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NONTRIVIAL PERIODIC SOLUTIONS OF SECOND
ORDER SINGULAR DAMPED DYNAMICAL SYSTEMS

JIFENG CHU, SHENGJUN LI AND HAILONG ZHU

ABSTRACT. Assuming that the linear equation x′′ +
h(t)x′ + a(t)x = 0 has a positive Green’s function, we study
the existence of nontrivial periodic solutions of second order
damped dynamical systems

x′′ + h(t)x′ + a(t)x = f(t, x) + e(t),

where h, a ∈ C((R/TZ),R), e=(e1, . . . , eN)
T∈ C((R/TZ),RN),

N ≥ 1, and the nonlinearity f = (f1, . . . , fN )T ∈ C((R =
TZ)× RN \ {0},RN ) has a repulsive singularity at the origin.
We consider a very general singularity and do not need
any kind of strong force condition. The proof is based on
a nonlinear alternative principle of Leray-Schauder. Recent
results in the literature are generalized and improved.

1. Introduction. The purpose of this work is to study the existence
of nontrivial T -periodic solutions for the following second order damped
dynamical system

(1.1) x′′ + h(t)x′ + a(t)x = f(t, x) + e(t),

where h, a ∈ C((R/TZ),R), e = (e1, . . . , eN )T ∈ C((R/TZ,RN ), N ≥
1, and the nonlinearity f = (f1, . . . , fN )T ∈ C((R/TZ)×RN \{0},RN )
has a repulsive singularity at the origin. By a nontrivial periodic
solution, we mean a function x = (x1, . . . , xN )T ∈ C2(R/TZ,RN )
solving (1.1) and such that x(t) ̸= 0 for all t. Such a solution is also
called collisionless orbit in the literature.
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We are mainly motivated by the recent nice works [10, 18, 35] and
focus on the case where (1.1) presents a repulsive singularity at x = 0.
We say that (1.1) has a repulsive singularity at x = 0 if there exists a
fixed vector v ∈ RN

+ such that

(1.2) lim
x→0
x∈RN

+

(v, f(t, x)) = +∞, uniformly in t,

whereas (1.1) has an attractive singularity at x = 0 if

lim
x→0
x∈RN

+

(v, f(t, x)) = −∞; uniformly in t;

here, Rn
+ denotes the set of vectors of RN with positive components.

Note that in our case the word “singularity” is understood in a more
general way than those in [10, 17, 38] because we do not require that
each component of the nonlinearity f(t, x) have a singularity at x = 0,
which is necessary in the above-mentioned works.

During the last few decades, singular differential equations or singu-
lar dynamical systems have been studied by many researchers. Singular
equations appear in many problems of applications such as the Brillouin
focusing system [5] and nonlinear elasticity [14]. It was also found re-
cently that one special singular differential equation which is called
“Ermakov-Pinney equation” plays an important role in the study of
the stability of periodic solutions of conservative systems with degree
of lower freedom (see [11] and the references therein). Concerned with
singular equations, the question of the existence of periodic solutions
is one of the central topics, and therefore has attracted much attention
[2, 3, 4, 7, 12, 15, 16, 21, 22, 23, 26, 27, 31, 32, 33]. Usually,
the proof is based on either the variational approach [1, 2, 4, 30, 33]
or topological methods. The proof of the main results in this paper
is based on topological methods, which started with the pioneering
paper of Lazer and Solimini [26]. From then on, the method of up-
per and lower solutions [6, 24, 29], degree theory [15, 37, 38, 39],
some fixed point theorems in cones for completely continuous operators
[18, 34, 35], Schauder’s fixed point theorem [9, 17, 36] and a nonlin-
ear alternative principle of Leray-Schauder type [10, 13, 25] have been
widely applied. In this line of research, a common device is to assume
some strong force condition, which was first introduced by Gordon in
[19]. This condition has been widely used for avoiding collisions. For
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example, if we consider the system

(1.3) x′′ +∇
(

1

|x|α

)
= e(t),

the strong force condition corresponds to the case α ≥ 2. Compared
with the case of strong singularity, the case of weak singularity was less
studied, but there are also rich results [9, 10, 14, 21, 25, 29, 34, 35]
in the literature during the last few years.

In this paper, we will generalize and improve those results contained
in [10, 18, 35] in the following three directions. Firstly, we do
not require that all components of the nonlinearity f(t, x) have a
singularity, and therefore we can deal with some systems which were
not covered in the literature. Secondly, we improve those results
in [10, 17, 18] because we do not require that the mean of each
component of γ (see Section 3 for such a notion) is non-negative.
Finally, there is the damping term in our case, which was not covered
in the above mentioned works and will imply some new technical
difficulties in the proof. We remark that the approach used in this
paper is similar to those in [10, 13]. The remaining part of this paper
is organized as follows. In Section 2, some preliminary results are given.
In Section 3, by employing a nonlinear alternative principle of Leray-
Schauder, we establish the main result. To illustrate the new results,
some applications are also given.

2. Preliminaries.

2.1. Green’s function of the linear system. We say that the linear
equation

(2.1) x′′ + h(t)x′ + a(t)x = 0

is nonresonant if its unique T -periodic solution is the trivial one. When
(2.1) is nonresonant, as a consequence of Fredholm’s alternative, the
nonhomogeneous system

x′′ + h(t)x′ + a(t)x = l(t)

admits a unique T -periodic solution which can be written as

x(t) =

∫ T

0

G(t, s)l(s) ds,
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where G(t, s) is the Green’s function of (2.1). Throughout this paper,
we always assume that

(A) The Green’s function G(t, s) of (2.1) is positive for all (t, s) ∈
[0, T ]× [0, T ].

For the general case, it is difficult to verify that condition (A)
holds. However, two classes of the functions h, a for (A) to hold
have been found recently in [8, 13] (which was proved by the anti-
maximum principle established by Hakl and Torres in [23]). To
describe these, let us define the functions

σ(h)(t) = exp

(∫ t

0

h(s) ds

)
,

and

σ1(h)(t) = σ(h)(T )

∫ t

0

(h)(s) ds+

∫ T

t

σ(h)(s) ds.

Theorem 2.1. [13, Corollary 2.6] Assume that a ̸≡ 0 and the following
two inequalities are satisfied :∫ T

0

a(s)σ(h)(s)σ1(−h)(s) ds ≥ 0,

and

sup
0≤t≤T

{∫ t+T

t

σ(−h)(s) ds

∫ t+T

t

[a(s)]+σ(h)(s) ds ≤ 4,

where [a(s)]+ = max{a(s), 0
}
.

Then (A) holds.

For the special case
∫ T

0
a(t)σ(h)(t) dt > 0 and h ∈ C̃(R/TZ) :=

{h ∈ C(R/TZ) : h = 0}, another criterion has also been established by
Cabada and Cid in [8]. To describe these, given an exponent q ∈ [1,∞],
the best constant in the Sobolev inequality

C∥u∥q,[0,1] ≤ ∥u′∥2,[0,1] for all u ∈ H1
0 (0, 1)



NONTRIVIAL PERIODIC SOLUTIONS 461

is denoted by M(q). The explicit formula for M(q) is known, that is,

M(q) =

{ (
2π
q

)1/2 (
2

q+2

)1/2−1/q
Γ(1/q)

Γ(1/2+1/q) for 1 ≤ q < ∞,

2 for q = ∞,

where Γ(·) is the Gamma function of Euler. The usual Lp-norm
is denoted by ∥ · ∥p. The conjugate exponent of p is denoted by
q : 1/p+ 1/q = 1.

Theorem 2.2. [8, Theorem 5.1] Assume that h ∈ C̃(R/TZ) and∫ T

0
a(t)σ(h)(t) dt > 0. Suppose further that there exists 1 ≤ p ≤ ∞

such that
(B(T ))1+1/q∥[A]+∥p,T < M2(2q),

where

B(T ) =

∫ T

0

σ(−h)(t) dt, [A(t)]+ = [a(t)]+(σ(h)(t))
2−1/p.

Then (A) holds.

As a special case of Theorem 2.2, we can recover the following
Lp-criterion proved by Torres in [34] (see also [40] for a complete
discussion).

Corollary 2.3. Assume that h ≡ 0,
∫ T

0
a(t) dt > 0 and a ∈ Lp[0, T ]

for some 1 ≤ p ≤ ∞. If

T 1+1/q∥[a]+∥p,T < M2(2q),

then (A) holds.

Remark 2.4. For a given function h, from Theorem 2.1 and Theo-
rem 2.2, we can easily obtain that condition (A) holds for the following
linear equation:

x′′ + h(t)x′ + k2x = 0,

if the constant k > 0 is small enough. In fact, for the general case, we
can take k such that:

(2.2) k2 ≤ 4

sup0≤t≤T {
∫ t+T

t
σ(−h)(s) ds

∫ t+T

t
σ(h)(s) ds}

.
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For h ∈ C̃(R/TZ), we can take k such that

k2 <
M2(2q)

(B(T )1+1/q∥(σ(h)))2−1/p∥p,T
.

In particular, when h ≡ 0 and a(t) = k2, condition (A) is equivalent to
0 < k2 < (π/T )2.

2.2. Basic tool. The proof of the main result is based on the following
nonlinear alternative of Leray-Schauder, which can be found in [20,
pages 120–130] and has been used in [13, 28].

Lemma 2.5. Assume that Ω is an open subset of a convex set K in a
normed linear space X and p ∈ Ω. Let A : Ω → K be a compact and
continuous map. Then one of the following two conclusions holds:

(I) A has at least one fixed point in Ω.
(II) There exists x ∈ ∂Ω and 0 < λ < 1 such that x = λAx+(1−λ)p.

2.3. Notation. For a given function p ∈ L1[0, T ] essentially bounded,
we denote the essential supremum and infimum of p by p∗ and p∗,
respectively. Given x, y ∈ RN , the usual scalar product is denoted by
(x, y). The usual Euclidean norm is denoted by |x|. For a fixed vector
v ∈ RN

+ , we have a well-defined norm

|x|v =
N∑
i=1

vi|xi|.

Let ∥ · ∥ denote the supremum norm of CT = {x : x ∈ C(R/TZ,R)}
and take X = CT × · · · × CT (N copies). For x = (x1, . . . , xN ) ∈ X,
the natural norm becomes

|x|v =
N∑
i=1

vi∥xi∥ =
N∑
i=1

vi ·max
t

|xi(t)|.

Obviously, X is a Banach space.

Under hypothesis (A), we always denote

m = min
0≤s
t≤T

G(t, s), M = max
0≤s
t≤T

G(t, s), σ = m/M.
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Obviously, 0 < σ < 1.

3. Main results. Let us denote γ(t) by

γ(t) =

∫ T

0

G(t, s)e(s) ds,

which is the unique T -periodic solution of the linear system

x′′ + h(t)x′ + a(t)x = e(t).

One important observation is that y(t) = x(t) + γ(t) is a T -periodic
solution of (1.1) if the system

(3.1) x′′ + h(t)x′ + a(t)x = f(t, x(t) + γ(t))

has a T -periodic solution x(t). For a given vector v ∈ RN
+ , we always

denote

Γ(t) = (v, γ(t)), Λ(t) = |γ(t)|v =
N∑
i=1

vi|γ(t)|.

Using the notation given in Section 2, we denote

Γ∗ = min
t

Γ(t), Λ∗ = max
t

Λ(t).

Theorem 3.1. Suppose that the linear system (2.1) satisfies (A) and

(3.2)

∫ T

0

a(t)σ(h)(t) dt > 0.

Assume further that there exists a constant r > 0 such that :

(H1) There exists a continuous function ϕr+Λ∗ ≽ 0 (which means
ϕr+Λ∗(t) ≥ 0 for almost every t ∈ [0, T ] and it is positive in
a set of positive measure) such that

(v, f(t, x)) ≥ ϕr+Λ∗(t), for all t and x ∈ RN
+

with 0 < |x|v ≤ r + Λ∗;

(H2) there exist continuous non-negative functions g(·), h(·) on (0,∞)
such that

0 ≤ (v, f(t, x)) ≤ g(|x|v) + h(|x|v),
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for all t and x ∈ RN
+ with 0 < |x|v ≤ r + Λ∗, here g(·) > 0 is

non-increasing and h(·)/g(·) is non-decreasing ;
(H3) the following inequality holds:

g(σr + Γ∗)

{
1 +

h(r + Λ∗)

g(r + Λ∗)

}
<

r

MT
.

If Γ∗ ≥ 0, then (1.1) has at least one nontrivial T -periodic
solution.

Proof. Since (H3) holds, we can choose n0 ∈ {1, 2, . . .} such that

1

n0
< min{r, σr + Γ∗}

and

g(σr + Γ∗)

{
1 +

h(r + Λ∗)

g(r + Λ∗)

}
+

1

n0
<

r

MT
.

Let N0 = {n0, n0 +1, . . .}. Fix n ∈ N0. Consider the family of systems

(3.3) x′′ + h(t)x′ + a(t)x = λfn(t, x(t) + γ(t)) +
a(t)~
n

,

where λ ∈ [0, 1], ~ ∈ RN
+ is chosen such that

(v, ~) = 1

and

fn(t, x) =

{
f(t, x), if |x|v ≥ 1

n ,

f̃(t, x), if |x|v < 1
n ,

where f̃ is chosen such that fn(t, x) is nonnegative and continuous for
all (t, x) ∈ [0, T ]×RN . Solving (3.3) is equivalent to the following fixed
point problem

(3.4) x(t) = λ(Anx)(t) + (1− λ)p,

where p = ~/n and An is defined by

(Anx)(t) =

∫ T

0

G(t, s)fn(s, x(s) + γ(s)) ds+ p,

where we have used the fact that∫ T

0

G(t, s)a(s) ds = 1.
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First we claim that any fixed point x of (3.4) for any λ ∈ [0, 1] must
satisfy |x|v ̸= r. Otherwise, assume that x is a fixed point of (3.4) for
some λ ∈ [0, 1] such that |x|v = r. By using (H1) together with the
non-negativeness of G(t, s), we have (v, x(t)) ≥ 0 for all t. Moreover,
we have

(v, x(t))− (v, p) = λ

∫ T

0

G(t, s)(v, fn(s, x(s) + γ(s))) ds

≥ λm

∫ T

0

(v, fn(s, x(s) + γ(s))) ds

= σMλ

∫ T

0

(v, fn(s, x(s) + γ(s))) ds

≥ σ

(
v,max

t

{
λ

∫ T

0

G(t, s)fn(s, x(s) + γ(s)) ds

})
= σ|x− p|v.

Hence, for all t, we have

(v, x(t)) ≥ σ|x− p|v + (v, p)

≥ σ(|x|v − (v, p)) + (v, p)

≥ σr.

Since 1/n ≤ 1/n0 < σr + Γ∗, we have

|x(t) + γ(t)|v ≥ (v, x(t) + γ(t)) ≥ σr + (v, γ(t))

≥ σr + Γ∗ >
1

n
,

which implies that

fn(t, x(t) + γ(t)) = f(t, x(t) + γ(t)).

Thus, we have from condition (H2), for all t ∈ [0, T ],

(v, x(t)) = λ

∫ T

0

G(t, s)(v, f(s, x(s) + γ(s))) ds+ (v, p)

≤
∫ T

0

G(t, s)(v, f(s, x(s) + γ(s))) ds+ (v, p)

≤ M

∫ T

0

(v, f(s, x(s) + γ(s))) ds+ (v, p)
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≤ M

∫ T

0

g(|x(s) + γ(s)|v)
{
1 +

h(|x(s) + γ(s)|v)
g(|x(s) + γ(s)|v)

}
ds

+ (v, p)

≤ MTg(σr + Γ∗)

{
1 +

h(r + Λ∗)

g(r + Λ∗)

}
+

1

n0
.

Therefore,

r = |x|v ≤ MTg(σr + Γ∗)

{
1 +

h(r + Λ∗)

g(r + Λ∗)

}
+

1

n0
,

which is a contradiction to the choice of n0, and the claim is proved.

Let X be given as in Section 2. Define

K = {x ∈ X : (v, x(t)) > 0 for each t}

and
Ω = {x ∈ K : |x|v < r}.

Then K is a convex set in X and Ω is an open subset of K with
p = ~/n ∈ Ω. For each x ∈ Ω, using condition (H1), we see that
(v,Anx(t)) > 0 for each t, and thus An(Ω) ⊂ K. Moreover, one may
easily verify that An : Ω → K are compact and continuous maps.

Now, using Lemma 2.5, we know that

x = Anx

has a fixed point, denoted by xn, i.e., the system

(3.5) x′′ + h(t)x′ + a(t)x = fn(t, x(t) + γ(t)) +
a(t)~
n

has a periodic solution xn with |xn|v < r. Since (v, xn(t)) ≥ (v, p) > 0
for all t, and xn is actually a nontrivial periodic solution of (3.5).

In order to pass the solutions xn of the truncation systems (3.5) to
that of the original system (3.1), we need the following fact

(3.6) |x′
n|v ≤ H

for some constant H > 0 and for all n ≥ n0. To this end, for each
i = 1, . . . , N , by the periodic boundary conditions, x′

ni(ti) = 0 for some
ti ∈ [0, T ], here we use the notation xni to denote the ith component
of xn. Note that (3.5) is equivalent to
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(3.7) (σ(h)(t)x′
ni)

′ + a(t)σ(h)(t)xni

= σ(h)(t)

(
fn
i (t, xn(t) + γ(t)) +

a(t)~i
n

)
,

for each i = 1, . . . , N . Integrating (3.7) from 0 to T , we obtain∫ T

0

a(t)σ(h)(t)xni(t) dt =

∫ T

0

σ(h)(t)

[
fn
i (t, xn(t) + γ(t)) +

a(t)~i
n

]
dt.

Therefore, for each i = 1, . . . , N ,

|σ(h)(t)x′
ni(t)| =

∣∣∣∣ ∫ t

ti

(σ(h)(s)x′
ni(s))

′ds

∣∣∣∣
=

∣∣∣∣ ∫ t

ti

σ(h)(s)
[
fn
i (s, xn(s) + γ(s))

+
a(s)~i

n
− a(s)xni(s)

]
ds

∣∣∣∣
≤

∫ T

0

σ(h)(t)
[
fn
i (t, xn(t) + γ(t)) +

a(t)~i
n

]
dt

+

∫ T

0

σ(h)(t)a(t)xni(t) dt

= 2

∫ T

0

σ(h)(t)a(t)xni(t) dt

< 2∥xni∥
∫ T

0

σ(h)(t)a(t) dt,

where we have used the assumption (3.2). Therefore,(
min

0≤t≤T
σ(h)(t)

)
|(xni)

′(t)| ≤ 2∥xni∥
∫ T

0

a(t)σ(h)(t) dt,

which is equivalent to

|(xni)
′(t)| ≤ 2L∥xni∥,

where

L =

∫ T

0
a(t)σ(h)(t) dt

min0≤t≤T σ(h)(t)
.
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Therefore,

|x′
n|v = (v, ∥x′

n∥) ≤ 2L
N∑
i=1

vi∥xni∥ = 2L|xn|v ≤ 2Lr.

Thus, (3.6) holds for H = 2Lr.

Next we claim that there exists a constant δ > 0, independent of
n ∈ N0, such that

(3.8) (v, xn(t) + γ(t)) ≥ δ,

for all t and n large enough. In fact, since (H1) holds, there exists a
continuous function ϕr+Λ∗(t) ≽ 0 such that

(v, f(t, x)) ≥ ϕr+Λ∗(t),

for all t and x with 0 < |x|v ≤ r + Λ∗. Then we have

(v, xn(t) + γ(t)) =

∫ T

0

G(t, s)(v, fn(s, xn(s) + γ(s))) ds+ (v, γ(t)) +
1

n

≥ m

∫ T

0

(v, f(s, xn(s) + γ(s))) ds+ Γ(t)

≥ m

∫ T

0

ϕr+Λ∗(s) ds+ Γ∗,

which implies that the inequality (3.8) holds if we take

(3.9) δ = m

∫ T

0

ϕr+Λ∗(s) ds+ Γ∗

Note that δ > 0 since we have assumed that Γ∗ ≥ 0.

From the above facts (3.6) and (3.8) that {xn}n∈N0 has a subse-
quence, {xnk

}k∈N, converging uniformly on [0, T ] to a function x ∈ X.
Moreover, we have

δ ≤ (v, x(t) + γ(t)) ≤ r + Λ∗, for all t.

Furthermore, xnk
satisfies the integral equation

xnk
(t) =

∫ T

0

G(t, s)f(s, xnk
(s) + γ(s)) ds+

~
nk

.
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Letting k → ∞, we arrive at

x(t) =

∫ T

0

G(t, s)f(s, x(s) + γ(s)) ds.

Therefore, x is a nontrivial T -periodic solution of (3.1). �

Remark 3.2. From (3.9) in the above proof, we can weaken the
condition Γ∗ ≥ 0 as

m

∫ T

0

ϕr+Λ∗(s) ds+ Γ∗ > 0.

Therefore, we can deal with some cases that (v, γ(t)) changes sign.

The condition Γ∗ ≥ 0 is equivalent to the condition

(3.10) (v, γ(t)) ≥ 0

for all t. Therefore, we do not require that the mean of each component
of e is non-negative. Furthermore, we have improved those results in
[35] since it required the condition

(3.11) (v, e(t)) ≥ 0.

It is easy to see that (3.10) is weaker than (3.11).

Corollary 3.3. Assume that f ∈ C((R/TZ) × RN \ {0},RN ), and
there exists a vector v ∈ RN

+ and continuous positive functions b, c, d
and α, β > 0 such that

(F)
d(t)

|x|αv
≤ (v, f(t, x)) ≤ b(t)

|x|αv
+ µc(t)|x|βv , for all t and x ∈ RN

+ .

Then, for each e ∈ C(R/TZ,RN ) with Γ∗ ≥ 0,

(i) if β < 1, then (1.1) has at least one nontrivial T -periodic solution
for each µ > 0,

(ii) if β ≥ 1, then (1.1) has at least one nontrivial T -periodic solution
for each 0 < µ < µ̃, where µ̃ is some positive constant.

Proof. We will apply Theorem 3.1. To this end, for s ∈ R, s > 0, we
take

g(s) = b∗s−α, h(s) = µc∗sβ ,
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where
b∗ = max

t
b(t), c∗ = max

t
c(t).

Then it is easy to see that (H2) is satisfied, and the existence condition
(H3) becomes

µ <
r(σr + Γ∗)

α − b∗MT

c∗MT (r + Λ∗)α+β

for some r > 0. So (H3) is satisfied if

0 < µ < µ̃ := sup
r>0

r(σr + Γ∗)
α − b∗MT

c∗MT (r + Λ∗)α+β
.

Note that µ̃ = ∞ if β < 1 and µ̃ < ∞ if β ≥ 1. Finally (H1) is satisfied
if we take

ϕr+Λ∗(t) =
d(t)

(r + Λ∗)α
.

Now we have the desired results (i) and (ii). �

Let us assume that the two-dimensional linear system{
x′′ + h(t)x′ + a(t)x = 0,
y′′ + h(t)y′ + a(t)y = 0,

satisfies condition (A). Then Corollary 3.3 can be applied to the
following two 2-dimensional nonlinear systems

(3.12)


x′′ + h(t)x′ + a(t)x =

c(t)

|x|α
+ µb(t)|x|β + e1(t),

y′′ + h(t)y′ + a(t)y =
c(t)

|x|α
+ µb(t)|x|β + e2(t),

and

(3.13)

 x′′ + h(t)x′ + a(t)x =
c(t)

|x|α
+ e1(t),

y′′ + h(t)y′ + a(t)y = µb(t)|x|β + e2(t),

with b, c, e1, e2 ∈ C[0, T ], α, β > 0 and µ ∈ R is a given parameter.
Note that system (3.13) is not covered by the results containing in the
references mentioned above. Although system (3.12) has been studied
in [10, 17], we have improved those results contained.
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Remark 3.4. In Theorem 3.1, we do not formulate the condition (1.2)
because our conditions are more general. In fact, Theorem 3.1 can
deal with the singular case as well as the non-singular case. For the
singular case, we can deal with examples like (3.12) and (3.13), in which
condition (1.2) is satisfied. For the non-singular case, we can deal with
some examples like f(t, x) = b(t)|x|β with b ≥ 0 and β > 0. Moreover,
we can deal with more general nonlinearities which do not need to have
a constant sign behavior.

Finally, in this section, we apply Theorem 3.1 to the following
damped forced systems

(3.14) x′′ + h(t)x′ +∇V (t, x) = e(t),

where h ∈ C(R\TZ, R), e ∈ C(R\TZ,RN ) and V ∈ C1(R×RN \{0},R)
has a singularity of repulsive type at the origin, that is, there exists a
fixed v ∈ RN

+ such that

lim
x→0
x∈RN

+

(v,∇V (t, x)) = −∞, uniformly in t.

The following result is direct from Theorem 3.1.

Corollary 3.5. Assume that there exists positive constant k satisfying
(2.2) and r such that (H1)–(H3) are satisfied with f(t, x) replaced by
k2x − ∇V (t, x). Then (3.14) has at least one nontrivial T -periodic
solution if (v, γ(t)) ≥ 0.

Proof. Writing (3.14) as the equivalent system

x′′ + h(t)x′ + k2x = e(t) + k2x−∇V (t, x).

Now the proof is finished by a direct application of Theorem 3.1. �

An important application of Corollary 3.5 is the system (3.14) with
the potential

(3.15) V (x) =
1

|x|α
+ k2

|x|2

2
.
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Corollary 3.6. Assume that there exists v ∈ RN
+ such that (v, γ(t)) ≥ 0

for all t and α > 0. Then (3.14) with V given as (3.15) has at least a
nontrivial T -periodic solution for all k > 0 satisfying (2.2).

Remark 3.7. In [35], Torres studied the system (1.3) and obtained
existence results in the case α > 0 and (v, e(t)) ≥ 0 for some v ∈ RN

+ .
We have improved those results since we have the damping term, and
we only require that (v, γ(t)) ≥ 0 in Corollary 3.6.

Remark 3.8. In [18, 35], two existence results for the system (1.3)
were established by Franco, Webb and Torres, respectively. Their
proofs are based on fixed point theorems in cones for completely
continuous operators, and the proofs are simpler and more clear than
the proof presented in our paper. However, for us it seems difficult to
obtain the same results in our paper using the fixed point theorems in
cones. The main reason is that we have the term involved in (3.1). On
the other hand, if we do not transform (1.1) into (3.1), we cannot get
Theorem 3.1 under the condition Γ∗ ≥ 0.
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