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NON-CONSTANT POSITIVE STEADY STATES FOR A
STRONGLY COUPLED NONLINEAR

REACTION-DIFFUSION SYSTEM ARISING IN
POPULATION DYNAMICS

ZIJUAN WEN AND YUAN QI

ABSTRACT. We consider a strongly coupled reaction-
diffusion system describing three interacting species in a
simple food chain structure. Based on the Leray-Schauder
degree theory, the existence of non-constant positive steady
states is investigated. The results indicate that, when the
intrinsic growth rate of the middle species is small, cross-
diffusions of the predators versus the preys are helpful to
create global coexistence (stationary patterns).

1. Introduction. Let Ω be a fixed bounded domain in RN with
smooth boundary ∂Ω. Denote u1, u2 and u3 as the population densities
of three interacting species. In this paper, we investigate an ecosystem
arising in population dynamics in which the third species preys on the
second one and simultaneously the second species preys on the first
one. Namely, the following three-species food chain system will be
considered:

u1t −∆[(d1 + α12u2)u1] = f1 in Ω× (0,∞),

u2t −∆[(d2 + α21u1 + α23u3)u2] = f2 in Ω× (0,∞),

u3t −∆[(d3 + α32u2)u3] = f3 in Ω× (0,∞),
∂u1

∂ν = ∂u2

∂ν = ∂u3

∂ν = 0 on ∂Ω× (0,∞),

ui(x, 0) = ui0(x) in Ω for i = 1, 2, 3

(1.1)
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with

f1 = f1(u1, u2) = u1(a1 − b11u1 − b12u2),

f2 = f2(u1, u2, u3) = u2(a2 + b21u1 − b22u2 − b23u3),

f3 = f3(u2, u3) = u3(a3 + b32u2 − b33u3),

where ν is the unit outward normal to ∂Ω, di, ai, bii, i = 1, 2, 3, α12, α21,
α23, α32, b12, b21, b23 and b32 are all positive constants, ui0, i = 1, 2, 3
are nonnegative functions which are not identically zero. ai denotes
the intrinsic growth rate of the ith species and bii accounts for intra-
specific competitions, while b12, b21, b23 and b32 are the coefficients for
inter-specific interactions. di is the diffusion rate of the ith species,
and αij(i ̸= j) is cross-diffusion pressure of the ith species due to the
presence of the jth species. Diffusion is population pressure due to the
mutual interference between the individuals, describing the migration
of species to avoid crowds. Cross-diffusion expresses the population
flux of one species due to the presence of the other species. For more
details on the biological backgrounds of this model, see also [5, 24].

Problem (1.1) describes a strongly coupled parabolic system in a
food web with three species chasing in succession. The system is self
contained with no population flux across the boundary, the population
of which is not homogeneously distributed due to the consideration of
diffusions. Through global bifurcation techniques, the authors of [20]
discussed the coexistence of weakly coupled steady state problem of
(1.1) with Dirichlet boundary conditions. Moreover, the global stability
of the Neumann problem was investigated. Based on this, further
results about the coexistence of steady state problem of equations
in (1.1) with cross-diffusions and homogeneous Dirichlet boundary
conditions were obtained in [15]. As for the time-dependent solution
of (1.1), the authors of [6] investigated the global existence of the non-
negative weak solution and the non-existence of non-constant positive
steady state.

The strongly coupled population model with Lotka-Volterra type
reaction terms was proposed by Shigesada, Kawasaki and Teramoto
in 1979 and is known as the SKT model [29]. Since then, the two-
species SKT competing system and its overall behavior continue to be
of great interest in literature to both mathematical analysis and real-life
modelling [1, 8, 19, 22, 23, 28, 31]. But more and more attention has
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been recently focused on three or multi-species systems and the SKT
model in any space dimension due to their more complicated patterns.
Meanwhile, the SKT models with other types of reaction terms are
also proposed and investigated [2, 3, 7, 12, 16, 17, 18, 21, 25,
26, 27, 32]. The results obtained mainly concentrate on two aspects,
namely, the stability analysis of constant positive steady states and the
existence of non-constant positive steady states (stationary patterns)
[2, 3, 12, 15, 16, 17, 18, 21, 22, 23, 25, 26, 27, 28, 31, 32], and the
global existence of non-negative time-dependent solutions [1, 6, 8, 19].

What is of great interest in the competition and predator-prey
systems is whether the various species can coexist. In the case that the
species are homogeneously distributed, coexistence indicates that the
mathematical model ultimately reaches a constant positive equilibrium,
whereas in the case that the scatter of species is not homogeneous, the
coexistence state is denoted by the existence of a non-constant positive
steady state, which is called stationary pattern formation.

Starting with Turing’s seminal paper [30] in 1952, diffusion and
cross-diffusion have been observed as causes of the spontaneous emer-
gence of ordered structures, namely, stationary patterns. Since the
1980’s, many authors have investigated the existence of stationary pat-
terns for various reaction-diffusion systems arising in population dy-
namics and have obtained plenty of research results [2, 3, 4, 11, 12,
13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 25, 26, 27, 28, 32]. As
for the ecological systems with cross-diffusions and Lotka-Volterra type
reaction terms, a pioneering work [22] studied the effects of diffusion,
self-diffusion and cross-diffusion of the two-species SKT competition
model. The results show that there is no non-constant steady state if
diffusion or self-diffusion is strong, or if cross-diffusion is weak, while
non-constant positive steady states do exist if cross-diffusions are suit-
ably strong. Moreover, the authors of [25] firstly began to investigate
the three species predator-prey model with cross-diffusion and found
that stationary patterns do not emerge from the diffusion of individual
species but only appear with the introduction of cross-diffusion. They,
together with the other references mentioned above, all confirmed the
role of cross-diffusion in helping to create stationary patterns.

Typically, there are three approaches for investigating the coexis-
tence states of elliptic systems. One is the global bifurcation tech-
nique, for instance, see [4] for the two-species competition model,
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[12, 16, 17, 27] for the two-species prey-predator model and [11, 20]
for the three-species prey-predator systems. A variation of the bifur-
cation technique is the Leray-Schauder degree theoretic approach. In
this direction, see [21, 22, 23] for two and three species competition
systems, [3, 25, 27, 32] for two and three species prey-predator model
and [2] for the competition-competition-mutualist model. The other
two approaches are singular perturbation and the upper and lower so-
lutions method, see [13, 14, 26, 28], respectively.

In this paper, we intend to establish the existence of non-constant
positive steady states of system (1.1) through using Leray-Schauder
degree theory. The paper will be organized as follows. In Section 2,
we discuss the stability of positive equilibria of ODEs and PDEs,
respectively. Moreover, the non-existence of the non-constant positive
steady state for (1.1) with vanished cross-diffusions will be obtained. In
Section 3, we obtain a priori upper and lower bounds for the positive
steady states of (1.1) in order to calculate the topology degree. In
Section 4, we establish the global existence of the non-constant positive
steady state of (1.1) for suitable values of cross-diffusion coefficients α21

and α32. Our results show that global coexistence is likely to occur for
the small intrinsic growth rate of the middle species and large cross-
diffusions of the predators versus the preys, which confirms a pushing
effect of cross-diffusion on stationary pattern formation.

2. Stability of positive equilibria of ODEs and PDEs. Con-
sider the following ODE system:

du1

dt = u1(a1 − b11u1 − b12u2),
du2

dt = u2(a2 + b21u1 − b22u2 − b23u3),
du3

dt = u3(a3 + b32u2 − b33u3),

ui(0) = u0i in Ω for i = 1, 2, 3.

(2.1)

It is known that the solution u = (u1, u2, u3)
T of system (2.1) is non-

negative and bounded for all t ≥ 0 when the initial value condition
(u01, u02, u03)

T ≥ 0 holds. Moreover, if{
a1b22b33 + a1b23b32 + a3b12b23 > a2b12b33,

a1b21b33 + a2b11b33 > a3b11b23,
(2.2)
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then the positive equilibrium of (2.1) is uniquely given by

u1 =
a1b22b33 + a1b23b32 + a3b12b23 − a2b12b33

b11b22b33 + b11b23b32 + b12b21b33
,

u2 =
a1b21b33 + a2b11b33 − a3b11b23
b11b22b33 + b11b23b32 + b12b21b33

,

u3 =
a1b21b32 + a2b11b32 + a3b11b22 + a3b12b21

b11b22b33 + b11b23b32 + b12b21b33
.

Denote u = (u1, u2, u3)
T.

Proposition 2.1. Assume the parameters in (2.1) satisfy (2.2). The
equilibrium u of (2.1) is globally asymptotically stable.

Proof. Define

E(t) = E(u)(t) =

(
u1 − u1 − u1 ln

u1

u1

)
+ ρ1

(
u2 − u2 − u2 ln

u2

u2

)
+ ρ2

(
u3 − u3 − u3 ln

u3

u3

)
,

where ρ1 = (b12b21 + b11b22)b
−2
21 , ρ2 = (b12b21 + b11b22)(b23b32 +

b22b33)b
−2
21 b

−2
32 . It is obvious that E(u) ≥ 0, and E(u) = 0 if and

only if u = u. Referring to (2.1), we compute

dE

dt
=

u1 − u1

u1
u′
1 + ρ1

u2 − u2

u2
u′
2 + ρ2

u3 − u3

u3
u′
3

= (u1 − u1)(a1 − b11u1 − b12u2)

+ ρ1(u2 − u2)(a2 + b21u1 − b22u2 − b23u3)

+ ρ2(u3 − u3)(a3 + b32u2 − b33u3)

= −[b11(u1 − u1)
2 + (b12 − b21ρ1)(u1 − u1)(u2 − u2)

+ ρ1b22(u2 − u2)
2 + (b23ρ1 − b32ρ2)(u2 − u2)(u3 − u3)

+ ρ2b33(u3 − u3)
2]

≤ −δ[(u1 − u1)
2 + (u2 − u2)

2 + (u3 − u3)
2] < 0.
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The above inequalities are obtained since the positive definiteness
of quadratic form b11(u1 − u1)

2 + (b12 − b21ρ1)(u1 − u1)(u2 − u2) +
ρ1b22(u2 − u2)

2 + (b23ρ1 − b32ρ2)(u2 − u2)(u3 − u3) + ρ2b33(u3 − u3)
2.

By the Lyapunov-LaSalle invariance principle in [10], u is globally
asymptotically stable. �

On the other hand, we investigate the local stability of constant pos-
itive steady state for the reaction-diffusion system (1.1). For simplicity,
we denote

Φ(u) = (ϕ1(u), ϕ2(u), ϕ3(u))
T

= ((d1 + α12u2)u1, (d2 + α21u1 + α23u3)u2, (d3 + α32u2)u3)
T,

F(u) = (F1(u), F2(u), F3(u))
T

= (u1(a1 − b11u1 − b12u2), u2(a2 + b21u1 − b22u2 − b23u3),

u3(a3 + b32u2 − b33u3))
T.

Then the problem (1.1) reduces to
∂u
∂t −∆Φ(u) = F(u) in Ω× (0,∞),
∂u
∂ν = 0 on ∂Ω× (0,∞),

u(x, 0) = (u10(x), u20(x), u30(x))
T in Ω,

(2.3)

and the linearization of problem (2.3) at the positive equilibrium u is
∂u
∂t −Φu(u)∆u = Fu(u)u in Ω× (0,∞),
∂u
∂ν = 0 on ∂Ω× (0,∞),

u(x, 0) = (u10(x), u20(x), u30(x))
T in Ω,

(2.4)

where

Φu(u) =

 d1 + α12u2 α12u1 0
α21u2 d2 + α21u1 + α23u3 α23u2

0 α32u3 d3 + α32u2


and

Fu(u) =

 −b11u1 −b12u1 0
b21u2 −b22u2 −b23u2

0 b32u3 −b33u3

 .
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Let {λi, φi}∞i=1 be a set of eigenpairs for −∆ in Ω with no flux
boundary condition, where 0 = λ1 < λ2 ≤ λ3 ≤ · · · , and let E(λi) be
the eigenspace corresponding to λi in H1(Ω), φij , j = 1, . . . , dimE(λi),

be an orthonormal basis of E(λi). Let X = {u ∈ [H1(Ω)]3|(∂u/∂ν) =
0 on ∂Ω} and Xij = {cφij |c ∈ R3}. Then we can do the following
decomposition:

(2.5) X =
∞⊕
i=1

Xi, where Xi =

dimE(λi)⊕
j=1

Xij .

For each i ≥ 1, Xi is invariant under the operator L = Φu(u)∆ +
Fu(u). Then problem (2.4) has a non-trivial solution of the form
u = cϕ exp{µt}, where c ∈ R3 is a constant vector, if and only if
(µ, c) is an eigenpair for the matrix −λiΦu(u) + Fu(u).

The characteristic equation of matrix −λiΦu(u)+Fu(u) is given by

pi(µ) = µ3 +B2,iµ
2 +B1,iµ+B0,i = 0,

where

B2,i = (d1 + α12u2 + d2 + α21u1 + α23u3 + d3 + α32u2)λi + b11u1

+ b22u2 + b33u3 > 0,

B1,i = [(d2 + α21u1)(d3 + α32u2) + d3α23u3

+ d1(d2 + α21u1 + α23u3 + d3 + α32u2) + α12u2(d2 + α23u3

+ d3 + α32u2)]λ
2
i + [b11u1(d2 + α21u1 + α23u3 + d3 + α32u2)

+ b22u2(d3

+ α32u2) + b33u3(d2 + α21u1 + α23u3)

+ (b22u2 + b33u3)(d1 + α12u2)

+ (α23b32 − α32b23)u2u3 + (α12b21 − α21b12)u1u2]λi

+ (b11b22 + b12b21)u1u2 + (b22b33 + b23b32)u2u3 + b11b33u1u3,

B0,i = [(d1d2 + d1α21u1 + d2α12u2)(d3 + α32u2)

+ d3α23u3(d1 + α12u2)]λ
3
i + [b33u3(d1 + α12u2)(d2α23u3)

+ d1α21b33u1u3 + b22u2(d1 + α12u2)(d3 + α32u2)

+ (α23b32 − α32b23)u2u3(d1

+ α12u2) + (α12b21 − α21b12)u1u2(d3 + α32u2) + d3b11u1(d2
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+ α21u1 + α23u3) + b11α32u1u2(d2 + α21u1)]λ
2
i

+ [(b11b22 + b12b21)(d3 + α32u2)u1u2

+ (b22b33 + b23b32)(d1 + α12u2)u2u3

+ b11b33(d2 + α21u1 + α23u3)u1u3

+ ((α12b21 − α21b12)b33 + (α23b32 − α32b23)b11)u1u2u3]λi

+ (b11b22b33 + b12b21b33 + b11b23b32)u1u2u3.

Obviously, if

(2.6) α12b21 ≥ α21b12, α23b32 ≥ α32b23,

then B1,i > 0, B0,i > 0. Moreover, an elementary calculation shows
that B2,iB1,i−B0,i > 0 for all i ≥ 1. It follows from the Routh-Hurwitz
criterion that the three roots µ1,i, µ2,i and µ3,i of pi(µ) = 0 all have
negative real parts for all i ≥ 1.

In order to obtain the local stability of u, we need to prove that
there exists a positive constant δ such that

(2.7) Re {µ1,i},Re {µ2,i},Re {µ3,i} ≤ −δ for all i ≥ 1.

Let µ = λiζ. Then

pi(µ) = λ3
i ζ

3 +B2,iλ
2
i ζ

2 +B1,iλiζ +B0,i , p̃i(ζ).

Notice that λi → ∞ as i → 0. Through a simple calculation, we can
obtain

lim
i→0

p̃i(µ)

λ3
i

= ζ3 + (d1 + α12u2 + d2 + α21u1 + α23u2)ζ
2

+ [(d2 + α21u1)(d3 + α32u2) + d3α23u3

+ d1(d2 + α21u1 + α23u3 + d3 + α32u2)

+ α12u2(d2 + α23u3 + d3 + α32u2)]ζ

+ (d1d2 + d1α21u1 + d2α12u2)(d3 + α32u2)

+ d3α23u3(d1 + α12u2) , p̃(ζ).

By the Routh-Hurwitz criterion, the three roots ζ1, ζ2 and ζ3 of p̃(ζ) = 0
all have negative real parts. Then we can conclude that there exists

a positive constant δ̃ such that Re {ζ1},Re {ζ2},Re {ζ3} ≤ −δ̃. By
continuity, we see that there exists i0 such that the three roots of
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p̃i(ζ) = 0 satisfy Re {ζi,1},Re {ζi,2},Re {ζi,3} ≤ −δ̃/2 for all i ≥ i0.
Then

Re {µi,1},Re {µi,2},Re {µi,3} ≤ −λiδ̃

2
≤ − δ̃

2

for all i ≥ i0. Let

δ = min

{
δ̃

2
, max
1≤i≤i0

{Re {µi,1},Re {µi,2},Re {µi,3}}
}
.

Then (2.7) holds true and we have the following results.

Proposition 2.2. Suppose that (2.2) and (2.6) hold true. Then the
positive equilibrium u of (1.1) is uniformly asymptotically stable.

It is difficult to obtain the global stability of positive equilibrium u
for cross-diffusion system (1.1). But, for the weakly coupled system of
(1.1), the authors of [20] investigated the global stability of positive
equilibrium. Their result, i.e., Theorem 2.2, shows that the positive
equilibrium u of (1.1) is globally asymptotically stable provided that
α12 = α21 = α23 = α32 = 0. So we have the following conclusion
immediately.

Proposition 2.3. Let α12 = α21 = α23 = α32 = 0. Then problem
(1.1) has no non-constant positive steady state.

3. A priori bounds for positive steady states of PDEs. The
corresponding steady state problem of (1.1) is{

−∆Φ(u) = F(u) in Ω,
∂u
∂ν = 0 on ∂Ω.

(3.1)

In this section, we give a priori positive upper and lower bounds for
positive solutions to the elliptic system (3.1). For this, we need the
following two results.

Lemma 3.1. (Maximum principle (see [23])). Let g(x,w) ∈ C(Ω ×
R1) and bj(x) ∈ C(Ω), j = 1, . . . , N .
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(i) If w ∈ C2(Ω) ∩ C1(Ω) satisfies{
−∆w(x) ≤

∑N
j=1 bj(x)wxj + g(x,w(x)) in Ω,

∂w
∂ν ≤ 0 on ∂Ω,

and w(x0) = maxΩ w, then g(x0, w(x0)) ≥ 0.

(ii) If w ∈ C2(Ω) ∩ C1(Ω) satisfies{
−∆w(x) ≥

∑N
j=1 bj(x)wxj + g(x,w(x)) in Ω,

∂w
∂ν ≥ 0 on ∂Ω,

and w(x0) = minΩ w, then g(x0, w(x0)) ≤ 0.

Lemma 3.2. (Harnack inequality (see [23])). Let w ∈ C2(Ω)∩C1(Ω)
be a positive solution to −∆w(x) = c(x)w(x) with c ∈ C(Ω), subject
to a homogeneous Neumann boundary condition. Then there exists a
positive constant C = C(N,Ω, ∥c∥∞) such that

max
Ω

w ≤ Cmin
Ω

w.

In this paper, we assume that the classical solution is in C2(Ω) ∩
C1(Ω). The results of upper and lower bounds can be stated as follows.

Proposition 3.3. (Upper bound). For any positive classical solution
u of (3.1),

max
Ω

ui ≤ Mi, i = 1, 2, 3,

where

M1 =
a1(d1b12 + a1α12)

d1b11b12
,

M2 =

(
d2 + α21M1 +

α23(a2 + b21M1)

b23

)
a2 + b21M1

d2b22
,

and

M3 = (d3 + α32M2)
a3 + b32M2

d3b33
.
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Proof. Problem (3.1) can be rewritten as
−∆ϕ1 = u1(a1 − b11u1 − b12u2) in Ω,

−∆ϕ2 = u2(a2 + b21u1 − b22u2 − b23u3) in Ω,

−∆ϕ3 = u3(a3 + b32u2 − b33u3) in Ω,
∂ϕ1

∂ν = ∂ϕ2

∂ν = ∂ϕ3

∂ν = 0 on ∂Ω.

(3.2)

Let xi ∈ Ω be a point such that ϕi(xi) = maxΩ ϕi. Applying
Lemma 3.1, we have

u1(x1)(a1 − b11u1(x1)− b12u2(x1)) ≥ 0.

Then, by the positivity of u, one can obtain

u1(x1) ≤
a1
b11

, u2(x1) ≤
a1
b12

and

max
Ω

u1 ≤ 1

d1
max
Ω

ϕ1 =
1

d1
(d1 + α12u2(x1))u1(x1)

≤
(
d1 +

α12a1
b12

)
a1

d1b11
.

Similarly, from the second equation in (3.2) and Lemma 3.1, we can
obtain

u2(x2) ≤
a2 + b21M1

b22
, u3(x2) ≤

a2 + b21M1

b23

and

max
Ω

u2 ≤ 1

d2
max
Ω

ϕ2 =
1

d2
(d2 + α21u1(x2) + α23u3(x2))u2(x2)

≤
(
d2 + α21M1 +

α23(a2 + b21M1)

b23

)
a2 + b21M1

d2b22
.

From Lemma 3.1 and the third equation in (3.2), we conclude that
u3(x3) ≤ (a3 + b32M2)/b33. Thus,

max
Ω

u3 ≤ 1

d3
max
Ω

ϕ3 =
1

d3
(d3 + α32u2(x3))u3(x3)

≤ (d3 + α32M2)
a3 + b32M2

d3b33
.
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This completes the proof. �

Proposition 3.4. (Lower bound). Let C3 = C3(N,Ω, dj , aj , bjj , j =
1, 2, 3, α12, α21, α23, α32, b12, b21, b23, b32) be a given positive constant.
Then there exist positive constants mi = mi(N,Ω, dj , aj , bjj , j =
1, 2, 3, α12, α21, α23, α32, b12, b21, b23, b32), i = 1, 2, 3, such that, when
a3b23 > a2b33(1 + (α32/d3)M2)C3, the positive classical solution u of
(3.1) satisfies

min
Ω

ui ≥ mi, i = 1, 2, 3.

Proof. Problem (3.1) is equivalent to
−∆ϕ1 = a1−b11u1−b12u2

d1+α12u2
ϕ1 in Ω,

−∆ϕ2 = a2+b21u1−b22u2−b23u3

d2+α21u1+α23u3
ϕ2 in Ω,

−∆ϕ3 = a3+b32u2−b33u3

d3+α32u2
ϕ3 in Ω,

∂ϕ1

∂ν = ∂ϕ2

∂ν = ∂ϕ3

∂ν = 0 on ∂Ω.

(3.3)

Since inequalities

∥a1 − b11u1 − b12u2

d1 + α12u2
∥∞ ≤ a1 + b11M1 + b12M2

d1
,

∥a2 + b21u1 − b22u2 − b23u3

d2 + α21u1 + α23u3
∥∞ ≤ a2 + b21M1 + b22M2 + b23M3

d2
,

∥a3 + b32u2 − b33u3

d3 + α32u2
∥∞ ≤ a3 + b32M2 + b33M3

d3

hold, the Harnack inequality in Lemma 3.2 shows that there exist
positive constants Ci = Ci(N,Ω, dj , aj , bjj , j = 1, 2, 3, α12, α21, α23,
α32, b12, b21, b23, b32), i = 1, 2, 3, such that

max
Ω

ϕi ≤ Ci min
Ω

ϕi, i = 1, 2, 3.

Thus, 

maxΩ u1

minΩ u1
≤ maxΩ ϕ1

minΩ ϕ1

d1+α12 maxΩ u2

d1+α12 minΩ u2
≤ C1(1 +

α12

d1
M2) , C4,

maxΩ u2

minΩ u2
≤ maxΩ ϕ2

minΩ ϕ2

d2+α21 maxΩ u1+α23 maxΩ u3

d2+α21 minΩ u1+α23 minΩ u3

≤ C2(1 +
α21

d2
M1 +

α23

d2
M3) , C5,

maxΩ u3

minΩ u3
≤ maxΩ ϕ3

minΩ ϕ3

d3+α32 maxΩ u2

d3+α32 minΩ u2
≤ C3(1 +

α32

d3
M2) , C6.

(3.4)



NON-CONSTANT POSITIVE STEADY STATES 1345

On the other hand, by integrating the third equation in (3.2), we
have ∫

Ω

u3(a3 + b32u2 − b33u3) dx = 0.

Then there exists a point z3 ∈ Ω such that a3+ b32u2(z3)− b33u3(z3) =
0, which implies that u3(z3) ≥ a3/b33 and

min
Ω

u3 ≥ 1

C6
max
Ω

u3 ≥ 1

C6
u3(z3) ≥

a3
C6b33

, m3.

Similarly, by integrating the second equation in (3.2), we obtain∫
Ω

u2(a2 + b21u1 − b22u2 − b23u3) dx = 0.

Then there exists a point z2 ∈ Ω such that a2+ b21u1(z2)− b22u2(z2)−
b23u3(z2) = 0. It follows then that

u1(z2) >
b23u3(z2)− a2

b21
>

b23m3 − a2
b21

=
1

b21

[
a3b23

b33(1 + (α32/d3)M2)C3
− a2

]
, m∗

1.

So

min
Ω

u1 ≥ 1

C4
max
Ω

u1 ≥ 1

C4
u1(z2) >

m∗
1

C4
, m1.

Now we need to estimate the positive lower bound of u2. Denote
M∗

2 = maxΩ u2. Let y0, z0 ∈ Ω be two points such that ϕ3(y0) =
maxΩ ϕ3 and ϕ3(z0) = minΩ ϕ3. Applying Lemma 3.1 to the third
equation in (3.3), we have

a3 + b32u2(y0)− b33u3(y0) ≥ 0 ≥ a3 + b32u2(z0)− b33u3(z0).

This implies that

u3(y0) ≤
a3 + b32M

∗
2

b33
, u3(z0) ≥

a3
b33

,

and

maxΩ u3

minΩ u3
≤

(d3 + α32 maxΩ u2)maxΩ u3

(d3 + α32 minΩ u2)minΩ u3

maxΩ ϕ3

minΩ ϕ3
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≤
(
1 +

α32

d3
M∗

2

)
(d3 + α32u2(y0))u3(y0)

(d3 + α32u2(z0))u3(z0)

≤
(
1 +

α32

d3
M∗

2

)2
a3 + b32M

∗
2

a3
.

Hence, there exists a positive constant ϵ > 0 such that M∗
2 > ϵ, which,

combining with (3.4), indicates that there exists a positive constant m2

such that minΩ u2 ≥ m2. �

Remark 3.5. According to [32], [9, Theorem 8.20] and [23, Lemma
2.2], we know that C = C(N,Ω, ∥c∥∞) in Lemma 3.2 is monotone
increasing with respect to ∥c∥∞. Fix parameters in system (3.1) except
for b23. If b23 increases, then M2 and (a3 + b32M2 + b33M3)/d3 both
decrease, and then C3 decreases. Therefore, a large enough value of b23
can ensure the inequality

a3b23 > a2b33

(
1 +

α32

d3
M2

)
C3.

4. Existence of non-constant positive steady states. In this
section, we shall use a Leray-Schauder degree theory to develop a
general setting to establish the existence of stationary patterns for
system (1.1). Denote

X+ = {u ∈ X|u > 0 on Ω},
B(M) = {u ∈ X+|M−1 < ui < M on Ω, i = 1, 2, 3}.

As in Section 2, we denote the constant positive equilibrium of system
(1.1) by u.

Since the determinant detΦu(u) is positive for all non-negative u,
[Φu(u)]

−1 exists and det{[Φu(u)]
−1} is positive. Thus, u is a positive

solution of system (3.1) if and only if

Ψ(u) , u− (I−∆)−1{[Φu(u)]
−1[F(u)(4.1)

+∇uΦuu(u)∇u] + u} = 0 in X+,

where (I−∆)−1 is the inverse of I−∆ inX, subject to the homogeneous
Neumann boundary condition. Since Ψ(·) is a compact perturbation of
the identity operator, the Leray-Schauder degree deg (Ψ(·), 0, B(M)) is
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well defined if Ψ(u) ̸= 0 for any u ∈ ∂B(M). Further, an elementary
calculation shows

DuΨ(u) = I− (I−∆)−1{[Φu(u)]
−1Fu(u) + I} in L(X,X).

We recall that, if DuΨ does not have any pure imaginary or zero eigen-
value, the index of Ψ at the fixed point u∗ is defined as index (Ψ(·),u∗) =
(−1)r, where r is the total number of eigenvalues of DuΨ with negative
real parts (counting multiplicities). Then the degree deg (Ψ(·), 0, B(M))
is equal to the sum of the indexes over all solutions to Ψ = 0 in B(M),
provided that Ψ ̸= 0 on ∂B(M).

In order to calculate r, we employ the eigenspaces of −∆. Using the
decomposition (2.5) we investigate the eigenvalues of DuΨ(u). First,
we know Xij is invariant under DuΨ(u) for each i ∈ N and each
j ∈ [1, dimE(λi)] ∩ N, i.e., DuΨ(u)u ∈ Xij for any u ∈ Xij . Hence, µ
is an eigenvalue of DuΨ(u) on Xij if and only if it is an eigenvalue of
the matrix

I− 1

1 + λi

{
[Φu(u)]

−1Fu(u) + I
}
=

1

1 + λi

{
λiI− [Φu(u)]

−1Fu(u)
}
.

Obviously, det {Fu(u)} < 0 under the condition (2.2). So DuΨ(u) is
invertible if and only if, for any i ≥ 1, the matrix

1

1 + λi
{λiI− [Φu(u)]

−1Fu(u)}

is non-singular. Denote

H(λ) , H(u, λ) = det {λI− [Φu(u)]
−1Fu(u)}.

We notice that, if H(λi) ̸= 0, then for each j ∈ [1, dimE(λi)], the
number of negative eigenvalues of DuΨ(u) on Xij is odd if and only if
H(λi) < 0. In conclusion, we have the following result.

Proposition 4.1. Assume that, for each i ≥ 1, the matrix λiI −
[Φu(u)]

−1Fu(u) is non-singular. Then

index (Ψ(·),u) = (−1)σ, where σ =
∑
i≥1

H(λi)<0

dimE(λi).
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According to the above proposition, we should consider the sign of
H(λi) in order to calculate index (Ψ(·),u). Since

H(λ) = det {[Φu(u)]
−1}det {λΦu(u)− Fu(u)}

and det {[Φu(u)]
−1} > 0, we only need to consider the sign of

det {λΦu(u)− Fu(u)}. A direct calculation shows

det {λΦu(u)− Fu(u)} = A3(α21, α32)λ
3 +A2(α21, α32)λ

2

+A1(α21, α32)λ− det{Fu(ū)}

, q(α21, α32;λ),

where

A3(α21, α32) = (d1 + α12u2)(d2d3 + d2α32u2 + d3α23u3)

+ d1α21u1(d3 + α32u2) > 0,

A2(α21, α32) = d3b11u1(d2 + α21u1 + α23u3) + b11α32u1u2(d2 + α21u1)

+ b33α12u2u3(d2+α23u3)+d1b33u3(d2+α21u1+α23u3)

+ b22u2(d1 + α12u2)(d3 + α32u2)

+ (α23b32 − α32b23)u2u3(d1 + α12u2)

+ (α12b21 − α21b12)u1u2(d3 + α32u2),

A1(α21, α32) = b11b33u1u3(d2 + α21u1 + α23u3) + (b22b33 + b23b32)u2u3

· (d1 + α12u2) + (b11b22 + b12b21)u1u2(d3 + α32u2)

+ [(α23b32 − α32b23)b11 + (α12b21 − α21b12)b33]u1u2u3.

Let λ1, λ2 and λ3 be the three roots of q(α21, α32;λ) = 0 with
Re {λ1} ≤ Re {λ2} ≤ Re {λ3}. Then

λ1λ2λ3=
det{Fu(u)}
A3(α21, α32)

=− (b11b22b33 + b11b23b32 + b12b21b33)u1u2u3

A3(α21, α32)
<0.

Notice that A3 > 0. So one of λ1, λ2, λ3 is real and negative, and the
product of the other two is positive.

Now we consider the dependence of q(α21, α32;λ) on α21. Perform
the following limits:

lim
α21→∞

A3(α21, α32)

α21
= d1(d3 + α32u2)u1 , Λ3(α32) > 0,
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lim
α21→∞

A2(α21, α32)

α21
= b11(d3 + α32u2)u

2
1 + d1b33u1u3

− b12(d3 + α32u2)ū1u2 , Λ2(α32),

lim
α21→∞

A1(α21, α32)

α21
= b33(b11u1 − b12u2)ū1ū3 , Λ1,

and

lim
α21→∞

q(α21, α32;λ)

α21
= λ[Λ3(α32)λ

2 + Λ2(α32)λ+ Λ1].

If the parameters ai, bij of reaction terms satisfy

(4.2) b11(a1b22b33+ a1b23b32+2a3b12b23) < b33(a1b12b21+2a2b11b12),

then Λ1 < 0, and we have the following result.

Proposition 4.2. Suppose that (2.2) and (4.2) hold true. Then there
exists a positive constant α∗

21, such that for α21 ≥ α∗
21, the three roots

λ1(α21), λ2(α21) and λ3(α21) of q(α21, α32;λ) = 0 are all real and
satisfy 

limα21→∞ λ1(α21) =
−Λ2−

√
Λ2

2−4Λ1Λ3

2Λ3
< 0,

limα21→∞ λ2(α21) = 0,

limα21→∞ λ3(α21) =
−Λ2+

√
Λ2

2−4Λ1Λ3

2Λ3
, λ > 0.

(4.3)

Moreover, we can conclude that


−∞ < λ1(α21) < 0 < λ2(α21) < λ3(α21),

q(α21, α32;λ) < 0 if λ ∈ (−∞, λ1(α21)) ∪ (λ2(α21), λ3(α21)),

q(α21, α32;λ) > 0 if λ ∈ (λ1(α21), λ2(α21)) ∪ (λ3(α21),∞).

(4.4)

Next we discuss the dependence of q(α21, α32;λ) on α32. We have
the following limits:

lim
α32→∞

A3(α21, α32)

α32
= d2u2(d1 + α12u2) + d1α21u1u2 , Λ̃3(α21),

lim
α32→∞

A2(α21, α32)

α32
= b11(d2 + α21u1)u1u2 + b22(d1 + α12u2)u

2
2

− b23(d1 + α12u2)u2u3 , Λ̃2(α21),
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lim
α32→∞

A1(α21, α32)

α32
= [(b11b22 + b12b21)u2 − b11b23u3]u1u2 , Λ̃1,

and

lim
α32→∞

q(α21, α32;λ)

α32
= λ[Λ̃3(α21)λ

2 + Λ̃2(α21)λ+ Λ̃1].

Similarly, under the condition

(4.5) (b11b22 + b12b21)(a1b21b33 + a2b11b33)

< b11b23(a1b21b32 + a2b11b32 + 2a3b11b22 + 2a3b12b21),

we can acquire Λ̃1 < 0 and the following results.

Proposition 4.3. Suppose that (2.2) and (4.5) hold true. Then there
exists a positive constant α∗

32 such that, for α32 ≥ α∗
32, the three roots

λ1(α32), λ2(α32), λ3(α32) of q(α21, α32;λ) = 0 are all real and satisfy
limα32→∞ λ1(α32) =

−Λ̃2−
√

Λ̃2
2−4Λ̃1Λ̃3

2Λ̃3
< 0,

limα32→∞ λ2(α32) = 0,

limα32→∞ λ3(α32) =
−Λ̃2+

√
Λ̃2

2−4Λ̃1Λ̃3

2Λ̃3
, λ

′

> 0.

(4.6)

Moreover, we can conclude that
−∞ < λ1(α32) < 0 < λ2(α32) < λ3(α32),

q(α21, α32;λ) < 0 if λ ∈ (−∞, λ1(α32)) ∪ (λ2(α32), λ3(α32)),

q(α21, α32;λ) > 0 if λ ∈ (λ1(α32), λ2(α32)) ∪ (λ3(α32),∞).

Now we establish the global existence of non-constant positive so-
lution to (1.1) with respect to the cross-diffusion coefficients α21 and
α32, respectively, as the other parameters are all fixed positive con-
stants. Our results are as follows.

Theorem 4.4. Assume that parameters di, ai, bii, i = 1, 2, 3, α12, α23,
α32, b12, b21 and b32 are all fixed, and satisfy (2.2) and (4.2). Let λ be
given by the limit (4.3). If λ ∈ (λn, λn+1) for some n ≥ 1, and the sum
σn =

∑n
i=1 dimE(λi) is odd, then there exists a positive constant α∗

21

such that problem (1.1) has at least one non-constant positive steady
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state provided that α21 > α∗
21 and

a3b23 > a2b33

(
1 +

α32

d3
M2

)
C3

are fulfilled.

Proof. By Proposition 4.2, there exists a positive constant α∗
21 such

that, if α21 > α∗
21, (4.3) holds and

(4.7) λ1(α21) < 0 = λ1 < λ2(α21) < λ2, λ3(α21) ∈ (λn, λn+1).

For t ∈ [0, 1], define

di(t) ≡ di, α12(t) = tα12, α21(t) = tα21,

α23(t) = tα23, α32(t) = tα32

and

Φ(t;u) = (ϕ1(t;u), ϕ2(t;u), ϕ3(t;u))
T

= ((d1(t) + α12(t)u2)u1, (d2(t) + α21(t)u1 + α23(t)u3)u2,

(d3(t) + α32(t)u2)u3)
T,

and then consider the problem{
−∆Φ(t;u) = F(u) in Ω,
∂u
∂ν = 0 on ∂Ω.

(4.8)

Then u is a non-constant positive steady state of (1.1) if and only if
it is a non-constant positive solution of problem (4.8) for t = 1. It is
obvious that u is the unique constant positive solution of (4.8) for any
t ∈ [0, 1]. From (4.1), we know that for any t ∈ [0, 1], u is a positive
solution of problem (4.8) if and only if

Ψ(t;u) , u−(I−∆)−1{[Φu(t;u)]
−1[F(u)+∇uΦuu(t;u)∇u]+u} = 0

in X+.

It is evident that Ψ(1;u) = Ψ(u). Proposition 4.1 indicates that
Ψ(0;u) = 0 only has constant positive solution u in X+. A direct
calculation shows that

DuΨ = I− (I−∆)−1{[Φu(t;u)]
−1Fu(u) + I}.
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In particular,

DuΨ(0;u) = I− (I−∆)−1{[Φ̂u(u)]
−1Fu(u) + I},

DuΨ(1;u) = I− (I−∆)−1{[Φu(u)]
−1Fu(u) + I} = DuΨ(u).

Here Φ̂u(u) =

(
d1 0 0
0 d2 0
0 0 d3

)
. Moreover, we already know that

(4.9) H(λ) = det{[Φu(ū)]
−1}q(α21, α32;λ)

and det {[Φu(u)]
−1} > 0.

For t = 1, by (4.4), (4.7) and (4.9), we have
H(λ0) = H(0) > 0,

H(λi) < 0 when 1 ≤ i ≤ n,

H(λi) > 0 when i > n.

Thus, 0 is not an eigenvalue of the matrix λiI− [Φu(u)]
−1Fu(u) for all

i ≥ 0, and ∑
i≥1

H(λi)<0

dimE(λi) =
n∑

i=1

dimE(λi) = σn

is odd. It follows from Proposition 4.1 that

(4.10) index (Ψ(1; ·),u) = (−1)r = (−1)σn = −1.

For t = 0, we have H(λi) > 0 for all i ≥ 0. Similarly, we can prove
that

(4.11) index (Ψ(0; ·),u) = (−1)0 = 1.

On the other hand, by Proposition 3.3 and Proposition 3.4, there
exists a positive constant M such that for all t ∈ [0, 1], the positive
solution of (4.8) satisfy M−1 < u1, u2, u3 < M and Ψ(t;u) ̸= 0 on
∂B(M). By the homotopy invariance of the topological degree, we can
obtain

deg (Ψ(1; ·), 0, B(M)) = deg (Ψ(0; ·), 0, B(M))(4.12)

Suppose, on the contrary, that the assertion is not true for some
α21 = α21 ≥ α∗

21. Let α21 be fixed as α21. Now, by our supposition,
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both equations Ψ(1;u) = 0 and Ψ(0;u) = 0 have only the constant
positive solution u in B(M). Thus, by (4.10) and (4.11),

deg (Ψ(1; ·), 0, B(M)) = index (Ψ(1; ·),u) = −1,

deg (Ψ(0; ·), 0, B(M)) = index (Ψ(0; ·),u) = 1,

which contradicts (4.12). The proof is completed. �

By a similar approach as in the proof of Theorem 4.4, we can acquire
the following result about existence.

Theorem 4.5. Assume that parameters di, ai, bii, i = 1, 2, 3, α12, α21,

α23, b12, b21 and b32 are all fixed and satisfy (2.2) and (4.5). Let λ
′

be

given by the limit (4.6). If λ
′

∈ (λn, λn+1) for some n ≥ 1, and the sum
σn =

∑n
i=1 dimE(λi) is odd, then there exists a positive constant α∗

32

such that problem (1.1) has at least one non-constant positive steady
state provided that α32 > α∗

32 and

a3b23 > a2b33

(
1 +

α32

d3
M2

)
C3

hold true.

Remark 4.6. Theorems 4.4 and 4.5 indicate that when inter-specific
interaction b23 is big enough and cross-diffusion α21 or α32 is large, it is
easy to create non-constant positive steady states (stationary patterns).

Acknowledgments. The authors greatly appreciate the referee for
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