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EXISTENCE OF SOLUTIONS FOR THE
GENERALIZED p-LAPLACIAN EQUATION

FU-HSIANG WONG, WEI-CHENG LIAN AND REN-CI LIN

ABSTRACT. In this article, we show that, under suitable
assumptions, the generalized p-Laplacian boundary value
problem has at least one solution.

1. Introduction. We are interested in the existence of solutions of
the equation

(1.1) (ϕ(u′))′ + k(t)ϕ(u′) + f(t, u, u′) = 0, a < t < b

subject to boundary condition

(1.2) u(a) = u(b) = 0.

Here k : [a, b] → R, f : [a, b]× R2 → R, and ϕ : R → R is an increasing
homomorphism, i.e., it satisfies the following conditions:

(i) if x ≤ y, then ϕ(x) ≤ ϕ(y) for all x, y ∈ R;
(ii) ϕ is a continuous bijection and its inverse mapping is also continu-

ous;
(iii) ϕ(xy) = ϕ(x)ϕ(y), for all x, y ∈ R.

Equation (1.1) with ϕ(s) = |s|p−2s, where p > 1, and k(t) = (n−1)/t
arises in the study of radial solutions for the p-Laplacian equation on
the annular domain in n dimensions,

(1.3) div (|∇u|p−2∇u) + f(|x|, u, |∇u|) = 0, a < |x| < b, x ∈ Rn.

Problem (1.1) has been investigated a good deal in the last 20 years
or so under the general heading of the p-Laplacian. The application
most authors cite nowadays is to highly viscid fluid flow (cf., Ladyzhen-
skaya [10] and Lions [12]). This involves partial differential equations,
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but for symmetric flows, the ordinary differential operator (perhaps in
radial form) is involved, see, e.g., Kusano and Swanson [9], del Pino and
Manasevich [4], Rabinowitz [14] and Walter [15]. For the interesting
results of this problem, we refer the reader to Dang and Oppenheimer
[2], Bobisud [1], Guo [6], Herrero and Vazquez [7], Kaper, Knapp and
Kwong [8] and Mawhin [13].

In this paper, we shall establish existence results for (1.1) with the
boundary condition (1.2) under various growth conditions on f . In
particular, our results give the existence of radial solutions to (1.3) on
the annulus {x ∈ R : a < |x| < b} with Dirichlet boundary conditions
with suitable growth conditions on f . The results obtained may be
considered as extensions of results in Bobisud [1] and Mawhin [13].
Our approach is based on a direct application of the Leray-Schauder
alternative theorem.

2. Main results. We shall denote the norms in Cr, Lp and W 1,p by
|·|r, ||·||p and ||·||1,p, respectively. Here Lp = Lp(a, b), Cr = Cr[a, b] and
W 1,p = W 1,p(a, b). We assume throughout that ϕ is an odd, increasing
homomorphism on R and that k ≥ 0 is a continuous function on [a, b]

with the primitive K(t) =
∫ t

a
k(s)ds.

In order to discuss our results, we need the following lemmas:

Lemma 2.1. (Lasalle’s inequality[11]). Let G ∈ C([0,∞]; [0,∞))
be continuous and increasing, the functions h ∈ L1([a, b]; [0,∞)),
y ∈ C([a, b]; [0,∞)). Then the inequality

y(t) ≤
∫ t

a

h(s)G(y(s)) ds on [a, b]

implies ∫ y(t)

0

ds

G(s)
≤

∫ t

a

h(s) ds on [a, b].

Theorem 2.2. (Leray-Schauder alternative cf., [5], Theorem
(5.4)). Let C be a convex subset of a normed linear space E, and
assume 0 ∈ C. Let F : C → C be a completely continuous operator,
and let

ε(F ) = {x ∈ C|x = λF (x) for some 0 < λ < 1}.
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Then either ε(F ) is unbounded or F has a fixed point.

Lemma 2.3. For each v ∈ L1, there exists a unique solution u = Av
of

(2.1)

{
(ϕ(u′))′ + k(t)ϕ(u′) = v,

u(a) = u(b) = 0.

Proof. For each v ∈ L1, let u = Av be the solution of (2.1). Then we
have

(2.2) (eK(t)ϕ(u′))′ = eK(t)v.

Integrating (2.2) on [a, t] gives

ϕ(u′(t)) = e−K(t)ϕ(u′(a)) + e−K(t)

∫ t

a

eK(s)v ds,

and so

u(t) =

∫ t

a

ϕ−1
[
e−K(s)ϕ(u′(a)) + e−K(s)

∫ s

a

eK(τ)v dτ
]
ds.

Since u(b) = 0 and ϕ−1 is increasing, we have that ϕ(u′(a)) = C, where
C is the unique number such that

(2.3)

∫ b

a

ϕ−1
[
Ce−K(s) + e−K(s)

∫ s

a

eK(τ)v dτ
]
ds = 0.

Note that |C| <
∫ b

a
|eK(s)v| ds. Conversely, if

u(t) =

∫ t

a

ϕ−1
[
Ce−K(s) + e−K(s)

∫ s

a

eK(τ)v dτ
]
ds,

where C satisfies (2.3), then it is easy to see that u is a solution of
(2.1).

Theorem 2.4. (Existence theorem). Let f : [a, b] × R2 → R
satisfy the Caratheodory conditions, i.e., f(·, u, v) is measurable for
every u, v ∈ R; f(t, ·, ·) is continuous for almost every t ∈ (a, b), and
for every r > 0, there exists pr ∈ L1 such that

|f(t, u, v)| ≤ pr(t)
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for almost every t ∈ (a, b), and all u, v ∈ R with |u| ≤ r, |v| ≤ r.
Suppose that

0 ≤ k(t) ≤ k1, t ∈ [a, b]

and

(2.4) |f(t, u, v)| ≤ F (ϕ(|u|), ϕ(|v|)),

where F (x, y) is increasing in x and y, respectively. Then, the boundary
value problem (1.1)–(1.2) has at least one solution.

Proof. Since u is a solution of (1.1) if and only if v(t) = u(a + b − t)
is a solution of

(ϕ(v′))′ − k(t)ϕ(v′) + g(t, v, v′) = 0,

where g(t, u, v) = f(a+ b− t, u,−v). Since k(t) ≡ 0 is obvious, we can
assume that k(t) > 0 for some t ∈ (a, b). For each v ∈ C1, let u = Bv
be the solution of {

(ϕ(u′))′ + k(t)ϕ(u′) = Nv,
u(a) = u(b) = 0,

where Nv(t) = −f(t, v(t), v′(t)). Since B = AN , B : C1 → C1 is
completely continuous. We shall apply the Leray-Schauder alternative
theorem to show that B has a fixed point. Let u ∈ C1 and λ ∈ (0, 1)
be such that u = λBu. Then

(2.5)

(
ϕ

(
u′

λ

))′

+ k(t)ϕ

(
u′

λ

)
= −f(t, u, u′).

Let |u0| = |u(t0)| = maxt∈[a,b] |u(t)| for some t0 ∈ [a, b]. Without loss

of generality, we consider t ∈ [t0, b]. Multiplying (2.5) by eK(t) and
integrating over [t0, t] gives

ϕ

(
u′(t)

λ

)
= −e−K(t)

∫ t

t0

eK(s)f(s, u(s), u′(s)) ds.

Since

ϕ(|x|) =

{
ϕ(1)ϕ(x), x ≥ 0,

ϕ(−1)ϕ(x), x ≤ 0.
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Thus,

|ϕ(|x|)| =

{
|ϕ(1)ϕ(x)|, x ≥ 0

|ϕ(−1)ϕ(x)|, x ≤ 0

≤ max{|ϕ(−1)|, |ϕ(1)|}|ϕ(x)|.

On the other hand, it follows from ϕ(1) = ϕ(1)ϕ(1), ϕ(1) = ϕ(−1)ϕ(−1)
and ϕ is a bijection that ϕ(1) = 1 and ϕ(−1) = −1. Thus, (2.4) implies

ϕ(|u′(t)|) ≤ ϕ

(
|u

′(t)

λ
|
)

≤ |ϕ
(∣∣∣∣u′(t)

λ

∣∣∣∣)|
≤ max{|ϕ(−1)|, |ϕ(1)|}

∣∣∣∣ϕ(u′(t)

λ

)∣∣∣∣
≤ e−K(t)

∫ t

t0

|eK(s)f(s, u(s), u′(s))| ds

≤
∫ t

t0

eK(s)|f(s, u(s), u′(s))| ds

≤
∫ t

t0

eK(s)F (ϕ(|u(s)|), ϕ(|u′(s)|)) ds.(2.6)

Since

|u(t)| =
∣∣∣∣ ∫ b

t

u′
∣∣∣∣ ≤ (b− a) sup

t0≤s≤b
|u′(s)| ≡ (b− a)δ for t ≥ t0,

it follows from (2.6) that

(2.7) ϕ(|u′(t)|) ≤
∫ t

t0

eK(s)F (ϕ((b− a)δ), ϕ(|u′(s)|)) ds,

and Lemma 2.1 imply that∫ ϕ(|u′(t)|)

0

ds

F (ϕ((b− a)δ), s)
≤

∫ t

t0

eK(s)ds =

∫ t

t0

e
∫ s
a
k(u)duds

≤
∫ t

t0

e
∫ s
a
k1duds =

∫ t

t0

ek1(b−a)ds

≤ (b− a)ek1(b−a) for t ∈ [t0, b].
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Thus, we have ∫ ϕ(δ)

0

ds

G(s)
≤ (b− a)ek1(b−a),

where G(t) ≡ F (ϕ((b− a)δ), t) on [0,∞). That is,

(2.8) ϕ(δ) ≤ H−1((b−a)ek1(b−a)) ≡ M1, (independent of u and u′),

where H(u) =
∫ u

0
ds/G(s) is increasing on [0,∞). Consequently,

|u(t0)| =
∣∣∣∣ ∫ b

t0

u′
∣∣∣∣ ≤ (b− a)δ ≤ (b− a)ϕ−1(M1) ≡ M2(2.9)

(independent of u and u′).

Combining (2.7) and (2.9), we obtain

ϕ(|u′(t)|) ≤
∫ t

t0

eK(s)F (ϕ(M2), ϕ(|u′(s)|)) ds,

which along with Lemma 2.1 implies∫ ϕ(|u′(t)|)

0

ds

F (ϕ(M2), s)
≤

∫ t

t0

eK(s)ds =

∫ t

t0

e
∫ s
a
k(u)duds

≤
∫ t

t0

e
∫ s
a
k1duds =

∫ t

t0

ek1(b−a)ds

≤ (b− a)ek1(b−a) for t ∈ [t0, b].

Thus, we have ∫ ϕ(|u′(t)|)

0

ds

G∗(s)
≤ (b− a)ek1(b−a),

where G∗(t) ≡ F (ϕ(M2, t) on [0,∞), that is,

ϕ(|u′(t)|) ≤ H∗−1

((b− a)ek1(b−a)) ≡ M3, (independent of u and u′),

where H∗(u) =
∫ u

0
ds/G∗(s) is increasing on [0,∞).

This implies

|u′| ≤ ϕ−1(M3) ≡ M4 (independent of u and u′).

By the Leray-Schauder alternative theorem, B has a fixed point u,
which is a solution of (1.1)–(1.2). Thus, we obtain the desired results.
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