
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 45, Number 4, 2015

ON EXPECTED NUMBER OF LEVEL CROSSINGS OF
A RANDOM HYPERBOLIC POLYNOMIAL

MINA KETAN MAHANTI AND LOKNATH SAHOO

ABSTRACT. Let g1(ω), g2(ω), . . . , gn(ω) be independent
and normally distributed random variables with mean zero
and variance one. We show that, for large values of n, the
expected number of times the random hyperbolic polynomial
y = g1(ω) coshx + g2(ω) cosh 2x + · · · + gn(ω) coshnx crosses

the line y = L, where L is a real number, is 1
π
logn+ O(1) if

L = o(
√
n) or L/

√
n = O(1), but decreases steadily as O(L)

increases in magnitude and ultimately becomes negligible
when n−1 logL/

√
n → ∞.

1. Introduction. Let g1(ω), g2(ω), . . . , gn(ω) be normally distribu-
ted and independent random variables defined on a fixed probability
space (Ω, A, Pr) with mean zero and variance one. Consider the family
of curves given by the random hyperbolic polynomial

(1.1) y = fn(x) =

n∑
j=1

gj(ω) cosh jx.

The behavior of these curves to an extent can be understood by knowing
their oscillations about different curves in the x-y plane. Das [3] found
out the expected number of oscillations of fn(x) about the x-axis and
Farahmand [4] calculated its expected number of L-level crossings, i.e.,
oscillations about the line y = L where L does not exceed O(

√
n). Both

of the estimates are asymptotic to 1
π log n with an error term

√
log n. It

will be interesting to see how the L-level crossings change if L exceeds
O(

√
n). We show that the average number of L-level crossings of fn(x)

decreases as L increases beyond O(
√
n) and attains a specific value.

The average number of oscillations about y = L does not change if L is
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larger than this specific value. In the sequel, we have also shown that
the error term

√
log n should in fact be O(1).

Let ENn(a, b) stand for the expected number of real zeros of fn(x) =
L in (a, b). We prove the following theorem:

Theorem 1.1. If the coefficients of fn(x) in (1.1) are independent
and normally distributed random variables with mean zero and variance
one, then, for all sufficiently large values of n,

ENn(−∞,∞) =



1
π log n+O(1), if L = o(

√
n) or L = O(

√
n);

1
π log(

n
log hn

)+O(1), if hn → ∞ but log hn=o(n);
1
π log coth((4n)

−1 log hn) + 1 +O(n−1 log n),

if log hn = O(n);

1 + o(1), if n−1 log hn → ∞,

where hn = L/
√
n.

The paper has been organized in the following manner. In Section 2,
we discuss some preliminary concepts required for the proof of the
theorem. We discuss the effect of different values of L, which are
mentioned in the statement of the theorem, on the expected number of
real zeros of fn(x)−L in Lemmas 3.1, 3.2 and 3.3 proved in Section 3.
We first discuss some preliminary analysis required for the proof.

2. Preliminary analysis. Let us consider fn(x) as a non-stationary
random process. The Kac-Rice formula [2] for the expected number of
L-level crossings in (a, b) of such a process is given by

ENn(a, b) =

∫ b

a

√
Dn

Anπ
e−(L2Cn)/(2Dn)dx

+

∫ b

a

LBn√
2πA

3/2
n

e−(L2)/(2An)ϕ

(
LBn√
2AnDn

)
dx(2.1)

= I1(a, b) + I2(a, b),

where An =
∑n

j=1 cosh
2 jx, Bn =

∑n
j=1 j cosh jx sinh jx, Cn =∑n

j=1 j
2 sinh2 jx, Dn = AnCn − B2

n and ϕ(x) = (2/
√
π)

∫ x

0
e−t2dt is

the error function. Since the integrands in (2.1) are even functions of
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x, we note that

(2.2) ENn(−∞,∞) = 2I1(0,∞) + 2I2(0,∞).

Our aim will be to break up (0,∞) into suitable subintervals (a, b) such
that it will be possible to calculate I1(a, b) and I2(a, b) after obtaining
the dominant terms of the respective integrands. Moreover, calculation
of I1(0, 1) will need special attention as it will provide the asymptotic
estimate of ENn(0,∞). The intervals where we can express An, Bn

and Cn in terms of well-defined dominant terms are (0, 6m−1 logm)
and (06m−1 logm,∞), where m = 2n+ 1. Using the dominant terms,
we shall then obtain some useful results by means of which we can
calculate the expected number of real zeros of fn(x) − L in the above
mentioned two intervals in Section 3.

Consider the interval (0, 6m−1 logm). Let us write An, Bn and Cn

in the following manner:

4An = mu(1 + U), 8Bn = m2v(1 + V ), 48Cn = m3w(1 +W ),

where λ = mx, u = u(λ) = 1+λ−1 sinhλ, U = (−2+ τ sinhλ)(mu)−1,
v = v(λ) = du/dλ, V = v−1(x coshλ + m−2τ ′ sinhλ), w = w(λ) =
3d2u/dλ2 − 1, W = w−1{3m−3τ ′′ sinhλ + m−2(6τ ′ coshλ + coshλ +
3x sinhλ)} and τ = 1/ sinhx− 1/x.

The validity of the above expressions can be verified from the
definitions of An, Bn and Cn mentioned earlier. Note that τ can be
represented as the following power series:

τ =
∞∑
k=1

(
2(1− 22k−1)B2k/(2k)!

)
x2k−1,

where B2k is the Bernoulli’s number of degree 2k [5]. The series
converges absolutely and uniformly in (0,1). Consequently τ , τ ′′ and
τ ′′′ are bounded in (0,1), and it follows from definitions of U , V and
W that in (0, 6m−1),

U = O(m−1), V = O(m−2), W = O(m−3).

On the other hand, if x is in (6m−1, 3m−1 logm), we observe that U =
O(xe−λ), V = O(x2) and W = O(x2). Therefore, in (0, 3m−1 logm),
we have

A−1
n

√
12Dn = mαn(1 +O(x/ sinhλ))
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and
Cn/Dn = 4(2n+ 1)−1δn(1 +O(x/ sinhλ)),

where

αn = αn(λ) = u−1(uw − 3v2)1/2, δn = δn(λ) = w(uw − 3v2)−1.

Thus, if (a, b) ⊂ (0, 3m−1 logm),

(2.3) I1(a, b) = (2
√
3π)−1

∫ mb

ma

αne
−2hnδn{1 +O(x/ sinhλ)} dλ.

Since the integral in (2.3) is not amenable to direct integration, we need
a suitable approximation of it. To this end, we need to calculate upper
and lower bounds of αn and δn in (6m−1, 3m−1 logm). In this respect,
the following inequality involving αn, obtainable after applying a little
algebra, will be useful:

(2.4)
λ2 − 3λ − 3

3 sinh λ
<

αn√
3
− 1

λ
<

λ2 − 3λ + 3

3 sinhλ
.

We also note that δn can be written in the following manner:

δn = (λ3/ sinhλ)(p1/p2),

where p1 = wλ/ sinhλ and p2 = λ4(uw − 3v2) sinh−2 λ. From the
derivatives of p1 and p2 we notice that p1 is a monotonically increas-
ing function and p2 is a monotonically decreasing function of x in
(6m−1,∞). Using this information, we find that, in (6m−1, 3m−1 logm),

(2.5) 0.5λ3/ sinhλ < δn < (λ3/ sinhλ).

As a consequence, in (a, b), we have

e−(2hn(am)3)/(sinh(am)) ≤ e−2hnδn(λ) ≤ e−(hn(bm)3)/(sinh(bm)).

With the help of this inequality and (2.4), we conclude that

e−2hn(am)3/sinh(am)

[
log

b

a
+

∫ mb

ma

λ2 − 3λ− 3

3 sinhλ
dλ

]
(1 +O(n−1))

≤ 2πI1(a, b)

≤ e−2hn(bm)3/sinh(bm)

[
log

b

a
+

∫ mb

ma

λ2 − 3λ+ 3

3 sinhλ
dλ

]
(1 +O(n−1)).

(2.6)
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It is to be noted that I1(6m
−1, 3m−1 logm) can be calculated with the

help of (2.6) if hn → ∞. But if hn → 0 or hn = O(1), we shall have to
use (2.7), which can be obtained by integration by parts and using the
bounds of αn and δn that have been mentioned above

(2.7)
1√
3

∫
αne

−2hnδndλ = log λe−2hnδn

+ 2ξ1

[
hnδn log λ+

∫ {(
αn√
3
− 1

λ

)
− hnξ2λ

2

sinhλ
dλ

}]
,

where e−hnδ(6) ≤ ξ1 < 1 and 0.5 ≤ ξ2 < 1.

Let us now consider the interval(3m−1 logm,∞). In this interval, for
all sufficiently large n, ns sinhs x(sinhnx)−1, where s is a finite positive
number, a monotonically decreasing function of x and tends to zero
for sufficiently large values of n. Therefore, the following relations are
valid at x = a, where a ≥ 3m−1 logm:

4An = gm(x)(1 +O(ame−am)),

8Bn = gm(x)(m− cothx+O(ne−2am)),

16Cn = gm(x)(m2 + 1− 2m cothx+ 2 cos ech2x+O(n3ae−am)).

The O( ) terms decrease in magnitude as x increases. Hence, in any
interval (a, b) ⊂ (3m−1 logm,∞), we have

(2.8) I1(a, b) = (2π)−1ξ3

∫ b

a

(sinhx)−1(1 +O(n2pne
−pn)) dx,

where

e−2hn(m sinh a)3/ sinhma < ξ3 < e−2hn(m sinh b)3/ sinhmb.

We are interested in determining how ENn(−∞,∞) changes with
a change in magnitude of L. The relationship between ENn(−∞,∞)
and L can be fully established by considering four different ranges of
values of L. In Lemma 3.1 we show that the asymptotic value of L-
level crossings of fn(x) remains fixed at π−1 log n if L = o(n1/2) or
L = O(n1/2). In Lemma 3.2 and Lemma 3.3 we show that the number
of crossings starts decreasing as L increases in value, but becomes
stationary beyond a value of L mentioned in Lemma 3.3.
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3. Proof of the theorem.

Lemma 3.1.

ENn(−∞,∞)

=

{
π−1[logm+ l1 + l2 + 2πl4 + log 2](1 +O(n−1)) if hn = O(1),

π−1[logm+ 1.28665 + 2l3 + log 2](1 +O(n−1)) if hn = o(1),

where l1, l2, l3 and l4 are constants independent of n mentioned in
(3.1), (3.3) and (3.5).

Proof. Let us assume that hn = O(1). The intervals that need
to be considered to calculate I1(0,∞) in this case are (0, 6m−1),
(6m−1, 3m−1 logm) and (3m−1 logm,∞).

Consider the interval (0, 6m−1) first. It can be seen from the
definitions of u, v and w that they are finite in (0, 6m−1) and, since
u does not vanish, αn is bounded. If we take the derivative of
w(uw − 3v2)−1 with respect to λ, we find that δn is a monotonically
decreasing function of λ. Therefore, by (2.3), we have

(3.1) I1(0, 6/m) = l1,

where l1 is a constant and is given by

exp(−9hn/2)

∫ 6

0

αn dλ < 2π
√
3l1 < exp(−2hnδn(6))

∫ 6

0

αn dλ.

Consider the interval (6m−1, 3m−1 logm) now. It follows from (2.3)
and (2.7) that

(3.2) I1(6m
−1, 3m−1 logm) = (2π)−1[log logm+ l2](1 +O(1/n)),

where l2 is a constant and can be calculated using numeric integration
and (2.5) as

l2 = log 3− (log 6)e−2hnδn(6)−2ξ1 [hn{(log 6)δn(6) + 0.247876ξ2} − l3] ,

where 0.0528801 < l3 < .0429651.

We can find I1(3m
−1 logm,∞) using (2.8) as

(3.3)
I1(3m

−1 logm,∞) = (2π)−1(log(m/ logm)− log 1.5) +O(n−1 log n)2.
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We now turn our attention to the calculation of I2(0,∞). Let
L/

√
2An in the integrand of I2(a, b) be substituted by s. It follows

immediately that

(3.4) I2(3m
−1 logm,∞) <

∫ O(m−7 logm)

0

e−s2ds = O(m−7 logm).

In order to calculate I2(0, 3m
−1 logm), we need to estimate a lower

bound and an upper bound of it. To obtain the lower bound, we
first notice from the definition of u, v and w that 3v2 < uw in
(0, 6m−1 logm). Since δn is a monotonically decreasing function of λ,
we also find that v22/{u1(u1w3−3v22)} < δn/3 < 3/8. As a consequence,

L2B2
n

2AnDn
=

6hnv
2
2

u1(u1w3 − 3v22)

(
1+O

(
x

sinhλ

))
<

9hn

4

(
1+O

(
x

sinhλ

))
.

Using the above inequality, we conclude that

I2(0, 3m
−1 logm) < π−1/2ϕ(3

√
hn/2)

∫ hn/
√
2

0

exp(−s2) ds.

It is also easy to verify that u1w3 < 6v22 . Therefore, for large values of
n, B2

n/Dn > 1, and consequently,

π−1/2

∫ hn/
√
2

0

exp(−s2)ϕ(s) ds+O(n−1) < I2(0, 3m
−1 logm).

It follows from the last two inequalities that

(3.5) I2(0, 3m
−1 logm) = l4 +O(n−1),

where l4 is a constant given by

ϕ(h2
n/2)/4 < l4 < ϕ(3

√
hn/2)ϕ(hn/

√
2)/2.

The proof of Lemma 3.1 for hn = O(1) is thus obtained from (3.1)–(3.5)
and (2.2).

In order to calculate ENn(−∞,∞) for the case hn = o(1), we need
only to let hn → 0 in (2.2) and (3.1)–(3.5). We can find the approximate

value of
∫ 6

0
αndλ to be 2.22854 by applying Simpson’s 1/3 rule. Thus,

we find that the claim in Lemma 3.1 is true for the case hn = o(1). �
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Lemma 3.2. If hn → ∞ as n → ∞, but log hn = o(n), then for large
values of n,

ENn(−∞,∞) = π−1{log(m/ log hn) + log 2}+ 1 + o(1).

Proof. We first calculate I1(0,∞). Let us recall that αn is bounded
and δn is a decreasing function in (0, 6m−1). Therefore, by (2.3) and
for all values of hn satisfying the condition of Lemma 3.2, we have

(3.6) I1 (0, 6/m) = O(exp(−2hnδn(6))).

To calculate (6m−1,∞), it is necessary to distinguish between two
cases, i.e., whether hn > O(m3) or hn ≤ O(m3). In the former case,
we find by (2.6) that

I1
(
6m−1, 3m−1 logm

)
= O(log logme−2hn(m

−1 logm)3),

and by (2.8), we find that

I1
(
3m−1 logm,m−1 log hn

)
= O(log log hne

−(log hn)
3

),

I1
(
m−1 log hn,m

−1(log hn + 5 log log hn)
)
= O(log log hn/ log hn),

I1
(
m−1(log hn + 5 log log hn),∞

)
= (2π)−1{log(m/ log hn) + log 2}

+O{logn/(log hn)
2}.

Therefore, if hn > O(m3), we conclude that

(3.7) I1 (0,∞) = (2π)−1{log(m/ log hn)+ log 2}+O(log n/(log hn)
2).

Let us now consider the case when hn ≤ O(m3). We observe from (2.6)
that, in this case,

I1
(
6m−1,m−1 log hn

)
= O(log log hne

−(log hn)
3

).

To calculate I1(a, b) in other subintervals, we have to consider two cases
again, i.e., hn(logm)3(log logm)2 ≤ O(m3) and hn(logm)3(log logm)2

> O(m3). Let us consider the former case first. We then obtain from
(2.6) that

I1
(
m−1 log hn,m

−1(log hn + 3 log log hn + 2 log log log hn)
)

= O(log log hn/ log hn),
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I1
(
m−1(log hn + 3 log log hn + 2 log log log hn), 3m

−1 logm
)

= (2π)−1 log(3 logm/ log hn) +O(1/(log log hn)).

By (2.8), we have

I1
(
3m−1 logm,∞

)
= (2π)−1{log(m/ logm)− log 1.5}+O(log logm/ logm).

Therefore, if hn ≤ O(m3) and hn(logm)3(log logm)2 ≤ O(m3), we
obtain that

(3.8) I1 (0,∞) = (2π)−1{log(m/ log hn)+log 2}+O(log logm/ logm).

Let us now consider the case when hn < O(m3) < hn(logm)3(log logm)2.
It can be seen from (2.6) that, in this case,

I1
(
m−1 log hn, 3m

−1(logm− log log logm)
)
= O((logm)−1)

I1
(
3m−1(logm− log log logm), 3m−1 logm

)
= O(log logm/ logm).

Also, by (2.8), we obtain that

I1
(
3m−1 logm,m−1 (log hn + 3 log logm+ 2 log log logm)

)
< I1

(
3m−1 logm,m−1 (logm+ 3 log logm+ 2 log log logm)

)
= O(log logm/ logm),

I1
(
m−1(log hn + 3 log logm+ 2 log log logm),∞

)
= (2π)−1{log(m/ log hn) + log 2}
+ o(log logm/ logm).

Therefore, if hn ≤ O(m3) and hn(logm)3(log logm)2 > O(m3), we
observe that (3.8) is also satisfied.

We now calculate I2(0,∞). By taking s = L/
√
2An, we find that

I2 (0, log hn/n) < π−1/2
{
ϕ(hn/

√
2)− ϕ(

√
2 log hn)

}
= O

(
e−2 log hn

√
log hn

)
,

I2

(
3 log hn

2n
,∞

)
< π−1/2ϕ(

√
3 log hn

hn
) = O(

√
h−1
n log hn).
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Let φ(a, b, c) represent the integral
∫ b

a
π−1/2e−s2ϕ(cs) ds. Note that

Bn/
√
Dn = λ(1 +O(1/ log hn)) if x > m−1 log hn. So

φ

(√
3 log hn

hn
,
√

2 log hn, 2 log hn

)
< I2 (log hn/n, 3 log hn/(2n))

<φ

(√
3 log hn

hn
,
√

2 log hn, 3 log hn

)
.

Since φ(0,∞, c) = π−1/2 arctan c, by the last inequality, we obtain

I2 (log hn/n, 3 log hn/(2n)) = 1/2 +O(h−1
n log hn)

1/2.

It now follows that

(3.9) I2 (0,∞) = 1/2 + o(1).

Validity of Lemma 3.2 now follows from (3.7)–(3.9). �

Lastly, we settle the case log hn ≥ O(n) in the following lemma.

Lemma 3.3. Let m−1 log hn = qn + o(1), Then,

ENn(−∞,∞)

=


π−1 log coth(qn/2) + 1 +O(n−1 log n)

if qn is a constant,

1 + o(1) if qn → ∞ as n → ∞.

Proof. It is easy to see that (3.6) is true. Using (2.6) and (2.8), we
find that

I1
(
6m−1, 3m−1 logm

)
= O(log log n exp(−hn(n

−1 log n)3)),

I1
(
3m−1 logm, qn

)
= O(e−2(m sinh qn)

3

log n).

By (2.8), we obtain the following estimates if qn is a finite constant:

I1(qn, qn + (4 log n+ 3qn)/m) = O(n−1 log n),

I1(qn + (4 log n+ 3qn)/m,∞) = (2π)−1 log coth(qn/2)

+O(n−1 log n).
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On the other hand, if qn → ∞ as n → ∞, we find that

I1(qn,∞) = O(e−2(m sinh qn)
3

).

From the above discussion and (3.6), we find that

(3.10) I1(0,∞)

=

{
(2π)−1 log coth(qn/2) +O(n−1 log n) if qn is a finite constant;

O(e−2qn) if qn → ∞ as n → ∞.

I2(0,∞) can be calculated in a manner similar to that in Lemma 3.2.
We observe that Yn/

√
Dn = m sinhx(1 + o(1)) if x > log hn/2n. Then

I2 (0, log hn/n) < O(e−2nh1/n
n /(

√
nh1/n

n )),

I2 (3 log hn/(2n),∞) < O(
√
nh(3−n)/(2n)

n ).

φ(

√
2nh

(3−2n)/(2n)
n ,

√
2nh

1/n
n , nh1/n

n ) < I2 (log hn/n, 3 log hn/(2n))

< φ(

√
2nh

(3−2n)/(2n)
n ,

√
2nh

1/n
n , nh3/(2n)

n ).

It follows that

(3.11) I2 (0,∞) = 1/2 + o(1).

We obtain the proof of Lemma 3.3 from (3.10) and (3.11). �

The proof of the theorem follows from Lemmas 3.1, 3.2 and 3.3.
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