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INEQUALITIES FOR SUMS OF INDEPENDENT
RANDOM VARIABLES IN LORENTZ SPACES

GHADIR SADEGHI

ABSTRACT. By using interpolation with a function pa-
rameter, we establish a moment inequality for sums of in-
dependent random variables in Lorentz spaces Λp(φ). These
estimates generalize Rosenthal inequalities in the Lorentz-
Zygmund spaces Lp,q(logL)γ as well as Lorentz spaces Lp,q .

1. Introduction. We begin our work by recalling the classical
Khintchine inequalities. Let {rk}k≥1 be a Rademacher sequence on
a probability space (Ω,F, P ). Since {rk}k≥1 is an orthogonal sequence
in L2(Ω), for any finite sequence {αk} ⊆ C∥∥∥∥∑

k

αkrk

∥∥∥∥
2

=

(∑
k

|αk|2
)1/2

.

The classical Khintchine inequalities assert that ∥
∑

k αkrk∥2 is uni-
formly equivalent to ∥

∑
k αkrk∥p for any p < ∞, namely,∥∥∥∥∑

k

αkrk

∥∥∥∥
p

≈
(∑

k

|αk|2
)1/2

.

The equivalence A ≈ B means that c1A ≤ B ≤ c2A for some positive
constants c1 and c2. Rosenthal [12] generalized the Khintchine inequal-
ity by replacing {rk}k≥1 with an arbitrary sequence {Xk}k≥1 of inde-
pendent symmetric random variables on a probability space (Ω,F, p).
More precisely, he proved that, for such a sequence {Xk}k≥1 ⊂ Lp(Ω),
p > 2, we have

(1.1)

∥∥∥∥ n∑
k=1

Xk

∥∥∥∥
p

≈ max

{∥∥∥∥ n∑
k=1

Xk

∥∥∥∥
2

,

( n∑
k=1

∥Xk∥pp
)1/p}
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for all n ≥ 1. Carothers and Dilworth [3] proved an analogous result
for some of the Lorentz spaces, namely, for 2 < p < ∞, 0 < q ≤ ∞,
and any independent symmetric random variables X1, X2, . . . , Xn,
(1.2)∥∥∥∥ n∑

k=1

Xk

∥∥∥∥
Lp,q(Ω)

≈ max

{∥∥∥∥ n∑
k=1

Xk

∥∥∥∥
L2(Ω)

,

∥∥∥∥ n∑
k=1

⊕
Xk

∥∥∥∥
Lp,q(0,∞)

}
,

where
∑n

k=1

⊕
Xk denotes the disjoint sum of X1, X2, . . . , Xn, which

is a function on (0,∞) with dX(t) =
∑n

k=1 dXk
(t). For example, we

could takeX(t) =
∑n

i=1 Xi(t−i+1)χ[i−1,i] for 0 ≤ t ≤ n. In the setting
symmetric function spaces, Johnson and Schechtman [7] established a
generalization of Rosenthal inequalities. Recently, Hu [6] generalize
Rosenthal inequalities to p ≥ 0 instead of p > 2 and replaced the
quantity 2 by r ∈ [1, 2] for conditionally independent mean zero random
variables.

In this paper, by use of interpolation with a function parameter, a
moment inequality is proved for sums of independent random variables
in Lorentz spaces Λq(Ω). These estimates generalize Rosenthal inequal-
ities in the Lorentz-Zygmund spaces Lp,q(logL)γ as well as Lorentz
spaces Lp,q.

2. Lorentz spaces Λq
Ω(φ). Let (Ω,Σ, µ) be a σ-finite nonatomic

measure space. For a given weight ω, let Lp
µ(ω) denote the Lebesgue

space defined by the norm ∥f∥Lp
µ(ω) = ∥fω∥Lp(µ) and Lp

∗(ω) when the

measure is dt/t on R+ = (0,∞).

Definition 2.1. We say that function f : (0,∞) → (0,∞) belongs to
the class B if f(1) = 1, f is continuous and

f(t) = sup
s>0

f(ts)

f(s)
< ∞,

for all 0 < t < ∞.

For such a function f , the Boyd upper and lower indices αf and βf

([10]) of f , which is submultiplicative and Lebesgue-measurable, are
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then defined by

αf = lim
t→+∞

log f(t)

log t
, βf = lim

t→0

log f(t)

log t

with
−∞ < βf ≤ αf < +∞.

For example, if θ, γ ∈ R, then f(t) = tθ(1 + | log t|)γ ∈ B, f(t) =
tθ(1 + | log t|)|γ| and αf = βf = θ.

Let φ ∈ B and 0 < q ≤ ∞; the Lorentz space Λq(φ) is the set of
(classical of) µ-measurable functions from Ω in C such that

∥f∥Λq
Ω(φ) := ∥f∗∥Lq

∗(φ) =

(∫ ∞

0

(φ(t)f∗(t))q
dt

t

)1/q

< ∞

(0 < q < ∞)

∥f∥Λ∞
Ω (φ) := ∥f∗∥L∞

∗ (φ) = sup
t>0

φ(t)f∗(t) < ∞,

where f∗ denotes the decreasing rearrangement of |f |, i.e.,

f∗(t) = inf{s > 0 : df (s) = µ({|f | > s}) ≤ t}.

It is known that Λq
Ω(φ) is a rearrangement quasi–Banach space.

Remark 2.2. It is also well known that the inclusion relations between
Lorentz spaces are determined by their fundamental functions, since
Λq
Ω(φ1) ⊂ Λq

Ω(φ2) if and only if ω2(t) ≤ Cω1(t) for all t > 0, and both
spaces agree if and only if ω1 ≈ ω2, where

ωi(t) =

(∫ t

0

φ(s)q
ds

s

)1/q

is the fundamental function for Λq
Ω(φi), i = 1, 2, [4].

Example 2.3. For φ(t) = t1/p(1 + | log t|)γ with 0 < p < ∞ and
−∞ < γ < +∞, Λq

Ω(φ) is the Lorentz-Zygmund space Lp,q(logL)γ .
This is the classical Lorentz space Lp,q if γ = 0.

We let (A1,A2) denote a compatible couple of quasi-Banach spaces
pair (i.e., A1 and A2 are quasi-Banach spaces, which are continuously
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embedded in some Hausdorff topological vector space) and K is the
classical interpolation functional of Peetre.

K(t, a) = K(t, a,A1,A2) = inf {∥a1∥A1 + t∥a2∥A2 : a = a1 + a2} ,
t > 0.

We can define, for each p, 0 < p ≤ ∞ and each Lebesgue-measurable
function f : (0,∞) → (0,∞), the space

(A1,A2)f,p;K =
{
a : a ∈ A1 +A2, ∥a∥f,p;K

= ∥K(t, a;A1,A2)/f(t)∥Lq
∗(0,∞) < ∞

}
.

The space (A1,A2)f,p;K is quasi-normed by ∥ · ∥f,p;K . To generalize
to (A1,A2)f,p;K the very well known properties of this space when
f(t) = tθ (i.e., (A1,A2)θ,p;K), one takes the function f in the class B.
In [10], Merucci showed that interpolation with a function parameter is
perfectly suited for identifying interpolation spaces between two quasi-
normed Lorentz spaces Λq

Ω(φ). We refer the reader to [5, 10, 11, 13]
for the theory and bibliography concerning these spaces. Recall also
that intersection of two Lorentz spaces Λq

Ω(φ1) and Λq
Ω(φ2) is a quasi–

Banach space under the quasi-norm max{∥ · ∥Λq
Ω(φ1), ∥ · ∥Λq

Ω(φ2)}.

3. Main results. In the sequel, we assume that (Ω,F, P ) is prob-
ability space and establish an extension of Rosenthal inequalities in
Lorentz spaces Λq

Ω(φ). To prove the main result, we need the following
lemma.

Lemma 3.1. Let 0 < r < p < ∞, f ∈ B, and 0 < q ≤ ∞. Then

(Lr(0,∞), Lr(0,∞) ∩ Lp(0,∞))f,q;K

= Lr(0,∞) ∩ (Lr(0,∞), Lp(0,∞))f,q;K .

Proof. By use of Holmsted’s formula about interpolation with a
function parameter [10, 11] the proof of this lemma is similar to [3,
Lemma 2.1]. �
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Theorem 3.2. Given 1 ≤ r ≤ 2 < p < ∞ and 0 < q ≤ ∞, let f ∈ B
with 0 < βf ≤ αf < 1. Then∥∥∥∥ n∑

k=1

Xk

∥∥∥∥
Λq

Ω(φ)

≈ max

{∥∥∥∥ n∑
k=1

Xk

∥∥∥∥
Lr(Ω)

,

∥∥∥∥ n∑
k=1

⊕
Xk

∥∥∥∥
Λq

(0,∞)
(φ)

}
,

for all independent symmetric random variables X1, X2, . . . , Xn in
Λq
Ω(φ), where

φ(t) =
t1/r

f
(
t1/r−1/p

) .
Proof. It follows from [10, Theorem 3] that φ ∈ B. It is convenient

to take Ω be [0, 1]N with the product measure and denote a typical
element of Ω by the sequence t = (t1, t2, . . .). Define a linear operator
T : L0(0,∞) → L0(Ω× [0, 1]) by

T (g) =

∞∑
k=1

gk(tk)rk(s),

where gk(tk) = g(tk+k−1) and rk(s) is the kth Rademacher function.
Then, by Hu’s inequality [6], T is a bounded operator from Lr(0,∞)∩
Lp(0,∞) into Lp(Ω × [0, 1]) for p > 2. So, by Lemma 3.1 and the
interpolation theorem with a function parameter ([10, Theorem 3] and
[5]), T is bounded from Lr(0,∞) ∩ Λq

(0,∞)(φ) into Λq
Ω(φ), where

φ(t) =
t1/r

f
(
t1/r−1/p

) .
Therefore, there exists a positive constant C such that
(3.1)∥∥∥∥ n∑

k=1

Xk

∥∥∥∥
Λq

Ω(φ)

≤ Cmax

{∥∥∥∥ n∑
k=1

Xk

∥∥∥∥
Lr(Ω)

,

∥∥∥∥ n∑
k=1

⊕
Xk

∥∥∥∥
Λq

(0,∞)
(φ)

}
.

It follows from Remark 2.2 that

(3.2)

∥∥∥∥ n∑
k=1

Xk

∥∥∥∥
L2(Ω)

≤ C1

∥∥∥∥ n∑
k=1

Xk

∥∥∥∥
Λq

(Ω)
(φ)

for a positive constant C1.
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Since 1 ≤ r ≤ 2 < p and αf < 1, it follows from [10, Propositions

2, 3] that

αf(t1/r−1/p) =

(
1

r
− 1

p

)
αf ,

and so αφ < 1. On the other hand, αΛq
Ω(φ) = αφ < 1, where αΛq

Ω(φ)

are Boyd indices of Λq
Ω(φ), [13]. Now, by [8, Theorem 5.8], Λq

Ω(φ) has
the Kalton property (that is, for

φ(t) =
t1/r

f
(
t1/r−1/p

) ,
Λq
Ω(φ) satisfies ∥X∥ ≤ C∥Y ∥ whenever X∗∗ ≤ Y ∗∗ (recall that

X∗∗(t) = t−1
∫ t

0
X∗(s) ds)).

By the definition of the disjoint sum, it is easy to check that( n∑
k=1

⊕
Xk

)∗∗

≤
(( n∑

k=1

|Xk|2
)1/2)∗∗

.

Now, by the Kalton property, we have

(3.3)

∥∥∥∥ n∑
k=1

⊕
Xk

∥∥∥∥
Lq((0,∞))

≤ C2

∥∥∥∥( n∑
k=1

|Xk|2
)1/2∥∥∥∥

Λq
Ω(φ)

for some positive constant C2. Since
∑n

k=1 Xk has the same distri-
bution as

∑n
k=1 Xk(t)rk(t), by the Maurey-Khintchine inequality [9,

Theorem 1.d.6] and inequality (3.3), we obtain

(3.4)

∥∥∥∥ n∑
k=1

⊕
Xk

∥∥∥∥
Λq

(0,∞)
(φ)

≤ C3

∥∥∥∥ n∑
k=1

Xk

∥∥∥∥
Λq

Ω(φ)

,

for some positive constant C3. Therefore, by inequalities (3.2) and
(3.4), we get

C
′
max

{∥∥∥∥ n∑
k=1

Xk

∥∥∥∥
L2(Ω)

,

∥∥∥∥ n∑
k=1

⊕
Xk

∥∥∥∥
Λq

(0,∞)
(φ)

}
≤

∥∥∥∥ n∑
k=1

Xk

∥∥∥∥
Λq

Ω(φ)

,

where C
′
= 1/max{C1, C3}. So, the desired inequality now follows
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easily since 1 ≤ r ≤ 2, i.e.,
(3.5)

C
′
max

{∥∥∥∥ n∑
k=1

Xk

∥∥∥∥
Lr(Ω)

,

∥∥∥∥ n∑
k=1

⊕
Xk

∥∥∥∥
Λq

(0,∞)
(φ)

}
≤

∥∥∥∥ n∑
k=1

Xk

∥∥∥∥
Λq

Ω(φ)

.

Thus, inequalities (3.1) and (3.5) imply that∥∥∥∥ n∑
k=1

Xk

∥∥∥∥
Λq

Ω(φ)

≈ max

{∥∥∥∥ n∑
k=1

Xk

∥∥∥∥
Lr(Ω)

,

∥∥∥∥ n∑
k=1

⊕
Xk

∥∥∥∥
Λq

(0,∞)
(φ)

}
. �

Corollary 3.3. Given 1 ≤ r ≤ 2 < p < ∞ and 0 < q ≤ ∞, we then
have∥∥∥∥ n∑

k=1

Xk

∥∥∥∥
Lp,q(logL)γ

≈ max

{∥∥∥∥ n∑
k=1

Xk

∥∥∥∥
Lr(Ω)

,

∥∥∥∥ n∑
k=1

⊕
Xk

∥∥∥∥
Lp,q(logL)γ

}
,

for all independent symmetric random variables X1, X2, . . . , Xn in
Lp,q(logL)γ .

Proof. It is sufficient to consider

f(t) = tθ
(
1 +

pr

p− r
| log t|

)−|γ|

in Theorem 3.2. �

Remark 3.4. In the previous corollary, if γ = 0 and r = 2 (p = q),
then this corollary implies Rosenthal inequalities (1.2) in Lorentz spaces
Lp,q (spaces Lp).
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