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TOTALLY GEODESIC SUBALGEBRAS IN
2-STEP NILPOTENT LIE ALGEBRAS

RACHELLE C. DECOSTE AND LISA DEMEYER

ABSTRACT. We describe totally geodesic subalgebras of
a metric 2-step nilpotent Lie algebra n. We prove that a
totally geodesic subalgebra of n is either abelian and flat
or can be decomposed as a direct sum determined by the
curvature transformation. In addition, we give conditions
under which a totally geodesic submanifold of a simply
connected 2-step nilpotent Lie group is a totally geodesic
subgroup. We follow Eberlein’s 1994 paper in which he
imposes the condition of nonsingularity on n. We remove
this restriction and illustrate the distinction between the
nonsingular case and the unrestricted case.

1. Introduction. The purpose of this paper is to study totally
geodesic submanifolds of a simply connected 2-step nilpotent Lie group
N equipped with a left invariant metric. Two-step nilpotent Lie groups
are nonabelian Lie groups which are, in a sense, one step away from
being abelian. Each simply connected 2-step nilpotent Lie group is
diffeomorphic to Rn for some n. However, nonabelian, 2-step nilpotent
Lie groups with a left invariant metric are not flat. Two-step nilpotent
Lie groups are simple enough that many geometric quantities can
be explicitly computed but complex enough as to provide interesting
geometric results. See [1, 3, 4, 5, 6, 7, 11, 12], and others.

A subgroup of N which passes through the identity, e, of N is totally
geodesic if it is totally geodesic at e. To study the totally geodesic
subgroups through e of N , it suffices to study the associated Lie algebra
n. Note that not all totally geodesic submanifolds of N are subgroups
or even translates of totally geodesic subgroups by left translation.

Throughout the paper, we let N denote a simply connected, 2-step
nilpotent Lie group. Let n denote the Lie algebra of N with inner
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product ⟨ , ⟩. The inner product on n determines a left invariant metric
on the Lie group N and the geometry of the Lie group N can be studied
using the metric Lie algebra {n, ⟨ , ⟩}.

In [5], Eberlein studies totally geodesic subalgebras and totally
geodesic subgroups in nonsingular 2-step nilpotent Lie groups. A
2-step nilpotent Lie group is nonsingular if the Lie algebra has the
property that, for all elements X in n− z, adX maps surjectively onto
the center. One of Eberlein’s main results characterizes Heisenberg
type Lie groups in terms of an abundance of three-dimensional totally
geodesic subgroups which are isometric to the Heisenberg group, up to
scaling of the metric by a positive constant. Heisenberg type groups
are all, by definition, nonsingular. Gornet and Mast [7] introduced the
notion of a Heisenberg-like nilpotent Lie algebra. The Heisenberg-like
Lie algebras are defined by a similar abundance of three-dimensional,
totally geodesic subalgebras used in [5] to characterize Heisenberg type
Lie groups. However, Heisenberg-like Lie algebras are not necessarily
nonsingular. Many of the results in [5] can be generalized nontrivially
to the case whereN does not have the nonsingularity condition imposed
by Eberlein. The results of [5] are summarized and discussed in [6],
where it is noted that it is unknown if the hypothesis of nonsingularity
used throughout [5] is necessary or merely convenient for the results
in [5]. The study of the geometry of 2-step nilpotent Lie groups that
may not be nonsingular, and in particular the investigation of totally
geodesic subgroups and submanifolds of a 2-step nilpotent Lie group
N , is the main focus of this paper.

The outline of the paper is as follows. In Section 2, we provide useful
properties of 2-step nilpotent Lie groups and Lie algebras along with
examples, which are referenced throughout the paper. In Section 3, we
describe the curvature tensor on a metric, 2-step nilpotent Lie group.
This follows [5]; however, it is done without the restriction that N is
nonsingular. The generalization presented here includes the singular
case and extends Eberlein’s results with only slight, and expected,
changes. Section 3 contains results on the curvature tensor, and here
we generalize two useful lemmas of Eberlein [5]. Section 4 contains
the main results of this paper. Here we describe the totally geodesic
subalgebras of n in terms of the metric Lie algebra data. As in [5],
we conclude that totally geodesic subgroups of N are often abelian
and flat, and that such subgroups are abundant in 2-step nilpotent
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N . In [5, Proposition 3.5], Eberlein shows that all totally geodesic
subalgebras of nonsingular n are either abelian and flat, or have a
tangent space which decomposes in a simple way. In Theorem 4.10
below, we give a description of all totally geodesic subalgebras which
are not abelian and flat in terms of the metric Lie algebra data from
n, using a decomposition of the tangent space in terms of metric Lie
algebra data. Here the decomposition is notably more complicated
than in the nonsingular case. In addition, other useful criteria are
established under which a subalgebra of n is totally geodesic.

2. Preliminaries. Let {n, ⟨ , ⟩} be a 2-step nilpotent Lie algebra
with a left invariant metric. Let {N, ⟨ , ⟩} be the simply-connected,
2-step nilpotent metric Lie group with Lie algebra n. Let z denote the
center of {n, ⟨ , ⟩}, and define v as the orthogonal complement of z,
v = z⊥.

Definition 2.1. For each nonzero Z ∈ z, define a skew symmetric
linear transformation j(Z) : v → v by ⟨[X,Y ], Z⟩ = ⟨j(Z)X,Y ⟩ for all
X,Y ∈ v and Z ∈ z.

We assume j(Z) is not identically zero for any nonzero Z ∈ z. This
is equivalent to assuming that N has no Euclidean deRham factor.

We now prove the following useful lemma.

Lemma 2.2. Let {n, ⟨ , ⟩} be a 2-step nilpotent metric Lie algebra with
no Euclidean deRham factor. Let X,Y ∈ v and Z ∈ z.

(i) [X, j(Z)X] = 0 if and only if j(Z)X = 0.
(ii) j([X,Y ])X = 0 if and only if [X,Y ] = 0.
(iii) j(Z)2X = 0 if and only if j(Z)X = 0.

Proof.

(i) Assume [X, j(Z)X] = 0 for some X ∈ v and Z ∈ z. Then
⟨[X, j(Z)X], Z⟩ = |j(Z)X|2 = 0. Thus, j(Z)X = 0. The other
direction is obvious.

(ii) Assume j([X,Y ])X = 0 for some X,Y ∈ v. Then ⟨j([X,Y ])X,Y ⟩
= |[X,Y ]|2 = 0. Thus, [X,Y ] = 0. The other direction is obvious.
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(iii) Assume j(Z)2X = 0 for some X ∈ v and Z ∈ z. Then
⟨j(Z)2X,Y ⟩ = 0 for all Y ∈ v. By the skew symmetry of
j(Z), −⟨j(Z)X, j(Z)Y ⟩ = 0. Letting Y = X, we then have
⟨j(Z)X, j(Z)X⟩ = |j(Z)X|2 = 0. Finally, j(Z)X = 0. The
other direction is obvious. �

The j(Z) maps are used to define the Lie algebra as nonsingular,
almost nonsingular or singular as follows.

Definition 2.3. Let {n, ⟨ , ⟩} denote a 2-step nilpotent metric Lie
algebra.

(i) If j(Z) is nonsingular for every nonzero Z ∈ z, then n is said to
be (strictly) nonsingular.

(ii) If j(Z) is nonsingular for every Z in an open dense subset of z,
then n is said to be almost nonsingular.

(iii) If j(Z) is singular for all Z ∈ z, then n is said to be (strictly)
singular.

A 2-step nilpotent Lie group N is defined to be nonsingular if its
associated Lie algebra is nonsingular. The other cases follow.

Lemma 2.4 ([7], Lemma 1.16). Every 2-step nilpotent Lie group
is precisely one of the following: nonsingular, almost nonsingular or
singular.

We give some examples of the various classes of Lie algebras. These
examples will be referred to later in the paper.

Example 2.5.

(i) ([7] Example 1.14). Let n be a 2-step nilpotent Lie algebra with
basis {X1, X2, X3, X4, Z1, Z2}. Define j(Z1) = A and j(Z2) = B
as

A =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , B =


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

 .
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This is an almost nonsingular Lie algebra. If Z = α1Z1+α2Z2 ∈ z,
then j(Z) has eigenvalues {±iα1,±iα2}, so j(Z) is nonsingular
on O = {α1Z1 + α2Z2 ∈ z|α1 ̸= 0, α2 ̸= 0}.

(ii) The previous example generalizes to a 2-step nilpotent Lie algebra
n of dimension 4k+2k with basis {X1, . . . , X4k, Z1, . . . , Z2k}. The
matrices A and B above are used as k diagonal blocks to define the
j(Zl) maps, l = 1, . . . , 2k. For instance, with k = 2, and letting 0
represent the 4× 4 zero matrix, the maps are represented by

j(Z1) =

(
A 0
0 0

)
, j(Z2) =

(
B 0
0 0

)
,

j(Z3) =

(
0 0
0 A

)
, j(Z4) =

(
0 0
0 B

)
.

This defines [X1, X2] = −[X2, X1] = Z1, [X3, X4] = −[X4, X3] =
Z2, [X5, X6] = −[X6, X5] = Z3, [X7, X8] = −[X8, X7] = Z4 and
all other brackets zero.

In the general case, Z = α1Z1 + · · · + α2kZ2k has eigenvalues
{±iαl | 1 ≤ l ≤ 2k}, and therefore j(Z) is nonsingular on
O = {α1Z1 + · · · + α2kZ2k ∈ z | αl ̸= 0, 1 ≤ l ≤ 2k}; thus,
the Lie algebra n is almost nonsingular.

(iii) This example is a generalization of [4, Example 4.8]. Let n
be a ten-dimensional 2-step nilpotent Lie algebra with basis
{X1, . . . , X6, Z1, . . . , Z4}. Define

j(Z1) =


0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , j(Z2) =


0 0 −1 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



j(Z3) =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 1 0 0
0 0 0 0 0 0

 , j(Z4) =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 1 0 0

 .

This defines brackets [X1, X2] = −[X2, X1] = Z1, [X1, X3] =
−[X3, X1] = Z2, [X4, X5] = −[X5, X4] = Z3 and [X4, X6] =
−[X6, X4] = Z4, with all other brackets zero. This is a singular
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Lie algebra. If Z = α1Z1+α2Z2+α3Z3+α4Z4 ∈ z, then j(Z) has

eigenvalues {0,±i
√
α2
1 + α2

2,±i
√

α2
3 + α2

4} and is clearly singular.
Further generalization of this example allows the creation of a
singular 2-step nilpotent Lie algebra of dimension k(n+1)+n for
any positive integers k and n, as in [2, Example 6.3].

3. Curvature transformations. Let ∇ξ1ξ2 denote the covariant
derivative on n, the 2-step nilpotent Lie algebra n = v⊕ z, where ξ1, ξ2
are left invariant vector fields on the corresponding Lie group N . As
in [5, 1.10], we have the following formulas:

∇XY = 1
2 [X,Y ] for all X,Y ∈ v,

∇XZ = − 1
2j(Z)X for all X ∈ v, Z ∈ z,

∇Z1Z2 = 0 for all Z1, Z2 ∈ z.

Recall the curvature tensor is defined as R(ξ1, ξ2)ξ3 = −∇[ξ1,ξ2]ξ3 +
∇ξ1(∇ξ2ξ3) − ∇ξ2(∇ξ1ξ3) for all left invariant vector fields ξ1, ξ2 and
ξ3 on N . It is straightforward to compute the following (cf., [5, 1.11])
for all X,Y, V ∈ v and Z,Z1, Z2, Z3 ∈ z.

R(X,Y )V =
1

2
j([X,Y ])V − 1

4
j([Y, V ])X +

1

4
j([X,V ])Y,

R(X,Z1)Z2 = −1

4
j(Z1)j(Z2)X,

R(X,Z)Y = −1

4
[X, j(Z)Y ],

R(Z1, Z2)Z3 = 0.

For each ξ ∈ n, let Rξ be the curvature transformation defined on n
by Rξ(η) = R(η, ξ)ξ. The following two results extend [5, Lemma A]
to include the singular case.

Lemma 3.1. Let {n, ⟨ , ⟩} be a 2-step nilpotent metric Lie algebra.
Then, for nonzero ξ ∈ n, v and z are invariant subspaces of Rξ.
Moreover,

(i) If X ∈ v is nonzero, then RX is negative semidefinite on v and
positive semidefinite on z.

(ii) If Z ∈ z is nonzero, then RZ is positive semidefinite on v and
zero on z.
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(iii) If ξ = X + Z ∈ n is nonzero, then Rξ is positive semidefinite on
z.

Proof. The proofs of (i) and (ii) are identical to the proof of [5,
Lemma A] with the exception that 1

4 |j(Z)X|2 ≥ 0 since j(Z) can be
singular, resulting in the semidefiniteness. The proof of (iii) follows
from (i) and (ii). �

Lemma 3.2 below, a generalization of [5, Lemma A], is used to give
a decomposition of the tangent space of a totally geodesic submanifold
of a 2-step nilpotent Lie algebra in Section 4. In [5, Lemma A], if ξ is in
either v or z for a nonsingular Lie algebra n = v⊕z, then the eigenvectors
of Rξ were easily seen to lie in either v or z. In the singular case, the
presence of zero eigenvalues is an added complication. As seen in this
result, a vector of the zero eigenspace must satisfy certain conditions
related to ξ.

Lemma 3.2. Let {n, ⟨ , ⟩} be a 2-step nilpotent metric Lie algebra.
Then

(i) For X ∈ v, let σ be an eigenvector of RX . If σ corresponds to
a nonzero eigenvalue, then σ lies in v or z. If σ corresponds to
the zero eigenvalue, then σ = σv + σz, σv ∈ v, σz ∈ z, where
[X,σv] = 0 and j(σz)X = 0.

(ii) For Z ∈ z, let σ be an eigenvector of RZ . If σ corresponds to a
nonzero eigenvalue, then σ lies in v. If σ corresponds to the zero
eigenvalue, then σ = σv+σz, σv ∈ v, σz ∈ z, where σv ∈ ker j(Z).

Proof.

(i) Let X ∈ v, and let σ be an eigenvector of RX such that RX(σ) =
λσ, λ ̸= 0. Since RX is negative semidefinite on v and positive
semidefinite on z by Lemma 3.1(i), it follows that σ lies in v or
z. Now let σ be an eigenvector of RX such that RX(σ) = 0.
Write σ = σv + σz, σv ∈ v and σz ∈ z. Then 0 = RX(σ) =
RX(σv+σz) = RX(σv)+RX(σz) = −3

4j([X,σv])X+ 1
4 [X, j(σz)X].

Since j([X,σv])X ∈ v and [X, j(σz)X] ∈ z, j([X,σv])X = 0
and [X, j(σz)X] = 0. Thus, by Lemma 2.2, [X,σv] = 0 and
j(σz)X = 0.
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(ii) Let Z ∈ z, and let σ be an eigenvector of RZ such that RZ(σ) =
λσ, λ ̸= 0. By Lemma 3.1(ii) σ lies in v. Now let σ be an
eigenvector of RZ such that RZ(σ) = 0. Write σ = σv+σz, σv ∈ v
and σz ∈ z. Then 0 = RZ(σ) = RZ(σv+σz) = RZ(σv)+RZ(σz) =
− 1

4j(Z)2σv. Thus, j(Z)σv = 0 by Lemma 2.2. �

Lemma B in [5] describes the Lie algebras of Heisenberg type
with respect to the curvature transformations. Since Lie algebras of
Heisenberg type must be nonsingular, there is no analogous result to
be found here. However, a natural extension of Heisenberg type Lie
algebras are Heisenberg-like Lie algebras, which are studied extensively
in [2, 7] and discussed in more detail in subsection 4.1.

4. Totally geodesic submanifolds and subalgebras.

Definition 4.1. A submanifold M of a Riemannian manifold M is
said to be a totally geodesic submanifold if every geodesic of M is also
a geodesic of M .

Equivalently, recall that a submanifold M of a manifold M is totally
geodesic if and only if the second fundamental form is identically zero
on M .

Definition 4.2. A subalgebra H of a metric Lie algebra is said to be
a totally geodesic subalgebra if ∇σξ ∈ H for all σ, ξ ∈ H.

A totally geodesic subgroup H of a Lie group G with left invariant
metric is a Lie subgroup which is also totally geodesic as a submanifold.
The subgroup H is a totally geodesic subgroup if and only if the
corresponding subalgebra H is a totally geodesic subalgebra. Not all
totally geodesic submanifolds in a Lie group must be open sets of gH
whereH is a totally geodesic subgroup and g is an element of the group.
For example, not all geodesics are one-parameter subgroups. If γ is a
geodesic with γ(0) = e and γ′(0) = X0+Z0, then γ is a one-parameter
subgroup if and only if j(Z0)X0 = 0. See [4, Example 1 of (2.11)].

Given a totally geodesic subalgebra H of n, we describe the structure
of H. First we include a useful lemma and some examples.
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Lemma 4.3. Let H be a totally geodesic subalgebra of a 2-step nilpotent
Lie algebra {n, ⟨ , ⟩}. If X + Z ∈ H, then j(Z)X ∈ H ∩ v.

Proof. Let ξ = X + Z ∈ H. Since H is totally geodesic, ∇ξξ ∈ H.
Thus, ∇ξξ = −j(Z)X ∈ H ∩ v. �

Example 4.4.

(i) [5]. Let H be an abelian subspace of v. Then H is a totally
geodesic subalgebra.

(ii) [5]. Let H be a subspace of z. Then H is a totally geodesic
subalgebra.

(iii) Consider n of Example 2.5 (iii). Let H be the subspace of n with
basis {X1, X2, Z1, X5+Z4}. This is a totally geodesic subalgebra.

(iv) Consider n of Example 2.5 (iii). Let H be the subspace of n with
basis {X1, X2, Z1, α1X5 + α2X6, α3Z3 + α4Z4}. H a is totally
geodesic subalgebra if and only if α1α3 = −α2α4.

Observe that the first two examples above are abelian and flat. In
subsection 4.2, we look more closely at totally geodesic subalgebras
which are abelian and flat and say what we can about those that are
not. In subsection 4.1, we continue to look at more examples which
illustrate the importance of totally geodesic subalgebras.

4.1. Heisenberg type and Heisenberg-like Lie algebras. Heisen-
berg type and Heisenberg-like Lie algebras are classes of Lie algebras
with an abundance of totally geodesic subalgebras. A 2-step nilpo-
tent metric Lie algebra {n, ⟨ , ⟩} is defined to be of Heisenberg type if
j(Z)2 = −|Z|2Id|v for every Z ∈ z. A simply connected 2-step nilpo-
tent metric Lie group N is of Heisenberg type if its Lie algebra n is
of Heisenberg type. Lie groups of Heisenberg type are a generaliza-
tion of the well-studied Heisenberg group. Groups of Heisenberg type
were introduced by Kaplan in [8], and their geometry has been studied
extensively, including in [4, 5, 9]. Heisenberg type Lie algebras are
nonsingular.

If n is a Heisenberg type Lie algebra, by [5, Example 3.4 (3)],
H = span{X,Z, j(Z)X} is a totally geodesic subalgebra of n where
X ∈ v and Z ∈ z are arbitrary nonzero vectors. Further, H = exp(H)
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is isometric to the standard metric three-dimensional Heisenberg group
when the metric on H is multiplied by an appropriate positive constant.

In [5, Section 6], Eberlein also proves that every geodesic in a
Heisenberg type simply-connected, nonsingular, 2-step nilpotent Lie
group with a left invariant metric is contained in a three-dimensional,
totally geodesic submanifold. Conversely, he shows that if {N, ⟨ ⟩},
a simply-connected, nonsingular, 2-step nilpotent Lie group with a
left invariant metric, satisfies two conditions, then N is of Heisenberg
type. One condition is that H ∩ z ̸= {0}. The second condition
is that, for each geodesic γ ∈ N with γ(0) = e, there exists a
connected, three-dimensional totally geodesic submanifold H such that
γ′(0) ∈ H = TeH. If N has a one-dimensional center, the condition
H ∩ z ̸= {0} can be removed, as in [5, Theorem 6.2].

Heisenberg-like Lie algebras are defined by the abundance of totally
geodesic subalgebras, generalizing Lie algebras of Heisenberg type.
Specifically, Gornet and Mast [7] define Heisenberg-like Lie algebras
to be those 2-step, nilpotent Lie algebras with the property that
span{Xm, Z, j(Z)Xm} is a totally geodesic subalgebra for every Z ∈ z
and every Xm ∈ Wm(Z). Here Wm(Z) is the invariant subspace of
j(Z) corresponding to ϑm(Z) where {±iϑm} is the set of eigenvalues
of j(Z); see [2] for further explanation. A 2-step nilpotent metric Lie
group is Heisenberg-like if and only if its Lie algebra is Heisenberg-
like. By [7, Theorem 3.6], a Heisenberg-like metric Lie algebra is
either strictly nonsingular or strictly singular. In [2], we construct
an infinite family of examples of singular Heisenberg-like Lie algebras.
Thus, these provide examples for which the results of [5] pertaining to
totally geodesic subalgebras do not hold.

4.2. Totally geodesic subalgebras which are abelian and flat.

Lemma 4.5. Let {n, ⟨ , ⟩} be a 2-step nilpotent Lie algebra, and let H
be a subalgebra of n. If H is flat then H is abelian.

Proof. If H is a flat subalgebra of n, then ∇ξσ = 0 for all ξ, σ ∈ H.
Write ξ = X+Z1 and σ = Y +Z2 ∈ H, where X,Y ∈ v and Z1, Z2 ∈ z.
Then,

0 = ∇ξσ =
1

2
[X,Y ]− 1

2
j(Z2)X − 1

2
j(Z1)Y.
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Since n = v⊕ z, [X,Y ] ∈ z and −1
2j(Z2)X − 1

2j(Z1)Y ∈ v, we conclude
that [X,Y ] = 0. Hence, [ξ, σ] = 0 for any σ, ξ ∈ H. Thus, H is
abelian. �

If H is totally geodesic, then abelian implies flat, as in the following
lemma.

Lemma 4.6. Let {n, ⟨ , ⟩} be a 2-step nilpotent Lie algebra, and let H
be a totally geodesic subalgebra of n. If H is abelian, then H is flat.

Proof. Since H is totally geodesic, ∇ξσ ∈ H for all ξ, σ ∈ H. Again,
write ξ = X + Z1 and σ = Y + Z2 ∈ H, where X,Y ∈ v and
Z1, Z2 ∈ z. H is abelian; thus, ∇ξσ = 1

2 [X,Y ]− 1
2j(Z2)X− 1

2j(Z1)Y =

−1
2j(Z2)X− 1

2j(Z1)Y ∈ H. If H is not flat, ∇ξσ ̸= 0 for some ξ, σ ∈ H.

Then − 1
2j(Z2)X − 1

2j(Z1)Y = V ∈ H where V ̸= 0. Consequently,
⟨j(Z2)X,V ⟩ + ⟨j(Z1)Y, V ⟩ = ⟨[X,V ], Z2⟩ + ⟨[Y, V ], Z1⟩ ≠ 0, which
contradicts the fact that H is abelian. Thus H must also be flat. �

Here, and throughout the remainder of the paper, πv(H) and πz(H)
represent the projections of H onto v and z, respectively. In the
nonsingular case, it is true that πv(H) = H ∩ v and πz(H) = H ∩ z;
however, in general πv(H) ̸= H ∩ v and πz(H) ̸= H ∩ z.

The following is an example of a singular 2-step nilpotent metric Lie
algebra with an infinite family of two-dimensional, flat, abelian, totally
geodesic subalgebras.

Example 4.7. Let n be the singular, metric, 2-step nilpotent Lie
algebra with orthonormal basis {V,X, Y, Z1, Z2} and bracket relation
given by [X,Y ] = Z1 and [V,X] = Z2. Let H = span {α1V +
α2Y, α1Z1 + α2Z2}, where α1, α2 ̸= 0. It is straightforward to show
that H is flat, abelian and totally geodesic. Note that j(Z1)Y /∈ H
even though Z1 ∈ πz(H) and Y ∈ πv(H).

In [5], Propositions 3.5 and 3.7 describe necessary and sufficient
conditions for a subalgebra H of nonsingular n to be totally geodesic.
The main result of this paper, Theorem 4.10, is the generalized result
of the first proposition when singularity is allowed. Proposition 4.21
is the generalization of the other direction. The following proposition
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is necessary in the proof of our theorem. Following its proof, we state
Eberlein’s result and then the generalization.

Proposition 4.8. Let H be a totally geodesic subalgebra of a 2-step
nilpotent metric Lie algebra {n, ⟨ , ⟩}.

(i) If H ∩ z = {0}, then H is abelian and flat.
(ii) If H ∩ v = {0}, then H is abelian and flat.

Proof. Let ξ = X + Z1, σ = Y + Z2 ∈ H, where X,Y ∈ v
and Z1, Z2 ∈ z. Since H is a subalgebra, [ξ, σ] = [X,Y ] ∈ H. So
[X,Y ] ∈ H ∩ z.

Then, since H is totally geodesic, ∇ξσ ∈ H. Hence, ∇ξσ =
1
2 [X,Y ] − 1

2j(Z2)X − 1
2j(Z1)Y ∈ H. Since [X,Y ] ∈ H ∩ z, we have

(j(Z1)Y + j(Z2)X) ∈ H ∩ v.

(i) If H ∩ z = {0}, then [ξ, σ] = 0. Hence, H is abelian and then flat
by Lemma 4.6.

(ii) Since H is a subalgebra, [ξ, σ] = [X,Y ] ∈ H∩ z for all ξ, σ ∈ H as
above. We show [X,Y ] = 0 when H∩ v = {0}. Since H is totally
geodesic, ∇[X,Y ](X+Z1) = ∇[X,Y ]X = − 1

2j([X,Y ])X ∈ H; thus,
j([X,Y ])X ∈ H∩v = {0}. By Lemma 2.2, [X,Y ] = 0. Therefore,
H is abelian; flat again follows by Lemma 4.6. �

In Proposition 4.9 we restate Propositions 3.5 and 3.7 from [5], which
include the assumption of nonsingularity.

Proposition 4.9. [5, Propositions 3.5, 3.7]. Let {N, ⟨ , ⟩} be a simply
connected, nonsingular, 2-step nilpotent Lie group with a left invariant
metric. Let H be a totally geodesic subalgebra of n. Then, exactly one
of the following occurs:

(i) H is an abelian subspace of v and H is flat.
(ii) H is a subspace of z and H is flat.
(iii) (a) H is the direct sum of the nonzero subspaces H∩v and H∩z.

(b) H ∩ v is invariant under j(Z) for every Z ∈ H ∩ z.

Moreover, if H is a subalgebra of n that satisfies one of the conditions
above, then H is totally geodesic.
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In the general case, where the condition of nonsingularity is removed,
the tangent space does not decompose as a direct sum of the subspaces
H ∩ v and H ∩ z. In this case, we conclude that, if H is a totally
geodesic subalgebra, it is either abelian and flat or it has a tangent space
which can be decomposed in terms of the eigenspaces of the curvature
transformation. The proof of this result, stated in Theorem 4.10, is
found at the end of this section.

Let H be a totally geodesic submanifold of N containing the iden-
tity e, and let H = TeH ⊆ n. For any element ξ ∈ H, define

Hξ
+ = {σ ∈ H|Rξ(σ) = λσ, λ > 0}, Hξ

− = {σ ∈ H|Rξ(σ) = λσ, λ < 0}
and Hξ

0 = {σ ∈ H|Rξ(σ) = 0}.

Theorem 4.10. Let {N, ⟨ , ⟩} be a simply connected 2-step nilpotent
Lie group with a left invariant metric. Let H be a totally geodesic
subalgebra of n. Then H∩v is invariant under j(Z) for every Z ∈ H∩z
and exactly one of the following occurs:

(i) H is abelian and flat.
(ii) H is the direct sum of nonzero subspaces HZ

+ and HZ
0 for some

Z ∈ H ∩ z.

4.3. Criteria for a subalgebra to be totally geodesic. In [5],
Eberlein proved the following two lemmas under the hypothesis that
n is nonsingular. The results hold in the general case, without the
nonsingularity assumption with no change to the proofs.

Lemma 4.11. [5, Lemma 2.1]. Let {N, ⟨ , ⟩} be a simply-connected,
2-step nilpotent Lie group with a left invariant metric. Let H be a
totally geodesic submanifold of N that contains the identity, and let
H = TeH ⊆ TeN = n. If ξ1, ξ2 and ξ3 are arbitrary elements of H,
then R(ξ1, ξ2)ξ3 ∈ H, where R is the curvature tensor of n.

Lemma 4.12. [5, Lemma 2.2 (b), (c)]. Let H be a totally geodesic
submanifold of N that contains the identity e, and let H = TeH ⊆ n.
If H ∩ v ̸= 0 or H ∩ z ̸= 0, then

(i) H ∩ v is invariant under j(Z)2 for every Z ∈ H ∩ z,
(ii) [X, j(Z)Y ] ∈ H∩ z for any elements X,Y ∈ H∩v and Z ∈ H∩ z.
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Eberlein also proved the following under the assumption that n is
nonsingular. The following lemma does not hold if n is not nonsingular,
as we illustrate below.

Lemma 4.13. [5, Lemma 2.2 (a), (d)]. Let H be a totally geodesic
submanifold of a 2-step nilpotent nonsingular Lie group N . Assume H
contains the identity e, and let H = TeH ⊆ n. If H∩v ̸= 0 or H∩z ̸= 0,
then

(i) H can be written as the orthogonal direct sum H = (H∩v)⊕(H∩z),
(ii) If j(Z) leaves invariant H ∩ v for some nonzero element Z of

H ∩ z, then H is a totally geodesic subalgebra of n.

Example 4.4 (iii) is a totally geodesic subalgebra of a singular Lie
algebra. It is clear in this example that Lemma 4.13 (i) does not
hold. For an almost nonsingular example, let n be the Lie algebra
given by Example 2.5 (ii). Let H be the subalgebra with basis
{X1, X2, X3 + Z4, Z1}. It is straightforward to check that this is a
totally geodesic subalgebra which cannot be decomposed as in (i) above.

To see that Lemma 4.13 (ii) does not hold in the singular case, see
Example 2.5 (iii). Let H = span {X2, Z3, X4 + Z1, X3 + Z4}. Then
H ∩ v has basis {X2} and H ∩ z has basis {Z3}, and thus j(Z3) leaves
H∩v invariant. H is an abelian subalgebra; however, H is not a totally
geodesic subalgebra since ∇X4+Z1(X3 + Z4) = −1

2X6 is not in H.

4.4. Decomposition of the tangent space. Let H be a totally
geodesic submanifold ofN containing the identity e withH = TeH ⊆ n.

For any element ξ ∈ H, using the definitions of Hξ
+, H

ξ
− and Hξ

0 above,
we characterize the decomposition of H in the following results.

Lemma 4.14. Let H be a totally geodesic submanifold of a 2-step
nilpotent Lie group N containing e with H = TeH ⊆ n. If 0 ̸= ξ ∈ H,

then we can decompose H as H = Hξ
+ ⊕Hξ

− ⊕Hξ
0.

Proof. Since H is totally geodesic, by Lemma 4.11, Rξ(σ) ∈ H
for any ξ, σ ∈ H. Further, since Rξ is symmetric, H has an or-
thonormal basis of eigenvectors of Rξ. We can write that basis as
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{ζ1, . . . , ζr, ρ1, . . . , ρs, σ1, . . . , σl} with ζi ∈ Hξ
−, ρi ∈ Hξ

+ and σi ∈
Hξ

0. �

Corollary 4.15. Let H be a totally geodesic submanifold of N con-
taining e with H = TeH ⊆ n. If H ∩ v ̸= {0} or H ∩ z ̸= {0}, then

(i) In the case 0 ̸= X ∈ H ∩ v,

HX
− ⊆ {V ∈ H ∩ v | [X,V ] ̸= 0}

HX
+ ⊆ {Z ∈ H ∩ z | j(Z)X ̸= 0}

HX
0 = {σv + σz ∈ H | σv ∈ v, σz ∈ z where [X,σv] = 0 and j(σz)X = 0},

and H = HX
− ⊕HX

+ ⊕HX
0 .

(ii) In the case 0 ̸= Z ∈ H ∩ z,

HZ
− = {0}

HZ
+ ⊆ {V ∈ H ∩ v|j(Z)V ̸= 0}

HZ
0 = {σv + σz ∈ H|σv ∈ v, σz ∈ z where j(Z)σv = 0},

and H = HZ
+ ⊕HZ

0 .

Proof.

(i) In the case 0 ̸= X ∈ H ∩ v, HX
− = {σ ∈ H|RX(σ) = λσ, λ <

0} ⊆ H ∩ v and HX
+ = {σ ∈ H|RX(σ) = λσ, λ > 0} ⊆ H ∩ z

by Lemma 3.1. Then, for V ∈ HX
− , RX(V ) = 3

4j([V,X])X =

λV , λ < 0 and [V,X] ̸= 0 by Lemma 2.2. For Z ∈ HX
+ ,

RX(Z) = 1
4 [X, j(Z)X] = λZ, λ > 0. Then j(Z)X ̸= 0

by Lemma 2.2. Next we consider RX(σv + σz) = 0, where
σv ∈ v, σz ∈ z. By Lemma 3.2, [X,σv] = 0 and j(σz)X = 0.
Then HX

0 ⊆ {σv + σz ∈ H|σv ∈ v, σz ∈ z where[X,σv] = 0 and
j(σz)X = 0}. If σ = σv + σz ∈ H such that [X,σv] = 0 and
j(σz)X = 0, then it follows that RX(σ) = 0 by direct calculation.
Thus, σ ∈ HX

0 and HX
0 = {σv + σz ∈ H|σv ∈ v, σz ∈ z where

[X,σv] = 0 and j(σz)X = 0}. Finally, H = HX
− ⊕HX

+ ⊕HX
0 .

(ii) In the case 0 ̸= Z ∈ H ∩ z, HZ
− = {0} and HZ

+ = {σ ∈
H|RZ(σ) = λσ, λ > 0} ⊆ H ∩ v by Lemma 3.1. For V ∈ HZ

+,

RZ(V ) = − 1
4j(Z)2V = λV , λ > 0; therefore, j(Z)V ̸= 0. Then

we consider RZ(σv + σz) = 0 and σv ∈ v, σz ∈ z. We calculate
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RZ(σv + σz) = − 1
4j(Z)2σv resulting in HZ

0 ⊆ {σv + σz ∈ H|σv ∈
v, σz ∈ z where j(Z)σv = 0}, by Lemma 2.2. It is obvious that, if
j(Z)σv = 0, then RZ(σ) = 0 as well, proving the equality of sets.
Thus, HZ

0 = {σv+σz ∈ H | σv ∈ v, σz ∈ z where j(Z)σv = 0} and
H = HZ

+ ⊕HZ
0 . �

Remark 4.16. In the case that j(Z) is nonsingular for all Z ∈ z,
Lemma 4.13 gives the decomposition H = (H ∩ v) ⊕ (H ∩ z). This
agrees with Corollary 4.15 above since, in this case, HX

− = HZ
+ = H∩v,

HX
+ = HZ

0 = H∩ z and HX
0 = HZ

− = {0} for all X ∈ H ∩ v, Z ∈ H ∩ z.

Note that the decomposition depends on the element of H that is
being considered, and the decompositions will not necessarily be the
same for different elements of H.

Example 4.17.

(i) Let H = n of Example 2.5 (i). Then H has basis {X1, X2, X3, X4,
Z1, Z2}. Consider the decomposition first with respect to X1:

HX1
− = span{X2},HX1

+ = span{Z1} andHX1
0 = span{X1, X3, X4,

Z2}. Then with respect to X3: HX3
− = span{X4}, HX3

+ =

span{Z2} and HX3
0 = span{X1, X2, X3, Z1}. With respect to Z1:

HZ1
+ = span{X1, X2} and HZ1

0 = span{X3, X4, Z1, Z2}.
(ii) Consider n of Example 2.5 (iii). Let H be the subalgebra of

Example 4.4 (iv). For ξ = α1X5 + α2X6, Hξ
− = Hξ

+ = {0}
and Hξ

0 = H. As noted above, H is totally geodesic if and only if
α1α3 = −α2α4.

4.5. Applications of the decomposition. The following lemmas
give sufficient conditions for H to be totally geodesic, generalizing
Lemma 4.13. When we have H ∩ v ̸= {0} or H ∩ z ̸= {0}, we can
say something more about the subset H ⊆ n. The first result concerns
the existence of an element Z ∈ H∩ z such that j(Z) is nonsingular on
πv(H).

Lemma 4.18. Let H be a totally geodesic submanifold of N containing
e with H = TeH ⊂ n. Suppose there exists Z ∈ H∩ z such that j(Z) is



TOTALLY GEODESIC SUBALGEBRAS 1441

nonsingular on πv(H). Then, if H∩ v is invariant under j(Z), H is a
totally geodesic subalgebra.

Proof. Since j(Z) is nonsingular on πv(H), HZ
0 = H ∩ z, and then

HZ
+ = H ∩ v = πv(H). Thus, H = (H ∩ v) ⊕ (H ∩ z). Also,

since j(Z) is nonsingular and j(Z) keeps H ∩ v invariant, for every
Y ∈ H ∩ v, there exists X∗ ∈ H ∩ v such that Y = j(Z)X∗. Then, for
any elements ξ = X + Z1, σ = Y + Z2 ∈ H where X,Y ∈ H ∩ v
and Z1, Z2 ∈ H ∩ z, [ξ, σ] = [X,Y ] = [X, j(Z)X∗] ∈ H ∩ z by
Lemma 4.12. Thus, H is a subalgebra of n. As previously calculated,
∇ξσ = 1

2 ([X,Y ] − j(Z2)X − j(Z1)Y ). Thus, for H to be totally
geodesic, it is necessary for j(Z2)X + j(Z1)Y ∈ H. As above, there
exists X∗ ∈ H ∩ v such that X = j(Z)X∗ for each X ∈ H ∩ v;
then, j(Z2)X = j(Z2)j(Z)X∗ = −4R(X∗, Z2)Z ∈ H by Lemma 4.11.
Similarly, j(Z1)Y ∈ H. �

Note that the presence of Z ∈ H∩ z such that j(Z) nonsingular does
not depend on n being nonsingular or almost nonsingular. Consider the
following examples. In both cases, there exists a nonzero Z ∈ H∩z such
that j(Z) is nonsingular on πv(H), but there also exist other nonzero

Z̃ ∈ H ∩ z such that j(Z̃) is singular on H.

Example 4.19.

(i) Let H be a subspace of the 12-dimensional Lie algebra n of
Example 2.5 (ii) with basis {X1, X2, X5, X6, Z1, Z3}. Recall that
n is almost nonsingular. Let Z = α1Z1 + α2Z3 with both α1 and
α2 nonzero, and let X ∈ H∩v. Write X = β1X1+β2X2+β3X5+
β4X6. Then j(Z)X = α1β1X2−α1β2X1+α2β3X6−α2β4X5 ̸= 0
unless β1 = β2 = β3 = β4 = 0. Thus, j(Z) is nonsingular on
H. However, both j(Z1) and j(Z3) are singular on H. By direct
calculation, it is clear that H is a totally geodesic subalgebra of
n.

(ii) Consider the singular n of Example 2.5 (iii). Let H be the
subspace of n with basis {X1, X2, X4, X5, Z1, Z3}. For Z =
α1Z1+α2Z3, both α1 and α2 nonzero, j(Z) is nonsingular onH∩v
and it preserves H∩ v. Again, both j(Z1) and j(Z3) are singular
on H, and it is clear that H is a totally geodesic subalgebra.
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Lemma 4.18 provides sufficient but not necessary conditions for
H ⊆ n to be totally geodesic. It is not necessary that there exists
a Z ∈ H∩ z such that j(Z) nonsingular on πv(H) for H to be a totally
geodesic subalgebra. In the following example, for instance, j(Z) is
singular for all Z ∈ H ∩ z, and H is a totally geodesic subalgebra of n.

Example 4.20. Let H be a subspace of n the 12-dimensional algebra
of Example 2.5 (ii) with basis {X1, X2, X3, X5, X6, Z1, Z3}. Note that
X3 ∈ ker j(Z) for all Z ∈ H, so all j(Z) are singular. However, it can be
verified thatH is a totally geodesic subalgebra of n by a straightforward
calculation.

To consider the case where H may not have a nonsingular Z as
required by Lemma 4.18, we consider the projections of H onto v and z.

Proposition 4.21. Suppose that H is a subalgebra of a 2-step nilpotent
metric Lie algebra {n, ⟨ , ⟩}. If j(Z)X ∈ H for all Z ∈ πz(H) and
all X ∈ πv(H), then the subalgebra H is totally geodesic. Further, if
H ∩ z = {0}, then H is an abelian flat subalgebra of n.

Proof. Let ξ, σ ∈ H. Since ξ, σ ∈ n, we write ξ = X+Z1, σ = Y +Z2

where X,Y ∈ v and Z1, Z2 ∈ z. As above, ∇ξσ = 1
2 ([X,Y ]− j(Z2)X −

j(Z1)Y ). Since H is a subalgebra, [ξ, σ] = [X,Y ] ∈ H and, since
j(Z)X ∈ H for all Z ∈ πz(H) and all X ∈ πv(H), it follows that
j(Z2)X, j(Z1)Y ∈ H. Thus, ∇ξσ ∈ H for all ξ, σ ∈ H and H totally
geodesic.

In the case that H∩ z = {0}, the result follows from Proposition 4.8.
�

Note that the hypothesis of Lemma 4.21 is actually stronger than
necessary. Observe that it is not necessary that j(Z)X ∈ H for all
Z ∈ πz(H) and X ∈ πv(H). Example 4.7 is one such abelian flat
example. The following example is an additional example of a totally
geodesic subalgebra that is neither flat nor abelian and in which there
exists a Z ∈ πz(H) such that j(Z)X /∈ H ∩ v for some X ∈ πv(H).

Example 4.22. Let H = span{X2+Z2,−X3+Z1, X4, X5, X6, Z3, Z4}
be a subalgebra of the Lie algebra n of Example 2.5 (iii). Note that
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j(Z1)X2 = j(Z2)X3 = −X1 /∈ H, however direct calculation shows
that H is totally geodesic.

4.6. Proof of Theorem 4.10. Below is the proof of the result stated
in Theorem 4.10.

Proof. Since H is totally geodesic, ∇XZ = −1
2j(Z)X ∈ H for all

X ∈ H∩v and all Z ∈ H∩z. Thus, H∩v is invariant under j(Z) for all
Z ∈ H∩z. If either H∩z = {0} or H∩v = {0}, then by Proposition 4.8,
H is abelian and flat.

Now consider the cases H ∩ z ̸= {0} and H ∩ v ̸= {0}. By
Corollary 4.15, H = HZ

+⊕HZ
0 for any Z ∈ H∩ z; HZ

0 is always nonzero

since Z ∈ HZ
0 for any Z ∈ H ∩ z. Suppose HZ

+ = {0} for all Z ∈ H ∩ z.
Then j(Z)X = 0 for all Z ∈ H ∩ z and all X ∈ H ∩ v. Assume H is
not abelian. That is, there exist ξ = X + Z1, σ = Y + Z2 ∈ H such
that [ξ, σ] = [X,Y ] = Z ̸= 0 where Z ∈ H ∩ z since H a subalgebra.
Then 0 ̸= |Z|2 = ⟨[X,Y ], Z⟩ = ⟨j(Z)X,Y ⟩. But j(Z)X = 0 for all
X,Z ∈ H, so this is a contradiction. Thus, if HZ

+ = {0}, (i) holds,

namely, H is abelian and flat. If HZ
+ is nonzero for some Z ∈ H ∩ z,

then there exists an X ∈ H∩v such that j(Z)X ̸= 0. Since H is totally
geodesic, ∇XZ = − 1

2j(Z)X ∈ H is nonzero and therefore H is not flat
and abelian and (ii) holds. �
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