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ABSTRACT. We survey the theory of ordinary self-
adjoint differential operators in Hilbert space and their spec-
trum. Such an operator is generated by a symmetric differ-
ential expression and a boundary condition. We discuss the
very general modern theory of these symmetric expressions
which enlarges the class of these expressions by many dimen-
sions and eliminates the smoothness assumptions required in
the classical case as given, e.g., in the celebrated books by
Coddington and Levinson and Dunford and Schwartz. The
boundary conditions are characterized in terms of square-
integrable solutions for a real value of the spectral parame-
ter, and this characterization is used to obtain information
about the spectrum. Many of these characterizations are
quite recent and widely scattered in the literature, some are
new. A comprehensive review of the deficiency index (which
determines the number of independent boundary conditions
required in the singular case) is also given for an expression
M and for its powers. Using the modern theory mentioned
above, these powers can be constructed without any smooth-
ness conditions on the coefficients.

1. Introduction. In this paper we survey the theory of self-adjoint
ordinary differential operators in Hilbert space and their spectrum.
Many of the results are recent and widely scattered in the literature.
For a general discussion of self-adjoint ordinary differential operators in
symplectic spaces, see the 1999 monograph [40] by Everitt and Markus.
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1.1. John von Neumann. “ ... when America’s National Academy
of Science asked shortly before his death what he thought were his
three greatest achievements ... Johnny replied to the academy that he
considered his most important contributions to have been on the theory
of self-adjoint operators in Hilbert space, and on the mathematical
foundations of quantum theory and the ergotic theorem.”
Macrae’s biography of John von Neumann.

1.2. Applications. “From the point of view of applications, the most
important single class of operators are the differential operators. The
study of these operators is complicated by the fact that they are neces-
sarily unbounded. Consequently, the problem of choosing a domain for
a differential operator is by no means trivial; ... for unbounded opera-
tors the choice of domains can be quite crucial.”
Dunford Schwartz v. II ([24, page 1278]).

A self-adjoint ordinary differential operator in Hilbert space is gen-
erated by two things:

(1) A symmetric (formally self-adjoint) differential expression.
(2) A boundary condition.

Given such a self-adjoint differential operator, a basic question is:
What is its spectrum?

These are the three things we discuss in this paper: (i) symmetric
ordinary differential expressions, (ii) boundary conditions which deter-
mine self-adjoint differential operators and (iii) spectral properties of
these self-adjoint operators.

Notation 1. Let R denote the real numbers, C the complex numbers,
N = {1, 2, 3, . . .}, N0 = {0, 1, 2, 3, . . .}, N2 = {2, 3, 4, . . .}, J = (a, b)
for −∞ ≤ a < b ≤ ∞, Mnk(X) the n × k matrices with entries from
X, Mn(X) = Mnk(X) when n = k, Mn1(X) is also denoted by Xn;
L(J,R) and L(J,C) the Lebesgue integrable real and complex valued
functions on J , respectively, Lloc(J,R) and Lloc(J,C) the real and
complex valued functions which are Lebesgue integrable on all compact
subintervals of J, respectively. We also use Lloc(J) = Lloc(J,C) and
L(J) = L(J,C). ACloc(J) denotes the complex valued functions which
are absolutely continuous on compact subintervals of J and AC(J)
denotes the absolutely continuous functions on J , Cj(J) denotes the
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complex functions on J which have j continuous derivatives. D(A)
denotes the domain of the operator A.

Definition 1. For w ∈ Lloc(J,R), w > 0 almost everywhere in J ,
L2(J,w) denotes the Hilbert space of functions f : J → C satisfying∫
J
|f |2w < ∞ with inner product (f, g)w =

∫
J
f g w.

Such a w is called a weight function.

2. Classical symmetric expressions. Given a classical differen-
tial expression M of the form

(2.1) My = pny
(n) + pn−1 y

(n−1) + · · ·+ p1 y
′ + p0, y on J,

the expression M+ given by

M+y = (−1)n(pny)
(n) + (−1)n−1(pn−1y)

(n−1) + · · ·+ (−1)p1y
′ + p0

(2.2)

y on J,

is called the adjoint expression of M . And M is called symmetric
(formally self-adjoint) if M+ = M .

Thus, to check an expression (2.1) for symmetry, one must write
(2.2) in the same form as (2.1) and compare coefficients. To do this,
one must assume that the coefficients pj are sufficiently smooth, i.e.,
pj ∈ Cj(J).

It is well known [24, pages 1285–1289] that, if n > 1, M = M+ and
pj ∈ Cj(J) implies that M given by (2.1) can be expressed in the form

M y =

[n/2]∑
j=0

(−1)j(ajy
(j))(j)(2.3)

+ i

[(n−1)/2]∑
j=0

(−1)j [(bjy
(j))(j+1) + (bjy

(j+1))(j)] on J,

where aj and bj are real, i is the complex number
√
−1 and [x] denotes

the greatest integer ≤ x; and that M given by (2.3) is equal to its
adjoint expression M+. Thus, (2.3) is a closed form for all symmetric
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expressions (2.1) with sufficiently smooth coefficients. (In [24] it is
assumed that the pj are in C∞(J), but the proof given there clearly is
valid for pj ∈ Cj(J).)

Note that, if the coefficients pj in (2.1) are all real, then the complex
second term in (2.3) vanishes. Hence, a real symmetric expression M
given by (2.1) with sufficiently smooth coefficients pj must be of even
order n = 2k and have the form

(2.4) M y =
k∑

j=0

(−1)j(ajy
(j))(j)

with aj real, j = 0, 1, 2, . . . , k.

For real coefficients (2.4) is the familiar Sturm-Liouville form

(2.5) My = −(a1y
′)′ + a0y

when n = 2, and for n = 4, we have

(2.6) My = (a2y
′′)′′ − (a1y

′)′ + a0y.

In the odd order case, n = 3 (2.3) takes the form:

(2.7) My = −(a1y
′)′+ a0y+ i{[−(b1y

′)′′+(b1y
′′)′] + [(b0y)

′+(b0y
′)]}

with aj , bj real, j = 0, 1.

If the coefficients aj , bj are not sufficiently smooth, then the form
(2.3) does not reduce to the form (2.1). Nevertheless, as we shall see
below, analogues of (2.3) are “symmetric” without any smoothness
assumption on the coefficients at all. Thus, if one wishes to study
general symmetric differential expressions with nonsmooth coefficients,
one is forced to consider so-called quasi-differential expressions. In
(2.5), (a1y

′) is called the quasi-derivative of y, and the reason for
the parenthesis in (a1y

′) is that it follows from the general theory of
linear differential equations [131] that the product a1y

′ is continuous
at all points of the underlying open interval J but the separated terms
a1(t)y

′(t) may not exist for all t in J .

It turns out, as we will see below, that there exist much more general
quasi-differential symmetric expressions than those analogous to (2.3)
or (2.4). These will be identified below.
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Very general quasi-differential expressions, in particular symmetric
ones, have been considered by Shin [96]–[99]. They were rediscovered
by Zettl [45, 124] in a slightly different but equivalent form. Special
cases of these have been used by many authors, including Barrett [6],
Glazman [54], Hinton [64], Kogan and Rofe-Beketov [71], Naimark
[84], Reid [91], Stone [100], Walker [105] and Weyl [117]. The forms
given in [45, 124] for general n ∈ N2 were motivated to some extent
by the forms used by Barrett [6] for the cases when n = 3 and n = 4.

The development of the theory of symmetric differential operators
in the books by Naimark [84] and Akhieser and Glazman [1] is based
on the real symmetric form analogous to (2.4). Although these authors
refer to Shin’s more general symmetric expressions, they do not use
them. In [128], Zettl showed that the techniques in these books,
based largely on the work of Glazman, can be applied to a much larger
class of symmetric operators generated by the very general symmetric
expressions identified below.

3. Quasi-derivative formulation of the classical expressions.
Before introducing general quasi-derivatives we discuss the quasi-
derivative formulation of the classical real expression (2.4) and make a
comment about its misuse in the literature.

It is well known [131] that the classical Sturm-Liouville theory,
including the operators it generates in the Hilbert space L2(J,w),
applies to the equation

(3.1) My = −(py′)′ + qy = λwy on J,

with coefficients satisfying

(3.2)
1

p
, q, w ∈ Lloc(J,R), w > 0, almost everywhere on J.

The local integrability conditions of (3.2) (without the positivity con-
dition on w) are necessary and sufficient for every initial value problem
to have a unique solution defined on the whole interval J [43]. In this
sense, the local integrability conditions (3.2) are minimal conditions for
the classical modern Sturm-Liouville theory (with Caratheodory solu-
tions), including the operators it generates in L2(J,w), to hold. We
note for later reference that there is no positivity condition on p in
(3.2).
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In the fourth order case

(3.3) My = (py′′)′′ − (ry′)′ + qy = λwy on J,

the conditions p ∈ C2, r ∈ C1, q, w ∈ C, p > 0 and w > 0 can be
weakened to:

(3.4)
1

p
, r, q, w ∈ Lloc(J,R), w > 0, almost everywhere on J,

provided the expression M in (2.4) is modified to

(3.5) My = [(py′′)′ − (ry′)]′ + qy = λwy on J.

This modification, i.e., the use of the extra bracket [ ] and the quasi-
derivative [(py′′)′− (ry′)] seem to be a small price to pay for weakening
the smoothness conditions to just local integrability. In particular, this
allows the coefficients to be piece-wise constant which is important for
both the theoretical and numerical approximations of the equation.

Similarly, in the higher order cases n = 2k, k > 2, the smoothness
conditions on the coefficients of the classical equation (2.4) can be
replaced by the corresponding local integrability conditions of the type
(3.4), provided the classical equation is replaced by its quasi-differential
analogue containing an appropriate number of parentheses. For k = 3,
this requires the introduction of two additional parentheses (brackets)
rather than just one as in case k = 2. See below for details.

Remark 1. In his well-known book [84], Naimark uses the classical
form (2.4) with just local integrability assumptions on the coefficients
but neglects to use the required additional parentheses (brackets) as
indicated above. This oversight has been repeated in the literature by
many authors. See Everitt and Zettl [45] for more details.

Next we construct much more general symmetric expressions than
those analogous to the smooth forms (2.3) in the complex case and (2.4)
in the real case. But first we discuss the connection between first order
systems and higher order scalar, not necessarily symmetric, equations.

4. First order systems and higher order scalar equations. In
this section, we construct general quasi-differential expressions of even
and odd order with real or complex coefficients and discuss some of
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their basic properties. For a more comprehensive discussion of quasi-
differential expressions, the reader is referred to [45, 124] in the scalar
coefficient case and to [48, 82, 116] for matrix coefficients.

Just as the second order quasi-differential expression −(py′)′ + qy
enjoys many advantages over the more classical py′′ + ry′ + qy, so one
can formulate quasi-differential expressions of higher order to replace
the classical expression:

(4.1) My = pny
(n) + pn−1 y

(n−1) + · · ·+ p1 y
′ + p0 y on J.

Among the advantages of these quasi-differential expressions over
the classical ones are the following:

(1) They are more general.
(2) An adjoint expression can be defined which has the same form as

the original–in contrast to the classical case. (See below for details.)
(3) The Lagrange identity is much simpler. It involves a sesquilinear

form with constant coefficients in contrast to the classical form
which depends on the coefficients in a complicated way.

(4) The fact that the adjoint of the adjoint is the original is immediately
clear.

(5) Powers of expressions can be formed in a natural way without any
smoothness or other additional conditions on the coefficients [129].

Definition 2. For n > 1, let

Zn(J) := {A = (ars)
n
r,s=1 ∈ Mn(Lloc(J)), ar,r+1 ̸= 0 a.e. on J,

a−1
r,r+1 ∈ Lloc(J), 1 ≤ r ≤ n− 1,

ars = 0 a.e. on J, 2 ≤ r + 1 < s ≤ n;

ars ∈ Lloc(J), s ̸= r + 1, 1 ≤ r ≤ n− 1}.(4.2)

For A ∈ Zn(J), we define

(4.3) V0 := {y : J −→ C, y is measurable}

and

(4.4) y[0] = y (y ∈ V0).
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Inductively, for r = 1, . . . , n, we define

Vr = {y ∈ Vr−1 : y[r−1] ∈ (ACloc(J))},(4.5)

y[r] = a−1
r,r+1

{
y[r−1]′ −

r∑
s=1

arsy
[s−1]

}
(y ∈ Vr),(4.6)

where an,n+1 := 1. Finally, we set

(4.7) M y = MA y = in y[n] (y ∈ Vn).

The expression M = MA is called the quasi-differential expression
associated with or generated by A. For Vn, we also use the notations
D(A) and V (M). The function y[r] (0 ≤ r ≤ n) is called the r-th quasi-
derivative of y. Since the quasi-derivative depends on A, we sometimes

write y
[r]
A instead of y[r].

Definition 3. In Definition 2, if ars ∈ R, 1 ≤ r, s ≤ n, we use the
notation A ∈ Zn(J,R).

Definition 4. When n = 2k, the coefficient ak,k+1 is called the
leading coefficient of MA. We say that the leading coefficient ak,k+1

changes sign on J if it assumes positive values and negative values,
each on a subset of J which has positive Lebesgue measure. (The
sign of the leading coefficient ak,k+1 plays an important role in the
semiboundedness of even order operators generated by MA as we will
see below.)

Remark 2. The subclass of matrices A ∈ Zn(J,R), n = 2k, k ≥ 1,
which generate the symmetric quasi-differential expressions studied by
Naimark in [84], see Section 3 above, have the form:

A =


1 0 0 0 0

1 0 0 0
a3,4 0 0

a43 1 0
a52 1

a61


when n = 6 and similar forms for other even n. Below we refer to these
as matrices of GN (Glazman-Naimark) type.
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Definition 5 (Regular endpoint). Let A ∈ Zn(J), J = (a, b). The
expression M = MA is said to be regular (R) at a if, for some c,
a < c < b, we have

a−1
r,r+1 ∈ L(a, c), r = 1, . . . , n− 1;

ars ∈ L(a, c), 1 ≤ r, s ≤ n, s ̸= r + 1.

Similarly the endpoint b is regular if, for some c, a < c < b, we have:

a−1
r,r+1 ∈ L(c, b), r = 1, . . . , n− 1;

ars ∈ L(c, b), 1 ≤ r, s ≤ n, s ̸= r + 1.

Note that, from (4.2), it follows that if the above hold for some c ∈ J ,
then they hold for any c ∈ J . We say that M is regular on J , or just
M is regular, if M is regular at both endpoints.

Remark 3. For a given A, M = MA is determined by Definition 2.
However, MA does not determine A uniquely, in general, i.e., there may
be a B ∈ Zn(J) such that MA = MB . See the proof of Theorem 10
in Section 9 for an example. In this example, MB is regular at both
endpoints and MA is singular at the endpoint a.

Remark 4. In much of the literature when an endpoint of J is
infinite, the problem is automatically classified as singular; note that,
in Definition 5, a = −∞ and b = ∞ are allowed. For any J , observe
that M is regular on any compact subinterval of J .

To illustrate the use of quasi-derivatives we give a simple example.

Example 1. Let A = (ars) ∈ Z2(J). Then y[0] = y, y[1] =
a−1
12 (y

′ − a11y),

(4.8) y[2] = [a−1
12 (y

′ − a11y)]
′ − a21y − a−1

12 a22(y
′ − a11y)

and M = MA is given by

(4.9) My = i2y[2] = −[a−1
12 (y

′ − a11y)]
′ + a21y + a−1

12 a22(y
′ − a11y).
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Note that, if a11 = 0 = a22, then (4.9) reduces to the familiar Sturm-
Liouville form

My = −(py′)′ + qy

with the notation p = a−1
12 , q = a21, but without the assumption that

p and q are real valued and, if p is real valued, without the hypothesis
that p is of one sign as long as 1/p ∈ Lloc(J).

The first-order vector system Y ′ = AY +F and the quasi-differential

equation y
[n]
A = f are equivalent in the following sense:

Proposition 1. Let A ∈ Zn(J) and f ∈ Lloc(J). Set M = MA

F =


0
...
0
f

 .

(i) If Y ∈ (ACloc(J))
n is a solution of

(4.10) Y ′ = AY + F,

then there is a unique y ∈ D(M) such that

(4.11) Y =


y[0]

y[1]

...
y[n−1]


and

(4.12) y[n] = f ;

(ii) If y ∈ D(M) is a solution of (4.12), then

(4.13) Y =


y[0]

y[1]

...
y[n−1]

 ∈ ACloc(J)
n
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and

(4.14) Y ′ = AY + F.

Proof. This follows from a straightforward computation; for details,
see [82, Section 2]. �

The initial value problem associated with Y ′ = AY +F has a unique
solution:

Proposition 2. For each F ∈ (Lloc(J))
n, each α in J and each

C ∈ Cn, there is a unique Y ∈ (ACloc(J))
n such that

(4.15) Y ′ = AY + F on J and Y (α) = C.

Proof. See [131, Chapter 1]. �

From Proposition 2, we immediately infer the next corollary:

Corollary 1. For each f ∈ Lloc(J), each α ∈ J and c0, . . . , cn−1 ∈ C,
there is a unique y ∈ D(A) such that :

(4.16) y[n] = f and y[r](α) = cr (r = 0, . . . , n− 1).

If f ∈ L(J), J is bounded and all components of A are in L(J), then
y ∈ AC(J).

5. Maximal and minimal operators and their domains. In
this section, we construct the maximal and minimal operators for
general quasi-differential expressions and discuss their basic properties.

Definition 6. Let A ∈ Zn(J), let w be a weight function, and
let H = L2(J,w). The maximal operator Smax(A, J) with domain
Dmax(A, J) is defined by:

Dmax(A, J) = {y ∈ H : y ∈ D(A), w−1MA y ∈ H}
Smax(A, J) y = w−1MA y, y ∈ Dmax(A, J).(5.1)

We will use the next theorem to define the minimal operator.
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Theorem 1. Let A ∈ Zn(J), let w be a weight function, and let

(5.2) A+ = −E−1A∗E, where E = En = ((−1)rδr,n+1−s)
n
r,s=1.

Then

(i) A+ = (a+ij) ∈ Zn(J).

(ii) Dmax(A, J) is dense in H. Let Smin(A, J) = S∗
max(A, J), and let

Dmin(A, J) denote the domain of Smin(A, J).
(iii) Smin(A, J) is a closed operator in H with dense domain, and we

have

(5.3) S∗
min(A, J) = Smax(A

+, J), Smin(A, J) = S∗
max(A

+, J).

(iv) If A+ = A, then Smin(A, J) is a closed symmetric operator in H
with dense domain and

(5.4) S∗
min(A, J) = Smax(A, J), Smin(A, J) = S∗

max(A, J).

Proof. Part (1) follows directly from the definition. The method of
Naimark [84, Chapter V] can be adapted to prove this theorem with
minor modifications. See also [45, 82]. �

Notation 2. Below we will also use minimal and maximal domain
functions and their restrictions on subintervals (α, β) of J = (a, b),
particularly for (α, β) = (a, c) and (α, β) = (c, b) for c ∈ (a, b). Since
A ∈ Zn(J) implies that A ∈ Zn((α, β)), Definition 6 and Theorem 1
can be applied in the Hilbert space L2((α, β), w) with J replaced by
(α, β). Below when we use the notation Dmax(α, β), Dmin(α, β), it is
understood that we use Definition 6 and Theorem 1 with J replaced
by (α, β), A and w replaced by their restrictions to (α, β) and L2(J,w)
replaced by L2((α, β), w). Below, A, J , (α, β), as well as the Hilbert
space, may be omitted when these are clear from the context.

Remark 5. We comment on the denseness of the minimal domain
Dmin(A, J). As mentioned in the proof of Theorem 1 above, this fact is
proven in the well known book by Naimark [84, page 68] for a special
subclass of the general Lagrange symmetric matrices A discussed here–
the subclass we call the GN matrices. It was shown by Zettl [124]
that Naimark’s method can be applied to prove that Dmin(A) is dense
in H for the Lagrange symmetric matrices A discussed here, see also
Everitt-Zettl [45] and Möller-Zettl [82]. In general, under the local
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integrability assumptions used here, C∞
0 (J) may not be contained in

Dmin(A, J). Moreover, it may not be easy to find explicit functions
in Dmin(A, J) other than the zero function. Nevertheless, the proof
given in [84, page 68], with minor modifications, can be used to prove
that Dmin(A, J) is dense under the local integrability assumptions used
here.

In much of the current literature in mathematics and mathematical
physics, even for the expression My = −y′′+ qy, many authors assume
that q ∈ L2

loc(J) because this implies that C∞
0 (J) ⊂ Dmin, and

therefore Dmin is dense. For q ∈ Lloc(J), C
∞
0 (J) may not be contained

in Dmin so this proof is not valid, but Naimark’s proof does ‘work,’ see
[45, 82].

6. The Lagrange identity. Fundamental to the study of boundary
value problems is the Lagrange identity which is given in the next
theorem.

Theorem 2. Let A ∈ Zn(J), and let

B = −E−1A∗E, where E = En = ((−1)rδr,n+1−s)
n
r,s=1, i.e.,(6.1)

brs = (−1)r+s−1an+1−s,n+1−r, 1 ≤ r, s ≤ n.(6.2)

Then B ∈ Zn(J) and, for any y ∈ D(MA), z ∈ D(MB), we have

(6.3) zMA y − yMB z = [y, z]′,

where

(6.4) [y, z] = in
n−1∑
r=0

(−1)n+1−rz
[n−r−1]
B y

[r]
A .

Proof. See Möller-Zettl [82]. The proof given in [82] is based on
a method of Everitt and Neuman [42]; it greatly simplifies the earlier
proofs of Zettl [124] and Weidmann [116]. �

Definition 7 (Symplectic matrix E). The symplectic matrix E in (6.1)
plays an important role in the theory of Lagrange symmetric matrices
and in boundary value problems. For k ∈ N2, let Ek be defined by

Ek = ((−1)rδr,k+1−s)
n
r,s=1,

where δi,j is the Kronecker δ.
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Motivated by the Lagrange identity (6.4), we make the following
definition:

Definition 8. Let A ∈ Zn(J), and let A+ = B and M+
A = MB where

B is given by (6.1). We call A+ the Lagrange adjoint or L-adjoint
matrix of A and M+

A the Lagrange adjoint or L-adjoint expression of

MA. (In Theorem 2, we used the notation B = A+ and MB = M+
A for

simplicity of exposition.) Note that A++ = A and M++
A = MA follows

immediately from the definition. The bracket [y, z] or just the bracket
[·, ·] is called the Lagrange bracket of M .

Next, we give some useful characterizations of the minimal domain.

Theorem 3. Let A ∈ Zn(J), let w be a weight function and let
A = A+. Then

(i)

(6.5) Dmin = {y ∈ Dmax : [y, z](b)− [y, z](a) = 0 for all z ∈ Dmax},

where [y, z] denotes the Lagrange bracket.
(ii) If a is regular, then y[j](a) = 0 for j = 0, 1, . . . , n−1 and similarly

for b.

We illustrate the construction of L-adjoint matrices with some simple
examples.

Example 2. n = 2. Let A = (ars) ∈ Z2(J). Then

(6.6) A+ =

[
a11 a12
a21 −a11

]
.

Note that, just as in an Hermitian matrix, three out of the four
components of A are independent.

Example 3. n = 4. Let A = (ars) ∈ Z4(J). Then

(6.7) A+ =


a11 a12 0 0
a21 a22 a23 0
a31 a32 −a22 a12
a41 −a31 a21 −a11

 .
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Note that, of the 13 nonzero components of A, 8 are independent.
(The reason for the three zeros in the upper right corner is that we use
these matrices to construct scalar differential expressions. Clearly we
could define A+ for any A ∈ Mn(C).)

Example 4. n = 3. Let A = (ars) ∈ Z3(J). Then

(6.8) A+ =

 a11 a12 0
a21 −a22 a12
−a31 a21 −a11

 .

Here, five of the eight nonzero components are independent.

Remark 6. We comment on the comparison of the quasi-differential
Lagrange identity (6.3) and (6.4) with the classical one as given in
Coddington-Levinson [21, Chapter 11] and Dunford and Schwartz [24,
Chapter XIII]. In (6.4), the sesquilinear form [y, z] is very simple with
constant coefficients, whereas in the classical case it depends on the
coefficients of the differential equation in a rather complicated way.
In (6.4), this coefficient dependence is subsumed in the definition of
the quasi-derivatives. Also, as remarked above, the derivation of (6.4)
requires only local integrability of the coefficients in contrast with
the derivation in the classical case which requires strong smoothness
assumptions on the coefficients. In particular, the coefficients in the
quasi-differential case can be step functions.

For the rest of this section we assume that A = A+. Let M = MA.
Then M = M+.

Lemma 1. For any y, z in Dmax, we have

(6.9)

∫ c

c1

{zMy − yMz} = [y, z](c)− [y, z](c1),

for any c, c1 ∈ J = (a, b).

Proof. This follows from the Lagrange identity, i.e., Theorem 2 and
integration. �
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Lemma 2. For any y, z in Dmax, the limits

lim
t→b−

[y, z](t), lim
t→a+

[y, z](t),

exist and are finite, and∫ b

a

{zMy − yMz} = [y, z](b)− [y, z](a).

Proof. This follows from (6.9) by taking limits as c1 → a, c → b.
That the limits exist and are finite can be seen from the definition of
Dmax, see (5.1) above. �

The finite limits of Lemma 2 will play a critical role below in the
characterization of self-adjoint domains at singular endpoints.

Corollary 2. If M y = λw y and M z = λw z on some interval
(α, β) ⊂ (a, b), then [y, z] is constant on (α, β). In particular, if λ
is real and M y = λw y, Mz = λwz on some interval (α, β) ∈ (a, b).
Then [y, z] is constant on (α, β).

Proof. This follows directly from (6.9). Since the coefficients are real,
the last statement follows from the observation that if M y = λw y then
My = λwy. �

Remark 7. In much of the literature when an endpoint of the un-
derlying interval is infinite, the problem is automatically classified as
singular; note that, in Definition 5, a = −∞ and b = ∞ are allowed.
For any J , observe that M is regular on any compact subinterval of J .

Lemma 3. Suppose M is regular at c. Then, for any y ∈ Dmax, the
limits

y[r](c) = lim
t→c

y[r](c)

exist and are finite, r = 0, . . . , n − 1. In particular, this holds at any
regular endpoint and at each interior point of J . At an endpoint, the
limit is the appropriate one sided limit.
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Proof. See [84, 115]. Although our result is more general than
those stated in these references the same method of proof can be used
here. �

Following Everitt and Zettl [45], we call the next lemma the Naimark
patching lemma or just the Patching lemma. Our version of it is more
general than that given by Naimark [84, Lemma 2, page 63], but the
method of proof is basically the same.

Lemma 4. (Naimark patching lemma). Let A ∈ Zn(J,R), and assume
that M is regular on J . Let α0, . . . , αn−1, β0, . . . , βn−1 ∈ C. Then there
is a function y ∈ Dmax such that

y[r](a) = αr, y[r](b) = βr (r = 0, . . . , n− 1).

Corollary 3. Let a < c < d < b and α0, . . . , αn−1, β0, . . . , βn−1 ∈ C.
Then there is a y ∈ Dmax such that y has compact support in J and
satisfies:

y[r](c) = αr, y[r](d) = βr (r = 0, . . . , n− 1).

Proof. The Patching lemma gives a function y1 on [c, d] with the
desired properties. Let c1, d1 with a < c1 < c < d < d1 < b. Then use
the Patching lemma again to find y2 on (c1, c) and y3 on (d, d1) such
that

y
[r]
2 (c1) = 0, y

[r]
2 (c) = αr,

y
[r]
3 (d) = βr, y

[r]
3 (d1) = 0

(r = 0, . . . , n− 1).

Now set

y(x) :=


y1(x) for x ∈ [c, d]
y2(x) for x ∈ (c1, c)
y3(x) for x ∈ (d, d1)
0 for x ∈ I \ (c1, d1).

Clearly, y has compact support in J . Since the quasi-derivatives at
c1, c, d, d1 coincide on both sides, y ∈ Dmax follows. �

Corollary 4. Let a1 < · · · < ak ∈ J , where a1 and ak can also be
regular endpoints. Let αjr ∈ C, (j = 1, . . . , k; r = 0, . . . , n− 1). Then
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there is a y ∈ Dmax such that

y[r](aj) = αjr (j = 1, . . . , k; r = 0, . . . , n− 1).

Proof. This follows from repeated applications of Corollary (3). �

7. Symmetric expressions. In this section, we define and study
Lagrange symmetric expressions M = MA. We call these expressions
Lagrange symmetric, or L-symmetric for short, because they generate
symmetric operators in Hilbert space. It is the characterization of the
self-adjoint extensions of these symmetric (minimal) operators and the
spectrum of these extensions which are our main interest in this paper.
The Lagrange identity plays a critical role in the characterization of
the self-adjoint extensions.

The development of the theory of symmetric differential operators
in the books by Naimark [84] and Akhieser and Glazman [1] is based
on the real symmetric form analogous to (2.4). Although these authors
refer to Shin’s more general symmetric expressions in a footnote they
do not use them. In [128], Zettl showed that the techniques in these
books, based largely on the work of Glazman, can be applied to a
much larger class of symmetric operators generated by very general
symmetric expressions. This larger class is discussed here.

Definition 9. Let A ∈ Zn(J), and suppose that A satisfies

A = −E−1A∗E, where E = En = ((−1)rδr,n+1−s)
n
r,s=1, i.e.,

ars = (−1)r+s−1an+1−s,n+1−r, 1 ≤ r, s ≤ n.(7.1)

Then A is called a Lagrange symmetric or L-symmetric matrix and the
expression M = MA defined above is called a Lagrange symmetric, or
just a symmetric, differential expression.

The next proposition gives a ‘visual’ interpretation of the L-symmetry
condition (7.1). It follows immediately from (7.1) by inspection.

Proposition 3. Suppose A = (ars) ∈ Zn(J) is Lagrange symmetric.
Then A is invariant under the composition of the following three
operations:
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(i) Flipping the elements ars about the secondary diagonal.
(ii) Replacing ars by its conjugate ars.
(iii) Changing the sign of ars if r + s is even.

Note that these three operations commute with each other and each
one is idempotent.

To illustrate Definition 9, we specialize Examples 2, 3 and 4 to the
symmetric case and compute their symmetric differential expressions.

Example 5. Assume A = (ars) ∈ Z2(J) is Lagrange symmetric. Then
a12 and a21 are both real and a11 = −a22 implies that a11 = ib11 = a22
with b11 real. Thus, M = MA is given by

My = −[a−1
12 (y

′ − a11y)]
′ + a21y + a−1

12 a22(y
′ − a11y)(7.2)

= −[a−1
12 (y

′ − ib11y)]
′ + a21y + a−1

12 ib11y
′ + a−1

12 b11y).

If b11 = 0, then (7.2) reduces to

My = −(a−1
12 y′)′ + a21 y,

which is the classical Sturm-Liouville form

(7.3) My = −(p y′)′ + q y

with the notation p = a−1
12 and q = a21.

Remark 8. Note that, for (7.2), our assumptions on ars are that a12 ̸=
0 almost everywhere on J , a12 and a21 are both real, a11 = ib11 = a22
with b11 real, and

(7.4) a−1
12 , a21, b11 ∈ Lloc(J).

Remark 9. We make the following observations:

(i) When b11 ̸= 0, (7.2) is a second order symmetric expression with
nonreal coefficients in contrast with the classical case (b11 = 0)
where the coefficients of second order symmetric expressions must
be real.

(ii) Although a12 ̸= 0 almost everywhere on J, p = a−1
12 may change

sign, may be 0 at any number of points in J , and may even be
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identically zero on one or more subintervals of J . (For an elabora-
tion of the latter statement see the paper by Kong, Volkmer and
Zettl [72] where a class of self-adjoint Sturm-Liouville problems
is identified which are equivalent to (finite-dimensional) matrix
problems.) But we don’t discuss the degenerate case when a−1

12 is
zero on the entire interval J .

Since the general pattern for even order Lagrange symmetric matri-
ces is not evident from the second order case n = 2, the next example is
for n = 4. It is followed by n = 3 to illustrate the odd order case which
has some features significantly different from the even order cases.

Example 6. Assume A = (ars) ∈ Z4(J) is Lagrange symmetric. Then,
from (7.1), it follows that A has the form

(7.5) A =


ia11 a12 0 0
a21 ia22 a23 0
ia31 a32 ia22 a12
a41 ia31 a21 ia11

 ,

where the ars are real.

Here y[0] = y,

y[1] = a−1
12 (y

′ − ia11y), y ∈ V1(7.6)

y[2] = a−1
23 {y[1]′ − a21y − ia22y

[1]}, y ∈ V2

y[3] = a−1
12 {y[2]′ − ia31y − a32y

[1] − ia22y
[2]}, y ∈ V3

y[4] = {y[3]′ − a41y − ia31y
[1] − a21y

[2] − ia11y
[3], y ∈ V4.

and M = MA is given by

(7.7) My = i4y[4] = y[4], y ∈ V4 = D(A).

If a11 = 0 = a22 = a31 = a21 and a12 = 1, then (7.7) reduces to the
modified Naimark form (3.5)

(7.8) My = [(a−1
23 y

′′)′ − a32y
′]′ − a41y, y ∈ V4 = D(A),

with the notation p = a−1
23 , r = a32, q = −a41.
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Remark 10. Without the extra assumptions that a21 = 0 and a12 = 1
(7.7) is a fourth order symmetric expression with real coefficients
which has two more independent components than the Naimark form,
namely, a21 and a12. Removing the restriction that a11 = 0 = a22 =
a31 produces symmetric quasi-differential expressions MA with three
additional but complex coefficients.

Example 7. Assume A = (ars) ∈ Z3(J) is Lagrange symmetric. Then,
from (7.1), it follows that A has the form

(7.9) A =

 ia11 a12 0
a21 ia22 a12
ia31 a21 ia11


with ars real.

Here y[0] = y and

y[1] = a−1
12 (y

′ − ia11y), y ∈ V1

y[2] = a−1
12 {y[1]′ − a21y − ia22y

[1]}, y ∈ V2(7.10)

y[3] = {y[2]′ − ia31y − a21y
[1] − ia11y

[2]}, y ∈ V3.

Then M = MA is given by

(7.11) My = i3y[3] = −iy[3].

The special case when a11 = 0, a12 = −1/p, a21 = b0/p, a22 =
−ia1/p

2, a31 = −ia0 and p2 = 2b1 reduces to the classical form (2.3)
for n = 3 when a0, a1, b0, b1 and y are sufficiently differentiable. This
follows from a direct computation and the observation that

(p(py′)′)′ = (b1y
′)′′ + (b1y

′′)′.

Note that in this special case our coefficient hypotheses are that

a12, a21, a22, a31 ∈ Lloc(J,R)

and the relationship p2 = 2b1 imposes the sign restriction b1 > 0 almost
everywhere on J in contrast with the even order case where there is
no sign restriction on the leading coefficient. See [45] for additional
comments about this point.
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8. Boundedness below the minimal operator. In [116, page
109], Weidmann says:

Operators of even order with positive coefficient of highest order have
turned out to be semibounded from below if the lower order terms are
sufficiently small. On the other hand, operators of odd order are usually
expected to be not semibounded (from below or above). We shall see this
in many examples. . . . Anyhow we do not know of a general result which
assures this for every operator of odd order.

For a class of operators larger than that studied by Weidmann,
Möller and Zettl [82] proved–without any smoothness or smallness
assumptions on the coefficients–that:

(1) Odd order operators, regular or singular, and regardless of the sign
of the leading coefficient, are unbounded above and below.

(2) Regular operators of even order with positive leading coefficient are
bounded below.

(3) Even order regular or singular operators with leading coefficient
that changes sign are unbounded above and below.

In this section, we present a summary of these results, make some
comments and mention open problems.

Recall that, if A is L-symmetric, M = MA and w is a weight
function, thenM is a symmetric expression and Smin(M) is a symmetric
operator in L2(J,w).

The following results were established in [82].

Theorem 4 (Möller-Zettl). Assume A ∈ Zn(J) satisfies (7.1), and let
M = MA be the symmetric expression generated by A as above. Then

(i) If n = 2k+ 1, k > 0, then Smin(A) is unbounded above and below
in H = L2(J,w) for any weight function w.

(ii) If n = 2k, k > 0, and M is regular with positive leading
coefficient, then Smin(A) is bounded below and unbounded above
in H = L2(J,w) for any weight function w.

(iii) If n = 2k, k > 0, and the leading coefficient of M changes sign
on J , then Smin(A) is unbounded above and unbounded below in
H = L2(J,w) for any weight function w. Note that MA may be
regular or singular.
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Proof. See [82]. �

The hypothesis that M is regular with positive leading coefficient
cannot be removed in Theorem 4 (ii). For k = 1, the hypothesis
‘M is regular with positive leading coefficient’ can be extended to
‘M has a positive leading coefficient and is regular or LCNO at each
endpoint.’ (See Definition 10 below for LCNO or see [131]). What
is the corresponding extension for k > 1? In [78], Marletta and Zettl
prove the following result:

Theorem 5 ([78]). Suppose A = (ars) ∈ Zn(J,R) with n = 2k,
k > 1 is Lagrange symmetric, and assume that A is of GN type, i.e.,
ar,r+1 = 1, for 1 ≤ r < k and k < r < n; ak,k+1 > 0 on J and all
other ars = 0 except ar,n+1−r for r = 1, . . . , k. If the left endpoint a
is regular and the right endpoint b is disconjugate in the sense of Reid,
then Smin(A) is bounded below in H = L2(J,w) for any weight function
w.

Proof. See [78]. This proof uses methods from the theory of Hamil-
tonian systems and the theory of disconjugacy as developed by Reid
[91]. Disconjugacy theory is closely related to nonoscillation the-
ory. �

Although the next theorem is a special case of a well-known abstract
result [115] we state it here for the sake of completeness even though
it uses a definition and result from Sections 11 and 13 below. See
Section 11 for a definition of deficiency index. The GKN theorem
in Section 13 implies that every self-adjoint extension of the minimal
operator Smin(A) is a finite dimensional extension.

Theorem 6. Assume A ∈ Zn(J), n = 2k, k ≥ 1, is Lagrange
symmetric with equal deficiency indices d = d+ = d−. If Smin(A) is
bounded below, then every self-adjoint extension of Smin(A) is bounded
below.

Proof. By [115, page 247, Corollary 2], we have: If Smin is bounded
below with lower bound c and S is a self-adjoint extension of Smin then
there exist at most a finite number of eigenvalues λ0, λ1, . . . of S less
than c. Thus, S is bounded below by λ0 or by c. �
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Next, we discuss the semi-boundedness results for Smin in the second
order case and then comment on the comparison with the higher order
case.

Consider the equation

(8.1) My = −(py′)′ + qy = λwy on J = (a, b);

1

p
, q, w ∈ Lloc(J,R), w > 0.

Note that M = MA where A is a Lagrange symmetric matrix of the
form

(8.2) A =

[
0 1

p

−q 0

]
.

We briefly recall the needed definitions and basic facts for equation
(8.1).

Definition 10. Let (8.1) hold and assume, in addition, that p > 0
on J . Recall that the endpoint a of equation (8.1) is said to be in
the limit-circle (LC) case if all solutions of (8.1) are in L2((a, c), w)
for some c in J and some λ ∈ C. Otherwise, a is said to be in the
limit-point (LP) case. The endpoint a is classified as oscillatory (O) if
there is a nontrivial solution with an infinite number of zeros in (a, c)
for some c ∈ J and nonoscillatory (NO) otherwise. This classification
is independent of λ if a is LC. (But not if a is (LP).) Similar definitions
are made at b. Each regular endpoint (when p > 0 on J) is limit-
circle and nonoscillatory (LCNO). A singular endpoint may be LCNO
or LCO–limit-circle and oscillatory. See the book [131] for details.

The next theorem summarizes well-known results for the second
order case [131]:

Theorem 7. Let (8.1) hold. Let H = L2(J,w).

(i) If p changes sign on J , then Smin(A) is unbounded below and
unbounded above in H.

(ii) Suppose p > 0 almost everywhere on J . If each endpoint is either
regular or LCNO, then Smin(A) is bounded below, but not above,
in H.
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(iii) Suppose p > 0 almost everywhere on J . If one endpoint is LCO,
then Smin(A) is unbounded below and unbounded above in H.

Proof. Part (i) was proven by Möller in [80]. For parts (ii) and (iii)
see Möller [80] or Niessen and Zettl [87]; see also [131]. �

In the next remark, we comment on the comparison between the
second order results of Theorem 7 and the corresponding higher order
results of Theorems 4 and 7.

Remark 11. Comparison between n = 2 and n > 2.

(i) Theorem 4 (iii) extends Theorem 7 (i) to the higher order case n
for any n > 2 even or odd.

(ii) Theorem 4 (ii) extends Theorem 7 (ii) to the even higher order
case n = 2k, k > 1, but only for regular problems. (Regular
endpoints can be considered LCNO.)

(iii) Regarding the extension of Theorem 7 (ii) from n = 2 to n = 2k
with k > 1 given by Theorem 5, there are a number of natural
questions: (a) Is there a condition more transparent, i.e., easier
to check than disconjugacy in the sense of Reid? (b) What if both
endpoints are singular?

(iv) How does Theorem 7 (iii) extend from n = 2 to n = 2k with
k > 1? What is the ‘appropriate’ definition for LCO when the
deficiency index d = n? When d < n?

9. The Friedrichs extension. Let H be a Hilbert space with inner
product (·, ·), and let S be a closed densely defined bounded below
symmetric operator with domain D(S) ⊂ H. In a celebrated paper
[49], Friedrichs constructed a self-adjoint extension of S in H with the
same lower bound as S. It has come to be known as the Friedrichs
extension, and we denote it by SF . In general, there are other self-
adjoint extensions of S which have the same lower bound as S (see
[131] for examples.)

The theorems in Section 8 identified classes of the densely defined
symmetric minimal operators Smin(A) which are bounded below. In
general, as we will see below, these minimal operators have an un-
countable number of self-adjoint extensions. Which boundary condi-
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tion determines the Friedrichs extension? This question is discussed in
this section.

Friedrichs himself asked this question [50] and proved that, for the
expression −y′′ + qy on J = (a, b) with regular endpoints and q real
and continuous the Dirichlet condition

y(a) = 0 = y(b)

determines the Friedrichs extension. This result has been generalized
by many authors for regular and singular problems. In the regular case,
there is a very general result due to Niessen-Zettl [86] and Möller-Zettl
[82]:

Theorem 8. Suppose A = (ars) ∈ Zn(J,R) with n = 2k k ≥ 1 is
Lagrange symmetric and each endpoint is regular. Then, for any weight
function w, the Friedrichs extension of the minimal operator Smin(A)
is determined by the Dirichlet boundary condition:

y[j](a) = 0 = y[j](b), j = 0, 1, . . . , k − 1.

Proof. See [82, 86]. �

Below, we will give a precise meaning to “determined by the Dirichlet
boundary condition.”

Next we discuss the second order singular case. Consider the
equation

−(py′)′ + qy = λwy on J,
1

p
, q, w ∈ Lloc(J,R),(9.1)

p > 0, w > 0, λ ∈ R.

Note that we have added the condition that p > 0 since the minimal
operator is not bounded below when p changes sign. Let

A =

[
0 1

p

−q 0

]
,

and let M = MA. Then A ∈ Z2(J,R), M is Lagrange symmetric and
Smin = Smin(A) is a symmetric operator inH = L2(J,w) for any weight
function w. The next theorem uses the notion of principal solution; see
[87] for a definition and for a proof. Also see [131].
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Theorem 9. Suppose each endpoint is either regular or LCNO, ua is
the principal solution at a and ub is the principal solution at b. Then the
minimal operator Smin is bounded below, and its Friedrichs extension
is given by the self-adjoint boundary condition:

(9.2) [y, ua](a) = 0 = [y, ub](b).

Recall that the principal solution at an endpoint is unique up to
constant real multiples so that (9.2) does not depend on the choice of
principal solutions. Also recall that, if a is regular [y, ua](a) = 0 reduces
to y(a) = 0 and similarly for b. Also recall that [y, z] is the Lagrange
sesquilinear form [y, z] = y(pz′)− z(py′).

What is a natural extension of Theorem 9 to the higher order case
n = 2k, k > 1? (In the odd order case the minimal operator is not
bounded below so there is no Friedrichs extension.) There are two
major obstacles to extending Theorem 9 to k > 1:

1. What is the appropriate definition of ‘principal solution’?

2. At a singular endpoint the number of boundary conditions
depends on the deficiency index d, and d can have any value in the
range: k ≤ d ≤ 2k = n. In the case n = 2, d = 1 which is known as the
LP case or d = 2− the LC case. For k > 1, there are the ‘intermediate’
cases when k < d < 2k = n.

These two obstacles are ‘connected’: How do you define principal so-
lution so that the correct number of boundary conditions are obtained?

In [78], Marletta and Zettl characterize the Friedrichs extension for
Lagrange symmetric expressions A of GN type. They obtain this char-
acterization using methods from the theory of Hamiltonian systems,
the theory of disconjugacy near a singular endpoint as developed by
Reid [91] and a limiting process using Theorem 8 for regular problems.
Disconjugacy theory is closely related to oscillation theory or, more
accurately, nonoscillation theory.

Before the appearance of [78] few results were known for singular
problems when n > 2. An exception is given by a result of Zettl
[130]. This result is for a narrow class of problems and does not follow
in any apparent way from the much more general result in [78]. It
circumvents the two obstacles mentioned above and has a number of
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other interesting special features which we will comment on below in
this section.

Theorem 10. For n = 2k, k > 1 and w a weight function, consider

(9.3) My = (−1)ky(n) + qy = λwy on J = (a, b),

where q and w satisfy

(9.4) q ∈ Lloc(J,R), Q =

∫
q ∈ L(J,R), w ∈ L(J)

where Q is an anti-derivative of q. Then

(i) The minimal operator Smin(M) is bounded below in H = L2(J,w).
(ii) For all y ∈ Dmax(M), the limits

lim
t→a+

y[j](t), and lim
t→b−

y[j](t)

exist and are finite for j = 0, 1, . . . , n − 2 (but not for j = n − 1
in general).

(iii) The domain DF of the Friedrichs extension of Smin(M) is given
by the self-adjoint boundary conditions:

(9.5) y(j)(a) = 0 = y(j)(b), j = 0, 1, . . . , k − 1.

Proof. Under hypothesis (9.4), the endpoints may be singular. In
general, the limits (9.5) do not exist at a singular endpoint, so the
existence of these limits is part of the theorem. Let

(9.6) A =


1

1
. . .

1
−q

 , B =


1

1
. . .

−Q 1
Q

 ,

where all the nonspecified entries are zero. Note that A and B are in
Zn(J,R) and both are Lagrange symmetric. We compute the quasi-

derivatives and note that y
[j]
A = y(j) = y

[j]
B , j = 0, 1, . . . , n− 2; and

y
[n−1]
A = y(n−1) but y

[n−1]
B = (y(n−1) +Qy).
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Hence, MA y = i4y
[n]
A = y(n) + qy, and

MB y = i4y
[n]
B = {(y[n−1]

B ) +Qy}′ −Qy′ = y(n) + qy.

Therefore, D(A) = D(B) and MA = MB . By hypothesis, (9.4) MB is
regular on J , and therefore the conclusions follow from Theorem 8. �

Next we give an example to illustrate Theorem 10.

Example 8. For n = 2k, k > 1, consider

My = (−1)ky(n) + qy = λwy on J = (0, 1),(9.7)

q(t) = tr, t ∈ J, r ∈ (−2, 1]

Note that w = 1, the endpoint a = 0 is singular, the endpoint b = 1 is
regular and the hypothesis (9.4) holds. Hence, the Friedrichs extension
is given by the self-adjoint boundary conditions

(9.8) y(j)(0) = 0 = y(j)(1), j = 0, 1, . . . , k − 1.

Remark 12. In this example, by Theorem 10, we have that for all
y ∈ Dmax(M), the limits

(9.9) lim
t→0+

y[j](t), and lim
t→1−

y[j](t)

exist and are finite for j = 0, 1, . . . , n− 2 .What about j = n− 1? The
limit limt→1− y[n−1](t) exists since the endpoint b = 1 is regular. In this
case, the limit limt→0+ y[n−1](t) does not exist because if it did then

that and the fact that y
[n−1]
B = (y(n−1)+Qy) has a finite limit at 0 would

imply that Q has a finite limit at 0, which is not the case by inspection.

For this reason, the quasi-derivative y
[n−1]
B is used in the formulation of

the general self-adjoint boundary conditions for equation (9.7). Only
those self-adjoint boundary conditions can be expressed solely in terms
of classical derivatives which involve derivative orders strictly less than
n − 1. The Friedrichs extension is one of these since it involves only
derivatives up to order k − 1, and these are all classical in this case.

Remark 13. Since M = MA = MB, we can give the characterization
of the singular self-adjoint boundary conditions for MA by using the
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regular representation MB . Thus, we have: all self-adjoint realizations
of the problems (9.3) and (9.4) are given by

(9.10) A


y(a)
y[1](a)

...
y[n−1](a)

+B


y(b)
y[1](b)

...
y[n−1](b)

 =

 0
...
0

 ,

where y[j] = y(j), j = 0, 1, . . . , n − 2, and y[n−1] = (y(n−1) +Qy), and
the n× n complex matrices A,B satisfy

(9.11) rank (A : B) = n;

and

(9.12) AEA∗ = BEB∗, E = ((−1)rδr,n+1−s)
n
r,s=1.

10. The deficiency index. Above we showed that every Lagrange
symmetric matrix A generates a symmetric expression MA and that
each such expression MA generates a minimal operator Smin(A) and
a maximal operator Smax(A) in a Hilbert space H = L2(J,w) for
any weight function w. The operator Smin(A) is densely defined
closed and symmetric in H. It is well known that Smin(A) has self-
adjoint extensions in H if and only if its deficiency indices are equal:
d(A) = d+(A) = d−(A). Any such self-adjoint extension of Smin(A) is
also a self-adjoint restriction of the maximal operator Smax(A). These
restrictions are determined by boundary conditions on the maximal do-
main Dmax. The number of independent boundary conditions required
is given by the deficiency index d(A). The characterization of these
self-adjoint boundary conditions is discussed in Sections 12–18.

In this section we define the deficiency indices d+(A) and d−(A) of
symmetric differential operators MA generated by Lagrange symmetric
matrices A and state the basic classification results for them. We also
introduce the deficiency index problem, comment on its history, and
introduce some of its literature.

Definition 11. Assume that A ∈ Zn(J) is Lagrange symmetric. Let
M = MA be as constructed above, let w be a weight function, and let
H = L2(J,w).
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(1) For λ ∈ C, let d(λ) denote the number of linearly independent
solutions of the equation

(10.1) M y = λw y on J

which lie in H.
(2) For λ ∈ R, let r(λ) = d(λ).
(3) Let d+ = d(i) and d− = d(−i).
(4) d+ and d− are called the deficiency indices of (M,w) on H =

L2(J,w). When d+ = d−, we speak of the deficiency index
d = d+ = d− of (M,w) on H = L2(J,w).

Theorem 11. Let A ∈ Zn(J) be Lagrange symmetric, let M = MA,
and let w be a weight function. Then d(λ1) = d(λ2) if Im (λj) > 0 or
if Im (λj) < 0 for j = 1, 2.

Proof. This follows from a well-known abstract theorem [84, page
33, Theorem 5]. �

Remark 14. There is a sharp contrast between the behavior of d(λ)
for λ nonreal and λ real; d(λ) is constant in the upper complex plane
and in the lower complex plane. For A ∈ Zn(J,R), these constants are
the same, but for A ∈ Zn(J,C) these constants may be different. This
was first shown by McLeod [79]. Since the spectrum of a self-adjoint
operator in Hilbert space is real, r(λ) contains spectral information
about the self-adjoint realizations of the equation (10.1) as we will see
below. This is our motivation for introducing the notation r(λ) = d(λ)
for λ ∈ R.

Next we discuss deficiency index inequalities.

Notation 3. Since d+and d−depend on (M,w) and on the interval J
we indicate this dependence by using the notation d+ = d+(M,w, J),
d− = d−(M,w, J). Observe that the deficiency indices are well de-
fined when J is replaced by any subinterval of J . We are particu-
larly interested in the subintervals (a, c) and (c, b) of J , but for any
subinterval (α, β) of J , we use the notation d+ = d+(M,w, (α, β)),
d− = d−(M,w, (α, β)). (In this case, M and w are replaced by their
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restrictions to the subinterval.) When we study the dependence on M
with w and J fixed, we abbreviate the notation to d+(M), d−(M) and
similarly for d+(w), d−(w); d+(J), d−(J). Below, we will use the nota-
tion d+a = d+(M,w, (a, c)), d−a = d−(M,w, (a, c), d+b = d+(M,w, (c, b),

d−b = d−(M,w, (c, b). Note that this is independent of c for a < c < b,
and so when d+a = d−a , we use the notation da = d+a = d+a ; similarly
for b. The deficiency index problem is the problem of determining d+

and d− (or d if d+ = d−) in terms of the coefficients and weight func-
tion: d± = d±(aij , w; 1 ≤ i, j ≤ n). Here d+ = d+(M,w, (α, β)),
d− = d−(M,w, (α, β)) for any open subinterval (α, β) of J where
M = MA is constructed as above and M and w are the restrictions
of M and w on (α, β).

The subintervals (a, c) and (c, b) where c is in (a, b) are of special
interest. One reason for that is the following result which is sometimes
referred to as Kodaira’s formula:

Theorem 12. Let A ∈ Zn(J) be Lagrange symmetric, let M = MA,
let w be a weight function, and let c ∈ J = (a, b). Then

(10.2) d±(M,w, J) = d±a (M,w) + d±b (M,w)− n.

Proof. The proof in [84, page 72] can readily be adapted to this
more general result. �

Since any c ∈ J = (a, b) is a regular endpoint for both intervals (a, c)
and (c, b), Theorem 12 reduces the problem of determining d+ and d−

when both endpoints are singular to the case when one endpoint is
regular.

So, for the rest of this section, we present the deficiency index
classification for the case when the endpoint a is regular and b is
singular. The case when a is singular and b is regular is similar.

Theorem 13 (Deficiency index classification). Let A ∈ Zn(J) be
Lagrange symmetric, J = (a, b), and assume that a is regular. Let
M = MA, and let w be a weight function. Then the deficiency
indices d+ = d+(M,w, J) and d− = d−(M,w, J) satisfy the following
inequalities:
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(i) If n = 2k, then

(10.3) k ≤ d+, d− ≤ n.

(ii) If n = 2k + 1, k ≥ 1, and the leading coefficient of M is positive
on J , then

(10.4) k ≤ d+ ≤ n; k − 1 ≤ d− ≤ n.

(iii) If n = 2k + 1, k ≥ 1, and the leading coefficient of M is negative
on J , then

(10.5) k − 1 ≤ d+ ≤ n; k ≤ d− ≤ n.

These inequalities are best possible.

Proof. The right inequalities are clear since there cannot be more
than n linearly independent solutions. For the inequalities on the left in
(10.3) see the operator-theoretic proof of Kogan and Rofe-Beketov [71]
or the more classical proof of Everitt [32, 33, 34]. For the inequalities
on the left of (10.4) and (10.5) the methods given in [32, 34] can be
adapted; see also [69, 71]. �

In general, d+ ̸= d−, but if one of these is maximal then so is the
other one. In fact, there is an even stronger result given by the next
theorem.

Theorem 14. Let A = (aij) ∈ Zn(J) be Lagrange symmetric, J =
(a, b), let M = MA and let w be a weight function. If, for some λ ∈ C,
all solutions of

My = λwy on J

are in L2(J,w), then this is true for every λ ∈ C. (Note that real values
of λ are included here.)

Proof. See [30, Theorem 9.1]. �

Definition 12. We say that the symmetric expression M = MA is
in the limit-circle case, or LC for short, if its deficiency indices are
maximal. Note that, by Theorem 14, in the maximal case we have
d+ = d− = n. We say that the symmetric expression M = MA is in
the limit-point case, or LP for short, if its deficiency indices according
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to Theorem 13 are minimal. Thus, for n = 2k and one regular endpoint,
this means d+ = d− = k, for n = 2k + 1 and one regular endpoint this
means that d+ = k and d− = k − 1 if the leading coefficient is positive
and d+ = k − 1 and d− = k if the leading coefficient is negative. This
limit-point and limit-circle terminology has its roots in the seminal
paper of Weyl [117] in which, for n = 2, he constructed a sequence
of concentric circles in the complex plane which converged either to
a circle or a point. Although most authors now use a Hilbert space
approach pioneered by Glazman [54], especially for n > 2, the Weyl
terminology, abbreviated here as LC and LP, is widely used even when
n > 2.

Remark 15. We comment on the possible values of d+, d−. In view of
Theorem 12, we can restrict ourselves to the case when one endpoint
is regular and the other singular, say a is regular, b singular.

(1) If all aij are real, then My = λwy if and only if My = λwy. From
this and the fact that y ∈ L2(J,w) implies that y ∈ L2(J,w), it
follows that d+ = d−.

For any n = 2k, Glazman [54] has shown that there exist
symmetric expressions whose deficiency index d = r for any r,
k ≤ r ≤ n = 2k. Later Orlov and Read [90] constructed simpler
examples. See also [69], and see the next remark for a historical
comment.

(2) The lower bounds in (10.4) and (10.5) are achieved by simple
constant coefficient expressions. McLeod [79] was the first to
show that d+, d− can be different in the even order case when the
coefficients are complex. In [71], Kogan and Rofe-Beketov showed
that all possibilities not ruled out by Theorems 13 and 14 and by

|d+ − d−| ≤ 1

actually occur. Gilbert in [52, 53] has shown that there exist
symmetric differential expressions M such that

|d+(M)− d−(M)| = p

for any positive integer p provided the order of M is large enough.

Remark 16. It seems that all possibilities for d+, d− not ruled out by
Theorems 13 and 14 actually occur. But this is still an open problem.
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In particular, (i) there is no symmetric expression M of order 5 known
to the authors with d+(M) = 2 and d−(M) = 4 (or d+(M) = 4 and
d−(M) = 2); (ii) there is no known example with n = 6, d+ = 5, d− = 3
(or n = 6, d+ = 3, d− = 5), (iii) n = 8, d+ = 7, d− = 5, or n = 8,
d+ = 6, d− = 4, etc. Note that, by Theorem 14, if one of d+, d− is
maximal, then so is the other, i.e., d+ = n if and only if d− = n and,
more generally, if d(λ) = n for some λ ∈ C then d(λ) = n for every
λ ∈ C (including the real values of λ).

In honor of the work of Glazman [54] and Naimark [84] we call the
matrices A these authors used in their development of the theory of
symmetric and self-adjoint differential operator matrices of GN type.

Definition 13. A Lagrange symmetric matrix A = (aij) ∈ Zn(J) is
of GN type if n = 2k, k = 1, 2, 3, . . .; all aij are real, and all aij = 0
except for the following:

(1) ai,i+1 = 1 for all i = 1, . . . , n − 1, except when i = k, then

a−1
k,k+1 ∈ Lloc(J,R); and

(2) an,1, an−1,2, . . . , ak,k+1 ∈ Lloc(J).

Thus, for n = 2, 4, 6, a GN matrix A has the following form:

(10.6) A =

[
0 a12
a21 0

]
, A =


0 1 0 0
0 0 a23 0
0 a32 0 1
a41 0 0 0

 ,

(10.7) A =


1 0 0 0 0

1 0 0 0
a34 0 0

a43 1 0
a52 1

a61

 .

Recall that the matrices of GN type generate the quasi-derivative
forms of the real classical symmetric expressions (2.4), see Section 3
above.
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For symmetric expressions M generated by matrices A of GN
type there is a vast literature studying the dependence of d(M) =
d(an,1, an−1,2, . . . , ak,k+1;w) = d(a0, a1, . . . , ak;w) on these coefficients
when w = 1. Not much is known for general w, but see [105] for an
exception. (Here the notation an,1, an−1,2, . . . , ak,k+1 corresponds to
a0, a1, . . . , ak used in (2.4).)

Remark 17. n = 2. This case has a voluminous literature dating
back at least to the seminal 1910 paper of Weyl [117] discussing the
dependence of d on a1 and a0. (The standard notation for this case
is p = a1, q = a0.) In this case, with one regular and one singular
endpoint, we have either d = 1 (LP) or d = 2 (LC). Many sufficient and
some necessary conditions are known for LP. There is also a necessary
and sufficient condition known [69] but it cannot be checked in every
case. So in general, despite the vast literature on this problem (partly
because of its interest in quantum mechanics where a1 = 1 and a0 is
the potential function for the one dimensional Schrödinger equation),
the problem is still open. See Kauffman, Read and Zettl [69] for an
extensive but not comprehensive (and not up to date) discussion of the
case n = 2. Also see [21, 24, 131].

Remark 18. n = 2k, k > 1. This case has an interesting history and
also an extensive literature. The classification (10.3) for real coefficients
when d+ = d− = d : k ≤ d ≤ n was established by Weyl [117] in 1910
for the case n = 2 and by Glazman in 1950 [54] for general n. Glazman
showed that all values of d are realized. Simpler examples were later
found by Orlov [88] and by Read [90], also see [69]. In this 40 year
interval Windau [118] in 1921 and Shin in 1936–1940 claimed to have
established that only the two cases d(M) = k (LP) and d(M) = 2k (LC)
are possible. In the papers [96]–[99], Shin also discovered the general
Lagrange symmetric quasi-differential expressions discussed here which
were rediscovered, in a somewhat different but equivalent form, by Zettl
[123, 124].

Remark 19. Assume that one endpoint is regular. Most of the known
conditions on the coefficients in the even order case are for d = k,
see [29], as well as Kauffman, Read and Zettl [69]. The few results
known for the even order intermediate cases k < d < 2k and the odd
order case are based on the asymptotic form of solutions, see [24, 84],
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Gilbert [52, 53], the book by Rofe-Beketov and Kholkin [93] and its
references. There are some exceptions. For the fourth order case see
[25] where it is shown that d ̸= 2 and d ̸= 4, and therefore d must be
3.

Remark 20 (Delicate nature of deficiency index). Assume one end-
point is regular and A ∈ Zn(J,R) so that, for M = MA, we have
d(M) = d+(M) = d−(M).

For n = 2 and My = −(py′)′ + qy, it is known that when d(M) = 2,
given any positive ε, it is possible to change the coefficients p, q on a
set of Lebesgue measure less than ε such that, for the changed M , we
have d(M) = 1. It is possible to find sufficient conditions for d(M) = 1
which are given only on a sequence of intervals. See [69, Chapter III].

For n = 2k, k > 1, and one regular endpoint, k ≤ d(M) ≤ 2k. For
any d(M) > k, it is possible to change the coefficients of M only on a
sequence of intervals such that, for the changed M , we have d(M) = k.

Thus, for n = 2 and n = 2k, k > 1, there are strong ‘interval-type’
sufficient conditions for the LP case d(M) = k but not for any of the
cases d(M) > k. Thus, the LP case is ‘special’ and, for all the other
cases d(M) > k, including the LC case, the dependence of d(M) on the
coefficient is delicate. There are no ‘interval-type’ sufficient conditions
known for the cases d(M) > k. See [69], especially page 45, for details.

11. Powers of differential expressions and their deficiency
index. In this section, for any Lagrange symmetric matrix A = (aij) ∈
Zn(J), we study the relationship between the deficiency indices of the
symmetric expression M = MA and its powers Ms, s = 1, 2, 3, . . . .
These powers Ms of M are defined naturally by induction: M2(y) =
M(My), M3(y) = M2(My), . . . and are symmetric expressions gener-
ated by Lagrange symmetric matrices A[s] ∈ Zns(J) to be constructed
below. In sharp contrast with the classical case (2.3) and (2.4) this con-
struction requires no smoothness assumptions on the coefficients, nor
any other additional assumptions. Moreover, this construction applies
to polynomials p(M), where p is any polynomial with real coefficients.
Thus, the coefficients aij and a given weight function w determine se-
quences d+(Ms), d−(Ms), s = 1, 2, 3, . . ., of deficiency indices. Here
we give the deficiency index classification theory for these powers Ms,
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i.e., the analogue of Theorem 13 for powers Ms. And we give a com-
plete description of the possible such sequences for M = MA where
A ∈ Z2k(J,R) is Lagrange symmetric. In this case, the deficiency in-
dices are equal so there is only one sequence d(M), d(M2), d(M3), . . .,
and this entire sequence is determined by the coefficients aij and w.

Our construction of the matrices A[s] which generate the powers
Ms = MA[s] is based on a method of Zettl [124] and will be given
below. Our deficiency index results are based on the Kauffman, Read
and Zettl monograph [69]. Although these authors studied powers Ms

of the classical symmetric expressions M given by (2.3) and (2.4) on
the interval J = (0,∞) with 0 a regular endpoint and with weight
function w = 1 on J , their proofs readily extend not only to general
J and w but also, when combined with the extension of the Glazman-
Naimark theory given above, to M = MA and its powers Ms = MA[s] .
In particular, the proofs given in [69] make no use whatsoever of the
strong smoothness assumptions on the coefficients other than for the
construction of the powers of the classical expressionsMs (so that these
also have the form (2.3) and (2.4)). Thus, we state our results in this
section for general symmetric expressions as generated above and their
powers and refer to [69] for most of the proofs.

Given

(11.1) My = −(py′)′ + qy on J,

how are the deficiency indices ofM2 related to those ofM? Is it possible
to deduce the deficiency indices of M2 from those of M or vice versa?
Chaudhury and Everitt [20] investigated these questions and showed
that, for sufficiently smooth real coefficients, d(M2) = 4 if and only if
d(M) = 2 in L2(J, 1) for J = [0,∞) where 0 is a regular endpoint and
they found examples to show that when d(M) = 1, then d(M2) may be
either 2 or 3. This subject then received great impetus from a paper of
Everitt and Giertz [37] in which they introduced the concept of partial
separation and gave sufficient conditions on the coefficients of a second
order M which guarantees that all powers Ms are partially separated,
and they then show that all powers are LP. In [122], Zettl extended
some of the results in [37] to M of arbitrary order and showed that
they hold also for p(M) for any polynomial p with real coefficients.

We start with the construction of powers of quasi-differential expres-
sions given in [129].
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Theorem 15. Assume that A = (aij) ∈ Zn(J) is a Lagrange sym-
metric matrix. Let M = MA be the symmetric differential expression
as generated above, and define M2 by M2y = M(My), . . . ,Msy =
M(Ms−1y). Let A[1] = A and, for s ∈ N2, let A[s] denote the block
diagonal matrix

(11.2) A[s] =

 A
. . .

A


where there are s matrices A on the diagonal and all other entries
in this sn × sn matrix are zero except for the entries in positions
(n, n + 1), (2n, 2n + 1), . . . , ((s − 1)n, (s − 1)n + 1) which are all equal
to 1. Then the matrices A[s] are in Zsn(J), are Lagrange symmetric,
and the symmetric differential expression Ms is given by

(11.3) Ms = MA[s] , s ∈ N.

Proof. The Lagrange symmetry follows from the characterization

aij = (−1)i+j−1an+1−j,n=1−i

applied to (11.2). The construction follows from a direct computation
using the construction in Section 4. Note that, for the construction
of M2, y is replaced by My due to the 1 in the (n, n + 1) position to
get M2. Then My is replaced by M2y, and the construction is again
repeated using a 1 in the (2n, 2n+ 1) position to obtain M3, etc. �

Remark 21. It is interesting to observe that, if, in the above con-
struction, A is of GN type, the matrices A[s] for s > 1 are not of GN
type. Thus, the theory developed by Naimark [84] and by Glazman
[54] for matrices A of GN type does not directly apply to Ms = MA[s]

for s > 1, but the extension of this theory developed by Zettl [124] and
by Everitt and Zettl [45] does apply. But it should be mentioned that
the extended theory in [45, 124], uses some of the abstract Hilbert
space results of Glazman [54, 55] which were developed by Glazman
in extending the Weyl limit-point, limit-circle theory from n = 2 to
general even order n = 2k using Hilbert space methods rather than
extending the Weyl concentric circles approach.



802 ANTON ZETTL AND JIONG SUN

Remark 22. We also note that, in the classical theory, the minimal
domain contains the C∞

0 functions and is therefore dense. With just
local integrability assumptions on the coefficients, the minimal domain
may not contain the C∞

0 functions. With only local integrability
assumptions on the coefficients it is, in general, not easy to find non zero
functions in the minimal domain. Nevertheless, Naimark [84] contains
a proof that the domain of the minimal operator is dense under only
local integrability conditions on the coefficients for expressions of GN
type, and Zettl [124] has shown that Naimark’s proof extends to the
expressions used here.

Remark 23. Many authors who have studied products and powers of
differential expressions have placed strong differentiability assumptions
on the coefficients; in many cases, it was assumed that the coefficients
are C∞, e.g., Dunford and Schwarz [24]. These assumptions were then
used only to construct these powers and products in the classical way.
It follows from our development based on Zn(J) and the associated
quasi-derivatives that (i) the results of these authors are valid with
just the local integrability assumptions used here, and (ii) these results
hold for the much more general differential expressions developed
here. In particular, these conclusions apply to the following papers:
[20, 26, 29, 30, 35, 37, 44, 67, 68, 69].

There are not many sufficient conditions on the coefficients known
for the maximal deficiency case. Next we strengthen Theorem 14. This
gives a simple way to construct higher order equations with maximal
deficiency index. The elementary proof is based on two lemmas which
we establish first.

Lemma 5. Let M = MA with A a Lagrange symmetric matrix
in Zn(J), λ a complex number, w a weight function and p a real
polynomial. If My = λwy, then p(M)y = p(λ)wy.

Proof. Let p(x) = akx
k + ak−1x

k−1 + · · ·+ a1x+ a0, aj real. Then:

p(M)y = (akM
k + ak−1M

k−1 + · · ·+ a1M + a0)y

= (akλ
k + ak−1λ

k−1 + · · ·+ a1λ+ a0)y

= p(λ)y. �
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Lemma 6. Let the hypotheses and notation of Lemma 5 hold. If
λ1, . . . , λk are distinct complex numbers and, for each j, zjq with q =
1, . . . ,m are linearly independent solutions of My = λjwy, then the set
of functions {zjq , j = 1, . . . , k; q = 1, . . . ,m} is linearly independent.

Proof. Suppose there exist complex numbers such that cjq, j =
1, . . . , k; q = 1, . . . ,m such that y1 + · · · + yk = 0, where yj =

cj1z
j
1 + cj2z

j
2 + · · · + cjmzjm for j = 1, . . . , k. Then M(y1 + · · · + yk) =

(λ1y1 + · · ·+ λkyk) = 0. Repeated applications of M yield

(11.4) (λ1)
ry1 + · · ·+ (λk)

ryk = 0, r = 0, . . . , k − 1.

The k × k coefficient of the homogeneous system (11.4) is a Van-
dermonde matrix whose determinant is not zero. Hence, yi = 0 for
i = 1, . . . , k.

Therefore, by the linear independence of (zj1, z
j
2, . . . , z

j
k), it follows

that cjq = 0, j = 1, . . . , k; q = 1, . . . ,m. �

Theorem 16. Let A in Zn(J) be a Lagrange symmetric matrix, and
let M = MA. If, for some λ ∈ C, all solutions of

My = λwy on J

are in L2(J,w), then this is true for all solutions of

Msy = λwy on J

for every λ ∈ C and every s ∈ N.

Proof. By Theorem 14, if all solutions of an equation My = λwy
are in L2(J,w) for some λ ∈ C, then this is true for all λ ∈ C. (This
can be proved using the variation of parameters formula.) Choose
a complex number C such that the roots, say λ1, . . . , λk, of the real
polynomial equation p(x) = C are distinct. For each j ∈ {1, . . . , k},
let zj1, z

j
2, . . . , z

j
m be linearly independent solutions of My = λjwy. By

Lemma 5, each zjq is a solution of

p(M)y = Cwy
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and, by Lemma 6, the zjq , j = 1, . . . , k; q = 1, . . . ,m form a fundamental

set of solutions of p(M)y = Cwy. Hence, p(M) is LC since each zjq is

in L2(J,w).

On the other hand, if p(M) is LC, choose λj as above and conclude
that all solutions of My = λ1wy are in L2(J,w), i.e., M is LC in
L2(J,w). �

Next, we extend the general classification result given by Theorem 13
for M to powers Ms. Recall that, by Theorem 12, the case when both
endpoints are singular reduces to the case when one endpoint is regular.
So we state the results for the case when a is regular; the case when b
is regular is entirely similar.

Theorem 17. Let A ∈ Zn(J) be L-symmetric, M = MA, let w be
a weight function, and assume that the endpoint a is regular. Let
Ms = MA[s] , s ∈ N2, be constructed as above. Then, for any polynomial
p(x) = asx

s+as−1x
s−1+· · ·+a1x+a0 with as ̸= 0 with real coefficients

aj, we have

(i) For s = 2r, r > 0,

d+(p(M)), d−(p(M)) ≥ r [d+(M) + d−(M)].

(ii) For s = 2r + 1, r > 0,

d+((M)) ≥ (r + 1)d+(M) + rd−(M)

d−(p(M)) ≥ rd+(M) + (r + 1)d−(M)

Strict inequality can occur in each of these inequalities.

Proof. See [122, 124]; see, also, [69]. �

Corollary 5. If, for some s > 1, one of d+(Ms) or d−(Ms) take
on the minimum value possible according to the general classification
Theorem 13, then both d+(M) and d−(M) are minimal, i.e., M is LP.
In particular, if some power Ms is LP, then M is LP.

Recall that the converse of Corollary 5 is false in general, as men-
tioned above. Next we take up the question of when does the converse
hold?



SURVEY ARTICLE: DIFFERENTIAL OPERATORS 805

Definition 14 (Partial separation). Let the hypotheses and notation
of Theorem 17 hold, and let H = L2(J,w), s ∈ N2. Let p(x) =
asx

s + as−1x
s−1 + · · · + a1x + a0 with as ̸= 0 be a polynomial with

real coefficients aj . We say that p(M) is partially separated if f ∈ H,
Msf ∈ H together imply that Mrf ∈ H, for r = 1, 2, . . . , s − 1.
(Note that p(M) is partially separated if and only if Ms is partially
separated.)

Theorem 18. Let the hypotheses and notation of Corollary 5 hold,
and assume that Ms is partially separated. Then:

(i) If s = 2r, then

d+(Ms) = d−(Ms) = r [d+(M) + d−(M)].

(ii) If s = 2r + 1, r > 0, then

d+(Ms) = (r + 1)d+(M) + rd−(M) and

d−(Ms) = rd+(M) + (r + 1)d−(M).

Conversely,

(iii) If, for s = 2r, even, either d+(Ms) = (r+1)d+(M) + rd−(M)
or d−(Ms) = rd+(M) + (r + 1)d−(M), Then Ms is partially
separated.

(iv) If, for s = 2r+1, r > 0, odd, either d+(Ms) = (r+1)d+(M)+
rd−(M) or d−(Ms) = rd+(M) + (r + 1)d−(M). Then Ms is
partially separated.

Proof. See [122, 124]; see also [69]. �

Next we state an important corollary.

Corollary 6. Let A ∈ Zn(J) be L-symmetric, M = MA, let w be a
weight function, and assume that the endpoint a is regular. Let Ms =
MA[s] , s ∈ N2, be constructed as above. If d+(M) = d−(M) = d(M),
as is always the case when A ∈ Zn(J,R), then d(Ms) = s d(M) if and
only if Ms is partially separated.

What are the possible sequences d+(Ms), d−(Ms), s = 1, 2, 3, . . . ?
The next theorem answers this question for A ∈ Z2k(J,R).
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Theorem 19. Assume A ∈ Zn(J,R), n = 2k, M = MA, A is Lagrange
symmetric and a is a regular endpoint. Let Mm = MA[m] , r0 = 0,
rm = d(Mm), m = 1, 2, 3, . . . . Then:

(i)
km ≤ rm ≤ 2 km, m = 0, 1, 2, 3, . . . .

(ii) The sequence
{sm = rm − rm−1}∞m=1

is nondecreasing.
(iii) Given any sequence of integers {rm}∞m=0 satisfying (i) and (ii),

there exists an M = MA with A ∈ Z2k(J,R) such that rm =
d(Mm), m = 1, 2, 3, . . . .

Proof. Part (i) follows from Theorem 13 applied to Mm. The proof
for part (ii) given in [69] for the classical case with smooth coefficients
readily adapts to the quasi-differential expressions discussed here; it is
based on a method of Kauffman [68]. Examples for part (iii) are also
constructed in [69]. �

Next, we give two well-known examples to illustrate some of the
above results and make some comments about some of their other
interesting features. See [69] for many other examples.

Let

(11.5) My = −y′′ − qy, q(t) = tα, t ∈ J = (1,∞).

We state the next results as theorems even though they are corollar-
ies of either well-known theorems or of theorems from above and then
comment on some of their interesting features.

Theorem 20. Consider equation (11.5).

(i) If α ≤ 2, then d(M) = 1 in L2(J, 1), i.e., M is LP at ∞.
(ii) If α > 2, then d(M) = 2 in L2(J, 1), i.e., M is LC at ∞.
(iii) If α ≤ 2, then d(Ms) = s in L2(J, 1), i.e., Ms is LP at ∞ for

all s = 1, 2, 3, . . . .
(iv) If α > 2, then d(Ms) = 2 s in L2(J, 1), i.e., Ms is LC at ∞ for

all s = 1, 2, 3, . . . .
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Proof. We give references for the proofs and make comments for each
part.

(i) This is a special case of the well-known Levinson LP condition.
Together with part (ii), it shows that α = 2 is the critical exponent
which separates the LP and LC cases. Evans and Zettl in [30]
extended the well-known Levinson condition for d(M) = 1 and
showed that the extended version is sufficient for all powers of M
to be in the LP case.

(ii) This is well known; see [69] for more information.
(iii) This is established by Evans and Zettl in [30]; see also [69].
(iv) This follows from Theorem 16. �

Consider

(11.6) My = y(4) + qy, q(t) = tα, t ∈ J = (1,∞).

Theorem 21. For equation (11.6):

(i) d(M) = 2 in L2(J, 1), i.e., M is LP at ∞ if and only if α ≤ 4/3.
(ii) If α ≤ 4/3, then all powers of M are LP at ∞.

Proof. We give references for the proofs and make comments for each
part.

(i) The critical constant was found by Hinton [65], see [69] for a
general discussion including extensions of various kinds.

(ii) This is established by Evans and Zettl [29], see [69] for a general
discussion including extensions of various kinds. �

12. Sturm-Liouville operators. In this section, we briefly review
the second order case, see the book [131] for more details. We discuss
this case separately for two reasons: (i) because it is of wide interest
and (ii) it helps to ‘set the stage’ for the higher order cases discussed
below.

Consider the equation

My = −(py′)′ + qy = λwy on J = (a, b);(12.1)

1

p
, q, w ∈ Lloc(J,R), w > 0.
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Note that M = MA where A is a Lagrange symmetric matrix of the
form

A =

[
0 1

p

−q 0

]
.

Note that there is no sign condition on p.

Every self-adjoint extension S of the minimal operator Smin(A) in
the space L2(J,w) satisfies (see [131] or Section 15 below)

(12.2) Smin = Smin(A) ⊂ S = S∗ ⊂ Smax(A) = Smax.

Thus, every such operator S is an extension of the minimal operator
Smin(A) and a restriction of the maximal operator Smax. These restric-
tions are on the maximal domain and are called self-adjoint boundary
conditions. We review these characterizations in this section.

Everitt and Race [43] showed that the local integrability condition
on the coefficients in (12.1) is necessary and sufficient for every initial
value problem to have a unique solution defined on (all of) J . A solution
is defined as a function y ∈ ACloc(J) such that (py′) ∈ ACloc(J) and
(12.1) holds almost everywhere on J . Note that y′(t) may not exist for
all t ∈ J , but the product (py′) exists and is continuous on J , hence the
notation (py′) since this product may not be ‘expandable’ to p(t)y′(t)
for all t ∈ J . If the coefficients are integrable on the whole interval,
i.e., 1/p, q, w ∈ L(J,R), then the limits

lim
t→a+

y(t), lim
t→a+

(py′)(t), lim
t→b−

y(t), lim
t→b−

(py′)(t)

exist and are finite regardless of whether the endpoints a, b are finite
or infinite. This is the motivation for calling a regular if 1/p, q, w ∈
L((a, c),R) for some (and hence any) c ∈ J , and similarly for b.
Equation (12.1) is regular on J if both endpoints are regular; in this
case, 1/p, q, w ∈ L(J,R). Equation (12.1) is singular at a if it is not
regular at a, and similarly for b. There are two mutually exclusive
subclasses of the singular case at each endpoint: limit-circle (LC) and
limit-point (LP). (This terminology dates back to the seminal paper
of Weyl [117] where he made this definition motivated by his proof
using concentric circles in the complex plane which converged either to
a circle or a point.) We base our definition on the Weyl alternative or
Weyl dichotomy result, which we state next.
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Theorem 22 (Weyl dichotomy). Consider equation (12.1) on a subin-
terval (α, β) of J . (We are primarily interested in subintervals of the
form (a, c) or (c, b).) If all solutions of (12.1) are in L2((α, β), w) for
some λ in C, then this is true for all λ in C.

Based on Theorem 22, we make the following definition.

Definition 15 (LC/LP). Let c ∈ (a, b), and consider equation (12.1)
on (a, c). If, for some λ in C, all solutions are in L2((a, c), w), then a
is in the limit-circle (LC) case; otherwise, a is in the limit-point (LP)
case. This classification is independent of c and of λ (by Theorem 22).
A similar definition is made at b.

The next theorems characterize the self-adjoint extensions of the
minimal operator for all endpoint classifications.

Theorem 23 (R/R). Assume each endpoint is regular, i.e., 1/p, q, w ∈
L(J,R). Suppose A, B ∈ M2(C) satisfy

(12.3) AEA∗ = BEB∗, E =

[
0 −1
1 0

]
, rank (A : B) = 2.

Then the linear submanifold D(S) of Dmax defined by
(12.4)

D(S) =

{
y ∈ Dmax : AY (a) +BY (b) = 0, Y =

(
y

(py′)

)}
is the domain of a self-adjoint extension of Smin, and every self-adjoint
extension of Smin is determined this way.

The boundary conditions (12.3) and (12.4) can be categorized into
two mutually exclusive classes: separated and coupled, and these have
the canonical forms

cos(α) y(a) + sin(α) (py′)(a) = 0, 0 ≤ α < π;(12.5)

cos(β) y(b) + sin(β) (py′)(b) = 0, 0 < β ≤ π.

(12.6) Y (b) = eiθK Y (a), −π < θ ≤ π, det(K) = 1.
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If p > 0 almost everywhere on J , then the minimal operator Smin

and all of its self-adjoint extensions are bounded below and the Dirichlet
boundary condition

y(a) = 0 = y(b)

determines the Friedrichs extension. If p changes sign on J , then Smin

is not bounded below.

The next theorem is for the case when both endpoints are singular
and in the limit-circle (LC) case. As mentioned above, in this case the
boundary conditions (12.5) and (12.6) are not well defined since, for
solutions and maximal domain functions, y and (py′) do not have finite
limits at the endpoints a, b, in general.

This obstacle is overcome by using the Lagrange sesquilinear form:

(12.7) [y, z] = y(pz′)− z(py′), y, z ∈ Dmax.

It is well known [131, page 172, Lemma 10.2.3] that this form
has finite limits at each endpoint for all y, z ∈ Dmax. Below we use
the notation [y, z] and call this the Lagrange sesquilinear form or the
Lagrange bracket for anyy, z ∈ Dmax.

To state the characterizations for singular endpoints it is convenient
to make the following definition:

Definition 16. We consider several cases.

(i) Suppose a is LC. Choose c ∈ (a, b). Let u1 and u2 be two real-
valued linearly independent solutions of (12.1) on (a, c) for some
real λ normalized to satisfy [u1, u2](a) = 1. We call (u1, u2) a
boundary condition basis at a.

(ii) Suppose b is LC. Choose c ∈ (a, b). Let v1 and v2 be two linearly
independent real-valued solutions of (12.1) on (c, b) for some real
λ normalized to satisfy [v1, v2](b) = 1. We call (v1, v2) a boundary
condition basis at b.

(iii) If neither endpoint is LP, let u1, u2 be two real-valued linearly
independent solutions of (12.1) on (a, b) for some real λ normalized
to satisfy [u1, u2](t) = 1 for t ∈ (a, b); in this case, we call (u1, u2)
a boundary condition basis at a and at b or a boundary basis on
(a, b). See the next remark.
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Remark 24. We comment on Definition 16. Note that [u1, u2] is
the Wronskian, which is a non zero constant for linearly independent
solutions; hence, the normalization is possible for each case. The
choice of c is arbitrary–it merely serves to get a boundary condition
basis consisting of linearly independent solutions. For each case, the
boundary condition basis depends on λ. The boundary conditions
(12.10) and (12.11) below change with each change of λ, but once λ and
the basis is chosen all self-adjoint realizations S of the equation (12.1)
are obtained by varying the boundary condition constants (K, γ) or
α, β.

The next theorem extends Theorem 23 to singular LC endpoints.
We state it for the case when both endpoints are LC, but it reduces to
the case when one or both are regular.

Theorem 24 (LC/LC). Let (12.3) hold. Assume that both endpoints
are singular and in the limit-circle (LC) case. Suppose u1, u2 are
linearly independent real solutions of (12.1) on (a, b) for some real λ
normalized to satisfy [u1, u2] = 1. Then the linear submanifold D(S)
of Dmax defined by

D(S) = {y ∈ Dmax : AY (a) +BY (b) = 0},(12.8)

Y (a) =

(
[y, u1](a)
[y, u2](a)

)
, Y (b) =

(
[y, u1](b)
[y, u2](b)

)
.(12.9)

is the domain of a self-adjoint extension of Smin, and every self-adjoint
extension of Smin is determined this way.

The boundary conditions (12.3) and (12.8) can be categorized into
two mutually exclusive classes: separated and coupled, and these have
the canonical forms:

cos(α)[y, u1](a) + sin(α)[y, u2](a) = 0, 0 ≤ α < π;(12.10)

cos(β)[y, u1](b) + sin(β)[y, u2](b) = 0, 0 < β ≤ π.

(12.11) Y (b) = eiγKY (a), −π < γ ≤ π, det(K) = 1.

If p > 0 almost everywhere on J and both endpoints are LCNO,
then the minimal operator Smin is bounded below. If ua is the principal
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solution at a and ub is the principal solution at b, then the boundary
condition

(12.12) [y, u1](a) = 0 = [y, v1](b)

determines the Friedrichs extension SF of Smin. (The principal solu-
tion at each endpoint is unique up to real constant multiples, but the
principal solution at a may not be the principal solution at b, see [131].)

If one or both endpoints are LCO, then Smin is not bounded below
in L2(J,w), and so there is no Friedrichs extension.

Remark 25. There is no canonical form for self-adjoint boundary
conditions comparable to (12.10) and (12.11) known in the higher order
case. Hao, Sun and Zettl [61, 62] found canonical forms for regular
and singular problems of order n = 4 but these are not ‘comparable’
to (12.10) and (12.11) in the sense that they involve many more cases.

Theorem 25 (LP/LP). If both endpoints are LP, then Smin is self-
adjoint and has no proper self-adjoint extension; it may or may not be
bounded below.

Theorem 26 (R/LP, LP/R). If a is regular and b is LP, then for any
α ∈ [0, π), the boundary condition

(12.13) cos(α) y(a) + sin(α) (py′)(a) = 0, 0 ≤ α < π

determines a self-adjoint extension of Smin, and every self-adjoint
extension is determined by (12.13).

If b is regular and a is LP, then for any β ∈ [0, π), the boundary
condition

(12.14) cos(β) y(b) + sin(β) (py′)(b) = 0, 0 < β ≤ π

determines a self-adjoint extension, and every self-adjoint extension
is determined by (12.14). The minimal operator may or may not be
bounded below.

The different normalizations for α and β are customary and are
convenient for use of the Prüfer transformation in studying theoretical
and numerical properties of eigenvalues and eigenfunctions of Sturm-
Liouville problems. Although we make no direct use of these different
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normalizations in this section, we follow this well-established custom
here.

Theorem 27 (R/LC, LC/R). If a is regular and b is LC, then (12.8),
(12.10) and (12.11) hold with [y, u1](a) replaced by y(a) and [y, u2](a)
replaced by (py′)(a).

If b is LCNO and ub is the principal solution at b, then Smin

is bounded below and the Friedrichs extension is determined by the
boundary condition

(12.15) y(a) = 0 = [y, ub](b).

If b is LCO, then Smin is not bounded below (even when p > 0 on
J). There is an entirely similar result when a is LC and b is regular.

Theorem 28 (LC/LP, LP/LC). If a is LC, (u1, u2) is a boundary
condition basis at a and b is LP, then

(12.16) cos(α)[y, u1](a) + sin(α)[y, u2](a) = 0, 0 ≤ α < π

determines all self-adjoint extensions of Smin.

If b is LC, a is LP and (v1, v2) is a boundary condition basis at b.
Then

(12.17) cos(β)[y, v1](b) + sin(β)[y, v2](b) = 0, 0 < β ≤ π

determines all self-adjoint extensions of Smin.

As mentioned in the introduction to this section, one reason we
surveyed the second order results here is to ‘set the stage’ for the
presentation of the results for the higher order case. How do the
theorems of this section extend to the higher order case when n = 2k
and k > 1? This will be discussed in the next two sections.

13. The GKN theorem. In this section, we discuss the GKN
theorem and the extensions of Theorems 23 and 24 to the general
higher order case. The GKN theorem was so named by Everitt and
Zettl in [47] in honor of the work of Glazman, Krein and Naimark
for the reasons given in [47, Section 9]. Today this theorem and its
extensions are widely used by this name to study self-adjoint differential
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operators, difference operators, Hamiltonian systems, etc. For ordinary
differential operators, the GKN theorem has been extended from the
classical one interval case studied by Glazman, Krein and Naimark to
any finite or infinite number of intervals [47].

The next theorem uses elements of the maximal domain to charac-
terizes all self-adjoint extensions of Smin.

Theorem 29 (GKN). Let A = (aij) be a Lagrange symmetric matrix
in Zn(J), let M = MA, let w be a weight function, let Smin = Smin(M)
and Smax = Smax(M) be the minimal and maximal operators of M with
domains Dmax = D(Smax), Dmin = D(Smin), respectively. Assume
that d+(M) = d−(M) = d(M) = d, say. Let [·, ·] denote the Lagrange
bracket of M . Then a linear submanifold D(S) ⊂ Dmax is the domain
of a self-adjoint extension of Smin in L2(J,w) if and only if there exist
functions u1, . . . , ud in Dmax such that

(i) u1, . . . , ud are linearly independent modulo Dmin, i.e., no nontriv-
ial linear combination of u1, . . . , ud is in Dmin.

(ii) [ui, uj ](b)− [ui, uj ](a) = 0, i, j = 1, . . . , d;
(iii) D(S) = {y ∈ Dmax : [y, uj ](b)− [y, uj ](a) = 0, j = 1, . . . , d}.

Recall from Section 6 that, for any y, z ∈ Dmax, the Lagrange bracket
[y, z] has finite limits at each endpoint a and b.

Proof. The proof in Naimark [84, page 75] can readily be adapted
to this generality. �

Condition (i) gives the number of linearly independent conditions
required, (ii) gives the conditions that these d conditions must satisfy
and (iii) gives the boundary conditions which determine the self-adjoint
domains. Note that the deficiency indices are equal if A ∈ Zn(J,R)
since, in this case, y ∈ H whenever y ∈ H for any solution y of the
equation My = λwy.

Definition 17. We call a set of functions {u1, . . . , ud} satisfying
conditions (i) and (ii) of the GKN theorem a GKN-set. These sets
depend on the coefficients (aij) and on w, and this dependence is
implicit and complicated.
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Can we find a GKN set {u1, . . . , ud} of solutions? This question is
discussed later in this section for d = n and in the next section for
general d < n.

The next theorem shows that the dependence on the GKN set of
maximal domain functions can be eliminated if both endpoints are
regular. In this case, an explicit characterization can be given in terms
of two-point boundary conditions involving only solutions and their
quasi-derivatives at the endpoints.

When each endpoint is either regular or singular LC, Theorem 16
together with the Lagrange identity shows that any real solution basis
for any real value of λ is a GKN set. In this case d = n. For d < n, the
situation is much more complicated as we will see in the next sections.
In this case, if there are d linearly independent solutions for some real
λ (there may not be) we must find a way to identify which of these
can be used to form part of a GKN set. This we do in the next few
sections.

Theorem 30. Let A be a Lagrange symmetric matrix in Zn(J), let
M = MA, let w be a weight function on J , and assume that each
endpoint is regular. Then a linear submanifold D(S) ⊂ Dmax(M) is
the domain of a self-adjoint extension of Smin(M) in L2(J,w) if and
only if there exist matrices A,B ∈ Mn(C) such that

(13.1) rank (A : B) = n;

(13.2) AEA∗ = BEB∗, E = ((−1)rδr,n+1−s)
n
r,s=1;

and

(13.3) A

 y(a)
...

y[n−1](a)

+B

 y(b)
...

y[n−1](b)

 =

 0
...
0

 .

Proof. See [124]. �

Theorem 30 is a natural extension of Theorem 23 to general n even
or odd. At a singular endpoint, such a characterization is not possible
since solutions and their quasi-derivatives do not, in general, have finite
limits at that endpoint. Also, in that case, d is less than n, in general.
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Next, we specialize to the even order case.

Remark 26. Suppose A ∈ Zn(J,R), n = 2k, k > 1. If each
endpoint is either regular or LC, then d = n and there is a natural
extension of Theorem 24. In this extension, the roles of y[r](a) and
y[r](b) are played by the Lagrange brackets [y, ur+1](a) and [y, ur+1](b),
r = 0, 1, . . . , n− 1, where u1, . . . , un are a basis of real-valued solutions
of (10.1) for an arbitrary (but fixed) λ = λ0 ∈ R.

Theorem 31. Let A be a Lagrange symmetric matrix in Zn(J,R),
n = 2k, k > 1, let M = MA, let w be a weight function on J , and
suppose that each endpoint is LC in L2(J,w). Assume u1, . . . , un are
linearly independent real valued solutions of My = λwy on (a, b) for
some real λ0. Then a linear submanifold D(S) ⊂ Dmax is the domain
of a self-adjoint extension of Smin in L2(J,w) if and only if there exist
matrices A,B ∈ Mn(C) satisfying the conditions:

(13.4) rank (A : B) = n;

(13.5) AEA∗ = BEB∗, E = ((−1)rδr,n+1−s)
n
r,s=1;

such that D(S) consists of all y ∈ Dmax satisfying

(13.6) A

 [y, u1](a)
...

[y, un](a)

+B

 [y, u1](b)
...

[y, un](b)

 =

 0
...
0

 .

Here [y, u] denotes the Lagrange bracket which has finite limits at
each endpoint.

Proof. See [124]. �

Corollary 7. In Theorem 31, if the endpoint a is regular, then

A

 [y, u1](a)
...

[y, un](a)
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can be replaced by

A

 y(a)
...

y[n−1](a)

 ;

similarly if b is regular, then change A and a to B and b in the above
replacement. Thus, if both endpoints are regular, then Theorem 31
reduces to Theorem 30.

Proof. See [58]. �

Remark 27. It is interesting to compare Theorems 30 and 31. The
regular self-adjoint boundary conditions (13.3) are expressed in terms of
the quasi-derivatives y[r](a) and y[r](b), whereas in (13.6), the singular
self-adjoint conditions are expressed in terms of the Lagrange brackets
[y, ur+1](a) and [y, ur+1](b). These exist as finite limits for every
y ∈ Dmax by the Lagrange identity. This in spite of the fact some
of the terms in the definition of [y, ur+1] may blow up at a or b, but
each of these blow ups is “canceled” by another interior term [y, ur+1].
For example, in the second order case [y, u] = y(pu′)− u(py′), if y(pu′)
blows up, then u(py′) blows up in such a way that the difference has
a finite limit at the endpoint. Since the interval (a, b) is open, the
quasi-derivatives y[r] are also defined as finite limits but the quasi-
derivatives y[r] are continuous at a regular endpoint. At a singular
endpoint the quasi-derivatives y[r] do not exist at the endpoints, in
general. At a singular LC endpoint the limits of [y, ur+1] do exist for all
maximal domain functions y. So when each maximal domain function y
is ‘matched’ with the corresponding ur+1 then the limit [y, ur+1] exists
and is finite. The blowups or wild oscillations of y and ur+1 cancel to
produce a finite limit for [y, ur+1] at each LC endpoint.

Remark 28. When d = n = 2k, Theorem 31 extends the GKN
theorem by showing that any solution basis for any real λ is a GKN
set. If each endpoint is regular or LC, then d = n. If one endpoint is
not regular or LC, then d < n. This case is much more complicated
and will be discussed in the next sections.
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14. Decomposition of the maximal domain. If deficiency index
d = n, then all solutions of

(14.1) My = λwy on J = (a, b), −∞ ≤ a < b ≤ ∞,

are in H = L2(J,w) for any λ ∈ C. And, by Theorem 31 for any real λ,
every solution basis is a GKN set. When the deficiency indices satisfy
d+ = d− = d < n, there are exactly d linearly independent square-
integrable solutions of (14.1) for any λ with Im (λ) ̸= 0. But such a
solution basis does not form a GKN set because condition (ii) of the
GKN theorem is not satisfied. Sun [101] constructed a GKN set of
solutions near the endpoints for this case. This construction is based
on a new (in [101]) decomposition of the maximal domain Dmax(J).

In this section, we present the Sun [101] decomposition and its proof.
We give a detailed proof here because our result is more general than
that given in [101], but the method of proof is basically the same.

Given a closed symmetric densely defined operator T in a Hilbert
space H, the well-known von Neumann formula [84]

(14.2) D(T ∗) = D(T )uNλ uNλ, Im (λ) ̸= 0,

characterizes the domain of its adjoint in terms of its deficiency spaces
Nλ, Nλ.

When applied to the minimal operator Smin = Smin(A) where
A ∈ Zn(J) is Lagrange symmetric, using Theorem 1, the von Neumann
formula yields

(14.3) D(Smax) = D(Smin)uNλ uNλ, Im (λ) ̸= 0,

where

(14.4) Nλ = {y ∈ D(Smax) : MA y = λw y, Im (λ) ̸= 0}.

The deficiency spaces Nλ and Nλ in the von Neumann formula (14.3)
and (14.4) consist of solution bases of the equation MA y = λw y on the
whole interval J = (a, b). When d < n, the behavior of the solutions
may be very different near the two endpoints of the underlying interval
J . (When d = n, each endpoint is either regular or LC; in the regular
case, the solutions and their quasi-derivatives are continuous at that
endpoint, in the singular LC case the solutions are asymptotically
similar at that endpoint [131].) To take this different behavior into
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account, the Sun decomposition, see Theorem 32 below, replaces the
direct sum Nλ uNλ in (14.3) with

(14.5) span {u1, . . . , uma}+̇span {v1, . . . , vmb
},

where the uj are solutions near a and the vj are solutions near b. This
decomposition is then used to characterize all self-adjoint domains in
terms of boundary conditions specified only at the endpoints a and b
for regular or singular endpoints and for any deficiency index d.

Next we state the Sun decomposition theorem.

Theorem 32. Let A ∈ Zn(J,R), n = 2k, 1 < k, M = MA, assume
that A is Lagrange symmetric and w is a weight function. Let c ∈ (a, b),
λ ∈ C with Im (λ) ̸= 0. Then the deficiency indices of M are equal
on (a, b), (a, c) and on (c, b): d+(a, b) = d−(a, b) = d(a, b) = d,
d+(a, c) = d−(a, c) = d(a, c) = da, d

+(c, b) = d−(c, b) = d(c, b) = db.
Let ma = 2da − n, mb = 2db − n. Then there exist vj ∈ Dmax(a, b),
j = 1, 2, . . . ,mb and uj ∈ Dmax(a, b), j = 1, 2, . . . ,ma, such that

(i) (a) u1, . . . , uma are linearly independent solutions of MA y =
λw y on (a, c);

(b) the ma × ma matrix U = [ui, uj ](a), 1 ≤ i, j ≤ ma, is
nonsingular.

(c) uj is identically zero in a neighborhood of b;
(d) u1, . . . , uma are linearly independent modulo Dmin.

(ii) (a) v1, . . . , vmb
are linearly independent solutions of MA y = λw y

on (c, b);
(b) the mb × mb matrix V = [vi, vj ](b), 1 ≤ i, j ≤ mb, is

nonsingular ;
(c) vj is identically zero in a neighborhood of a;
(d) v1, . . . , vmb

are linearly independent modulo Dmin.
(iii)
(14.6)

Dmax(a, b)=Dmin(a, b)+̇span {u1, . . . , uma}+̇span {v1, . . . , vmb
}.

Proof. Part (c) follows from (a) and Lemma 4 (Naimark patching
lemma); part (d) follows from (b) and (c). The proof of parts (a) and
(b) is long and technical and will be given below; it depends on several
lemmas.
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First we observe that (iii) follows from (i) and (ii). By Von
Neumann’s formula (14.3), dimDmax(a, b)/Dmin(a, b) = 2d. Since
ma +mb = 2(da + db − n) = 2d, from parts (i) and (ii) it follows that
Dmax(a, b)/ Dmin(a, b) ≥ 2d, completing the proof of (iii). Clearly,
we need to prove only part (ii) since the proof of part (i) is entirely
similar. �

Next, we observe that, for any λ ∈ C with Im (λ) ̸= 0, we have the
following unique representation for all y ∈ Dmax(c, b):

(14.7) y = y0 +

db∑
i=1

cizi(·, λ) +
db∑
i=1

c̃izi(·, λ),

where y0 ∈ Dmin(c, b), zi(·, λ), i = 1, . . . , db, are linearly independent
solutions of M(y) = λwy on (c, b) and ci, c̃i ∈ C. This follows from the
Von Neumann formula applied to the interval (c, b).

Let

x1 = z1(·, λ), . . . , xdb
= zdb

(·, λ),(14.8)

xdb+1 = z1(·, λ), . . . , x2db
= zdb

(·, λ).

Thus, if y ∈ Dmax(c, b), we have

(14.9) y = y0 +

2db∑
i=1

aixi, y0 ∈ Dmin(c, b), ai ∈ C,

and this representation is unique.

Lemma 7. Define the matrix X by

(14.10) X = ([xi, xj ](b)) 1≤i
j≤2d,

where [xi, xj ] is the Lagrange bracket. Then

rank (X) = mb = 2db − n.

Proof. Let gi be a set of functions in Dmax(c, b) which satisfy the
following conditions:

(14.11) g
[k−1]
i (c) = δik, (k, i = 1, . . . , n),
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and are identically zero in a neighborhood of b, j = 1, . . . , n. By

Lemma 4, there exist such functions in Dmax(c, b)̇.

By (14.9), we have

(14.12) gi = yi0 +

2db∑
j=1

aijxj , (i = 1, . . . , n),

where yi0 ∈ Dmin(c, b). Hence,

g
[k−1]
i = y

[k−1]
i0

+

2db∑
j=1

aijx
[k−1]
j , (i, k = 1, . . . , n).

Since yi0 ∈ Dmin(c, b) and c is a regular point, it follows that y
[k−1]
i0

(c) =
0, (i, k = 1, . . . , n), and therefore we have: 1 · · · 0

· · · · · · · · ·
0 · · · 1


n×n

=

 a11 · · · a1 2db

· · · · · · · · ·
an1 · · · an 2db


n×2db

 x1(c) · · · x
[n−1]
1 (c)

· · · · · · · · ·
x2db

(c) · · · x
[n−1]
2db

(c)


2db×n

Noting that 2db ≥ 2k = n, we have

(14.13) rank (aij)n×2db
= n, rank (x

[k−1]
j (c))2db×n = n.

By (14.9), we have

[gi, xs](b) = [yi0 , xs](b) +

2db∑
j=1

aij [xj , xs](b),

(i = 1, . . . , n; s = 1, . . . , 2db).

Since gi(b) = 0 and yi0 ∈ Dmin(c, b), therefore [yi0xs](b) = 0, it follows
that

(14.14) 0n×2db
= (aij)n×2db

([xj , xs](b))2db×2db
.

From this, we obtain

(14.15) rank ([xj , xs](b))2db×2db
≤ 2db − n = mb.
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Because k ≤ db ≤ n, we have

(14.16) 0 ≤ mb = 2db − n ≤ db.

By Lemma 2 and Corollary 2, for any t ∈ (c, b),

[z(t, λ), z(t, λ)](t) = [z(t, λ), z(t, λ)](c);

hence,
[z(t, λ), z(t, λ)](b) = [z(t, λ), z(t, λ)](c).

By (14.8), we have

([xi, xj ](b))
T
1≤i≤db,db+1≤j≤2db

= ([zk(t, λ), zs(t, λ̄)](b))
T
1≤k,s≤db

= ([zk(t, λ), zs(t, λ)](c))
T
1≤k,s≤db

= Z∗(c, λ)Edb
Z(c, λ).

Since rankZ(c, λ) = n, rankZ(c, λ) = n and rankEdb
= db, it follows

that

(14.17) rank ([xi, xj ](b)) 1≤i≤db
db+1≤j≤2db

≥ 2db − n = mb.

Thus,
rank ([xi, xj ](b)) 1≤i

j≤2db

≥ 2db − n = mb.

Combining this with inequality (14.15), the conclusion follows. �

Lemma 8. Letting

(14.18) F = ([xi, xj ](b)) 1≤i≤db
1≤j≤2db,

then rankF = mb = 2db − n.

Proof. This follows from inequalities (14.15) and (14.17) in the proof
of Lemma 7. �

By Lemma 8, we can assume, without loss of generality, that the
first mb rows of F are linearly independent. Let

(14.19) F1 =
(
[xi, xj ](b)

)
1≤i≤mb
1≤j≤2db,
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then

(14.20) rank (F1) = mb.

Lemma 9. Let {xi} be defined by (14.8), which satisfies (14.20). Then,
each xi (i = mb + 1, . . . , 2d) has a unique representation

xi = ỹi0 +
n∑

j=1

gj +

mb∑
s=1

bisxs(14.21)

(i = mb + 1, . . . , 2db), bis ∈ C,

where mb = 2db − n, ỹi
0
∈ Dmin(c, b) and gj (j = 1, . . . , n) satisfy

(14.11).

Proof. By (14.12), we have

(14.22) gi = yi0 +

2db∑
j=1

aijxj , (i = 1, . . . , n).

Let
(aij)n×2db

= (Cn×mb
Dn×n),

where

C =

 a11 · · · a1 mb

· · · · · · · · ·
an1 · · · an mb

 ; D =

 a1 mb+1 · · · a1 2db

· · · · · · · · ·
an mb+1 · · · an 2db

 .

X = ([xi, xj ](b)) 1≤i
j≤2db

=

(
F1 mb×2db

F2 n×2db

)
.

By (14.14),

0n×2db
= (aij)n×2db

([xi, xj ](b))2db×2db
,

and we have
CF1 +DF2 = 0n×2db

.

If rank (D) < n, then there exists a non-singular matrix of order n, say
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G, such that

GD =


a′1 mb+1 · · · a′1 2db

· · · · · · · · ·
a′n−1 mb+1 · · · a′n−1 2db

0 · · · 0

 .

Let

GC =

 a′11 · · · a′1 mb

· · · · · · · · ·
a′n1 · · · a′n mb

 .

Since GCF1 +GDF2 = 0n×2db
, we have

(a′n1 · · · a′n mb
)F1 = (0 · · · 0)1×2db

.

From rank (F1) = mb, it follows that

a′n1 = · · · = a′n mb
= 0.

This contradicts (14.13) that rank (aij)n×2db
= n.

Hence, we have rankD = n. Recall that D is composed of the
last n columns of (aij), so we solve xi (i = mb + 1, . . . , 2d) from
equation (14.22)

xi = ỹi0 +

n∑
j=1

cijgj +

mb∑
s=1

bisxs (i = mb + 1, . . . , 2db),

and the representation is unique, where yi0 ∈ Dmin(c, b). The lemma
is proved. �

Lemma 10. Let xi (i = 1, . . . , 2db), zi(·, λ) (i = 1, . . . , db) and zi(·, λ)
(i = 1, . . . , db) be defined by (14.8), and let

(14.23) Z = ([xi, xj ](b)) 1≤i
j≤mb

= ([zi(λ), zj(λ)](b)) 1≤i
j≤mb.

Then rank (Z) = mb, where mb = 2db − n.

Proof. If rank (Z) < mb = 2db − n, without loss of generality, we
can assume that the last row of V has all zeros, i.e.,

(14.24) [xmb
, xi](b) = 0, (i = 1, 2, . . . ,mb).
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By Lemma 9,

xi = ỹi0 +
n∑

j=1

gj +

mb∑
s=1

bisxs (i = mb + 1, . . . , 2d),

where ỹi0 ∈ Dmin(c, b) and gj (j = 1, . . . , n) satisfy (14.11). Combining
this with (14.24), we have:

[xmb
, xi](b) = 0, (i = mb + 1, . . . , 2d).

This contradicts (14.19); therefore, the rank of the matrix

F1 = ([xi, xj ](b))1≤i≤mb
1≤j≤2db

is mb = 2db − n. �

Now choose vj = x(·, λ), j = 1, . . . ,mb. This completes the proof of
Theorem 32.

If one endpoint is regular, then the decomposition (14.6) can be sim-
plified by using solutions defined by initial conditions at that endpoint.
We state this as a corollary.

Corollary 8. Let the hypotheses and notation of Theorem 32 hold.

(i) If the endpoint a is regular, then in (14.6) the functions u1, . . . , uma

can be replaced by solutions on the interval (a, c) defined by the
initial conditions:

y
[k−1]
j (a) = δj,k, 1 ≤ j, k ≤ n

where δj,k is the Kronecker δ.
(ii) If the endpoint b is regular, then in (14.6) the functions v1, . . . , vmb

can be replaced by solutions on the interval (c, b) defined by the
initial conditions:

y
[k−1]
j (b) = δj,k, 1 ≤ j, k ≤ n,

where δj,k is the Kronecker δ.

Proof. (i) Since a is a regular point, there are n linear independent
solutions lying in L2((a, c), w), a < c < b, say y1, . . . , yn, which are
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determined by the following initial conditions:

y
[k−1]
j (a) = δj,k, 1 ≤ j, k ≤ n,

where δj,k is the Kronecker δ. And the solutions y1, . . . , yn can be
extended to (a, b) such that the extended functions, also denoted by
y1, . . . , yn, satisfy yj ∈ Dmax(a, b) and yj is identically zero in a left
neighborhood of b, j = 1, . . . , n. These functions yi, i = 1, . . . , n satisfy
the conditions of the gi in the proof of Lemma 7 with c replaced by a.

Any y ∈ Dmax can be uniquely written as

y = ỹ0 +
2d∑
s=1

asxs,

where ỹ0 ∈ Dmin. Combining this with Lemma 9, (gi, i = 1, . . . , n
are replaced by yi, i = 1, . . . , n; xi, i = 1, . . . ,mb are replaced by vi,
i = 1, . . . ,mb), and we have

(14.25) y = ỹ0 +

mb∑
s=1

asxs +
2d∑

r=mb+1

ar

[
ỹr0 +

n∑
j=1

crjyj +

mb∑
s=1

brsvs

]
.

Let

ỹ0 +
2d∑

r=mb+1

arỹr0 = y0 ∈ Dmin,

2d∑
r=mb+1

arcrj = dj , as +

2d∑
r=mb+1

arbrj = τs.

Then we obtain

(14.26) y = y0 +
n∑

k=1

djyj +

mb∑
s=1

τsvs.

This implies that

Dmax(a, b) ⊂ Dmin(a, b)+̇span {y1, . . . , yn}+̇span {v1, . . . , vmb
}.

So the conclusion follows from the fact that

Dmax(a, b) ⊃ Dmin(a, b)+̇span {y1, . . . , yn}+̇span {v1, . . . , vmb
}.

The proof of Corollary 8 (ii) is similar and hence omitted. �
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Theorem 32 can be used to characterize the self-adjoint domains.

Theorem 33. Let the hypotheses and notation of Theorem 32 hold.
Then a linear submanifold D(S) of Dmax(a, b) is the domain of a self-
adjoint extension S of Smin(a, b) in L2(J,w) if and only if there exists
a complex matrix Ad×ma and a complex matrix Bd×mb

such that the
following three conditions hold :

(i) rank (A : B) = d,
(ii) AUA∗ = BV B∗,
(iii)
(14.27)

D(S) =

{
y ∈ Dmax : A

 [y, u1](a)
...

[y, uma ](a)

+B

 [y, v1](b)
...

[y, vmb
](b)

 = 0

}
,

where d = da + db − n. The Lagrange brackets in (14.27) have finite
limits.

Proof. See [101] for a proof when one endpoint is regular. The
method of proof for the two singular endpoint case is similar to the
method used in the proof of Theorem 37 in Section 16 below. The fact
that the Lagrange brackets in (14.27) have finite limits as x → a and
x → b follows from the Lagrange identity. �

Remark 29. When n = 2k and db = k, then mb = 0, and this
corresponds to B = 0 in (ii) and (14.27); in this case, all the conditions
of the self-adjoint boundary condition (14.27) are specified at the
endpoint a only with no condition required or allowed at b. Similarly,
when n = 2k and da = k, then ma = 0, and this corresponds to A = 0
in (14.27); in this case, all the conditions of the self-adjoint boundary
condition (14.27) are specified at the endpoint b only with no condition
required or allowed at a. When n = 2k, da = k and db = k the minimal
operator Smin is self-adjoint and has no proper self-adjoint extension
in L2(J,w).

In view of the wide interest in the case when one endpoint is regular
we state these two cases next.
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Theorem 34. Let the hypotheses and notation of Theorem 32 hold.

(i) Assume that a is regular. Then a linear submanifold D(S) of
Dmax(a, b) is the domain of a self-adjoint extension S of Smin(a, b)
in L2(J,w) if and only if there exists a complex matrix Adb×n and
a complex matrix Bdb×mb

such that the following three conditions
hold :
(a) rank (A : B) = d,
(b) AEA∗ = BV B∗,
(c)

(14.28)

D(S) =

{
y ∈ Dmax : A

 y(a)
...

y(n−1)(a)

+B

 [y, v1](b)
...

[y, vmb
](b)

 = 0

}
.

(ii) Assume that b is regular. Then a linear submanifold D(S) of
Dmax(a, b) is the domain of a self-adjoint extension S of Smin(a, b)
in L2(J,w) if and only if there exists a complex matrix Adb×n and
a complex matrix Bdb×n such that the following three conditions
hold :
(a) rank (A : B) = d,
(b) AUA∗ = BEB∗,
(c)

(14.29)

D(S) =

{
y ∈ Dmax : A

 [y, u1](a)
...

[y, uma ](a)

+B

 y(b)
...

y(n−1)(b)

 = 0

}
.

The Lagrange brackets in (14.28) and (14.29) have finite limits.

Proof. See [101]. �

Remark 30. When n = 2k, db = k, then mb = 0, and this corresponds
to B = 0 in (14.28). When n = 2k and da = k, then ma = 0 and this
corresponds to A = 0 in (14.29).

Remark 31. The hypothesis that λ is not real is important in the
abstract von Neumann formula (14.2) and for the Sun ordinary differ-
ential equations formula (14.6) which leads to the characterization of
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the self-adjoint domains given by Theorem 33. Condition (ii) of this
characterization involves the matrices U and V which depend on the
solutions of the differential equation (14.1) near the singular endpoints.
In Section 15 below we establish, under a mild additional hypothesis,
a refinement of the decomposition (14.6) and then show, in Section 16,
that this refinement leads to a characterization of the self-adjoint do-
mains which does not depend on the matrices U, V . This refinement
uses solutions from a real value of the spectral parameter λ and re-
places the matrices U, V with the simple constant symplectic matrix E
of appropriate dimension. This real λ characterization is then used in
Sections 20, 21 and 22 to obtain information about the spectrum of the
self-adjoint realizations of equation (14.1).

Remark 32. Recall that, for A ∈ Zn(J,R), d(λ) = d for all λ with
Im (λ) ̸= 0 but for λ ∈ R, d(λ) ̸= d in general. We will see below that
if there are d linearly independent solutions in L2, then, in contrast
to the complex case, not all of these contribute to the characterization
of the self-adjoint domains. Those which do contribute we call limit-
circle (LC) solutions and those which don’t contribute we call limit-
point (LP) solutions in analogy with the Sturm-Liouville case. We will
identify the LC and LP solutions in Section 15 below.

For papers related to some of the results in this section, see [11, 12,
13, 14, 15, 16, 17, 18, 19, 51, 74, 75, 94, 95, 103].

15. Real parameter LC solutions and the decomposition of
the maximal domain. In this section, under a mild additional hy-
pothesis (see RS below), we establish a refinement of the Sun decompo-
sition (14.6) of the maximal domain in terms of solutions for real values
of the spectral parameter λ. In contrast to the complex case discussed
in Section 14, in this case not all L2 solutions contribute to the decom-
position of the maximal domain. We will identify those solutions which
do contribute and call them LC solutions in analogy with the second
order case. In the next section we show that these LC solutions can be
used to characterize all self-adjoint extensions of the minimal operator
Smin. In this characterization, the matrices U, V in Theorem 32 which
depend on solutions near the singular endpoints are replaced by the
simple constant coefficient symplectic matrix E. In Sections 20, 21 and
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22, this real λ characterization is used to obtain information about the
spectrum of these self-adjoint operators.

Throughout this section, we assume that A ∈ Zn(J) is Lagrange
symmetric, has equal deficiency indices, M = MA, d

+(M) = d−(M) =
d(M) = d, say,

(15.1) n = 2k, k ∈ N2 = {2, 3, 4 . . .}.

Let da and db denote the deficiency indices at a and b, respectively, and
the following hypothesis (RS) holds:

(RS) Let a < c < b, and assume that equation (14.1) on (a, c) has
da linearly independent solutions in L2((a, c), w) for some real λ = λa

and that (14.1) has db linearly independent solutions in L2((c, b), w) for
some real λ = λb.

Note that da and db are independent of c and that, if there exist
da linearly independent solutions on (a, c), then there exist da linearly
independent real solutions on (a, c), and similarly for the endpoint b.

Remark 33. We comment on hypothesis RS. Recall that ra(λ) de-
notes the number of linearly independent solutions of (14.1) on (a, c)
which lie in L2((a, c), w) for real λ. For any real λ, it is known [107]
that ra(λ) ≤ da and, if ra(λ) < da, then λ is in the essential spectrum
of every self-adjoint extension of Smin(a, c) and of Smin(a, b). Thus, if
there does not exist a real λa such that the equation (14.1) on (a, c)
has da linearly independent solutions in L2((a, c), w), then the essential
spectrum of all self-adjoint extensions Smin(a, c) and of Smin(a, b) cov-
ers the whole real line and similarly for the endpoint b. If the essential
spectrum of every self-adjoint realization of (14.1) in L2((a, b), w) cov-
ers the whole real line then any eigenvalue, if there is one, is embedded
in the essential spectrum. In this case, the dependence of such eigenval-
ues on the boundary condition seems to be ‘coincidental’ and nothing
seems to be known, aside from examples, about this dependence.

First, some preliminary results. Note that, if A ∈ Zn(J) for
J = (a, b), then A ∈ Zn((α, β)) for any subinterval (α, β) of J .
We are particularly interested in the subintervals (a, c) and (c, b) for
c ∈ (a, b) but state the next lemma for general subintervals. We will
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use the notations Dmax(α, β), Dmin(α, β), d(α, β), etc., to denote the
dependence of these quantities on the interval (α, β).

Lemma 11. Assume that A ∈ Zn(J,R), J = (a, b), −∞ ≤ a < b ≤ ∞,
is Lagrange symmetric and w is a weight function on J . Let a ≤ α <
β ≤ b. Then A has equal deficiency indices d, da, db and

(i) (the restriction of) A is in Zn((α, β)), is Lagrange symmetric, and
MA on (α, β) is a symmetric differential expression.

(ii) If a < α < β < b, then MA is regular on (α, β).
(iii) If one endpoint of (α, β) is regular, then

(15.2) k ≤ d(α, β) ≤ 2k = n.

(iv) If one endpoint of (α, β) is regular, then for all λ ∈ R, we have

(15.3) r(λ) ≤ d(α, β).

(v) If c ∈ (a, b) = J , then

(15.4) d = da + db − n.

(vi) If both endpoints are singular, then r(λ) may be greater than d,
less than d, or equal to d. All three possibilities are realized.

Proof. Parts (i)–(iv) are observations which follow directly from the
definition of Zn(J). A proof of the inequalities (15.2) is given in
[45, 124]; also the proof given in [84, pages 71–72] for the special
case of A considered there can be readily adapted to this more general
case.

Now we prove that, if one endpoint of (c, d) is regular, then for λ ∈ R,
the number of linearly independent solutions of My = λwy on (c, d)
which lie in H = L2((c, d), w) is less than or equal to d. Assume that
v1, . . . , vr are linearly independent solutions on (c, d) in H and that
r > d. First observe that then there exist r linearly independent real
valued solutions in H. This follows from the observation that, since
the real and imaginary parts of a complex solution are real solutions,
each vj is a linear combination of real solutions. Let uj , j = 1, . . . , r,
be linearly independent real solutions in H. Define

D = Dmin u span {uj , j = 1, . . . , d}
Dr = Dmin u span {uj , j = 1, . . . , r}.
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Because one endpoint of (c, d) is regular, then D is a self-adjoint
domain by the GKN theorem, and it follows from the fact that the
uj , j = 1, . . . , r, are real that Dr is a symmetric domain. Note that the
dimensions modDmin, of D and Dr are d and r, respectively. Let S
and T be the restrictions of the maximal operator Smax to D and Dr,
respectively. Then T is a proper symmetric extension of the self-adjoint
operator S. But this is impossible since

S ⊂ T ⊂ T ∗ ⊂ S∗ = S

implies that T = S. This contradiction proves that the number
of linearly independent solutions of My = λwy on (α, β) lying in
L2((α, β), w) is less than or equal to the deficiency index d for any
real λ. For a proof of formula (15.4), see [84, page 72]; the proof given
there for a special case of A can be readily adapted to this more general
case. For part (vi), see the recent paper [60]. �

The next theorem constructs LC solutions at each endpoint. For
the case when one endpoint is regular and the other singular, these
solutions were first constructed by Wang-Sun-Zettl in [107].

Theorem 35. Assume that A ∈ Zn(J,R), n = 2k, k > 1, J = (a, b)m
−∞ ≤ a < b ≤ ∞, is Lagrange symmetric, M = MA and w is a weight
function. Let a < c < b. Consider the equation

(15.5) My = λwy on J.

Let da denote the deficiency index of (15.5) on (a, c) and db the
deficiency index of (15.5) on (c, b). Assume that, for some λ = λa ∈ R,
(15.5) has da linearly independent solutions u1, . . . , uda on (a, c) which
lie in L2((a, c), w) and that, for some λ = λb ∈ R, (15.5) has db linearly
independent solutions v1, . . . , vdb

on (c, b) which lie in L2((c, b), w).
Then

(i) There exist da linearly independent real-valued solutions u1, . . . , uda

on (a, c) which lie in L2((a, c), w).
(ii) There exist db linearly independent real-valued solutions v1, . . . , vdb

on (c, b) which lie in L2((c, b), w).
(iii) For ma = 2da − 2k, the solutions u1, . . . , uda can be ordered such

that the ma×ma matrix U = ([ui, uj ](c)), 1 ≤ i, j ≤ ma, is given
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by

(15.6) U = (−1)k+1Ema

and is therefore nonsingular.
(iv) For mb = 2db−2k, the solutions v1, . . . , vdb

on (c, b) can be ordered
such that the mb ×mb matrix V = ([vi, vj ](c)), 1 ≤ i, j ≤ mb, is
given by

(15.7) V = (−1)k+1Emb

and is therefore nonsingular.
(v) For every y ∈ Dmax(a, b), we have

(15.8) [y, uj ](a) = 0, for j = ma + 1, . . . , da.

(vi) For every y ∈ Dmax(a, b) we have

(15.9) [y, vj ](b) = 0, for j = mb + 1, . . . , db.

(vii) For 1 ≤ i, j ≤ da, we have

(15.10) [ui,uj ](a) = [ui,uj ](c).

(viii) For 1 ≤ i, j ≤ db, we have

(15.11) [vi,vj ](b) = [vi,vj ](c).

(ix) The solutions u1, . . . , uda can be extended to (a, b) such that the
extended functions, also denoted by u1, . . . , uda , satisfy uj ∈
Dmax(a, b) and uj is identically zero in a left neighborhood of b,
j = 1, . . . , da.

(x) The solutions v1, . . . , vdb
can be extended to (a, b) such that the

extended functions, also denoted by v1, . . . , vdb
, satisfy vj ∈

Dmax(a, b) and vj is identically zero in a right neighborhood of
a, j = 1, . . . , db.

Proof. See [58, Theorem 4.1]. �

Definition 18. We call the solutions u1, . . . , uma and v1, . . . , vmb
LC

solutions at a and b, respectively. The solutions uma+1 , . . . , uda and
vmb+1, . . . , vdb

are called LP solutions at a and b, respectively. Recall
that k ≤ da ≤ 2k and k ≤ db ≤ 2k since c is a regular endpoint
for both intervals (a, c) and (c, b). If da = k, then ma = 0, and
there are no LC solutions at a, i.e., all solutions u1, . . . , uda are LP
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solutions at a and (15.6) is vacuous. If da = 2k, then ma = 2k, all
solutions u1, . . . , uda

are LC solutions at a and (15.8) is vacuous. In
the intermediate deficiency cases k < da < 2k, ma = 2da − 2k and
u1, . . . , uma

are LC solutions at a and uma+1
, . . . , uda

are LP solutions
at a. For example, for n = 4 and da = 3, there are two LC solutions
and one LP solution; for n = 6 and da = 4 there are two LC and two
LP solutions, for n = 6 and da = 5, there are four LC solutions and one
LP solution. The other solutions of a solution basis of My = λawy on
(a, c) are not in L2((a, c), w). Similar remarks apply for the endpoint b.
Below we will see that the LC solutions contribute to the determination
of the boundary conditions, and the LP solutions do not contribute due
to (15.8) and (15.9). (The solutions not in L2 do not play any role in
the maximal domain decomposition nor in the characterization of the
self-adjoint domains.)

Remark 34. Observe that, by Theorem 35, the LC solutions are
determined by initial conditions at the regular point c ∈ J , i.e.,

Ema = (−1)(k+1)([ui, uj ](c)), (i, j = 1, . . . ,ma),

Emb
= (−1)(k+1)([vi, vj ](c)), (i, j = 1, . . . ,mb).

It is interesting to observe that this characterization does not depend
on the behavior of the solutions at a singular endpoint. This is an
essential difference between Theorems 32 and 33 based on nonreal λ
on the one hand and Theorems 35, 36 and 37 based on solutions for
real λ.

The next theorem gives a decomposition of the maximal domain
which we believe is of independent interest. Although it can be
considered a corollary of Theorem 35, we state it as:

Theorem 36. Let the notation and hypotheses of Theorem 35 hold.
Then:
(15.12)
Dmax(a, b) = Dmin(a, b)u span {u1, . . . , uma}u span {v1, . . . , vmb

}.

Proof. By Von Neumann’s formula, dimDmax(a, b)/Dmin(a, b) ≤ 2d.
From Theorem 35 parts (vii), (viii), (ix) and (x) and the observation
that the matrices U and V are nonsingular it follows that u1, . . . , uma
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and v1, . . . , vmb
are linearly independent mod (Dmin(a, b)), since ma +

mb = 2(da + db −n) = 2d. Therefore, dimDmax(a, b)/ Dmin(a, b) ≥ 2d,
completing the proof. �

16. Self-adjoint domains. Based on Theorems 35 and 36, we can
now give a complete characterization of the self-adjoint domains of
(M,w) in H = L2(J,w) for any M = MA with A ∈ Zn(J,R),
n = 2k, k > 1. (The case k = 1 was discussed previously in
Section 12.) Recall that, for this case, the deficiency indices are equal
d+(A) = d−(A) = d(A) = d, and it is well known that there are self-
adjoint extensions in this case for any d.

The next theorem gives the characterization of the self-adjoint do-
mains in terms of LC solutions, for real values of the spectral parameter
λ, u1, . . . , uma ; v1, . . . , vmb

, defined in Section 15. For the case when
one endpoint is regular and the other singular, these LC solutions at
the singular endpoint were first constructed byWang-Sun-Zettl in [107]
and used there to characterize the self-adjoint domains. Hao, et al. [58]
then used this construction to obtain the characterization for two sin-
gular endpoints given by the next theorem. This result reduces to the
case when one or both endpoints are regular.

Theorem 37. Let the hypotheses and notation of Theorem 35 hold.
Let d = da + db − n. Then d is the deficiency index of (15.5) on (a, b).
A linear submanifold D(S) of Dmax(a, b) is the domain of a self-adjoint
extension S of Smin(a, b) in L2(J,w) if and only if there exists a complex
d×ma matrix A and a complex d×mb matrix B such that the following
three conditions hold :

(i)
rank (A : B) = d;

(ii)
AEmaA

∗ = BEmb
B∗;

(iii)
(16.1)

D(S)=

{
y ∈ Dmax : A

 [y, u1](a)
...

[y, uma ](a)

+B

 [y, v1](b)
...

[y, vmb ](b)

=

 0
...
0

}.
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The Lagrange brackets in (16.1) have finite limits. In (16.1), the
solutions u1, . . . , uda

and v1, . . . , vdb
have been ordered so that (14.8)

and (14.23) hold.

Proof. Sufficiency. Let the matrices A and B satisfy conditions (i)
and (ii) of Theorem 37. We prove that D(S) defined by condition (iii)
is the domain of a self-adjoint extension S of Smin.

Let

A = −(aij)d×ma , B = (bij)d×mb
.(16.2)

wi =

ma∑
j=1

aij uj +

ma∑
j=1

bijvj , i = 1, . . . , d.(16.3)

Then, for y ∈ Dmax(a, b), we have

−A

 [y, u1](a)
...

[y, uma ](a)

 =

 [y,
∑ma

j=1 a1juj ](a)
...

[y,
∑ma

j=1 adjuj ](a)

 =

 [y, w1](a)
...

[y, wd](a)

 .

B

 [y, v1](b)
...

[y, vmb
](b)

 =

 [y,
∑mb

j=1 b1jvj ](b)
...

[y,
∑mb

j=1 bdjvj ](b)

 =

 [y, w1](b)
...

[y, wd](b)

 .

Therefore, the boundary condition (iii) of Theorem 37 becomes
boundary condition (iii) of the GKN theorem, i.e.,

(16.4) [y, wi](b)− [y, wi](a) = 0, i = 1, . . . , d.

It remains to show that wi, i = 1, . . . , d, satisfy conditions (i) and
(ii) of the GKN theorem.

To show that condition (i) holds, assume that it does not hold. Then
there exist constants c1, . . . , cd, not all zero, such that

γ =
d∑

i=1

ciwi ∈ Dmin.

Hence, we have [γ, y](a) = 0 for any y ∈ Dmax by Theorem 3. So, using
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the notation U from Theorem 35, we have

(0, . . . , 0) =

([ d∑
j=1

cjwj , u1

]
(a), . . . ,

[ d∑
j=1

cjwj , uma

]
(a)

)
= (c1, . . . , cd)(aij)d×maU.

Since U is nonsingular, we have (c1 . . . cd)A = 0. Similarly, we have
(c1 . . . cd)B = 0. Hence,

(c1 · · · cd) (A : B) = 0.

This contradicts the fact that rank (A : B) = d.

Next we show that (ii) holds. We have

[wi, wj ](a) =

[ ma∑
l=1

ailul,

ma∑
s=1

ajsus

]
(a)

=

ma∑
l=1

ma∑
s=1

ailajs[ul, us](a),

From Theorem 35, we get

([wi, wj ](a))
T
d×d = AUTA∗ = (−1)kAEmaA

∗.

Similarly,
(([wi, wj ](b))

T
d×d = (−1)kBEmb

B∗.

Therefore,

([wi, wj ]
b
a)

T = (−1)kBEmb
B∗ − (−1)kAEmaA

∗ = 0.

It follows from the GKN theorem that D(S) is a self-adjoint domain.

Necessity. Let D(S) be the domain of a self-adjoint extension S of
Smin. By the GKN theorem, there exist w1, . . . , wd ∈ Dmax satisfying
conditions (i), (ii) and (iii) of this theorem. By Theorem 36, each wi

can be uniquely written as:

(16.5) wi = ŷi0 +

ma∑
j=1

aijuj +

mb∑
j=1

bijvj ,

where ŷi0 ∈ Dmin, aij , bij ∈ C.
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Let
A = −(aij)d×ma

, B = (bij)d×mb
.

Then [y, w1](a)
...

[y, wd](a)

 =

 [y,
∑ma

j=1 a1juj ](a)
...

[y,
∑ma

j=1 adjuj ](a)

 = −A

 [y, u1](a)
...

[y, uma ](a)

 ,

 [y, w1](b)
...

[y, wd](b)

 =

 [y,
∑mb

j=1 b1jvj ](b)
...

[y,
∑mb

j=1 bdjvj ](b)

 = B

 [y, v1](b)
...

[y, vmb
](b)

 .

Hence, boundary condition (iii) of the GKN theorem is equivalent to
part Theorem 37 (iii).

Next we prove that A and B satisfy conditions (i) and (ii) of
Theorem 37.

Clearly, rank (A : B) ≤ d. If rank (A : B) < d, then there exist
constants c1, . . . , cd, not all zero, such that

(16.6) (c1 · · · cd)(A : B) = 0.

Letting g =
∑d

i=1 c̄iwi, from (16.5) we obtain

g =

d∑
i=1

ciŷi0 +

d∑
i=1

ma∑
j=1

ciaijuj +

d∑
i=1

mb∑
j=1

cibijvj .

By (16.6), we have (c1 · · · cd)A = (c1 · · · cd)B = 0. Hence,

g =
d∑

i=1

ciŷi0.

So we have g ∈ Dmin. This contradicts the fact that the func-
tions w1, w2, . . . , wd are linearly independent modulo Dmin. Therefore,
rank (A : B) = d.
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Now we verify part (ii) of Theorem GKN. By (16.5), we have

[wi, wj ](a) =

[ ma∑
l=1

ailul,

ma∑
s=1

ajsus

]
(a)

=

ma∑
l=1

ma∑
s=1

ailajs[ul, us](a), (i, j = 1, . . . , d).

From Theorem 35, we obtain

([wi, wj ](a))
T
d×d = AUTA∗ = (−1)kAEmaA

∗,

and, similarly, we have

([wi, wj ](b))
T
d×d = BV TB∗ = (−1)kBEmb

B∗.

Hence, condition (ii) of Theorem GKN becomes

AEmaA
∗ = BEmb

B∗.

This completes the proof. �

Remark 35 (LC and LP solutions). Note that, for λ = λa, there are
da linearly independent real-valued solutions on (a, c) which can be or-
dered such that the first u1, u2, . . . , uma with ma = 2da−2k contribute
to the self-adjoint boundary conditions (16.1) and uma+1, . . . , uda make
no contribution to the boundary conditions (16.1). By (15.8) of Theo-
rem 35, [y, uj ](a) = 0 for every y ∈ Dmax(a, b), j = ma + 1, . . . , da. If
u1, u2, . . . , uda is completed to a full basis u1, u2, . . . , uda , . . . , un of so-
lutions of My = λawy on (a, c), then no nontrivial linear combination
of uda+1, . . . , un is in the Hilbert space L2((a, c), w), and thus these
solutions play no role in the formulation of the self-adjoint boundary
conditions. For this reason, we call u1, u2, . . . , uma LC solutions at a
and uma+1, . . . , uda LP solutions at a. In the Sturm-Liouville case on
(a, c), n = 2, da = 1, or da = 2 corresponding to the celebrated Weyl
limit-point (LP) or limit-circle (LC) cases, respectively. When n > 2,
we have k ≤ da ≤ 2k and all values of da in this range are realized.
In the intermediate deficiency cases k < da < 2k, Theorem 35 char-
acterizes the ma = 2da − 2k LC solutions uj , j = 1, . . . ,ma, and the
LP solutions uj , j = ma + 1, . . . , da. Similar remarks apply at the
endpoint b. In particular, we call v1, . . . , vmb

the LC solutions at b and
vmb+1, . . . , vdb

the LP solutions at b. If da = k, there are no LC so-
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lutions at a, and there is no self-adjoint boundary condition at a, i.e.,
the term multiplied by A is zero. If da = 2k, there are no LP solutions
at a, and similarly at b.

All endpoint classifications follow from Theorem 37. The case when
both endpoints are regular is covered by Theorem 30. Next we give
explicit statements for the other cases.

Theorem 38. Let A ∈ Zn(J) be Lagrange symmetric, M = MA,
c ∈ (a, b), let w be a weight function, and assume that M has equal
deficiency indices d on (a, b) and the endpoint a is regular. Then d = db
and k ≤ d ≤ 2k. Let m = 2d−2k, and let v1, . . . , vm be LC solutions on
(c, b) as constructed by Theorem 35. Then a linear submanifold D(S)
of Dmax(a, b) is the domain of a self-adjoint extension S of Smin(a, b)
in L2((a, b), w) if and only if there exists a complex d×n matrix A and
a complex d×m matrix B such that the following three conditions hold :

(i) The rank (A : B) = d;
(ii) AEnA

∗ = BEmB∗;
(iii)
(16.7)

D(S) =

{
y ∈ Dmax : A

 y(a)
...

y[n−1](a)

+B

 [y, v1](b)
...

[y, vm](b)

=

 0
...
0

}.
Proof. See [107]. �

In the next theorem the endpoint b is regular and a may be singular.

Theorem 39. Let A ∈ Zn(J) be Lagrange symmetric, M = MA,
c ∈ J , let w be a weight function, and assume that M has equal
deficiency indices d on (a, b) and the endpoint b is regular. Then d = da
and k ≤ d ≤ 2k. Let m = 2d−2k, and let u1, . . . , um be LC solutions on
(a, c) as constructed by Theorem 35. Then a linear submanifold D(S)
of Dmax(a, b) is the domain of a self-adjoint extension S of Smin(a, b)
in L2((a, b), w) if and only if there exists a complex d×n matrix A and
a complex d×m matrix B such that the following three conditions hold :

(i) The rank (A : B) = d;
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(ii) AEmA∗ = BEnB
∗;

(iii)
(16.8)

D(S) =

{
y ∈ Dmax : A

 [y, u1](a)
...

[y, um](a)

+B

 y(b)
...

y[n−1](b)

=

 0
...
0

}.
Proof. See [107]. �

Remark 36. In Theorem 39, when da = k, then m = 0 and A = 0.
Thus, (16.7) reduces to a separated boundary condition at the regular
endpoint b:

B

 y(b)
...

y[n−1](b)

 =

 0
...
0


where the d×n complex matrix B satisfies rank (B) = d and BEnB

∗ =
0. In this case, there is no condition required or allowed at the end-
point a.

Similarly, in the minimal deficiency case db = k, then m = 0 and
B = 0. Thus, the term involving B in (16.7) vanishes and Theorem 38
reduces to the self-adjoint boundary conditions at the regular end-
point a:

(16.9) A

 y(a)
...

y[n−1](a)

 =

 0
...
0

 ,

where the d×n complex matrix A satisfies rank (A) = d and AEnA
∗ =

0. In this case, there is no condition required or allowed at the end-
point b.

Remark 37 (Clarification of Everitt-Markus comment). In this re-
mark, we clarify a point raised by Everitt and Markus in their 1999
monograph [40]. They state:

We provide an affirmative answer . . . to a long standing
open question concerning the existence of real differential
expressions of even order ≥ 4, for which there are non-real
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self-adjoint differential operators specified by strictly sepa-
rated boundary conditions. . . . This is somewhat surprising
because it is well known that for order n = 2 strictly sep-
arated conditions can produce only real operators (that is,
any given such complex conditions can always be replaced
by corresponding real boundary conditions.)

It is clear from Theorems 37, 38 and 39 that such conditions occur
naturally and explicitly for regular and singular problems for all n = 2k,
k > 1. Furthermore, the analysis of Wang, Sun and Zettl [109] shows
that it is not the order of the equation which is the relevant factor
for the existence of non-real self-adjoint conditions but the number of
boundary conditions. If there is only one, regular or singular, separated
boundary condition at a given endpoint as must be the case for n = 2,
then it can always be replaced by an equivalent real condition. On the
other hand, if there are two or more separated conditions at a given
regular or singular endpoint, then some of these are not equivalent to
real conditions.

17. Strictly separated conditions. At first glance, each of the n
equations of the regular self-adjoint boundary condition

(17.1) A

 y(a)
...

y[n−1](a)

+B

 y(b)
...

y[n−1](b)

 =

 0
...
0


may seem to ‘couple’ the endpoints a and b with each other. This is not
the case. We will see below that every equation of (17.1) may ‘connect’
a with b, i.e., be ‘coupled,’ every equation (17.1) may be separated,
i.e., involve one endpoint only (but different endpoints for different
equations–they cannot all involve the same endpoint), and some self-
adjoint conditions (17.1) are ‘mixed,’ i.e., involve both separated and
coupled equations. Similar remarks apply to the general singular
characterization (16.1) of Theorem 37.

In this and the next sections we investigate the number of separated,
coupled, and mixed conditions possible for the self-adjoint regular
and singular boundary conditions given by Theorem 37. We start by
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establishing two linear algebra lemmas which may be of independent
interest. These lemmas will be used below.

Lemma 12. Let h be any positive integer ≥ 2, and let C be an r × h
complex matrix with rank (C) = r. Assume that

CEhC
∗ = 0,

where Eh is the symplectic matrix of order h. Then r ≤ h/2.

Proof. Since Eh is invertible, rankEhC
∗ = r. Then CEhC

∗ = 0
implies that h− r = nullC ≥ r, so that 2r ≤ h. �

Lemma 13. Let the hypotheses and notation of Lemma 12 hold, and
assume that h is an even positive integer. Then there exist α1, . . . , αh/2

in Rh such that CEhC
∗ = 0, where C = (α1, α2, . . . , αh/2)

T .

Proof. From E∗
h = E−1

h = −Eh, it follows that (iEh)
∗ = −iE∗

h =

iEh and (iEh)
−1 = −iE−1

h = iEh. Hence, iEh is self-adjoint and
unitary, so that σ(Eh) ⊂ {i,−i}. Since the diagonal elements of Eh are
0, the trace of Eh is 0, and therefore the eigenvalues i and −i have equal
multiplicity r = h/2. Letting u1, . . . , ur and v1, . . . , vr be orthogonal
bases of the eigenspaces of Eh with respect to the eigenvalues i and −i,
respectively, it follows that

Eh(uj + vj) = i(uj − vj) = 0, j = 1, . . . , r.

The orthogonality yields

⟨uk + vk, Eh (uj + vj)⟩ = 0, if j ̸= k

and
⟨uj + vj), Eh (uj + vj)⟩ = ⟨uj , i uj⟩ − ⟨vj , i vj⟩ = 0.

Putting C∗ = (u1 + v1, . . . , ur + vr) gives an r × h matrix C with
rankC = r and CEhC

∗ = 0. �

Remark 38. These two lemmas show that the rank of matrices C
satisfying CEhC

∗ = 0 is at most h/2 and that there are some such
matrices C for which it is h/2.
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The next theorem gives a construction for strictly separated self-
adjoint boundary conditions.

Theorem 40. Let the hypotheses and notation of Theorem 37 hold.
Suppose

A =

(
Cl×ma

0(d−l)×ma

)
, B =

(
0l×mb

D(d−l)×mb

)
,

and assume that rank (C) = l and rank (D) = d − l. Then rank (A :
B) = d, and the boundary conditions

A

 [y, u1](a)
...

[y, uma ](a)

+B

 [y, v1](b)
...

[y, vmb
](b)

 = 0

are self-adjoint if and only if

(17.2) CEmaC
∗ = 0 and DEmb

D∗ = 0.

Furthermore, l = da − k in this case, and so d− l = db − k.

Proof. It is clear that rank (A : B) = d. Note that

AEmaA
∗ =

(
CEmaC

∗ 0l×(d−l)

0(d−l)×l 0(d−l)×(d−l)

)
,

BEmb
B∗ =

(
0l×l 0l×(d−l)

0(d−l)×l DEmb
D∗

)
,

and (4.4) follows. The latter cases follows from Lemmas 12 and 13. By
Lemma 12, we have l ≤ ma/2 = da − k and d− l ≤ mb/2 = db − k, i.e.,
l ≥ d−db+k = da+db−2k−db+k = da−k. Therefore, l = da−k. �

Remark 39. Although we do not give a technical definition of strictly
separated boundary conditions until the next section, it is intuitively
clear that the construction given by Theorem 40 yields exactly da − k
separated conditions at the endpoint a and exactly db − k separated
boundary conditions at the endpoint b. Moreover, if each of the
d equations of a self-adjoint boundary condition is specified at one
endpoint only, then the boundary condition can be put into the form
of Theorem 40 by elementary matrix transformations. We state this as
the next corollary.
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Corollary 9. Assume that db − k rows of the matrix A are zero and
rank (A) = da − k, and suppose that the complementary da − k rows
of B are zero and rank (B) = db − k. Let C denote the (da − k)×ma

submatrix of A consisting of the nonzero rows of A. Similarly, let D
denote the submatrix of B consisting of the nonzero rows of B. Then
rank (A : B) = d and the boundary conditions (16.1) are self-adjoint if
and only if (17.2) holds.

Proof. This follows from the observation that the condition AEmaA
∗

= BEmb
B∗ is invariant under multiplication on the left by any nonsin-

gular d× d matrix G. Note that

(GA)Ema(GA)∗ = (GB)Ema(GB)∗

for any nonsingular d× d matrix G. By choosing elementary matrices
G, the zero rows of A and of B can be interchanged. �

Corollary 10. Assume that d = 2k = n, i.e., the maximal deficiency
case holds. This occurs if and only if da = n and db = n. So l = k,
d− l = k and ma = mb = n. Let

A =

(
Ck×n

0k×n

)
, B =

(
0k×n

Dk×n

)
,

and suppose that rank (C) = rank (D) = k. Then, by Theorem 40, the
strictly separated boundary conditions

(17.3) C

 [y, u1](a)
...

[y, un](a)

 = 0 and D

 [y, u1](b)
...

[y, un](b)

 = 0

are self-adjoint if and only if CEnC
∗ = DEnD

∗ = 0.

Proof. It is clear that rank (A : B) = n and, by computation,

A

 [y, u1](a)
...

[y, un](a)

+B

 [y, u1](b)
...

[y, un](b)

 =

 0
...
0
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is equivalent to (17.3). Note that

AEnA
∗ =

(
CEnC

∗ 0k×k

0k×k 0k×k

)
BEnB

∗ =

(
0k×k 0k×k

0k×k DEnD
∗

)
.

By Corollary 9, we obtain that (17.3) is a self-adjoint boundary condi-
tion if and only if CEnC

∗ = DEnD
∗ = 0. �

Remark 40. Let da = k and db = n. Then d = da+db−n = k, ma = 0,
mb = n, da − k = 0 and db − k = k. In this case, by Theorem 40, all
self-adjoint boundary conditions are strictly separated. By Corollary 9,
we may, without loss of generality, let

A =

(
C(da−k)×ma

0(db−k)×ma

)
= 0d×0,

B =

(
0(da−k)×mb

D(db−k)×mb

)
= Dk×n

with rank (D) = k. Then rank (A : B) = k, and

D

 [y, v1](b)
...

[y, vn](b)

 = 0

are self-adjoint if and only if DEnD
∗ = 0.

Similarly, let da = n and db = k. Then d = k, ma = n, mb = 0,
da − k = k and db − k = 0. In this case, by Theorem 40, all self-adjoint
boundary conditions are strictly separated. By Corollary 9, we may,
without loss of generality, let

A =

(
C(da−k)×ma

0(db−k)×ma

)
= Ck×n,

B =

(
0(da−k)×mb

D(db−k)×mb

)
= 0k×0
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with rank (C) = k. Then rank (A : B) = k and

(17.4) C

 [y, u1](a)
...

[y, un](a)

 = 0

are self-adjoint if and only if CEnC
∗ = 0.

18. Classification of self-adjoint conditions. In this section, we
classify the self-adjoint boundary conditions given by Theorem 37 into
different types depending on how many of the conditions (16.1) are
coupled. Our classification depends on Theorem 41 given below.

Recall that
d = da + db − n, n = 2k,

and the following inequalities hold:

0 ≤ d ≤ n, k ≤ da, db ≤ n = 2k.

Recall from Section 10 that all values within these ranges are realized.

Theorem 41. Let the hypotheses and notation of Theorem 37 hold,
and let k < da ≤ 2k; k < db ≤ 2k; d = da + db − 2k. Assume the
complex d×ma matrix A and the complex d×mb matrix B satisfy

(18.1) AEmaA
∗ = BEmb

B∗, rank (A : B) = d.

(i) Suppose da ≥ db. Then
(a)

da − k ≤ rank (A) ≤ d, db − k ≤ rank (B) ≤ mb = 2(db − k);

(b) For any r satisfying 0 ≤ r ≤ db − k, if

(18.2) rank (A) = da − k + r

then

(18.3) rank (B) = db − k + r.

Furthermore, for any r satisfying 0 ≤ r ≤ db − k, there exist
matrices A,B satisfying (18.1) such that (18.2) and (18.3)
hold.

(ii) Suppose da < db. Then
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(a)

da − k ≤ rank (A) ≤ ma = 2(da − k),(18.4)

db − k ≤ rank (B) ≤ d;

(b) For any r satisfying 0 ≤ r ≤ da − k, if

(18.5) rank (B) = db − k + r,

then

(18.6) rank (A) = da − k + r.

Furthermore, for any r satisfying 0 ≤ r ≤ da − k, there exist
matrices A,B satisfying (18.1) such that (18.4), (18.5) and (18.6)
hold.

Proof. We only prove part (i) since the proof of part (ii) is similar.

(a) From the proof of Theorem 40, we have

da − k =
ma

2
≤ rank (A) ≤ d,

ddb − k =
mb

2
≤ rank (B) ≤ mb.

(ii) When r = 0, then rank (A) = da − k. By Theorem 40, we have
rank (B) = db − k. In this case, the equations (16.1) determine strictly
separated self-adjoint boundary conditions.

Assume that rank (A) = da − k + r, 1 ≤ r ≤ db − k and rank (B) =
db−k+h, 0 ≤ h ≤ db−k. Then, by multiplying the boundary conditions
(16.1) by a nonsingular matrix and interchanging rows, if necessary, we
may assume that the first da−k+ r rows of A are linearly independent
and all other rows are identically zero. By Theorem 37 (i), we may also
assume that the last db − k+h rows of B are linearly independent and
all other rows are identically zero. For simplicity, we set si = di − k,
i = 1, 2.

Let
A =

(
α1, . . . , αs1 , αs1+1, . . . , αs1+r, 0, . . . , 0

)T
,

and let

B =
(
0, . . . , 0, βs2+h, . . . , βs2+1, βs2 , . . . , β1

)T
.
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Then we compute

AEmaA
∗ =


α1Emaα

∗
1 · · · α1Emaα

∗
s1+r 0 · · · 0

· · · · · · · · · · · · · · · · · ·
αs1+rEmaα

∗
1 · · · αs1+rEmaα

∗
s1+r 0 · · · 0

0 · · · 0 0 · · · 0
· · · · · · · · · · · · · · · · · ·
0 · · · 0 0 · · · 0

 ,

BEmb
B∗ =



0 · · · 0 0 · · · 0
· · · · · · · · · · · · · · · · · ·
0 · · · 0 0 · · · 0
0 · · · 0 βs2+hEmb

β∗
s2+h · · · βs2+hEmb

β∗
1

...
...

...
...

...
...

0 · · · 0 β1Embβ
∗
s2+h · · · β1Emb

β∗
1


.

Then, from AEmaA
∗ = BEmb

B∗, we get α1Emaα
∗
1 · · · α1Emaα

∗
s1+r

· · · · · · · · ·
αd−(s2+h)Emaα

∗
1 · · · αd−(s2+h)Emaα

∗
s1+r

 = 0(s1−h)×(s1+r),

(18.7)

 βd−s1−rEmb
β∗
s2+h · · · βd−s1−rEmb

β∗
1

· · · · · · · · ·
β1Emb

β∗
s2+h · · · β1Emb

β∗
1

 = 0(s2−r)×(s2+h).

Equations (6.9) are equivalent to

αi ∈ {α1Ema , α2Ema , . . . , αs1+rEma}⊥,(18.8)

i = 1, 2, . . . , s1 − h

and (18.7) is equivalent to

βi ∈ {β1Emb
, β2Emb

, . . . , βs2+hEmb
}⊥,(18.9)

i = 1, 2, . . . , s2 − r.

Since

dim{α1Ema , α2Ema , . . . , αs1+rEma}⊥ = da − k − r

in Cma , by (18.8) we have s1 − h ≤ da − k − r, i.e., h ≥ r.
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Since

dim{β1Emb
, β2Emb

, . . . , βs2+hEmb
}⊥ = db − k − h,

in Cmb , by (18.9) we have s2 − r ≤ db − k − h, i.e., h ≤ r. Therefore,
h = r.

This shows that, if 0 ≤ r ≤ db − k and rank (A) = da − k + r,
then rank (B) = db − k + r. For the latter part, the construction of
matrices A,B satisfying these three conditions is routine and therefore
omitted. �

The value of the parameter r in Theorem 41 determines the number
of coupled boundary conditions. We expand on this point with the
following corollaries.

Corollary 11. Let the notation and hypotheses of Theorem 41 hold.
If r = 0, then the conditions (16.1) are strictly separated with exactly
da − k conditions at a and exactly db − k conditions at b.

Proof. This follows directly from Theorem 41. �

Corollary 12. Let the notation and hypotheses of Theorem 41 (i) hold.
If da > db and r > 0, then (16.1) has exactly 2r coupled boundary
conditions and da − k − r separated conditions at a and db − k − r
separated conditions at b.

Proof. This follows directly from Theorem 41. �

Corollary 13. Let the notation and hypotheses of Theorem 41 (i)
hold. If da = db and 0 < r < db − k, then (16.1) has exactly 2r
coupled boundary conditions and da − k − r separated conditions at a
and db − k − r separated conditions at b. If da = db and r = db − k,
then all conditions of (16.1) are coupled. Note that d = 2r in this case
and that all conditions of (16.1) can be coupled only when da = db.

Proof. This follows directly from Theorem 41. �

Corollary 14. Let the notation and hypotheses of Theorem 41 (ii) hold.
If r > 0, then (16.1) has exactly 2r coupled boundary conditions and
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db − k− r separated conditions at b and da − k− r separated conditions
at a.

Proof. This follows directly from Theorem 41. �

Remark 41. If 0 ≤ r ≤ min{da − k, db − k}, then there are exactly
2r coupled conditions in (16.1). Thus, we can classify the self-adjoint
boundary conditions (16.1) into min{da−k, db−k}+1 ‘types’ such that
each type has the same number of coupled conditions. When r = 0, all
conditions are separated, but note that all conditions can be coupled
only when da = db. If da = db and r assumes its maximum value
r = db − k, then all conditions of (16.1) are coupled.

Remark 42. We comment on the three remaining cases: (For these
cases, we don’t need Theorem 41 since they follow directly from
Theorem 37.)

(i) da = k = db. In this case the minimal operator Smin is itself a
self-adjoint operator and has no proper self-adjoint extension in
H. Thus, there are no boundary conditions required or allowed,
i.e., in Theorem 37 A = 0 = B and (16.1) is vacuous. This case
occurs if and only if da = k and db = k.

(ii) da = k < db. Then ma = 0 and mb = 2db−n. In this case, A = 0,
and all the self-adjoint boundary conditions are given by:

(18.10) B

 [y, v1](b)
...

[y, vmb
](b)

 =

 0
...
0

 ,

where the d × mb complex matrix B satisfies rank (B) = d and
BEmb

B∗ = 0. In this case, every one of the conditions (16.1)
is specified at the endpoint b only, and thus (16.1) is strictly
separated. If db = n, the endpoint b is either LC or regular, and
d = k, mb = n. If b is LC, Theorem 37 reduces to the self-adjoint
boundary conditions at the endpoint b:

B

 [y, v1](b)
...

[y, vn](b)

 =

 0
...
0

 .
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And, if b is regular, (18.10) reduces to

B

 y(b)
...

y[n−1](b)

 =

 0
...
0

 .

(iii) k < da ≤ n and db = k. Then ma = 2da − n and mb = 0. This
case is the same as Case 2 with the endpoints a, b interchanged:
in Case (2), replace b by a, mb by ma, vj by uj and B by A.

It is interesting to note that Theorem 41 can be used to give a
more rigorous definition of strictly separated self-adjoint boundary
conditions.

Definition 19. Under the conditions of Theorem 41, we say that
the self-adjoint boundary conditions (16.1) of Theorem 37 are strictly
separated if rank (A) = da−k. In this case, by Theorem 40, rank (B) =
db − k. Note that this is case r = 0 of Theorem 41.

19. Construction of all types of conditions. In this section,
we give a construction to show that self-adjoint boundary conditions
characterized by Theorem 41 in terms of the parameter r can be
realized for any r, 0 ≤ r ≤ min{da − k, db − k}. Also, we construct
separated non-real self-adjoint boundary conditions as mentioned above
in Remark 37 in connection with the clarification of the Everitt and
Markus comment. Examples are given to illustrate the above results.
We start with an example to construct conditions for all values of
parameter r of Theorem 41 (i). The construction for part (ii) is similar
and hence omitted.

Example 9. Let the notation and hypotheses of Theorem 41 (i) hold.
If 0 ≤ r ≤ db − k and rank (A) = da − k + r, then by Theorem 41, we
have rank (B) = db − k + r.

Let
ei = (0, 0, . . . , 0, 1, 0, . . . , 0)1×ma .

where 1 is located at the ith column. Let

vi = (0, 0, . . . , 0, 1, 0, . . . , 0)1×mb
,
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where 1 is located at the ith column.

The self-adjointness conditions AEmaA
∗ = BEmb

B∗ given by The-
orem 37 can be written as

(A : B)

(
Ema 0
0 −Emb

)
(A : B)∗ = 0.

(i) If r = 0, i.e., in the case of strictly separated boundary conditions,
we can choose

Ad×ma = (eT1 , e
T
2 , . . . , e

T
da−k, 0

T
1×ma

, . . . , 0T1×ma
)T ,

and

Bd×mb
= (0T1×mb

, . . . , 0T1×mb
, vT1 , v

T
2 , . . . , v

T
db−k)

T .

Through computation, we get that Theorem 37 (i) and (ii) hold,
and therefore (16.1) is a self-adjoint boundary condition.

(ii) If 0 < r ≤ db − k, we can choose

A = (eT1 , e
T
2 , . . . , e

T
da−k, (e1Ema)

T , . . . ,

(erEma)
T , 0T1×ma

, . . . , 0T1×ma
)T ,

B = (−(v1Emb
)T ,−(v2Emb

)T , . . . ,−(vrEmb
)T ,

0T1×mb
, . . . , 0T1×mb

, vT1 , . . . , v
T
db−k)

T .

Then Theorem 37 (i) and (ii) hold, and therefore (16.1) is a self-
adjoint boundary condition.

(iii) In particular, when r = db − k and da = db, then the self-adjoint
boundary conditions are coupled. In this case, d = 2(da − k) =
ma = mb, and we can choose the matrices A = B = Ima , where
Ima

denotes the identity matrix.

As mentioned in Remark 37 above, in the second order case, there are
no separated complex boundary conditions in the sense that every such
condition is equivalent to a separated real condition. For real coefficient
differential expressions of any even order n = 2k ≥ 4 which satisfy the
assumption that My = λawy has da linearly independent solutions on
(a, c) which lie in L2((a, c), w) for some real λb and My = λbwy has db
linearly independent solutions on (c, b) in L2((c, b), w) for some real λb,
we discuss all the cases k ≤ da, db ≤ n and then illustrate whether they
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have strictly separated non-real self-adjoint conditions. If they have,
we construct some examples.

We start with the case n = 4.

Example 10. Let

My = [(p2y
′′)′ + p1y

′]′ + qy = λwy

on J = (a, b), −∞ ≤ a < b ≤ ∞,

where 1/p2, p1, q, w ∈ Lloc(J,R), w > 0 on J .

Here we assume that da = k = 2 and 2 < db ≤ 4. Then ma = 0 and
mb = 2db − n = 2db − 4. In this case, we have no condition at a and
self-adjoint separated conditions at b.

If db = 3, we have mb = 2db − 4 = 2 and d = da + db − n = 1. Then
the self-adjoint boundary condition is separated, and there is only one
condition at b. This condition can be replaced by an equivalent real
self-adjoint condition. This will be explained in the following.

If db = 4, we have mb = 4 and d = 2. We choose

B2×4 =

(
1 i 0 0
0 0 1 −i

)
.

Then rank (B) = 2 and BEmb
B∗ = 0. By Theorem 37, these separated

conditions are self-adjoint, and thus we have the non-real self-adjoint
boundary conditions:

(19.1) [y, v1](b) + i[y, v2](b) = 0, [y, v3](b)− i[y, v4](b) = 0.

Example 11. For n = 2k = 6, we let

My = [[(p3y
′′′)′ + (p2y

′′)′]′ + p1y
′}′ + qy = λwy on J = (a, b),

−∞ ≤ a < b ≤ ∞,

where 1/p3, p2, p1, q, w ∈ Lloc(J,R), w > 0 on J .

We assume that da = 3 and 3 < db ≤ 6. Then ma = 0 and
mb = 2db − 6.

(i) When db = 4, then mb = 2, d = 1, and every non real self-adjoint
condition is equivalent to a real self-adjoint condition.

(ii) When db = 5, then mb = 4, d = 2, and we can use (19.1).
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(iii) When db = 6, then mb = 6, d = 3. We choose

B3×6 =

 1 i 0 0 0 0
0 0 0 0 1 −i
0 0 1 0 0 0

 .

Then rank (B) = 3 and BEmb
B∗ = 0. By Theorem 37, the

following condition is self-adjoint:

[y, v1](b) + i[y, v2](b) = 0,

[y, v5](b)− i[y, v6](b) = 0,

[y, v3](b) = 0.

Remark 43. Let da = k and db = k + 1. Then d = 1 and, by
Lemma 14, any complex self-adjoint boundary condition at b can be
replaced by an equivalent real self-adjoint condition. This can occur
only when db = k + 1.

Lemma 14. When all self-adjoint conditions are separated and there is
only one condition at a given endpoint, then this condition can always
be replaced by an equivalent real condition.

Proof. The proof given in [107, Corollary 5] can be readily adapted
to this case. �

Theorem 42. Let da = k and k < db ≤ n.

(i) If db = k + 1, then mb = 2, d = 1, and the self-adjoint boundary
condition has only one condition at b. This condition can be
replaced by an equivalent real self-adjoint condition.

(ii) If db = k + 2, then mb = 4, d = 2, and we may construct self-
adjoint differential operators specified by non-real strictly sepa-
rated boundary conditions as in (19.1).

(iii) If db = k + r (2 < r ≤ k), then d = r and mb = 2r. Let

ei = (0, 0, . . . , 0, 1, 0, . . . , 0)1×mb
,

where one is in the i position. Then

e1Emb
= (0, 0, . . . , 0,−1)1×2r,

e2Emb
= (0, 0, . . . , 0, 1, 0)1×2r.
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Choose

B =



e1 + ie2
ie1Emb

+ e2Emb

e3
e4
...
er


.

Then rank (B) = d and BEmb
B∗ = 0. By Theorem 37, the

following are separated non-real self-adjoint boundary conditions:

[y, v1](b) + i[y, v2](b) = 0,

[y, vmb−1](b)− i[y, vmb
](b) = 0,

[y, v3](b) = 0,

[y, v4](b) = 0,

· · · · · · ,
[y, vr](b) = 0.

Similar to Theorem 42, we can construct separated non real self-
adjoint boundary conditions for the case when k < da ≤ n, db = k.

Next, we construct non-real strictly separated boundary conditions
for the general case when neither deficiency index is minimal. For
the cases da = n and db = n, non-real strictly separated self-adjoint
boundary conditions have been constructed in [107, Theorem 5].

Theorem 43. Assume that k < da ≤ n, k < db ≤ n and da ≥ db.

Let k < da ≤ n, k < db < n and da > db. Then da − k ≥ 2,
and there are at least two separated conditions at the endpoint a. So,
for this case, we can always construct non-real strictly separated self-
adjoint boundary conditions. Notice that, when db = k+1, there is only
one separated condition at b, and this condition can always be replaced
by an equivalent real condition.

(i) Let db = k+r and 1 ≤ r ≤ k−1. Then k+r < da ≤ n, db−k = r,
mb = 2(db − k) = 2r, mb = 2(db − k) and d = da − k + r.
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(a) If da − k = 2 and da > db, we have db − k = 1, ma = 4,
mb = 2 and d = 3. Choose

A3×4 =

 1 i 0 0
0 0 1 −i
0 0 0 0

 , B3×2 =

 0 0
0 0
1 0

 .

Then
rank (A : B) = 3,

and
AE4A

∗ = BE2B
∗ = 0.

Therefore, we have the following separated non-real self-
adjoint boundary conditions at a:

[y, u1](a) + i[y, u2](a) = 0,

[y, u3](a)− i[y, u4](a) = 0,

and the separated condition at b:

[y, v1](b) = 0.

(b) If da − k ≥ 3, we let

ei = (0, 0, . . . , 0, 1, 0, . . . , 0)1×ma ,

where one is in the i position.
Set

A =

(
Ã(d1−k)×ma

0r×ma

)
,

where

Ã =


e1 + ie2

ie1Ema + e2Ema

e3
...

ema/2

 .

And set

B =

(
0(da−k)×2r

B̃r×2r

)
where

B̃r×2r = (Ir×r, 0r×r) .
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Then
rank (A,B) = d

and
ÃEmaÃ

∗ = 0, B̃Emb
B̃∗ = 0.

Therefore,

AEmaA
∗ = 0 = BEmb

B∗.

By Theorem 37, these separated conditions are non real self-
adjoint boundary conditions:

[y, u1](a) + i[y, u2](a) = 0,

[y, uma−1](a)− i[y, uma ](a) = 0,

[y, u3](a) = 0,

· · · · · ·
[y, uma/2](a) = 0,

[y, v1](b) = 0,

[y, v2](b) = 0,

· · · · · · ,
[y, vr](b) = 0.

(c) Let k < da < n, k < db < n and da = db.
(ii) When d1 − k = d2 − k = 1, then d = 2 and m1 = m2 = 2. By

Theorem 40, for the case of strictly separated self-adjoint boundary
conditions, there is only one separated condition at a and only
one separated condition at b. By Lemma 14, these conditions can
always be replaced by equivalent real conditions. In this case, there
are no non-real separated self-adjoint boundary conditions.

(iii) Assume that da = db = k + r (r ≥ 2). According to the method
of (b), we can construct non-real separated self-adjoint boundary
conditions.

Here we have concentrated on the cases when k < da ≤ n, k < db ≤ n
and da ≥ db. The cases when k < da ≤ n, k < db ≤ n and da < db are
similar and hence omitted.
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20. The spectrum. The spectrum of a self-adjoint ordinary differ-
ential operator S, Smin(A) ⊂ S = S∗ ⊂ Smax(A), A ∈ Zn(J,R), n = 2k,
k ≥ 1, with A Lagrange symmetric matrix, constructed above in the
Hilbert space H = L2(J,w), J = (a, b), with w any weight function,
is real, consists of eigenvalues of finite multiplicity, of essential and of
continuous spectrum. A number λ is an eigenvalue of S if the corre-
sponding differential equationMy = λwy on J has a nontrivial solution
in H which satisfies the boundary condition of S. On the other hand,
the essential spectrum is independent of the boundary conditions and
thus depends only on the coefficients, including the weight function w,
of the equation. This dependence is implicit and highly complicated.
The coefficients and the weight function also determine the deficiency
index d of the minimal operator Smin determined by the equation. This
is the number of linearly independent solutions in H for nonreal val-
ues of the spectral parameter λ, and this number is independent of λ
provided Im (λ) ̸= 0. For real values of λ, the number of linearly in-
dependent solutions r(λ) in H varies with λ. It is this dependence on
λ which we exploit below to get information about the spectrum. One
advantage of using r(λ) to study the spectrum of these operators is that
it makes available the theory of ordinary linear differential equations
to use as a tool to get spectral information. A number of the results
discussed here are surprisingly recent.

The contrasting behavior of r(λ) for the two singular endpoint case
from the one singular endpoint case has some interesting consequences.
In the case of only one singular endpoint we have r(λ) ≤ d, whereas
in the two singular endpoint case r(λ) may assume values less than
d, equal to d, or greater then d. The case r(λ) > d leads to the
surprising result that this value of λ is an eigenvalue of every self-
adjoint extension, i.e., for any given self-adjoint boundary condition,
there are eigenfunctions of λ which satisfy this boundary condition.
The one singular endpoint case is discussed in Section 21, the two
singular endpoint case in Section 22.

But first we make a remark.

Remark 44. There is a vast literature studying the dependence of the
spectrum and of the deficiency index of ordinary differential operators
in Hilbert space L2(J,w) on the coefficients. Most of these papers are
for the constant weight function w = 1, the interval J = (0,∞) with
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0 a regular endpoint and either the classical expressions with smooth
coefficients discussed in Section 2 or the quasi-derivative formulation
of these discussed in Section 3. See the books or monographs by
Weidmann [116], Kauffman, Read and Zettl [69], Coddington and
Levinson [21], Dunford and Schwartz [24], Naimark [84] and the
papers [7, 8, 9, 10, 27, 29, 55, 66, 73, 82, 83], and the references
therein for an introduction to this literature. Note: This list is not
intended to be comprehensive or up to date.

Next we give definitions of the parts of the spectrum discussed below.
In some of the literature ‘essential spectrum’ and ‘continuous spectrum’
are used interchangeably, we use Weidmann’s definitions from his well-
known book [115] which differentiate between these terms. For the
self-adjoint differential operators studied in this paper every eigenvalue
has finite multiplicity.

Definition 20. The essential spectrum σe(S) of a self-adjoint operator
S in a Hilbert space H is the set of those points of σ(S) that are either
accumulation points of σ(S) or isolated eigenvalues of infinite multi-
plicity. The set σd(S) = σ(S)\σe(S) is called the discrete spectrum of
S and consists of the isolated eigenvalues for the operators S studied
here. Below, by the multiplicity of an eigenvalue, we mean its geomet-
ric multiplicity. We say that the spectrum of S is discrete if σe(S) is
empty.

Definition 21. Let S be a self-adjoint operator on an abstract Hilbert
space H. Let Hp denote the closed linear hull of all eigenfunctions of
S, we call Hp = Hp(S) the discontinuous subspace of H with respect to
S. The orthogonal complement of Hp is called the continuous subspace
of H with respect to S. This is denoted by Hc = Hc(S). We denote
by Sp and Sc the restrictions of S to Hp and Hc, respectively. These
operators are called the (spectral) discontinuous, and continuous parts
of S, respectively.

Definition 22. The continuous spectrum σc(S) of S is defined as the
spectrum of Sc.

Proposition 4. [115]. Any isolated point λ of the spectrum of a self-
adjoint operator S is an eigenvalue of S.

Proof. This is well known, see [115]. �
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21. One regular endpoint. In this section, we study spectral
properties of the self-adjoint realizations S of the equation

(21.1) My = λwy on J = (a, b), −∞ ≤ a < b ≤ ∞,

in the Hilbert space H = L2(J,w) where M = MA, A ∈ Zn(J,R),
n = 2k, k ≥ 1, A is Lagrange symmetric, d(M) = d, and w is a weight
function on J but with the additional hypotheses:

The endpoint a is regular and there exist d linearly independent
solutions of (21.1) in H for some real λ.

Remark 45. We comment on the additional hypotheses. Since a is
regular, d satisfies k ≤ d ≤ 2k, and all values of d in this range occur. If
there is no real λ for which there are d linearly independent solutions of
(21.1) in H, then by Theorem 45 below, the essential spectrum covers
the whole real line. In this case any eigenvalue of any self-adjoint
realization S is embedded in the essential spectrum. Such eigenvalues
seem to occur ‘coincidentally,’ and not much is known about them
other than examples showing they exist. In particular, there seems to
be nothing known in general about the dependence of such eigenvalues
on the boundary conditions.

Recall that, in this case, we have

(21.2) k ≤ d ≤ 2k = n.

Our first result is contained in the 2012 paper [58] by Hao, Sun,
Wang and Zettl, but may have been known before.

Theorem 44. For every λ ∈ R, we have r(λ) ≤ d.

Proof. Since the real and imaginary parts of a complex solution are
real solutions, if there are r(λ) linearly independent solutions which lie
in H = L2(J,w), then there exist r linearly independent real-valued
solutions u1, . . . , ur in H for this λ. Suppose that r > d, and define

Du = Dmin u span {u1, . . . , ud},
Dr = Dmin u span {u1, . . . , ur}.
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We show that it follows from the GKN theorem that Du is the domain
of a self-adjoint operator S in H: To prove part (i) of GKN, assume
that some linear combination

z =

d∑
i=1

ciui

is in Dmin. Since the endpoint a is regular, it follows that z[j](a) = 0,
j = 0, . . . , n−1, which implies that z is the trivial solution contradicting
the linear independence of u1, . . . , ud. Part (ii) follows from the
Lagrange identity and the fact that the ui, uj , (i, j = 1, . . . , d) are all
real-valued solutions for the same λ,

[ui, uj ](b)− [ui, uj ](a) =

∫ b

a

{ujMui − uiMuj}

=

∫ b

a

{λujui − λuiuj} = 0.

Part (iii) follows from the fact that the deficiency index of Smin is d
and Du is a d dimensional extension of Dmin.

From the proofs of (i) and (ii), it also follows that (i) and (ii) hold
for uj , j = 1, . . . , r. Hence, Dr is the domain of a proper symmetric
extension Sr of S. But a self-adjoint operator in a Hilbert space has
no proper symmetric extensions:

S ⊂ Sr ⊂ S∗
r ⊂ S∗

implies that S = Sr. This contradiction completes the proof. �

Theorem 45. The following results hold :

(i) If r(λ) < d for some λ ∈ R, then λ is in the essential spectrum of
every self-adjoint extension S of Smin. In particular, if r(λ) < d
for every λ ∈ R, then σe(S) = (−∞,∞) for every self-adjoint
extension S.

(ii) If, for some λ ∈ R, r(λ) = d, then λ is an eigenvalue of geometric
multiplicity d for some self-adjoint realization S.

Proof. Part (i) is well known [116]. See also the proof given in [84]
for a special case, it extends readily to our hypotheses. For part (ii) let
u1, . . . , ud be linearly independent real solutions in H for some λ1 ∈ R.
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From the proof of Theorem 44 it follows that the operator Su with
domain Du given by

Du = Dmin u span {u1, . . . , ud}

is a self-adjoint extension. Hence, each uj , j = 1, . . . , d, is an eigen-
function of this λ1. �

Next we explore the relationship between r(λ) and the continuous
spectrum for arbitrary deficiency index d.

Theorem 46. Assume there exists an open interval I = (µ1, µ2),
−∞ ≤ µ1 < µ2 ≤ ∞, of the real line such that the equation (21.1)
has d linearly independent solutions which lie in H for every λ ∈ I.
Then

(i) for any self-adjoint realization S of (21.1), the intersection σc(S)∩
I is empty.

(ii) for any self-adjoint realization S of (21.1), the point spectrum σp

is nowhere dense in I.

Proof. See [59] and the next remark. �

Remark 46. The special case when d = k and w = 1 is due to Weid-
mann [116]. In [102], it is shown that, for arbitrary deficiency index d,
there exists a self-adjoint realization S with separated boundary con-
ditions for which the conclusion holds. When d = 2k, it is well known
that the spectrum is discrete, and so the conclusion holds automati-
cally.

Remark 47 (Historical comment). We comment on Theorem 46.
When d = n, the conclusions follow from the well-known fact that
the spectrum is discrete. The special cases when d = k and w = 1
are established in Weidmann [116]. The extension to general w is
routine. The extension to k < d < n is not routine. There are two
major obstacles: (i) When d = k, there is no boundary condition
at the singular endpoint. When k < d < n, there are exactly d
singular boundary conditions. What are they? This answer is given
in Section 16 in terms of the LC solutions constructed in Section 15.
Obstacle (ii) involves an approximation method, which depends on the
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LC and LP solutions constructed in Section 15. It is somewhat similar
in spirit to the approximations based on ‘inherited’ boundary conditions
used in an algorithm of the Bailey-Everitt-Zettl code SLEIGN2 for the
computation of eigenvalues of singular Sturm-Liouville problems.

The continuous spectrum is contained in the essential spectrum.
Can the conclusion of part (i) of Theorem 46 be strengthened to ‘the
intersection σe(S) ∩ I is empty’? This is conjectured in [59], but the
answer is no, even in the second order case where the question dates
back to Hartman and Wintner [63].

Theorem 47. Assume that My = −y′′ + qy = λy has an L2 solution
for all λ in some interval I = (µ1, µ2). Then, for every self-adjoint
extension of Smin:

(i) There is no continuous spectrum in I.
(ii) The point spectrum σp is nowhere dense in I, i.e., its closure does

not contain a nonempty open set.

Hartman and Wintner [63] as well as others conjectured that part
(ii) could be improved to: σp has no accumulation points of eigenvalues
in I. But this is false. In fact, the next theorem not only disproves this
conjecture, but it also shows that Theorem 47 (i) is sharp!

Remark 48. Del Rio [23] and Remling [92] have clarified the compli-
cated relationship between the essential spectrum and the real numbers
λ for which r(λ) = d. In particular, they have shown that, in general,
r(λ) = d for all λ in some open interval I does not imply that there
is no essential spectrum in I. In 1996, Remling [92] proved that, in
the second order case, “continuous spectrum is empty in I” cannot
be strengthened to “essential spectrum is empty in I” and in fact the
continuous spectrum result of Theorem 47 is ‘best possible.’

Theorem 48. [92]. Let I be a finite, open interval, and let I1 ⊂ I be
a closed, nowhere dense set. Then there exists a potential q such that :

(i) σe = I1,
(ii) My = −y′′ + qy = λy has an L2-solution for all λ ∈ I.
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Note that I1 can be an uncountable set.

Thus, a natural question is: under what additional condition is the
essential spectrum empty in an interval I? This question is answered
by Assumption (A) stated next and the following theorem.

Assumption (A). There exists an open set G in the complex plane
containing I = (α, β) with α and β on the boundary of G, and there
exist solutions u1(t, λ), . . . , ud(t, λ) which lie in H, are real valued for
λ ∈ I, and are analytic on G for each fixed t ∈ I.

Theorem 49. Let the notation and hypotheses of Theorem 46 hold. If
r(λ) = d for all λ in some open interval I = (α, β), and assumption
(A) holds on I. Then eigenvalues of every self-adjoint realization have
no accumulation point in I.

Proof. Let S be an arbitrary self-adjoint extension of Smin. By
Theorem 38, the domain of S, D(S) is given by:
(21.3)

D(S) =

{
y ∈ Dmax : A

 y(a)
...

y[n−1](a)

+B

 [y, u1](b)
...

[y, um](b)

=

 0
...
0

}
,

where A,B satisfy conditions (i) and (ii) of Theorem 38, and ui

(i = 1, 2, . . . ,m, m = 2d − 2k) are square-integrable real-parameter
LC solutions of differential equation:

My = λ0w y on J = (a, b), −∞ < a < b ≤ ∞,

for some fixed λ0 ∈ (α, β). The boundary conditions (21.3) consist of
the system of d equations:

(21.4) Ui(y) =
n∑

j=1

aijy
[j−1](a) +

m∑
j=1

bij [y, uj ](b), i = 1, . . . , d.

Let φj(·, λ), λ ∈ I, j = 1, . . . , d, denote d linearly independent
solutions of (22.1) which satisfy the assumption (A) on G. If y(·, λ)
is an eigenfunction of S for some λ ∈ I, then y is a nontrivial linear
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combination of the solutions φj(·, λ), j = 1, . . . , d, i.e.,

(21.5) y(·, λ) =
d∑

j=1

cjφj(·, λ), cj ∈ C,

and y(·, λ) satisfies the boundary conditions (15.12). Substituting
y(·, λ) into these boundary conditions, we have

Ui(y) = Ui

( d∑
j=1

cjφj(·, λ)
)

=
d∑

j=1

cjUi(φj(·, λ)) = 0,(21.6)

i = 1, . . . , d.

This is a homogeneous system of linear equations in c1, . . . , cd. Let

(21.7) ∆(λ) = det[Ui(φj(·, λ))], i, j = 1, . . . , d.

Note that ∆(λ) is the determinant of the matrix of coefficients of
the system of linear equations (21.6) and that the number of linear
equations in (21.6) is equal to the number of coefficients c1, . . . , cd.
Therefore, the system of linear equations (21.6) has a nontrivial solution
for c1, . . . , cd if and only if ∆(λ) = 0. Therefore, λ ∈ I is in σp(S) if
and only if ∆(λ) = 0.

By (15.12) and (21.6), we have

Ui(φj(·, λ)) =
n∑

j=1

aijφ
[j−1]
j (a, λ) +

m∑
j=1

bij [φi, uj ](b, λ),

i = 1, . . . , d,

so

∆(λ) = det[Ui(φr(·, λ)]

= det




∑n

j=1 a1jφ
[j−1]
1 (a, λ) · · ·

∑n
j=1 a1jφ

[j−1]
d (a, λ)

· · · · · · · · ·∑n
j=1 adjφ

[j−1]
1 (a, λ) · · ·

∑n
j=1 adjφ

[j−1]
d (a, λ)


+


∑m

j=1 b1j [φ1, uj ](b, λ) · · ·
∑m

j=1 b1j [φd, uj ](b, λ)

· · · · · · · · ·∑m
j=1 bdj [φ1, uj ](b, λ) · · ·

∑m
j=1 bdj [φd, uj ](b, λ)
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= det



A


φ1(a, λ) · · · φd(a, λ)

· · · · · · · · ·
φ
[n−1]
1 (a, λ) · · · φ

[n−1]
d (a, λ)


+B


[φ1, u1](b, λ) · · · [φd, u1](b, λ)

· · · · · · · · ·
[φ1, vm](b, λ) · · · [φd, vm](b, λ)




,

By the assumption of analytic dependence of solutions on λ ∈ G, we
conclude that ∆(λ) is an analytic function of λ in the open set G of the
complex plane which contains the real interval (α, β). Note that ∆(λ) is
not identically zero on G since all eigenvalues of S are real. Therefore,
from the well-known distribution of zeros of analytic functions, we
conclude that the eigenvalues of S have no accumulation point in the
interval I = (α, β). This completes the proof of Theorem 49. �

Theorem 50. Let the notation and hypotheses of Theorem 49 hold.
Then there is no essential spectrum in I for any self-adjoint realiza-
tion S.

Proof. Let S be a self-adjoint realization. By Theorem 46, σc(S)∩ I

is empty and, from Theorem 49, we have that σp(S) \ σd(S) is empty.
By Definitions 20 and 22, we have

σe(S) = σc(S) ∪ (σp(S)) \ σd(S),

and the conclusion follows. �

Remark 49. We prove Theorem 49 by constructing, for any given
self-adjoint realization S of (21.1), a characteristic function ∆(λ) whose
zeros in the interval (µ1, µ2) are precisely the eigenvalues of S in this in-
terval. The construction of ∆(λ) uses LC solutions and other notation
and definitions from Sections 15 and 16. The proof of Theorem 49 pro-
vides a very good illustration of the use of the LC and LP constructions
in Section 15 to get information about the spectrum.
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22. Two singular endpoints. In this section, we study spectral
properties of the self-adjoint realizations S of the equation

(22.1) My = λwy on J = (a, b), −∞ ≤ a < b ≤ ∞,

in the Hilbert space H = L2(J,w), where M = MA, A ∈ Zn(J,R),
n = 2k, k ≥ 1, A is Lagrange symmetric and w is a weight function
on J . Note that we do not assume the additional hypothesis of the
previous section. Its replacement will be assumed here as needed.

In this section, both endpoints may be singular. As mentioned
above, the behavior of r(λ) in the two singular endpoint case is
dramatically different from the one singular endpoint case. Each
endpoint has an influence which is independent of the other endpoint.
So we study equation (22.1) on the intervals

J = (a, b), Ja = (a, c), and Jb = (c, b), −∞ ≤ a < c < b ≤ ∞,

in the Hilbert spaces H = L2(J,w), Ha = L2(Ja, w), Hb = L2(Jb, w).
Here c is an arbitrarily chosen point in J . Note that the results of the
preceding section apply to both intervals (a, c) and (c, b) since c is a
regular endpoint for both.

Recall that A ∈ Zn(J,R) implies A ∈ Zn(Ja,R), A ∈ Zn(Jb,R),
and recall our notation: da for the deficiency index of Smin(a, c) in
L2(Ja, w), db denotes the deficiency index of Smin(c, b) in L2(Jb, w),
ra(λ) = da(λ), rb(λ) = db(λ) for λ ∈ R, etc.

The next lemma summarizes some basic facts for the one regular
endpoint case. It is stated here for convenience to make the comparison
with the two singular endpoint case easier.

Lemma 15. Let A ∈ Zn(J,R), n = 2k, k ≥ 1, assume that A is
Lagrange symmetric and w is a weight function on J .

(i) Then M = MA is a symmetric differential expression on J , Ja
and on Jb.

(ii) The deficiency indices da and db are independent of the choice of
c ∈ (a, b).

(iii) For any λ ∈ R, da(λ) ≤ da, db(λ) ≤ db, and strict inequality does
occur.

(iv)
k ≤ da, db ≤ 2k = n,
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and all values of da, db in this range are realized.
(v)

d = da + db − n.

(vi) We have
0 ≤ d ≤ 2k = n,

and all values in this range occur.
(vii) If one endpoint is regular and r(λ) = d, then λ is an eigenvalue

of multiplicity d for some self-adjoint extension.
(viii) If one endpoint is regular and r(λ) = d for all λ in some open

interval I, then there is no continuous spectrum in I for any self-
adjoint extension S. Moreover, the eigenvalues of any self-adjoint
extension are nowhere dense in I.

Proof. See Section 21 and [59]. �

The next theorem shows that the behavior of ra(λ) on (a, c) and the
behavior of rb(λ) on (c, b) affect the spectrum on the whole interval
(a, b).

Theorem 51. Let the hypothesis and notation of Lemma 15 hold.
Then

(i) We have

(22.2) σe(a, b) = σe(a, c) ∪ σe(c, b).

(ii) If λ /∈ σe(a, b), then

(22.3) ra(λ) + rb(λ) = da + db.

(iii) If ra(λ) < da or rb(λ) < db, then λ ∈ σe(a, b).
(iv) If ra(λ) + rb(λ) < da + db, then λ ∈ σe(a, b).
(v)

(22.4) ra(λ) + rb(λ)− n ≤ r(λ) ≤ min{ra(λ), rb(λ)}.

(vi) If λ /∈ σe(a, b), then

(22.5) d = da + db − n ≤ r(λ) ≤ min{ra(λ), rb(λ)}.

Proof. Parts (ii), (iii) and (iv) follow from (i) and Theorem 51, (vi)
follows from (v) and (ii). For details of the proof of (v) see [60, Section
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4]. For smooth coefficients (i) follows from Dunford and Schwartz [24,
page 1438, Theorem 4]. This proof can readily be adapted to our
hypotheses on the coefficients.

An alternative proof of (i) can be constructed from the “two-
interval” theory developed by Everitt and Zettl in [46, 47]: Consider
the “two-interval” minimal operator S2min given by

(22.6) S2min = Smin(a, c)u Smin(c, b)

in the direct sum space L2((a, c), w) u L2((c, b), w) which can be
identified with H = L2((a, b), w). Let Sa, Sb be self-adjoint extensions
of Smin(a, c) and Smin(c, b), respectively, and let S = Sa u Sb. Then
S is a self-adjoint extension in H. It is well known that the essential
spectrum of the direct sum of two self-adjoint operators in Hilbert space
is the union of their essential spectra, and (22.2) follows. �

Remark 50. For problems with only one singular endpoint, the
‘decomposition method of Glazman’ [55] shows that the essential
spectrum depends only on the coefficients near the singular endpoint.
In Theorem 51, both endpoints are singular. The ‘two-interval’ proof
of part (i) of Theorem 51 essentially consists in showing that the two
one interval results for the intervals (a, c) and (c, b) can be combined
to prove (22.2). Although this is conceptually simple, the technical
details involve the ‘two-interval’ theory of Everitt and Zettl [46, 47] as
described above and the ‘Naimark patching lemma’ which ‘connects’
these two intervals through the interior to obtain the result (22.2) for
the whole interval (a, b).

Theorem 52. Assume that A ∈ Zn(J,R), n = 2k, k ≥ 1, is Lagrange
symmetric, and w is a weight function on J . Suppose a and b are
singular. If r(λ) < d, then λ ∈ σe(a, b).

Proof. Suppose λ /∈ σe(a, b). Then ra(λ) = da and rb(λ) = db,
since otherwise ra(λ) < da or rb(λ) < db would imply that λ ∈ σe by
Theorem 51 (ii). But ra(λ) = da and rb(λ) = db implies, by Theorem
51 (vi), that d = da + db − n = ra(λ) + rb(λ) − n ≤ r(λ), which
contradicts the hypothesis r(λ) < d. �
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Remark 51. We comment on Theorem 22.4. Weidmann [116, Theo-
rem 11.1] proves this result under the additional assumption that there
exists a self-adjoint extension for which λ is not an eigenvalue, and he
comments [116, pages 162, 163] that (1) this theorem is the basis for
all other results in Chapter 11 and (2) that he does not know if the
additional assumption is really necessary. This additional assumption
in [116] has also been eliminated independently by Qi and Chen [89]
with a different proof based on functional analysis.

The contrasting behavior of r(λ) for the two singular endpoint case
from the one singular endpoint case has some interesting consequences.
In the case of only one singular endpoint we have r(λ) ≤ d, whereas
in the two singular endpoint case r(λ) may assume values less than d,
equal to d or greater than d. The case r(λ) > d leads to a surprising
and counter-intuitive result that this value of λ is an eigenvalue of
every self-adjoint extension, i.e., for any given self-adjoint boundary
condition, there are eigenfunctions of λ which satisfy this boundary
condition (see Example 13).

Theorem 53. Assume that A ∈ Zn(J,R), n = 2k, k ≥ 1, is Lagrange
symmetric and w is a weight function on J . Suppose a and b are
singular. If, for some λ ∈ R, d < r(λ) < min{ra(λ), rb(λ)}, then λ is
an eigenvalue of every self-adjoint extension.

Proof. See [60]. �

Corollary 15. Assume the hypotheses of Theorem 53 hold for all λ ∈ I
and λ is an accumulation point of I. Then λ is an accumulation point
of the eigenvalues of each self-adjoint extension, and therefore λ is in
σe.

Proof. This follows from Theorem 53 and the definition of essential
spectrum. �

Remark 52. We comment on the hypotheses of Theorem 53. If one
endpoint is regular, then r(λ) ≤ d by Theorem 51. If ra(λ) = n, then
r(λ) = rb(λ) ≤ d by Theorem 51 (v), and similarly for rb(λ) = n.
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Remark 53. Now we comment on the conclusion of Theorem 53. The
same real number λ is an eigenvalue of every self-adjoint extension.
In other words, given an arbitrary self-adjoint boundary condition,
there exists an eigenfunction of this λ which satisfies all d conditions
of any given self-adjoint boundary condition; thus, r(λ) > d provides
a sufficient supply of eigenfunctions for all the conditions of every self-
adjoint boundary condition (see Example 13). For n = 8, da = 6,
db = 7, we have by Theorem 51 (vi): d = 5 ≤ r(λ) ≤ 6, thus allowing
r(λ) = 6 > d = 5. This case actually occurs since all intermediate
values of the deficiency indices da and db are realized.

On the relationship between the essential spectrum and the numbers
of real parameter square-integrable solutions of differential equation,
Weidmann conjectured if there exist ‘sufficiently many’ L2-solutions
of (M − λ)u = 0, for λ ∈ I = (µ1, µ2), then I contains no points of
the essential spectrum [116]. But, as mentioned in Remark 48, Del
Rio [23] and Remling [92] have clarified the complicated relationship
between the essential spectrum and the real numbers λ for which
r(λ) = d. In fact, knowing only the number of real parameter solutions
is not sufficient to guarantee the discreteness of spectrum of differential
operators.

For the two singular endpoints case, using the “two-interval” theory
developed by Everitt and Zettl in [46, 47] and Theorem 50, we have
the following theorem. Recall

Assumption (A). There exists an open set G in the complex
plane containing I = (α, β) with α, β on the boundary of G, and there
exist solutions u1(t, λ), . . . , uda(t, λ) on (a, c) and v1(t, λ), . . . , vdb

(t, λ)
on (c, b) which lie in H, are real valued for λ ∈ I, and are analytic on
G for each fixed t ∈ I.

Theorem 54. Assume that A ∈ Zn(J,R), n = 2k, k ≥ 1, is Lagrange
symmetric and w is a weight function on J . Each endpoint may be
regular or singular. Let da denote the deficiency index of Smin(a, c)
in L2(Ja, w), and let db denote the deficiency index of Smin(c, b) in
L2(Jb, w). If ra(λ) = da(λ) on (a, c), rb(λ) = db(λ) on (c, b) for all

λ in some open interval I = (α, β), and assumption (Ã) holds on I,
then there is no essential spectrum in I for any self-adjoint extension
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S(a, c), S(c, b), S(a, b). In particular, the eigenvalues of none of these
extensions S(a, c), S(c, b), S(a, b) can have an accumulation point in I.

Proof. By Theorem 50, we have σe(a, c)∩ I = ∅ and σe(c, b)∩ I = ∅.
Therefore by Theorem 51 (i), we conclude that σe(a, b) ∩ I = ∅.
Since such accumulation point of eigenvalues would be in the essential
spectrum, we may conclude that the eigenvalues of none of these
extensions S(a, c), S(c, b), S(a, b) can have an accumulation point
in I. �

23. Examples. In this section, we give some examples. Although
these examples are simple and their spectrum is well known, we believe
that, nevertheless, they illustrate how the number of real-parameter
square-integrable solutions r(λ) influence the spectrum, and this influ-
ence can be used to obtain spectral information.

The first two examples consider the Fourier and Hermite differential
equations.

Example 12. Let

(23.1) My = −y′′ = λy on J = (−∞,∞).

Observe that 1, t are two linearly independent solutions for λ = 0
and both are not in L2(−∞, 0) and L2(0,∞). Therefore, the deficiency
index of (M,w) on (−∞, 0], and on [0,∞) are both 1. Hence, the
deficiency index of (M,w) on (−∞,∞) is d = 0. Thus, Smin is a
self-adjoint operator realization of (23.1) in the Hilbert space H =
L2(−∞,∞).

Firstly, we consider

(23.2) My = −y′′ = λy on J = (0,∞),

with self-adjoint boundary conditions

cos(α)y(0) + sin(α)y′(0) = 0, 0 ≤ α < π.

(i) For λ > 0, ei
√

|λ|t and e−i
√

|λ|t are two linearly independent
solutions of (23.2) and both are not in L2[0,∞). So, for λ ≥ 0,
r(λ) = 0 < 1. By Theorem 52, we conclude that, for any self-
adjoint extension S(α) of equation (23.2), [0,∞) ⊂ σe(S).
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(ii) For λ < 0, e
√

|λ|t and e−
√

|λ|t are two linearly independent
solutions of (23.2), and

e−
√

|λ|t ∈ L2[0,∞), e
√

|λ|t /∈ L2[0,∞),

so r(λ) = 1.

Let λ ∈ G, where G = {c+ hi|c < 0,−ε < h < ε}. If Imλ = h ≥ 0,

let λ = reiθ, π/2 < θ ≤ π, ei
√
λt and e−i

√
λt are two linearly

independent solutions of (23.2), and

ei
√
λt ∈ L2(0,∞), e−i

√
λt /∈ L2(0,∞),

where ei
√
λt = ei

√
r(cos θ/2+i sin θ/2)t. The initial value of the L2 solution

ei
√
λt is (1, i

√
λ). Since λ ̸= 0, (1, i

√
λ) is analytically dependent

on λ ∈ G, and if h → 0, θ → π, ei
√
λt → e−

√
rt = e−

√
|λ|t is a

real parameter solution lying in L2[0,∞). Similarly, we have that if

Imλ = h < 0, the initial value (1,−i
√
λ) of the L2[0,∞) solution

e−i
√
λt depends analytically on λ ∈ G.

By Theorem 54, we have σe(S(α)) ∩ (−∞, 0) = ∅ for any self-
adjoint extension S(α) of equation (23.2), i.e., the spectrum of S(α)
is discrete in (−∞, 0), and thus from this and (i), we conclude that
σe(0,∞) = [0,+∞).

Similarly, we consider

(23.3) My = −y′′ = λy on J = (−∞, 0),

with self-adjoint boundary conditions

cos(α)y(0) + sin(α)y′(0) = 0, 0 ≤ α < π

and conclude that σe(−∞, 0) = [0,+∞).

By Theorem 51, we have that

σe(−∞,∞) = σe(−∞, 0) ∪ σe(0,∞) = [0,+∞).

Example 13. The Hermite differential expression M . Let

(23.4) My = −y′′ + t2y = λy on J = (−∞,∞).
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M is LP singular at −∞ and +∞, and the deficiency index of M is 0.
Therefore, Smin is self-adjoint with no proper self-adjoint extension.

It is well known that

(23.5) σ(Smin) = σp(Smin) = {λn = 2n+ 1, n = 0, 1, . . .}.

Thus, r(λn) = 1 > 0 = d.

Next, we discuss the periodic coefficient case to illustrate the close
connection between r(λ) and the spectrum of self-adjoint realizations
of (21.1).

Example 14 (Floquet theory). Assume that each of p, q, w is s-
periodic with fundamental interval [a, a + s]. Then, see [131, pages
210–211], equation (21.1) on (a,∞) is LP at ∞ and the endpoint a
is regular. So each of the self-adjoint realizations of (21.1) on (a,∞)
in the Hilbert space H = L2((a,∞), w) is determined by a boundary
condition at a only. These have the form

(23.6) cos(α)y(a) + sin(α)(py′)(a) = 0, α ∈ [0, π).

If S(α) is any one of the self-adjoint realizations determined by (23.6)
for any α ∈ [0, π), then the essential spectrum σe(S(α)) of S(α) is
independent of α and is given by

(23.7) σe(S(α)) = ∪∞
j=0Ij ,

where the compact intervals Ij are given by

I0 = [λP
0 , λ

S
0 ], I1 = [λS

1 , λ
P
1 ],(23.8)

I2 = [λP
2 , λ

S
2 ], I3 = [λS

3 , λ
P
3 ], I4 = [λP

4 , λ
S
4 ], . . . ,

with λP
j and λS

j denoting the eigenvalues of the regular problems
consisting of equation (21.1) on the interval [a, a + s] with periodic
(P)

y(a) = y(a+ s) and (py′)(a) = (py′)(a+ s)

and semi-periodic (S)

y(a) = −y(a+ s) and (py′)(a) = −(py′)(a+ s)

boundary conditions, respectively.
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The compact intervals Ij are called the spectral bands, and the
complementary open intervals

(λS
0 , λ

S
1 ), (λ

P
1 , λ

P
2 ), (λ

S
2 , λ

S
3 ), (λ

P
3 , λ

P
4 ), . . .

are called the spectral gaps. If λS
j = λS

j+1 or λP
j = λP

j+1 for some j,
then the corresponding ‘gap’ is missing. Thus, there may be no gap, a
finite number of gaps, an infinite number but not all of them, or all gaps
may be ‘present.’ From Theorem 45, we get the following corollary.

Corollary 16. If λ is in any gap, including the ‘gap’ (−∞, λP
0 ), then

r(λ) = 1 and λ is an eigenvalue with multiplicity one of some self-
adjoint realization S(α). If λ ∈ σe, then either r(λ) = 0 or r(λ) = 1.
If r(λ) = 1, then λ is an embedded eigenvalue of some self-adjoint
realization S(α). If r(λ) = 0, then λ is not an eigenvalue, because
otherwise its eigenfunction u would be in H making r(λ) = 1.

Remark 54. Equation (21.1) on (a,∞) has deficiency index d = 1.
By Theorem 44, r(λ) ≤ 1 but r(λ) = 0 implies, by Theorem 45 (i), that
λ ∈ σe. Hence, r(λ) = 1 for any λ in any gap including (−∞, λP

0 ) and,
by Theorem 45 (ii), λ is an eigenvalue of some self-adjoint realization
S(α) of (21.1) on (a,∞). Also, if λ ∈ σe and r(λ) = 1, then λ is an
eigenvalue of some self-adjoint realization S(α) by Theorem 45 (ii). Not
much seems to be known about the relationship between the eigenvalues
and α.

Remark 55. The endpoints λS
j and λP

j of the spectral bands and
gaps can be computed with the Bailey-Everitt-Zettl code SLEIGN2.
When the coefficients are not periodic, this code can also be used
to approximate the first few spectral bands and gaps. See [131] for
more information about the code, including how to download it from
the Web, together with its user friendly interface and other associated
helpful files.

24. W.N. Everitt. William Norrie Everitt (1924–2011), known to
everyone as Norrie, was one of the most influential mathematicians of
his time in the field of ordinary differential equations and operators,
not only through his own work consisting of over 200 papers with more
than 70 coauthors from more than a dozen countries on four continents,
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but through his influence on others with his lectures at conferences
and universities, his legendary Dundee conferences, his conversion of
the journal ‘Proceedings of the Royal Society of Edinburgh, A’, from
a general Science and mathematics journal to a mathematics journal,
his uncanny ability to ‘get to the bottom of things,’ his tireless pursuit
of mathematical truths, his determination that previous authors get
appropriate credit for their work, his work ethic, etc.

Norrie was an enthusiastic supporter of the ‘Hardy-Littlewood phi-
losophy’ regarding joint publications: If one starts a joint project with
a colleague and succeed with it, then one publishes jointly regardless
of who did what. As a consequence, he was very selective in choosing
his coauthors.

His writing style was unique and his papers are influential because
they extended well beyond their content. He carefully presented the
context for the new results, then discussed the previous work on which
the present work was built (when we started working jointly on a paper
we always started with our list of references), then presented the new
results often followed by comments. Each new theorem is clearly stated
in detail in such a way that the reader can understand it without having
to search through all the previous pages for definitions and notations–
all these are clearly marked.

His lectures were works of art: he started writing on the top left
corner of the first blackboard and finished with an emphatic period at
the bottom right corner of the last blackboard exactly 50 minutes later.
Rarely, if ever, did he have to erase anything. The first third of his
lecture gave a slow and gentle overview of the general area of his topic,
the middle third introduced some of the needed technical background,
the last third gave the new results ending with a ‘punch line.’ One
of these lectures was given at the University of Inner Mongolia in
Hohhot at the invitation of Zhijiang Cao who founded, 36 years ago,
the differential equations group now led by Sun, second author of this
article.

The Dundee conferences and their published proceedings were hugely
influential and spawned innumerable papers, many of them joint work
by people from different countries who became acquainted at these
conferences.

The next comments are personal recollections of the first author of
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this article.

Norrie and I had a very active collaboration for more than 25 years.
During this time we and our families got to know each other well. In
1972–1973, I spent a sabbatical year in Dundee with my family; my
kids went to school there. My daughter was called ‘Erika America’ by
her friends. My wife and I also spent a semester in Birmingham when
Norrie and I worked with Paul Bailey on the SLEIGN2 [5] project. This
code is still the only general purpose code available for the numerical
computation of eigenvalues and eigenfunctions of regular and singular
Sturm-Liouville problems. The code was written by Paul Bailey; Norrie
and I discovered some new algorithms which were implemented in the
code for the first time.

When Norrie stayed with us or I with them, he was always still
working when I went to bed and was up and working in the morning
when I got up. We took two RV trips together. Norrie, Kit, Sandra
and I explored eastern Canada, and our kids Erika and Karl joined the
four of us for a trip west to see Colorado and Utah.

Norrie regaled me with many stories of how he persuaded the Board
of the general Science journal to specialize to mathematics; this became
the journal ‘Proceedings of the Royal Society of Edinburgh A’. He was
as relentless in his administrative work as he was in his research. He
served a couple of terms chairing the Dundee Mathematics Department
and was head of the Mathematics Department of the University of
Birmingham, U.K., for many years. The writers of this article first met
while visiting Norrie in Birmingham in 1989.

Regarding Norrie’s relentless efforts to ‘get to the bottom of things,’
his tireless pursuit of mathematical truths, his work ethic, etc., I
mention the following. When Norrie and I first met we had both written
papers on the Sturm-Liouville equation and on higher order differential
equations where my hypotheses were more general than his. On the
blackboard in his office he grilled me mercilessly to justify my weaker
assumptions. After several hours of vigorous discussions, going back to
the definition of the Lebesgue integral, he convinced himself that my
weaker assumptions were sufficient and used them from then on.

He was particularly concerned that Shin was credited for his work
on quasi-differential expressions. He and I tried hard to get some
information about Shin’s life with no success. Shin seems to have
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disappeared after his 1943 paper was published so we assumed that
he died during WWII.

Despite Norrie’s unquenchable thirst for mathematics, he had other
interests, in particular, opera, railroads, trees, history. In addition
to regaling me with funny anecdotes about mathematicians and their
peculiarities, he seemed to know about all the peccadillos of the English
kings and queens. When walking in a forest he would rattle off both
the common and scientific names of the trees we encountered, when
riding with him in a train he would tell me all about the railroad and
its history, he knew what kinds of rails we were on from the sound, etc.
All this was accomplished with a wonderful sense of humor. William
N. (Norrie) Everitt was a truly remarkable man.
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