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CHARACTER SUMS DETERMINED BY LOW
DEGREE ISOGENIES OF ELLIPTIC CURVES

DUSTIN MOODY AND CHRISTOPHER RASMUSSEN

ABSTRACT. We generalize the character sum formulas
of McLeman-Rasmussen attached to isogenies of elliptic
curves in positive characteristic. Two improvements are
given: sums are evaluated for isogenies of degree greater
than two, and over arbitrary finite fields. We prove a
transfer formula to evaluate such sums quickly over the
domain curve and use this to evaluate the character sums
attached to several standard families of isogenies of low
degree.

1. Introduction. Let p > 3 be prime, and let hp denote the class
number of Q(

√
−p). For convenience, let h∗

p denote either 0 or hp, as p
(mod 4) is congruent to 1 or 3, respectively. A well-known consequence
of Dirichlet’s class number formula is the relation

(1)

p−1∑
x=1

x

(
x

p

)
= −ph∗

p.

In the recent article [3], McLeman and Rasmussen reinterpreted this
sum in the following way. Let Gm denote the multiplicative group, and
let φ2 : Gm → Gm be the squaring homomorphism. Then the Legendre
symbol ( ·

p ) is simply the cokernel character of the group homomorphism

φ2

∣∣
Gm(Fp)

: Gm(Fp) → Gm(Fp). Now, the left hand side of (1) may be

rewritten
∑

x∈Gm(Fp)
{x}(xp ), where {·} denotes an appropriately chosen

lift Fp → Z. So this character sum attached to the homomorphism φ2 is
divisible by p, and the quotient by p computes hp when p ≡ 3 (mod 4).

McLeman and Rasmussen then applied this view to isogenies of
elliptic curves. Let a, b ∈ Z be chosen such that the following equations
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give nonsingular Weierstrass models for elliptic curves over Q:

E1 : y
2 = x3 + ax2 + bx,

E2 : y
2 = x3 − 2ax2 + (a2 − 4b)x.

Let τ : E1 → E2 denote the 2-isogeny (x, y) 7→ ( y
2

x2 ,
y(b−x2)

x2 ). For
any prime p of good reduction, this descends to an isogeny on the
reduced curves, τ̃ , and further to a homomorphism of abelian groups,

τ̃ : Ẽ1(Fp) → Ẽ2(Fp). Let χτ : Ẽ2(Fp) → {±1} denote the associated
cokernel character, and define

Sτ,p :=
∑

P∈Ẽ2(Fp)

P ̸=∞

{x(P )− a}χτ (P ).

Theorem (McLeman-Rasmussen, [3, Theorem 9]). For any prime p >
3 of good reduction, Sτ,p is divisible by p. Moreover, Sτ,p approximates
−ph∗

p in the following uniform sense: the difference | − 1
pSτ,p − h∗

p| is
bounded by a constant, independent of p.

In fact, for most isogenies, the difference is zero for a positive density
of primes; see [3] for details.

1.1. Isogenies of higher degree. It is natural to consider other
isogenies over finite fields to see if the analogous character sums also
carry arithmetic information. Already some progress has been made in
this direction; McLeman and Moody [2] have demonstrated a similar
phenomenon occurring in a family of 3-isogenies of elliptic curves with
complex multiplication.

In this paper, we consider the case of cyclic m-isogenies of elliptic
curves. Here, there is some divergence between the case of elliptic
curves and the case of an endomorphism of Gm; this is in fact what
makes the generalization interesting. For example, take m > 2 odd and
suppose p ≡ 1 (mod m) is prime. Them-th power map φm : Gm → Gm

induces an endomorphism on Gm(Fp) whose cokernel character is the
m-th order residue symbol ( ·

p )m. However, the analogous character
sum ∑

x∈Gm(Fp)

{x}
(
x

p

)
m
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vanishes always (an immediate consequence of the observation that −1
is an m-th power in F×

p ).

However, in the case of an m-isogeny π of elliptic curves defined over
Fp (m > 2), the situation is more complicated. Experimentally, one
observes that the sum does not collapse to 0 (even under the additional
condition p ≡ 1 (mod m)). One suspects these sums also contain
arithmetic information, and this idea is already corroborated by the
recent work of McLeman-Moody for m = 3. In the current article, we
present new results on the behavior of these character sums attached
to isogenies of degree greater than two.

Theorem 1.1. Let π : E1 → E2 be a Vélu isogeny (as defined below)
of Weierstrass elliptic curves defined over Fq of degree m. Let ζ ∈ Fp

be a primitive m-th root of unity. Suppose P ∈ E1(Fp) generates
the kernel of π, and let χ denote the cokernel character of the re-
striction π

∣∣
E1(Fp)

: E1(Fp) → E2(Fp). Then the weighted character

sum
∑

Q∈E2(Fp)
x(Q)χ(Q) over points of E2 coincides with the sum∑m−1

j=1 ζjx(jP ), taken over certain points of E1.

In fact, any non-constant separable isogeny may be realized as a
Vélu isogeny. Note that the number of terms in the second sum does
not grow with p.

As an application, we take standard families of isogenies of small
degree over finite fields, and compute the associated character sum
explicitly. Sadly, we cannot provide a characteristic zero result in the
spirit of [2, 3]; in those papers, the cokernel character could be written
explicitly in terms of the Weierstrass models of the elliptic curves, by
exploiting the properties of the Tate pairing. There is some hope that
a combination of these methods, and those of the present article, may
yet yield a similar result for larger values of m. In contrast to [2, 3],
however, the results hold over arbitrary finite fields (not just prime
fields), and do not require the condition p ≡ 1 (mod m).

This paper is organized as follows. In Section 2, we deduce an exact
sequence related to isogenies of elliptic curves over finite fields. In
Section 3 we generalize the character sum from [3] to higher degree
isogenies and prove the main theorem, a relation that transports
character sums across a normalized isogeny. In Section 4, we apply
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the result to several well-known families of isogenies of small degree
and obtain congruence relations for the character sums in question.

1.2. Notation. We set some notation and recall some facts about
elliptic curves. Let k be a field. An elliptic curve over k is a nonsingular
genus 1 curve over k with a k-rational base point. For any k′/k, the set
E(k′) is naturally an abelian group with the base point as an identity.
Any elliptic curve over k is isomorphic to a nonsingular plane cubic
in P2 which possesses an affine model in the form of a Weierstrass
equation:

(2) y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, ai ∈ k.

By a Weierstrass elliptic curve, we mean a nonsingular projective cubic
curve E ⊂ P2 of the form (2). We let ∞ denote the base point. We
will at times refer to Weierstrass elliptic curves E′, E′′, . . . of the same
form, replacing the coefficients ai of (2) with a′i, a

′′
i , . . ., respectively.

On any elliptic curve, the set of holomorphic and non-vanishing
differentials (together with 0) is a one-dimensional k-vector space. For
a Weierstrass elliptic curve E, there is a distinguished generator for
this space, the invariant differential

(3) ω =
dx

2y + a1x+ a3
.

Throughout the paper, we denote the invariant differentials of Weier-
strass elliptic curves E,E′, . . ., by ω, ω′, . . ., respectively.

A curve morphism φ : E → E′ which sends the base point of E
to the base point of E′ is called an isogeny; it is always a group
homomorphism. If an isogeny φ is defined over k′, then it restricts
to a homomorphism E(k′) → E′(k′) of abelian groups, denoted φk′ .

If φ is an isogeny of two Weierstrass elliptic curves, and ω′ is the
invariant differential of E′, then φ∗ω′ is again a holomorphic and non-
vanishing differential on E. Hence, there exists cφ ∈ k such that
φ∗ω′ = cφω. If cφ = 1, we say that φ is a normalized isogeny.

2. A useful exact sequence. Let E/k be an elliptic curve. For
any finite subgroup F ≤ E(k), there exists an elliptic curve E′ and a
separable isogeny π : E → E′ whose kernel is precisely F ([6, III.4.12]).
The curve E′ is unique up to isomorphism.
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Proposition 2.1. Let k be a finite field, E/k an elliptic curve, and let
π : E → E′ be a separable isogeny with kernel F ≤ E(k). Then there
exists a k-rational isogeny π′ : E′ → E such that the sequence

0 // F // E(k)
πk // E′(k)

π′
k // F // 0

is exact.

Proof. Let FrE and FrE′ denote the Frobenius endomorphisms
(x, y) 7→ (xq, yq) on E and E′, respectively. Since kerπ = F ≤
E(k) = ker(1−FrE), there exists, up to isomorphism, a unique isogeny
π′ : E′ → E such that 1− FrE = π′ ◦ π ([6, III.4.11]); π′ is necessarily
defined over k since both π and 1− FrE are. Set G = imπ′

k.

We have π′
k ◦ πk = 0; so imπk ≤ kerπ′

k. Let P ′ ∈ kerπ′
k.

As π is surjective, there exists P ∈ E(k) such that π(P ) = P ′.
Then P ∈ ker(1 − FrE) = E(k), and P ′ = πk(P ) ∈ imπk. Thus,
kerπ′

k = imπk, and it remains only to show F = G.
Since π is defined over k, it commutes with the Frobenius endomor-

phisms (i.e., π ◦ FrE = FrE′ ◦ π). Thus, we have

(π ◦ π′) ◦ π = π ◦ (π′ ◦ π)
= π ◦ (1− FrE) = (1− FrE′) ◦ π.

As π is surjective, π ◦ π′ = 1 − FrE′ . Thus, πk ◦ π′
k = 0, and so

G = imπ′
k ≤ kerπk = F . On the other hand, k-isogenous elliptic

curves have the same number of points over k ([8, Theorem 1(c)]) and
imπk = kerπ′

k. Thus,

(4) #G =
#E′(k)

#kerπ′
k

=
#E(k)

# imπk
= #F ,

so G = F and the sequence is exact, as claimed. �

2.1. Vélu’s formula. Let E be a Weierstrass elliptic curve defined
over an arbitrary field k, and let F ≤ E(k) be a finite subgroup. Let
F∗ = F − {∞}. Then there exists an elliptic curve E′ and a separable
isogeny E → E′ whose kernel is F . For any choice of E and F , Vélu
has given explicit formulas for both a Weierstrass elliptic curve E′ and
an isogeny V : E → E′ with kernel F . Let us write P = (xP , yP ) for
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the affine coordinates of any point on E. If P /∈ F , the coordinates of
V are given by

xV (P ) = xP +
∑

Q∈F∗

(xP+Q − xQ),

yV (P ) = yP +
∑

Q∈F∗

(yP+Q − yQ).
(5)

If E has the form (2), then the Weierstrass equation for E′ is

E′ : y2 + a′1xy + a′3y = x3 + a′2x
2 + a′4x+ a′6,

where a′i = ai for 1 ≤ i ≤ 3, and a′4, a
′
6 ∈ k are determined explicitly

by the points of F . The formulas in [9] make it clear, as expected,
that a′4, a

′
6 ∈ k if F is a k-rational subgroup of E(k) (i.e., invariant

under the action of Gal(k/k)). Moreover, it follows directly from the
formulas (for example, see [5]) that V is always a normalized isogeny.
Throughout this article, we will refer to an isogeny of the form V as a
Vélu isogeny.

Let φ : C → C ′ be a separable isogeny of elliptic curves, and fix
an isomorphism η : C → E identifying C with a Weierstrass elliptic
curve E. Let V : E → E′ denote the Vélu isogeny with kernel η(kerφ).
Then there exists ([6, III.4.11]) an isomorphism η′ : C ′ → E′ such that
η′φ = V η. In this way, any separable isogeny may be realized as a Vélu
isogeny of Weierstrass elliptic curves, a fact we will use in the sequel.

2.2. Normalization. Consider again the setting of Proposition 2.1.
The purpose of the current section is to verify the following fact: if E
and E′ are Weierstrass elliptic curves and π is a Vélu isogeny, then π′

is also a Vélu isogeny.

Lemma 2.2. Suppose φ : E → E′ is a separable isogeny of Weierstrass
elliptic curves defined over k, and let V : E → E′′ denote Vélu’s isogeny
which has the same domain and kernel as φ. Then φ = V if and only
if φ is normalized and a′i = ai for 1 ≤ i ≤ 3.

Proof. One direction is immediate from the properties of V . For the
other, suppose φ∗ω′ = ω and a′i = ai for 1 ≤ i ≤ 3. By [6, III.4.11],
there exists an isogeny η such that φ = η ◦ V . Comparing degrees, η is
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an isomorphism of Weierstrass elliptic curves, and so has the form

η(x, y) =
(
u−2(x− r), u−3(y − sx+ rs− t)

)
, r, s, t ∈ k, u ∈ k×.

As V and φ are both normalized, η is also. But η∗ω′′ = uω′, so u = 1.
The well-known formulas relating a′i and a′′i ([6, pg. 45]), together with
the equalities a′i = ai = a′′i for 1 ≤ i ≤ 3, now force r = s = t = 0.
Thus, η is the identity, E′ = E′′, and V = φ. �

Corollary 2.3. Take the hypotheses of Proposition 2.1. If E and E′

are Weierstrass elliptic curves and π is a Vélu isogeny, then π′ is also
a Vélu isogeny.

Proof. As the Frobenius map is inseparable, we have Fr∗Eω = 0; it
follows that π′ ◦ π = 1 − FrE is normalized. As π is normalized by
assumption, π′ must be normalized also. But we already have ai = a′i
for 1 ≤ i ≤ 3, and so we are done by the previous lemma. �

3. A character sum determined by an isogeny. We now con-
sider a higher degree analogue of the character sums in [3], where the
isogenies had degree m = 2. Fix a prime p, and set q = pr for some
r > 0. Let m ≥ 2 satisfy (p,m) = 1. (Note, however, that we do not
require p ≡ 1 (mod m) as in [2] or even [3, Section 2].) Suppose E1/Fq

is a Weierstrass elliptic curve and P ∈ E1(Fq) has exact order m. Let
V : E1 → E2 denote the Vélu isogeny with kernel ⟨P ⟩. By Corollary
2.3,

0 // ⟨P ⟩ // E1(Fq)
VFq // E2(Fq)

V ′
Fq // ⟨P ⟩ // 0

is exact, where V ′ : E2 → E1 is the Vélu isogeny with kernel V (E1(Fq)).

Thus, V ′
Fq

induces an isomorphism E2(Fq)/V (E1(Fq))
∼=→ ⟨P ⟩. Fix

Q ∈ E2(Fq) such that V ′(Q) = P . (Of course, if m is prime and we
allow ourselves to replace P with another generator of ⟨P ⟩, then we
may choose any Q ∈ E2(Fq)− V (E1(Fq)).)

Let ζ denote a primitive m-th root of unity in Fq. The cokernel

character for VFq
may be realized explicitly as χζ,P : E2(Fq) → µm(Fq),

defined for any R ∈ E2(Fq) by

χζ,P (R) := ζj , j chosen such that R− jQ ∈ V (E1(Fq)).
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The definition does not depend on the choice of Q; if V ′(Q1) = V ′(Q) =
P , then R− jQ1 and R− jQ differ by an element of kerV ′

Fq
= imVFq

.

The definition does depend on both the choice of generator P for the
kernel of V and also the choice of generator ζ of µm, but these choices
are related as follows. If ⟨P ′⟩ = ⟨P ⟩, then there exists a, (a,m) = 1,
such that P ′ = aP . Further, there exists ζ ′ ∈ µm such that ζ ′a = ζ.
The point Q′ = aQ satisfies V ′(Q′) = P ′, and for any R we have
R−jQ′ = R−jaQ. Thus, if χζ,P ′(R) = ζj , then R−jaQ ∈ V (E1(Fq)),
and χζ′,P (R) = ζ ′aj = χζ,P ′(R).

So we fix, once and for all, a generator ζ for µm, and write χP for
χζ,P . We define an associated character sum over the Fq-points of E2:

SP :=
∑

R∈E2(Fq)
R ̸=∞

χP (R)xR.

The main result of this paper is that SP is determined by a simpler
weighted sum over the x-coordinates of points in ⟨P ⟩.

Theorem 3.1. With the above notation,

SP =
m−1∑
j=1

ζjxjP .

Thus, the task of computing the sum SP , a priori involving roughly
q ≈ #E2(Fq) terms, in fact only involves summing m − 1 terms, and
one does not even need to know E2 explicitly in order to do it!

Proof of Theorem 3.1. Let T = V (E1(Fp)), and set T ∗ = T − {∞}.
If m = 2k is even, then

SP =
∑

R∈T ∗

xR +
k−1∑
j=1

( ∑
R∈T

(ζj + ζ−j)xjQ+R

)
+

∑
R∈T

ζkxkQ+R.

The kernel of V ′ is T . So, from Vélu’s formula (5) (and noting
ζk = −1), we have

SP = −xkQ +
∑

R∈T ∗

(xR − xkQ+R) +
k−1∑
j=1

( ∑
R∈T

(ζj + ζ−j)xjQ+R

)
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= −xkV ′(Q) +
k−1∑
j=1

( ∑
R∈T

(ζj + ζ−j)xjQ+R

)

= −xkP +
k−1∑
j=1

(ζj + ζ−j)
∑
R∈T

xjQ+R

= −xkP +

k−1∑
j=1

(ζj + ζ−j)

( ∑
R∈T

xjQ+R −
∑

R∈T ∗

xR +
∑

R∈T ∗

xR

)

= −xkP +
k−1∑
j=1

(ζj + ζ−j)

(
xV ′(jQ) +

∑
R∈T ∗

xR

)

= −xkP +

k−1∑
j=1

(ζj + ζ−j)xjP +

k−1∑
j=1

(ζj + ζ−j)
∑

R∈T ∗

xR

= −xkP +
k−1∑
j=1

(ζj + ζ−j)xjP − (ζk + 1)
∑

R∈T ∗

xR

= −xkP +

k−1∑
j=1

(ζj + ζ−j)xjP =

m−1∑
j=1

ζjxjP .

If m = 2k + 1 is odd, the argument is similar. We have

SP =
∑

R∈T ∗

xR +
k∑

j=1

( ∑
R∈T

(ζj + ζ−j)xjQ+R

)

=
∑

R∈T ∗

xR +

k∑
j=1

(ζj + ζ−j)

( ∑
R∈T

xjQ+R −
∑

R∈T ∗

xR +
∑

R∈T ∗

xR

)

=
∑

R∈T ∗

xR +
k∑

j=1

(ζj + ζ−j)

(
xV ′(jQ) +

∑
R∈T ∗

xR

)

=

(
1 +

k∑
j=1

(ζj + ζ−j)

) ∑
R∈T ∗

xR +

k∑
j=1

(ζj + ζ−j)xjP

=
k∑

j=1

(ζj + ζ−j)xjP =
m−1∑
j=1

ζjxjP ,

as claimed. �
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Table 1. SP for various m

ϕ(m) m SP

1 2 −xP

2 3 −xP

4 −x2P

6 −x3P

4 5 λ1xP + λ2x2P

8 λ1(xP − x3P )− x4P

10 λ1(xP − x4P ) + λ2(x2P − x3P )− x5P

12 λ1(xP − x5P ) + x2P − x4P − x6P

6 7 λ1xP + λ2x2P + λ3x3P

9 λ1xP + λ2x2P − x3P + λ4x4P

4. Applications.

4.1. General formulas for small m. As discussed in the previous
section, the value of SP is dependent on the choice of generator ζ for
µm. Hence, there may be up to ϕ(m) possible values for the sum. In
fact, as x−P = xP for every point P on a Weierstrass elliptic curve,
there are only ϕ(m)/2 distinct values for SP for m > 2.

Let λi = ζi + ζ−i; then we may rewrite Theorem 3.1 as

SP =

{ ∑k
j=1 λjxjP m = 2k + 1

−xkP +
∑k−1

j=1 λjxjP m = 2k.

For any particular value of m, the expression may simplify further due
to the symmetries of µm. For example, when m = 8, λ2 = 0 and
λ3 = −λ1. In Table 1, we catalog these expressions for SP for various
small m.

4.2. Parametrized families of isogenies. For the values of m given
in Table 1, there are explicit parametrizations of Weierstrass elliptic
curves with a rational point of order m; thus, each such curve is the
domain of a Vélu isogeny of degree m which satisfies the hypotheses
of Proposition 2.1. Consequently, we may compute P , and hence SP ,
directly from the coefficients of the Weierstrass equation.
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Table 2. SP for parametrized families.

m = 2 E : y2 = x(x2 + αx+ β); P = (0, 0)
SP = 0

m = 3 E : y2 + αxy + βy = x3; P = (0, 0)
SP = 0

m = 4 E : y2 + xy − αy = x3 − αx2; P = (0, 0)
SP = −α

m = 4 E : y2 = x3 + (1− 2α)x2 + α2x; P = (α, α)
[4, Lemma 3.1] SP = 0

m = 6 E = E(α+ α2, α); P = (0, 0)
SP = −α(α+ 2)

m = 5 E = E(α, α); P = (0, 0)
SP = λ2α

m = 8 E = E(β, γ); P = (0, 0)
β = (2α− 1)(α− 1), γ = β/α

SP = −α−1(α− 1)(α2 + 2λ1α− λ1)

As a final application, we find these values of SP for parametrized
families for m ∈ {2, 3, 4, 5, 6, 8}. The results are given in Table 2. This
corresponds to the computation of Sτ,p in [3] for families of degree 2
isogenies, although our sums here are only valid in positive character-
istic. Even in the case m = 2, however, the present result generalizes
[3], where the characteristic p formulas were only established over the
prime field Fp.

Most parametrizations are given in [1, Table 3]; in one other case,
a reference is listed in the table. As in [1], we let E(β, γ) denote the
Weierstrass elliptic curve

E(β, γ) : y2 + (1− γ)xy − βy = x3 − βx2.

The parameters β and γ are constrained only by the condition that the
resulting equation must be nonsingular. For each family, we identify a
point P of order m and the value(s) of SP for the Vélu isogeny of kernel
⟨P ⟩. Of course, this computation can be done for any parametrized
family, although the corresponding formulas are no longer particularly
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informative as m gets large. For example, when m = 10, Kubert
provides the parametrization ([1, Table 3]):

E = E(β, γ), δ = α(α− 1)− 1, γ = α(δ − 1), β = γδ,

which possesses P = (0, 0) as a point of order 10. For this curve, we
find

SP = λ2α
5 − (3λ2 + 2)α4 − (λ2 − 4)α3

+ (6λ2 + 2)α2 + (λ2 − 4)α− (2λ2 + 2).

5. Future work. As previously noted, when ϕ(m) = 2, the value of
SP is well-defined and we have explicit expressions for it. These cases
(m = 3, 4, 6) are naturally the easiest to research if relations can be
found between the quotient Sp/p and the class number hp. The authors
are currently investigating the cases m = 4 and m = 6. In another
direction, we ask whether any of the results generalize to character
sums attached to isogenies of higher dimensional abelian varieties.
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