ when G is an almost simple group. For arbitrary finite groups G, we show that $|\rho(G)| \leq 2\sigma(G) + 1$ provided that $\sigma(G) \leq 2$.

1. Introduction. Throughout this paper, all groups are finite, and all characters are complex characters. The set of all complex irreducible characters of G is denoted by Irr(G), and we let cd(G) be the set of all complex irreducible character degrees of G. We define $\rho(G)$ to be the set of primes which divide some character degree of G. For $\chi \in Irr(G)$, let $\pi(\chi)$ be the set of all prime divisors of $\chi(1)$, and let $\sigma(\chi) = |\pi(\chi)|$. Moreover, $\sigma(G)$ is defined to be the maximum value of $\sigma(\chi)$ when χ runs over the set Irr(G). Huppert's $\rho - \sigma$ conjecture proposed by Huppert in [7] states that if G is a solvable group, then $|\rho(G)| \leq 2\sigma(G)$; and, if G is an arbitrary group, then $|\rho(G)| \leq 3\sigma(G)$. For solvable groups, this conjecture has been verified by Manz [11] and Gluck [6] when $\sigma(G) = 1$ and 2, respectively. In general, it is proved by Manz and Wolf [13] that $|\rho(G)| \leq 3\sigma(G) + 2$. For arbitrary groups, Manz [12] showed that $|\rho(G)|=3$ if G is nonsolvable and $\sigma(G)=1$. Recently, it has been proved by Casolo and Dolfi [3] that $|\rho(G)| < 7\sigma(G)$ for any arbitrary groups G. In [13], Manz and Wolf proposed that, for any group G,

$$|\rho(G)| \le 2\sigma(G) + 1.$$

We call this new conjecture the strengthened Huppert's $\rho - \sigma$ conjecture. Obviously, this new conjecture is stronger than the original one. In

²⁰¹⁰ AMS Mathematics subject classification. Primary 20C15.

Keywords and phrases. Character degrees, Huppert's $\rho - \sigma$ conjecture.

Received by the editors on March 11, 2013, and in revised form on August 19, 2013.

DOI:10.1216/RMJ-2015-45-5-1645

this paper, we first improve the result due to Alvis and Barry in [1] by proving the following.

Theorem A. Let G be an almost simple group. Then $|\rho(G)| \leq 2\sigma(G)$ unless $G \cong \mathrm{PSL}_2(2^f)$ with $f \geq 2$ and $|\pi(2^f - 1)| = |\pi(2^f + 1)|$. For the exceptions, we have $|\rho(G)| = 2\sigma(G) + 1$.

This verifies the strengthened Huppert's $\rho - \sigma$ conjecture for almost simple groups. In the next theorem, we verify this new conjecture for groups G with $\sigma(G) \leq 2$.

Theorem B. Let G be a finite group. If $\sigma(G) \leq 2$, then $|\rho(G)| \leq 2\sigma(G) + 1$.

Notice that Theorem B is also a generalization to [19, Theorem A].

Notation. For a positive integer n, we denote the set of all prime divisors of n by $\pi(n)$. If G is a group, then we write $\pi(G)$ instead of $\pi(|G|)$ for the set of all prime divisors of the order of G. If $N \subseteq G$ and $\theta \in \operatorname{Irr}(N)$, then the inertia group of θ in G is denoted by $I_G(\theta)$. We write $\operatorname{Irr}(G|\theta)$ for the set of all irreducible constituents of θ^G . Moreover, if $\chi \in \operatorname{Irr}(G)$, then $\operatorname{Irr}(\chi_N)$ is the set of all irreducible constituents of χ when restricted to N. Recall that a group G is said to be an almost simple group with socle G if there exists a nonabelian simple group G such that $G \subseteq G \subseteq \operatorname{Aut}(G)$. The greatest common divisor of two integers G and G is G in G. Denote by G is the value of the G-characteristic polynomial evaluated at G-characteristic polynomial eval

2. Proof of Theorem A. If G is an almost simple group, then G has no normal abelian Sylow subgroup and so, by Ito-Michler's theorem [14, Theorem 5.4], $\rho(G) = \pi(G)$. This fact will be used without any further reference.

Lemma 2.1. Let S be a sporadic simple group, the Tits group or an alternating group of degree at least 7. If G is an almost simple group with socle S, then

$$|\pi(G)| = |\pi(S)| \le 2\sigma(G).$$

Proof. Observe first that, if S is one of the simple groups in the lemma, and G is any almost simple group with socle S, then $\pi(G) = \pi(S)$. Since $S \subseteq G$, we see that $\sigma(S) \subseteq \sigma(G)$. Thus, it suffices to show that $|\pi(S)| \subseteq 2\sigma(S)$. By using [4], we can easily check that $|\pi(S)| \le 2\sigma(S)$ when S is a sporadic simple group, the Tits group or an alternating group of degree n with $n \le 14$. Finally, if $n \le 14$ with $n \ge 15$, then the result in [2] yields that $|\pi(S)| = \sigma(S)$. This completes the proof.

For $\epsilon = \pm$, we use the convention that $\mathrm{PSL}_n^{\epsilon}(q)$ is $\mathrm{PSL}_n(q)$ if $\epsilon = +$ and $\mathrm{PSU}_n(q)$ if $\epsilon = -$. Let $q \geq 2$ and $n \geq 3$ be integers with $(n,q) \neq (6,2)$. A prime ℓ is called a *primitive prime divisor* of $q^n - 1$ if $\ell \mid q^n - 1$ but $\ell \nmid q^m - 1$ for any m < n. By Zsigmondy's theorem [21], the primitive prime divisors of $q^n - 1$ always exist. We denote by $\ell_n(q)$ the smallest primitive prime divisor of $q^n - 1$. In Table 1, which is taken from [10], we give the orders of two maximal tori T_i and the corresponding two primitive prime divisors ℓ_i , for i = 1, 2, of classical groups.

Let \mathcal{C} be the set consisting of the following simple groups:

$$\begin{array}{lllll} {\rm PSL}_2(q), & {\rm PSL}_3(q), & {\rm PSU}_3(q), & {\rm PSp}_4(q) & {\rm PSL}_4(2), \\ {\rm PSL}_6(2), & {\rm PSL}_7(2), & {\rm PSU}_4(2), & {\rm PSU}_4(3), & {\rm PSU}_6(2), \\ {\rm Sp}_4(2)', & {\rm Sp}_6(2), & {\rm Sp}_8(2), & {\Omega}_7(3), & {\Omega}_8^+(2), \\ {\Omega}_8^-(2), & {}^3{\rm D}_4(2), & {\rm G}_2(2)', & {\rm G}_2(3), & {\rm G}_2(4). \end{array}$$

Lemma 2.2. Let S be a finite simple group of Lie type in characteristic p which is not the Tits groups nor $PSL_2(2^f)$ with $f \geq 2$. Then $|\pi(S)| \leq 2\sigma(S)$.

Proof. We consider the following cases.

Case 1. $S \cong PSL_2(q)$, where $q = p^f \ge 5$ is odd.

Since $PSL_2(5) \cong PSL_2(4)$, we can assume that q > 5. In this case, all character degrees of S divide q, q - 1 or q + 1. Observe that

$$\pi(S)=\{p\}\cup\pi(q-1)\cup\pi(q+1),\{p\}\cap\pi(q\pm1)=\emptyset$$

and

$$\pi(q-1) \cap \pi(q+1) = \{2\}.$$

G = G(q)	$ T_1 $	$ T_2 $	ℓ_1	ℓ_2
A_n	$(q^{n+1}-1)/$	q^n-1	$\ell_{n+1}(q)$	$\ell_n(q)$
$^{2}\mathrm{A}_{n},$	(q-1) $(q^{n+1}+1)/$ (q+1)	q^n-1	$\ell_{2n+2}(q)$	$\ell_n(q)$
$(n \equiv 0(4))$ ² A _n ,	$(q^{n+1}-1)/$ $(q+1)$	q^n+1	$\ell_{(n+1)/2}(q)$	$\ell_{2n}(q)$
$(n \equiv 1(4))$ ² A _n ,	$(q^{n+1}+1)/$ $(q+1)$	q^n-1	$\ell_{2n+2}(q)$	$\ell_{n/2}(q)$
$(n \equiv 2(4))$ ² A _n ,	$(q^{n+1}-1)/$ $(q+1)$	q^n+1	$\ell_{n+1}(q)$	$\ell_{2n}(q)$
$(n \equiv 3(4))$ B_n, C_n $(n \ge 3 \text{ odd})$	q^n+1	q^n-1	$\ell_{2n}(q)$	$\ell_n(q)$
B_n, C_n	q^n+1	$(q^{n-1}+1)(q+1)$	$\ell_{2n}(q)$	$\ell_{2n-2}(q)$
$(n \ge 2 \text{ even})$ D_n ,	$(q^{n-1}+1)(q+1)$	q^n-1	$\ell_{2n-2}(q)$	$\ell_n(q)$
$(n \ge 5 \text{ odd})$ D_n	$(q^{n-1}+1)(q+1)$	$(q^{n-1}-1)(q-1)$	$\ell_{2n-2}(q)$	$\ell_{n-1}(q)$
$\frac{(n \ge 4 \text{ even})}{^2 D_n}$	q^n+1	$(q^{n-1}+1)(q-1)$	$\ell_{2n}(q)$	$\ell_{2n-2}(q)$

Table 1. Two tori for classical groups.

Hence, we obtain that

$$|\pi(S)| = 1 + \sigma(q+1) + \sigma(q-1) - |\pi(q-1) \cap \pi(q+1)|$$

= \sigma(q+1) + \sigma(q-1) < 2\sigma(S).

Case 2. $S \cong \mathrm{PSL}_3^{\epsilon}(q)$ with $q = p^f$ and $\epsilon = \pm$. As $\mathrm{PSL}_3(2) \cong \mathrm{PSL}_2(7)$ and $\mathrm{PSU}_3(2)$ are not simple, we can assume that q > 2. The cases when q = 3 or 4 can be checked directly using [4]. So, we can assume that $q \geq 5$. By [17], S possesses irreducible characters χ_i , i = 1, 2, with degree

$$\chi_1(1) = (q - \epsilon 1)^2 (q + \epsilon 1)$$
 and $\chi_2(1) = q(q^2 + \epsilon q + 1)$.

Let $d = \gcd(3, q - \epsilon 1)$. Then

$$|S| = \frac{1}{d}q^3(q^2 - 1)(q^3 - \epsilon 1) = \frac{1}{d}q^3(q - \epsilon 1)^2(q + \epsilon 1)(q^2 + \epsilon q + 1),$$

and so

$$\pi(S) = \pi(\chi_1) \cup \pi(\chi_2).$$

Therefore, $|\pi(S)| \leq 2\sigma(S)$ as wanted.

Case 3. $S \cong PSp_4(q)$ with $q = p^f > 2$.

By [5, 18], S has two irreducible characters χ_i , i = 1, 2, with degrees $\Phi_1^2 \Phi_2^2$ and $q\Phi_1 \Phi_4$, respectively. Since

$$|S| = \frac{1}{d}q^4 \Phi_1^2 \Phi_2^2 \Phi_4$$

where $d = \gcd(2, q - 1)$, we deduce that

$$\pi(S) = \pi(\chi_1) \cup \pi(\chi_2),$$

and thus $|\pi(S)| \leq 2\sigma(S)$.

Case 4. S is one of the remaining simple groups in the list \mathcal{C} .

Using [4], it is routine to check that $|\pi(S)| \leq 2\sigma(S)$ in all these cases.

Case 5. S is not in the list C.

We consider the following setup. Let \mathscr{G} be a simple, simply connected algebraic group defined over a field of size q in characteristic p, and let F be a Frobenius map on \mathscr{G} such that $S \cong L/Z$, where $L := \mathscr{G}^F$ and Z := Z(L). Let the pair (\mathscr{G}^*, F^*) be dual to (\mathscr{G}, F) and let $L^* := \mathscr{G}^{*F^*}$. By Lusztig's theory, the irreducible characters of \mathscr{G}^F are partitioned into rational series $\mathscr{E}(\mathscr{G}^F, (s))$ which are indexed by (\mathscr{G}^{*F^*}) -conjugacy classes (s) of semisimple elements $s \in \mathscr{G}^{*F^*}$. Furthermore, if $\gcd(|s|, |Z|) = 1$, then every $\chi \in \mathscr{E}(\mathscr{G}^F, (s_i))$ is trivial at Z, and thus $\chi \in \operatorname{Irr}(S) = \operatorname{Irr}(L/Z)$. (See [15, page 349]). Notice also that $\chi(1)$ is divisible by $L^* : \mathbf{C}_{L^*}(s)|_{p'}$.

For simple classical groups of Lie type, the restriction on S guarantees that both primitive prime divisors ℓ_i in Table 1 exist. Let $s_i \in \mathscr{G}^{*F^*}$ with $|s_i| = \ell_i$, i = 1, 2. Then $\mathbf{C}_{L^*}(s_i) = T_i$ for i = 1, 2,

where T_i are maximal tori of L^* . Similarly, for each simple exceptional group of Lie type S, by [15, Lemma 2.3], one can find two semisimple elements $s_i \in \mathscr{G}^{*F^*}$ with $|s_i| = \ell_i$, i = 1, 2. In both cases, we have that $(\ell_i, |Z|) = 1$ for i = 1, 2 and, if $a := \gcd(|\mathbf{C}_{L^*}(s_1)|, |\mathbf{C}_{L^*}(s_2)|)$, then either a = 1 or, if a prime r divides a, then r also divides $|L^*: \mathbf{C}_{L^*}(s_i)|_{p'}$ for some i. Let $\chi_i \in \mathscr{E}(\mathscr{G}^F, (s_i))$, i = 1, 2, be such that $\chi_i(1) = |L^*: \mathbf{C}_{L^*}(s_i)|_{p'}$. Then $\chi_i \in \operatorname{Irr}(S)$ for i = 1, 2 and

$$\pi(S) = \{p\} \cup \pi(\chi_1) \cup \pi(\chi_2).$$

Notice that p is relatively prime to both $\chi_i(1)$ for i = 1, 2. So,

$$|\pi(S)| = |\{p\} \cup \pi(\chi_1) \cup \pi(\chi_2)|$$

$$= 1 + |\pi(\chi_1)| + |\pi(\chi_2)| - |\pi(\chi_1) \cap \pi(\chi_2)|$$

$$= \sigma(\chi_1) + \sigma(\chi_2) - (|\pi(\chi_1) \cap \pi(\chi_2)| - 1)$$

$$\leq 2\sigma(S) - (|\pi(\chi_1) \cap \pi(\chi_2)| - 1).$$

If we can show that $|\pi(\chi_1) \cap \pi(\chi_2)| \ge 1$, then clearly $|\pi(S)| \le 2\sigma(S)$, and we are done. By way of contradiction, assume that $\pi(\chi_1) \cap \pi(\chi_2)$ is empty. Then $\gcd(\chi_1(1), \chi_2(1)) = 1$, and so

$$\gcd(|L^*: \mathbf{C}_{L^*}(s_1)|_{p'}, |L^*: \mathbf{C}_{L^*}(s_2)|_{p'}) = 1.$$

It follows that $|L^*|_{p'}$ must divide $|\mathbf{C}_{L^*}(s_1)|_{p'} \cdot |\mathbf{C}_{L^*}(s_2)|_{p'}$. However, we can check by using [15, Lemma 2.3] and Table 1 that this is not the case. The proof is now complete.

We now prove Theorem A which we restate here.

Theorem 2.3. Let G be an almost simple group. Then $|\rho(G)| \leq 2\sigma(G)$ unless $G \cong \mathrm{PSL}_2(2^f)$ with $|\pi(2^f - 1)| = |\pi(2^f + 1)|$. For the exceptions, we have $|\rho(G)| = 2\sigma(G) + 1$.

Proof. Let G be an almost simple group with simple socle S. Since $S \subseteq G$, we obtain that $\sigma(S) \subseteq \sigma(G)$.

Case 1.
$$S \cong PSL_2(q)$$
 with $q = 2^f \ge 4$.

It is well known that $|S| = q(q^2 - 1)$, $gcd(2^f - 1, 2^f + 1) = 1$ and $cd(S) = \{1, q - 1, q, q + 1\}$.

If $|\pi(q-1)| = |\pi(q+1)|$, then

$$\pi(S) = \{2\} \cup \pi(q-1) \cup \pi(q+1),$$

and thus $|\pi(S)| = 2\sigma(S) + 1$ as $\sigma(S) = |\pi(2^f \pm 1)|$. Assume that $|\pi(q-1)| \neq |\pi(q+1)|$. Then $|\pi(2^f + \delta)| > |\pi(2^f - \delta)|$ for some $\delta \in \{\pm 1\}$. Hence, $\sigma(S) = |\pi(2^f + \delta)|$, and thus

$$|\pi(S)| = |\{2\} \cup \pi(2^f - \delta) \cup \pi(2^f + \delta)|$$

= 1 + |\pi(2^f - \delta)| + |\pi(2^f + \delta)|.

Since $|\pi(2^f + \delta)| \ge |\pi(2^f - \delta)| + 1$, we obtain that

$$|\rho(S)| \le 2|\pi(2^f + \delta)| \le 2\sigma(S).$$

Thus, the result holds when G = S.

Assume now that |G:S| is nontrivial. We know that $\operatorname{Aut}(S) = S \cdot \langle \varphi \rangle$, where φ is a field automorphism of S of order f. Thus, $G = S \cdot \langle \psi \rangle$, with $\psi \in \langle \varphi \rangle$. If f = 2, then $G \cong A_5 \cdot 2$, and obviously $|\pi(G)| \leq 2\sigma(G)$. Hence, we can assume that f > 2. Clearly, if $f \equiv 2 \pmod{4}$ and $G = S \cdot \langle \varphi \rangle$, then |G:S| > 2. So by [20, Theorem A], G has two irreducible characters $\chi_i \in \operatorname{Irr}(G)$, i = 1, 2, with $\chi_1(1) = |G:S|(q-1)$ and $\chi_2(1) = |G:S|(q+1)$. Obviously,

$$\pi(G) = \{2\} \cup \pi(\chi_1) \cup \pi(\chi_2)$$

and

$$\pi(\chi_1) \cap \pi(\chi_2) = \pi(|G:S|) \neq \emptyset.$$

If |G:S| is even, then

$$|\rho(G)| = |\pi(\chi_1) \cup \pi(\chi_2)| \le |\pi(\chi_1)| + |\pi(\chi_2)| \le 2\sigma(G).$$

If |G:S| is odd, then

$$|\rho(G)| = |\{2\} \cup \pi(\chi_1) \cup \pi(\chi_2)|$$

$$= 1 + |\pi(\chi_1)| + |\pi(\chi_2)| - |\pi(\chi_1) \cap \pi(\chi_2)|$$

$$= \sigma(\chi_1) + \sigma(\chi_2) - (|\pi(|G:S|)| - 1)$$

$$\leq \sigma(\chi_1) + \sigma(\chi_2)$$

$$\leq 2\sigma(G).$$

Case 2. S is a sporadic simple group, the Tits group or an alternating group of degree at least 7.

By Lemma 2.1, we obtain that $|\rho(G)| \leq 2\sigma(G)$.

Case 3. S is a finite simple group of Lie type in characteristic p and S is not the Tits group nor $PSL_2(2^f)$ with $f \geq 2$.

Subcase 3a. $\pi(G) = \pi(S)$.

By Lemma 2.2, we have that $|\pi(S)| \leq 2\sigma(S)$. Thus,

$$|\rho(G)| = |\pi(S)| \le 2\sigma(S) \le 2\sigma(G).$$

Subcase 3b. $\pi := \pi(G) - \pi(S)$ is nonempty.

Let A be the subgroup of the group of coprime outer automorphisms of S induced by the action of G on S. By [15, Lemma 2.10], A is cyclic and central in $\operatorname{Out}(S)$. Moreover, A is generated by a fixed field automorphism $\gamma \in \operatorname{Out}(S)$. It follows that the group $S \cdot A$ is normal in G and $\pi(S \cdot A) = \pi(G)$. Thus we can assume that $G = S \cdot A$ with $A = \langle \gamma \rangle$ and γ a field automorphism of S. Furthermore, $\pi(\gamma) = \pi$. Replacing A by a normal subgroup if necessary, we can also assume that $|A| = |\gamma|$ is the product of all distinct primes in π .

As in the proof of Lemma 2.2, let \mathscr{G} be a simple, simply connected algebraic group defined over a field of size $q=p^f$ in characteristic p, and let F be a Frobenius map of \mathscr{G} such that $S\cong L/Z$, where $L:=\mathscr{G}^F$ and Z:=Z(L). Let the pair (\mathscr{G}^*,F^*) be dual to (\mathscr{G},F) , and let $L^*:=\mathscr{G}^{*F^*}$. As $\pi\subseteq\pi(f)$, where $\pi=\pi(G)-\pi(S)$, it is easy to check that both the primitive prime divisors in [15, Lemmas 2.3 and 2.4] exist, and thus one can find two semisimple elements $s_i\in\mathscr{G}^{*F^*}$ with $|s_i|=\ell_i$ such that $(\ell_i,|Z|)=1$ for i=1,2. Arguing as in the proof of Lemma 2.2, we obtain that

$$\pi(S) = \{p\} \cup \pi(\chi_1) \cup \pi(\chi_2),$$

where $\chi_i \in \mathcal{E}(\mathcal{G}^F, (s_i))$ such that $\chi_i(1) = |L^* : \mathbf{C}_{L^*}(s_i)|_{p'}$ and χ_i can be considered as characters of S for i = 1, 2.

We next claim that the inertia group for both χ_i , i = 1, 2, in G is exactly S. It suffices to show that no field automorphism of S of

prime order can fix χ_i for i=1,2. Let τ be a field automorphism of S of prime order s. We can extend τ to an automorphism of \mathscr{G}^F and \mathscr{G}^{*F^*} , which we also denote by τ . Notice that $\mathbf{C}_{\mathscr{G}^{*F^*}}(\tau)$ is a finite group of Lie type of the same type as that of \mathscr{G}^{*F^*} but defined over a field of size $q^{1/s}$. Now it is straightforward to check that both ℓ_i , i=1,2, are relatively prime to $|\mathbf{C}_{\mathscr{G}^{*F^*}}(\tau)|$. Hence, \mathscr{G}^{*F^*} -conjugacy classes (s_i) of s_i in \mathscr{G}^{*F^*} are not τ -invariant for i=1,2 (see [15, Proposition 2.6]). Then $\tau(s_i)$ and s_i are not \mathscr{G}^{*F^*} -conjugate for i=1,2, and thus $\chi_i \in \mathscr{E}(\mathscr{G}^F,(s_i))$, i=1,2, are not τ -invariant (see [15, Theorem 2.7]). Therefore, we obtain that $\chi_i^G \in \operatorname{Irr}(G)$ for i=1,2; hence, $\chi_i^G(1) = |G:S|\chi_i(1) \in \operatorname{cd}(G)$. Since

$$\pi(S) = \{p\} \cup \pi(\chi_1) \cup \pi(\chi_2) \text{ and } \pi(G) = \pi(S) \cup \pi(|G:S|),$$

we obtain that

$$\pi(G) = \{p\} \cup \pi(|G:S|\chi_1(1)) \cup \pi(|G:S|\chi_2(1))$$
$$= \{p\} \cup \pi(\chi_1^G) \cup \pi(\chi_2^G).$$

Moreover, $p \nmid |G: S|\chi_i(1) = \chi_i^G(1)$ for i = 1, 2, and

$$|\pi(\chi_1^G) \cap \pi(\chi_2^G)| \ge 1.$$

Therefore,

$$|\pi(G)| = 1 + \sigma(\chi_1^G) + \sigma(\chi_2^G) - |\pi(\chi_1^G) \cap \pi(\chi_2^G)|$$

$$\leq 2\sigma(G) - (|\pi(\chi_1^G) \cap \pi(\chi_2^G)| - 1)$$

$$< 2\sigma(G).$$

The proof is now complete.

The next results will be needed in the proof of Theorem B.

Lemma 2.4. Let S be a nonabelian simple group. If $\sigma(S) \leq 2$, then S is one of the following groups.

- (i) $S \cong PSL_2(2^f)$ with $|\pi(2^f \pm 1)| \le 2$, and so $|\pi(S)| \le 5$.
- (ii) $S \cong \operatorname{PSL}_2(q)$ with q > 5 odd and $|\pi(q \pm 1)| \le 2$ and so $|\pi(S)| \le 4$.
- (iii) $S \in \{M_{11}, A_7, {}^2B_2(8), {}^2B_2(32), PSL_3^{\pm}(3), PSL_3^{\pm}(4), PSL_3(8)\}$ and $|\pi(S)| = 4$.

Proof. As S is a nonabelian simple group, we have that $|\pi(S)| \geq 3$. If $S \cong \mathrm{PSL}_2(q)$ with $q \geq 4$, then the lemma follows easily as the character degree set of S is known. Now assume that $S \not\cong \mathrm{PSL}_2(q)$. Then Lemmas 2.2 and 2.1 imply that $|\pi(S)| \leq 2\sigma(S)$. So, $3 \leq |\pi(S)| \leq 4$. By checking the list of nonabelian simple groups with at most four prime divisors in [8], we deduce that only those nonabelian simple groups appearing in (iii) above satisfy the hypotheses of the lemma.

Lemma 2.5. Let G be an almost simple group with simple socle S. If $\sigma(G) \leq 2$, then $\pi(G) = \pi(S)$, where S is one of the simple groups in Lemma 2.4.

Proof. Since $\sigma(S) \leq \sigma(G) \leq 2$, we deduce that S is isomorphic to one of the simple groups in the conclusion of Lemma 2.4. If $|\pi(S)| = 3$, then S is one of the simple groups in [8, Table 1], and we can check that $\pi(G) = \pi(S)$ in these cases. Thus, we assume that $|\pi(S)| \geq 4$. Now, if G = S, then we have nothing to prove. So, we assume that $G \neq S$. In particular, $G \not\cong \mathrm{PSL}_2(2^f)$ with $f \geq 2$. Then $|\pi(G)| \leq 2\sigma(G) \leq 4$ by Theorem A, and thus $4 \leq |\pi(S)| \leq |\pi(G)| \leq 4$, which forces $|\pi(S)| = |\pi(G)|$ and, hence, $\pi(G) = \pi(S)$ as wanted.

3. Proof of Theorem B. The following two lemmas are obvious.

Lemma 3.1. Let A and B be groups such that $|\rho(A)| \geq 3$ and $|\rho(B)| \geq 3$. If

$$\sigma(A \times B) \le 2,$$

then $\sigma(A) = 1 = \sigma(B)$.

Lemma 3.2. Let N be a normal subgroup of a group G. If $\rho(G/N) = \pi(G/N)$, then

$$\rho(G) - \rho(G/N) \subseteq \rho(N).$$

Recall that the solvable radical of a group G is the largest normal solvable subgroup of G.

Lemma 3.3. Let G be a nonsolvable group, and let N be the solvable radical of G. Suppose that $\sigma(G) \leq 2$ and $|\rho(G)| \geq 5$. Then G/N is an almost simple group.

Proof. We first claim that, if M/N is a chief factor of G, then M/N is a nonabelian simple group.

Let M be a normal subgroup of G such that M/N is a chief factor of G. Since N is the largest normal solvable subgroup of G, we deduce that M/N is nonsolvable so that $M/N \cong S^k$ for some integer $k \geq 1$ and some nonabelian simple group S. Let $C/N = \mathbf{C}_{G/N}(M/N)$. Then G/C embeds into $\mathrm{Aut}(S^k)$.

Assume first that $k \geq 3$. Since $|\rho(S)| = |\pi(S)| \geq 3$, there exist three distinct prime divisors r_i , $1 \leq i \leq 3$, and three characters $\psi_i \in \operatorname{Irr}(S)$ for $1 \leq i \leq 3$ with $r_i \mid \psi_i(1)$. Let

$$\varphi = \psi_1 \times \psi_2 \times \psi_3 \times 1 \times \cdots \times 1 \in \operatorname{Irr}(S^k).$$

Then $\sigma(\varphi) \geq 3$, which is a contradiction since

$$\sigma(S^k) = \sigma(M/N) \le \sigma(M) \le \sigma(G) \le 2.$$

Thus $k \leq 2$.

Now assume that k=2. Let $B/C=(G/C)\cap {\rm Aut}(S)^2$. Then G/Bis a nontrivial subgroup of the symmetric group of degree 2, and thus |G:B|=2. Since $S^2\cong MC/C \trianglelefteq B/C \trianglelefteq G/C$ and $\sigma(G)\leq 2$, we deduce that $\sigma(S^2) \leq 2$, and thus $\sigma(S) = 1$, by Lemma 3.1. By [12, Satz 8], we know that S is isomorphic to either $PSL_2(4)$ or $PSL_2(8)$. In both cases, we obtain that $\pi(\operatorname{Aut}(S)) = \pi(S)$; hence, $\pi(B/C) = \pi(S)$. Moreover, as |G:B|=2, we deduce that $\pi(G/C)=\pi(S)$. As G/C has no nontrivial normal abelian Sylow subgroups, Ito-Michler's theorem yields that $\rho(G/C) = \pi(G/C) = \pi(S)$. Since $|\pi(G/C)| = |\pi(S)| = 3$ and $|\rho(G)| \geq 5$, there exists $r \in \rho(G) - \pi(G/C)$. Then r > 2 and $r \in \rho(C)$ by Lemma 3.2. Let $\theta \in \operatorname{Irr}(C)$ be such that $r \mid \theta(1)$. Let L be a normal subgroup of MC such that $L/C \cong S$. Notice that $MC/C \cong S^2$. By applying [19, Lemma 4.2], θ extends to $\theta_0 \in \operatorname{Irr}(L)$. By Gallagher's theorem [9, Corollary 6.17], $\theta_0 \mu \in \operatorname{Irr}(L)$ for all $\mu \in \operatorname{Irr}(L/C)$. Let $\mu_0 \in \operatorname{Irr}(L/C)$ with $2 \mid \mu_0(1)$, and let $\varphi = \theta_0 \mu_0 \in \operatorname{Irr}(L)$. Then $\pi(\varphi(1)) = \{2, r\}$ with r > 2. $MC/L \cong S$, we can apply [19, Lemma 4.2] again to obtain that φ extends to $\varphi_0 \in \operatorname{Irr}(MC)$ and then, by applying Gallagher's theorem, $\varphi_0\mu\in\operatorname{Irr}(MC)$ for all $\mu\in\operatorname{Irr}(MC/L)$. Clearly, $MC/L\cong S$ has an irreducible character $\tau \in \operatorname{Irr}(MC/L)$ with $s \mid \tau(1)$, where $s \notin \{2, r\}$. We now have that $\varphi_0 \tau \in \operatorname{Irr}(MC)$. But then this is a contradiction as $\pi(\varphi_0(1)\tau(1)) = \{2, s, r\}$. This contradiction shows that k = 1, as wanted.

Let M/N be a chief factor of G, and let $C/N = \mathbf{C}_{G/N}(M/N)$. We claim that C = N and thus G/N is an almost simple group as required. By the claim above, we know that $M/N \cong S$ for some nonabelian simple group S. Hence, G/C is an almost simple group with socle $MC/C \cong M/N$. Suppose, by contradiction, that $C \neq N$. Now let L/Nbe a chief factor of G with $N \leq L \leq C$. By the claim above, we deduce that L/N is isomorphic to some nonabelian simple group. In particular, $|\rho(C/N)| \ge |\pi(L/N)| \ge 3$. We have that $MC/N \cong C/N \times M/N$. Since $\sigma(MC/N) \leq \sigma(MC) \leq \sigma(G) \leq 2$, we deduce that $\sigma(C/N \times M/N) \leq 2$ and thus by Lemma 3.1, $\sigma(C/N) = 1 = \sigma(M/N)$. By [12], we have $C/N \cong T \times A$, where A is abelian, T is a nonabelian simple group and $S, T \in \{PSL_2(4), PSL_2(8)\}$. Since $C \subseteq G$ and the solvable radical W of C is characteristic in C, we obtain that $W \subseteq G$, and thus $W \subseteq N$ as N is the largest normal solvable subgroup of G. Clearly, $N \leq W$ as N is also a solvable normal subgroup of C, so W = N. Therefore, C/Nhas no nontrivial normal abelian subgroup. Thus, A = 1, and hence $C/N \cong T$. Since $\pi(G/C) = \pi(M/N)$ and G/N has no normal abelian Sylow subgroup, we obtain that

$$\rho(G/N) = \pi(G/N) = \pi(C/N) \cup \pi(M/N) = \pi(S) \cup \pi(T).$$

It follows that

$$|\rho(G/N)| = |\pi(S) \cup \pi(T)| \le |\pi(PSL_2(4)) \cup \pi(PSL_2(8))| = 4.$$

Hence, $\rho(G) - \rho(G/N)$ is nonempty. Now let $r \in \rho(G) - \rho(G/N)$. As $\{2,3\} \subseteq \rho(G/N)$, we obtain that $r \notin \{2,3\}$. By Lemma 3.2, $r \in \rho(N)$, and hence $r \mid \theta(1)$ for some $\theta \in \operatorname{Irr}(N)$. Since $\sigma(M) \leq \sigma(G) \leq 2$ and $M/N \cong S$, by [19, Lemma 4.2], we deduce that θ extends to $\theta_0 \in \operatorname{Irr}(M)$. Now let $\lambda \in \operatorname{Irr}(M/N)$ with $2 \mid \lambda(1)$. By Gallagher's theorem, $\varphi = \theta_0 \lambda \in \operatorname{Irr}(M)$ with $\pi(\varphi(1)) = \{2, r\}$. Notice that $r \geq 5$ since $r \notin \{2, 3\}$. Now let $K = MC \subseteq G$. Then $K/M \cong T$ and $\sigma(K) \leq 2$. Applying the same argument as above, we deduce that φ extends to $\varphi_0 \in \operatorname{Irr}(K)$. Clearly, $K/M \cong T$ has an irreducible character μ with $3 \mid \mu(1)$ and thus, by Gallagher's theorem again, $\psi = \varphi_0 \mu \in \operatorname{Irr}(K)$ and obviously $\sigma(\psi) \geq 3$, which is a contradiction.

We are now ready to prove Theorem B, which we state here.

Theorem 3.4. Let G be a group. If $\sigma(G) \leq 2$, then $|\rho(G)| \leq 2\sigma(G) + 1$.

Proof. Let G be a counterexample to the theorem with minimal order. Then $\sigma(G) \leq 2$, but $|\rho(G)| > 2\sigma(G) + 1$. If G is solvable or G is nonsolvable with $\sigma(G) = 1$, then

$$|\rho(G)| \le 2\sigma(G) + 1$$

by [6, 11, 12], which is a contradiction. Thus, we can assume that G is nonsolvable, $\sigma(G) = 2$ and $|\rho(G)| \geq 6$. Let N be the solvable radical of G. By Lemma 3.3, G/N is an almost simple group with simple socle M/N. Since $\sigma(M/N) \leq \sigma(G/N) \leq \sigma(G) = 2$, we deduce from Lemmas 2.5 and 2.4 that

$$|\pi(G/N)| = |\pi(M/N)| \le 5.$$

As $|\rho(G)| \geq 6$, we have that $\rho(G) - \rho(G/N)$ is nonempty and let $r \in \rho(G) - \rho(G/N)$. By Lemma 3.2, $r \mid \theta(1)$ for some $\theta \in \operatorname{Irr}(N)$. Since $\sigma(M) \leq 2$, by applying [19, Lemma 4.2], we deduce that θ extends to $\theta_0 \in \operatorname{Irr}(M)$. Using Gallagher's theorem, we must have that $\sigma(M/N) = 1$, and hence $M/N \cong \operatorname{PSL}_2(4)$ or $\operatorname{PSL}_2(8)$. Thus, $|\pi(G/N)| = |\pi(M/N)| = 3$; hence, $|\tau| \geq 3$ with $\tau = \rho(G) - \rho(G/N)$. By Lemma 3.2, we have that $\tau \subseteq \rho(N)$ and, since N is solvable, by applying Pálfy's condition [16, Theorem], there exists $\psi \in \operatorname{Irr}(N)$ such that $\psi(1)$ is divisible by two distinct primes in τ . Now, by applying [19, Lemma 4.2] again, we obtain a contradiction. This contradiction shows that $|\rho(G)| \leq 2\sigma(G) + 1$, as wanted.

Acknowledgments. The author is grateful to the referee for a careful reading of the manuscript and for his or her corrections and suggestions.

REFERENCES

- 1. D. Alvis and M. Barry, Character degrees of simple groups, J. Alg. ${\bf 140}$ (1991), 116–123.
 - 2. M. Barry and M. Ward, On a conjecture of Alvis, J. Alg. 294 (2005), 136–155.
- 3. C. Casolo and S. Dolfi, Prime divisors of irreducible character degrees and of conjugacy class sizes in finite groups, J. Group Theor. 10 (2007), 571–583.
- 4. J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson, *Atlas of finite groups*, Oxford University Press, Eynsham, 1985.

- **5**. H. Enomoto, The characters of the finite symplectic group Sp(4,q), $q=2^f$, Osaka J. Math. **9** (1972), 75-94.
- D. Gluck, A conjecture about character degrees of solvable groups, J. Alg. 140 (1991), 26–35.
- 7. B. Huppert, Research in representation theory at Mainz (1984-1990), in Representation theory of finite groups and finite-dimensional algebras, Progr. Math. 95, Birkhauser, Basel, 1991.
- 8. B. Huppert and W. Lempken, Simple groups of order divisible by at most four primes, Proc. F. Scorina Gomel State Univ. 16 (2000), 64–75.
- 9. I.M. Isaacs, *Character theory of finite groups*, AMS Chelsea Publishing, American Mathematical Society, Providence, Rhode Island, 2006.
- G. Malle, Almost irreducible tensor squares, Comm. Alg. 27 (1999), 1033– 1051.
- 11. O. Manz, Endliche auflösbare Gruppen, deren sämtliche Charaktergrade Primzahlpotenzen sind, J. Alg. 94 (1985), 211–255.
- 12. _____, Endliche nicht-auflösbare Gruppen, deren sämtliche Charaktergrade Primzahlpotenzen sind, J. Alg. 96 (1985), 114–119.
- O. Manz and T. Wolf, Arithmetically long orbits of solvable linear groups, Illin. J. Math. 37 (1993), 652-665.
- 14. G.O. Michler, A finite simple group of Lie type has p-blocks with different defects, $p \neq 2$, J. Alg. 104 (1986), 220–230.
- 15. A. Moretó and P.H. Tiep, *Prime divisors of character degrees*, J. Group Theor. 11 (2008), 341–356.
- 16. P. Pálfy, On the character degree graph of solvable groups I, Three primes, Period. Math. Hungar. 36 (1998), 61–65.
- 17. W. Simpson and J. Frame, The character tables for SL(3,q), $SU(3,q^2)$, PSL(3,q), $PSU(3,q^2)$, Canad. J. Math. 25 (1973), 486–494.
- 18. B. Srinivasan, The characters of the finite symplectic group Sp (4,q), Trans. Amer. Math. Soc. 131 (1968), 488-525.
- 19. H.P. Tong-Viet, Groups whose prime graphs have no triangles, J. Alg. 378 (2013), 196–206.
- 20. D. White, Character degrees of extensions of PSL₂(q) and SL₂(q), J. Group Theor. 16 (2013), 1–33.
- K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. Phys. 3 (1892), 265–284.

Department of Mathematical Sciences, Kent State University, Kent, OH 44242

Email address: htongvie@kent.edu