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NEW QUALITATIVE PROPERTIES OF SOLUTIONS
TO NONLINEAR NONLOCAL CAUCHY PROBLEMS

DE-HAN CHEN AND RONG-NIAN WANG

ABSTRACT. We introduce new concepts of asymptoti-
cally anti-periodic function and semi-Lipschitz continuity.
The former is a natural generalization of the well-known
anti-periodic function. Then, sufficient conditions, ensuring
the existence of asymptotically anti-periodic mild solutions
to a Cauchy problem of nonlinear evolution equation with
nonlocal initial condition, are established. It is mentioned
that one of our main results is proved in the absence of the
compactness and Lipschitz continuity of nonlocal item and of
the Lipschitz continuity of nonlinearity. Finally, an example
is presented as an application.

1. Introduction. As is known, in some cases, the anti-periodic
problems, compared with the periodic problems, are more realistic to
reflect many physical phenomena in nature, and they have a very strong
application background. Please see [4, 5, 16] and the references therein
for more comments. For this reason, this class of problems has been
investigated to a large extent during recent years. In particular, since
the work of Okochi [23] in 1988 (see also [24, 25]), much attention
has been attracted by questions of existence of anti-periodic solutions
to various anti-periodic problems represented by linear and nonlinear
abstract evolution equations. For significant work along this line, we
refer to, e.g., [1, 2, 8, 9, 15, 21, 22, 28].

To explain the results better we need to introduce some notation
and concepts. Let X be a Banach space with norm ∥ · ∥. For any
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a ∈ R, by C0([a,+∞);X), we denote the set of continuous functions
from [a,+∞) to X vanishing at infinity. We abbreviate this notation
to C0(R+) when a = 0 and X = R+. Recall that a continuous function
u from R to X is said to be T -anti-periodic if u(t+ T ) = −u(t) for all
t ∈ R. By PTA(R;X), denote the set of such functions. It is easy to
verify that C0([a,+∞);X) and PTA(R;X), endowed with the norms
∥ · ∥a = supt≥a ∥ · (t)∥ and ∥ · ∥′∞ = supt∈R ∥ · (t)∥, respectively, are
Banach spaces. Let us introduce the following new concept.

Definition 1.1. A function u : R+ → X is said to be asymptotically
T -anti-periodic if it can be decomposed as

u(t) = u1(t) + u2(t), t ∈ R+,

where u1 ∈ PTA(R;X) and u2 ∈ C0(R+;X). The set of such functions
is denoted by AAT (R+;X).

Remark 1.2. It is noted that the concept of an asymptotically anti-
periodic function is a natural generalization of the well-known anti-
periodic function and is more complicated than an anti-periodic func-
tion. Moreover, little is known about it.

In this work, we are interested in studying the asymptotically T -anti-
periodic mild solutions to the Cauchy problem of nonlinear evolution
equations with nonlocal initial conditions of form

(1.1)

{
u′(t) = Au(t) + f(t, u(t)), t > 0,
u(0) = H(u),

where A with the domain D(A) (possibly unbounded) is a closed
and densely defined linear operator on X, and f : R+ × X → X,
H : AAT (R+;X) → X are given functions to be specified later. As can
be seen, H constitutes a nonlocal condition.

Let us point out that a strong motivation for investigating the
Cauchy problems of evolution equations with nonlocal initial conditions
comes from physics. For example, as presented by Deng [11], H(u) :=∑p

i=1 Ciu(si), where Ci (i = 1, . . . , p) are given constants and 0 <
s1 < · · · < sp−1 < sp < +∞ (p ∈ N), is used to describe the diffusion
phenomenon of a small amount of gas in a transparent tube. For more
information concerning the motivations, relevant developments and the
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current status of the theory, we refer readers to, e.g., [6, 7, 18, 19, 27]
and the references therein.

In this work, we shall give a systematic theory for the Cauchy
problem (1.1). More precisely, we shall first study the completeness
of AAT (R+;X) and the composition of anti-periodic functions as well
as asymptotically anti-periodic functions. It is well known that the
study of the composition of two functions with special properties
is important and basic for deep investigations. Then, an entirely
different strategy which relies on both the approximating technique
in terms of the compact semigroup of strongly continuous operators
and the theory of the measure of non-compactness, as well as the
fixed point theorem due to Darbo-Sadovskii, is used to obtain the
existence of asymptotically anti-periodic mild solutions to the Cauchy
problem (1.1) under the hypotheses in which the nonlocal item does
not have Lipschitz continuity or the compactness and the nonlinearity
do not have Lipschitz continuity. The asymptotically anti-periodic
mild solutions to the Cauchy problem (1.1) is also treated under
the hypothesis of the nonlocal item and nonlinearity being Lipschitz
continuous. As samples of applications, these results will be applied
to a partial differential equation with homogeneous Dirichlet boundary
condition and nonlocal initial condition.

Hopefully, our results will be helpful in making the up-to-date
material in this field accessible and, meanwhile, lay the foundation
for future research.

We would like to mention that, in recent papers such as de Andrade,
et al., [10], Diagana [12, 13], Fan et al. [14], Liang et al. [17, 20] and
Xiao et al. [29], the problem of the existence of asymptotically almost
periodic, weighted pseudo almost periodic, Stepanov-like pseudo almost
automorphic, pseudo almost automorphic, and asymptotically almost
automorphic solutions for the Cauchy problems of abstract evolution
equations has been investigated to a large extent. However, much of the
previous research was done under the restriction that the nonlinearity
as a whole is Lipschitz continuous or locally Lipschitz continuous, so
that the Banach contraction principle becomes one of the key tools in
the study of the corresponding problems.

Remark 1.3. (i) As the reader will see, the hypotheses on the non-
local item and nonlinearity in our results are reasonably weak (see
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Theorem 3.9 below). In particular, it is worth mentioning that the
nonlinearity does not satisfy Lipschitz continuity or locally Lipschitz
continuity with respect to the second variable.

(ii) Let us note that the new strategy as mentioned above plays a
key role in the proof of our main results, which enables us to get rid of
the compactness and Lipschitz continuity of nonlocal item.

Remark 1.4. It can be easily proved that, if u is anti-periodic with
period T , then it is periodic with period 2T . Hence, from the arguments
of our paper, we can also obtain the existence results of asymptotically
2T -periodic solutions of the Cauchy problem (1.1).

Let us give a short summary of the contents of this paper. In
Section 2, some required notation, definitions and lemmas are given.
In Section 3, we study the completeness of AAT (R+;X) with the
supremum norm and the composition of anti-periodic functions as well
as asymptotically anti-periodic functions, which in turn is used to
analyze the existence of asymptotically anti-periodic mild solutions to
the Cauchy problem (1.1). Finally, we present an example in Section 4
to illustrate our abstract results.

2. Preliminaries. This section is devoted to some preliminaries
which are essential tools in the later sections.

Throughout this paper, C([a, b];X) for −∞ < a < b < +∞ is
the Banach space of all continuous functions from [a, b] into X with
the uniform norm topology, L(X) stands for the Banach space of all
bounded linear operators from X to X endowed with the uniform
operator topology denoted by ∥ · ∥L(X)

, A : D(A) ⊂ X → X is the
infinitesimal generator of a compact semigroup of strongly continuous
operators {T (t)}t≥0 on X, and {T (t)}t≥0 is uniformly exponentially
stable, i.e., there exist constants δ > 0 and M ≥ 1 such that

∥T (t)∥L(X) ≤ Me−δt for all t ≥ 0.(2.1)

We recall here the following compact criterions in Banach space
C0([a,+∞);X). We omit the proof.

Lemma 2.1. A set D ⊂ C0([a,+∞);X) is relatively compact if
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(1) D is equicontinuous.
(2) limt→+∞ u(t) = 0 uniformly for u ∈ D.
(3) The set D(t) := {u(t);u ∈ D} is relatively compact in X for every

t ≥ a.

Lemma 2.2. A set B ⊂ C0([a,+∞);X) is relatively compact in
C0([a,+∞);X) if the set B|[a,b] with a < b is relatively compact in
C([a, b];X) and B|[b,+∞) ⊂ C0([b,+∞);X) is relatively compact.

A continuous function f from R × X to X is said to be T -anti-
periodic if f(t+ T,−x) = −f(t, x) for all t ∈ R and x ∈ X. Denote by
PTA(R × X;X) the set of such functions. Let the notation C0(R+ ×
X;X) be the space of functions

C0(R×X;X) =
{
f ∈ C(R×X;X); lim

t→+∞
∥f(t, x)∥ = 0

uniformly for x in any bounded subset of X
}
.

Definition 2.3. A function f : R+ ×X → X is said to be asymptoti-
cally T -anti-periodic if it can be decomposed as

f(t, x) = f1(t, x) + f2(t, x), t ∈ R+, x ∈ X,

where f1 ∈ PTA(R×X;X) and f2 ∈ C0(R+ ×X;X). In this case, we
write f v (f1, f2).

Definition 2.4. An asymptotically T -anti-periodic function f : R+ ×
X → X is said to be semi-Lipschitz continuous with the Lipschitz
constant L if writing f v (f1, f2), there exists a constant L > 0 such
that

∥f1(t, x)− f1(t, y)∥ ≤ L∥x− y∥

for all t ∈ R and x, y ∈ X. The set of such functions is denoted by
AALT (R+ ×X;X).

Definition 2.5. An asymptotically T -anti-periodic function f : R+ ×
X → X is said to be locally semi-Lipschitz continuous if, writing
f v (f1, f2), there exists a nondecreasing function L : R+ → R+ such
that

∥f1(t, x)− f1(t, y)∥ ≤ L(r)∥x− y∥.
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for all t ∈ R and x, y ∈ X satisfying ∥x∥, ∥y∥ ≤ r.

In the sequel, we briefly state some facts on the Kuratowski measure
of non-compactness. Let Θ be the family of bounded sets in the Banach
space Y . The Kuratowski measure of non-compactness µ : Θ → R+ is
defined by

µ(B) = inf{d > 0;B admits a finite conver by set of diameter ≤ d},
B ∈ Θ.

The following are some basic properties of µ(·).

(a) µ(B) = 0 if and only if B is relatively compact in Y .
(b) µ is a seminorm, i.e., µ(λB) = |λ|µ(B) for constant λ ∈ R and

µ(B1 +B2) ≤ µ(B1) + µ(B2).
(c) B1 ⊂ B2 implies µ(B1) ⊂ µ(B2).
(d) Let F : D(F ) ⊂ Y → Y be Lipschitz continuous with Lipschitz

constant LF . Then µ(F (B)) ≤ LFµ(B) for any bounded set
B ⊂ D(F ).

For a detailed survey on Kuratowski measure of non-compactness,
we refer readers to [3].

Let Ω ⊂ Y and F : Ω → X be continuous. Recall that F is called
a µ-contraction on Ω if µ(F (B)) ≤ kµ(B) for some 0 ≤ k < 1 and any
bounded subset B ⊂ Ω.

This time we present a fixed point theorem concerning µ-contraction
mapping.

Lemma 2.6. [3]. Let Ω ⊂ Y be a nonempty closed convex set and
F : Ω → Ω a µ-contraction. Then F has at least one fixed point in Ω.

Below, for simplicity, we frequently omit explicit reference to the
Banach space Y , on which µ is defined, and simply write “µ” instead
of “µY ,” provided that no ambiguities occur.

Definition 2.7. By a mild solution of the Cauchy problem (1.1), we
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mean a function u ∈ C(R+;X) satisfying the integral equation

u(t) = T (t)H(u) +

∫ t

0

T (t− s)f(s, u(s)) ds, t ≥ 0.

3. Main results. We begin in this section by deriving some prop-
erties of asymptotically anti-periodic functions.

Lemma 3.1. AAT (R+;X), endowed with the supremum norm ∥·∥∞ =
supt∈R+ ∥ · (t)∥, is a Banach space.

Proof. Note that AAT (R+;X), endowed with the norm ∥ · ∥∞, is a
normed linear space.

Given u ∈ AAT (R+;X), there exist u1 ∈ PTA(R;X) and u2 ∈
C

0
(R+;X) such that

u(t) = u1(t) + u2(t), t ∈ R+.

We claim that

(3.1) {u1; t ∈ R} ⊂ {u(t); t ∈ R+}.

In fact, if this is not the case, then there exist some t0 ∈ R and ϵ > 0
such that

∥u1(t0)− u(t)∥ ≥ ϵ for all t ∈ R+.

Since u1 ∈ PTA(R;X) implies that u1(t0+2nT ) = u1(t0) for all n ∈ N,
one has

∥u2(t0 + 2nT )∥ = ∥u1(t0)− u(t0 + 2nT )∥ ≥ ϵ

for all n ≥ −t0/2T . This contradicts the fact that u2 vanishes at
infinity.

Now, letting {un}+∞
n=1 be a Cauchy sequence in AAT (R+;X), it

follows that

(3.2) un(t) = un1(t) + un2(t), t ∈ R+, n = 1, 2, . . . ,

where un1 ∈ PTA(R;X) and un2 ∈ C0(R+;X). From (3.1), it
follows readily that {un1}+∞

n=1 is a Cauchy sequence in PTA(R;X)
which, together with (3.2), implies that {un2}+∞

n=1 is also a Cauchy
sequence in C0(R+;X). Hence, from the completeness of PTA(R;X)
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and C0(R+;X), it follows that there exist u01 ∈ PTA(R;X) and
u02 ∈ C0(R+;X) such that

un1 −→ u01 in PTA(R;X),
un2 −→ u02 in C0(R+;X)

as n −→ ∞. Consequently,

un −→ u01 + u02, as n → ∞

in the norm ∥ · ∥∞ and u01 + u02 ∈ AAT (R+;X). Thus, AAT (R+;X)
is complete. The conclusion follows. �

Remark 3.2. Let u ∈ AAT (R+;X). Notice, in particular, that the
decomposition of u is unique. Indeed, if there exist u1, u1

′ ∈ PTA(R;X)
and u2, u2

′ ∈ C0(R+;X) such that

u(t) = u1(t) + u2(t) = u1
′(t) + u2

′(t), t ∈ R+,

then we have that, for fixed t ∈ R,

u1(t)− u1
′(t) = u2

′(t+ 2nT )− u2(t+ 2nT ), n ∈ N

with n ≥ − t

2T

in view of u1(t) = u1(t + 2nT ) and u1
′(t) = u1

′(t + 2nT ). Taking the
limit as n → +∞, it is shown that u1(t) = u1

′(t), t ∈ R, as required.

Remark 3.3. Let f v (f1, f2). Noticing that, for x, y ∈ X,

f1(t+ 2nT, x)− f1(t+ 2nT, y) = f1(t, x)− f1(t, y)

for all n ∈ N,

and
lim

t→+∞
∥f2(t, x)− f2(t, y)∥ = 0,

it follows, by a similar argument as used in Lemma 3.1, that

{f1(t, x)− f1(t, y); t ∈ R} ⊂ {f(t, x)− f(t, y); t ∈ R+}
for x, y ∈ X.

From this, one sees easily that

sup
t∈R

∥f1(t, x)− f1(t, y)∥ ≤ sup
t∈R+

∥f(t, x)− f(t, y)∥ for x, y ∈ X,
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which in particular implies that f belongs to AALT (R+ ×X;X) when
f is Lipschitz continuous with respect to the second variable uniformly
for t ∈ R+ (with the Lipschitz constant L).

Lemma 3.4. Assume that f v (f1, f2) is semi-Lipschitz continuous
with the Lipschitz constant L. Then F1(·) := f1(·, u(·)) and F (·) :=
f(·, u(·)) belong to AAT (R+;X) for each u ∈ AAT (R+;X).

Proof. Since u ∈ AAT (R+;X), one has

u(t) = u1(t) + u2(t), t ∈ R+,

where u1 ∈ PTA(R;X) and u2 ∈ C0(R+;X). This, together with
f(t+T,−x) = −f(t, x), for all t ∈ R and x ∈ X, gives that f1(·, u1(·)) is
T -anti-periodic. Therefore, to show that F1(·) belongs to AAT (R+;X),
it remains to prove that F1(·)− f1(·, u1(·)) vanishes at infinity. In fact,
this can been seen from

lim
t→+∞

∥F1(t)− f1(t, u1(t))∥ ≤ L lim
t→+∞

∥u2(t)∥ −→ 0

in view of f being semi-Lipschitz continuous and u2 vanishing at
infinity.

Noting that f2 ∈ C0(R+ ×X;X), we have, in view of the bounded-
ness of u, that f2(·, u(·)) ∈ C0(R+;X). Since F (·) = F1(·) + f2(·, u(·)),
we deduce that F (·) belongs to AAT (R+;X). This completes the
proof. �

Lemma 3.5. Given u0 ∈ X, u1 ∈ PTA(R;X), u2 ∈ C0(R+;X), and
v ∈ AAT (R+;X). Write

G1(t) :=

∫ t

−∞
T (t− s)u1(s) ds, t ∈ R,

G2(t) := T (t)u0 −
∫ 0

−∞
T (t− s)u1(s) ds

+

∫ t

0

T (t− s)u2(s) ds, t ∈ R+,

G3(t) := T (t)u0 +

∫ t

0

T (t− s)v(s) ds, t ∈ R+.
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Then G1, G2 and G3 belong to PTA(R;X), C0(R+;X), and AAT (R+;X),
respectively.

Proof. From (2.1), it is clear that G1 is well defined and continuous
on R. Moreover, we obtain upon changing of variable that for t ∈ R,

G1(t+ T ) =

∫ t+T

−∞
T (t+ T − s)u1(s) ds

=

∫ t

−∞
T (t− s)u1(s+ T )ds = −G1(t)

in view of the T -anti-periodicity of u1. Accordingly, G1 belongs to
PTA(R;X).

Given ϵ > 0. Since u2 vanishes at infinity, one can choose N > 0
such that ∥u2(t)∥ < ϵ for all t > N . This, together with (2.1), enables
us to conclude that∥∥∥∥ ∫ t

0

T (t− s)u2(s) ds

∥∥∥∥ ≤
∥∥∥∥ ∫ N

0

T (t− s)u2(s) ds

∥∥∥∥
+

∥∥∥∥∫ t

N

T (t− s)u2(s) ds

∥∥∥∥
≤ Mδ−1e−δ(t−N)∥u2∥0 +Mδ−1ϵ,

for t > N , from which we see∫ t

0

T (t− s)u2(s) ds −→ 0 in X as t → +∞.

Also, a direct calculation gives∥∥∥∥T (t)u0 −
∫ 0

−∞
T (t − s)u1(s) ds

∥∥∥∥ ≤ M(∥u0∥ + δ−1∥u1∥′∞)e−δt.

Accordingly, G2 belongs to C0(R+;X).

Since v ∈ AAT (R+;X), we have the decomposition as

v(t) = v1(t) + v2(t), t ∈ R+,



NONLINEAR NONLOCAL CAUCHY PROBLEMS 437

where v1 ∈ PTA(R;X) and v2 ∈ C0(R+;X). Writing

W1(t) :=

∫ t

−∞
T (t− s)v1(s)ds, t ∈ R,

W2(t) := T (t)u0 −
∫ 0

−∞
T (t− s)v1(s) ds

+

∫ t

0

T (t− s)v2(s) ds, t ∈ R+,

it is clear that W1 and W2 belong to PTA(R;X) and C0(R+;X),
respectively, as proved in the above arguments. Moreover, notic-
ing G3(t) = W1(t) + W2(t), t ∈ R+, one has that G3 belongs to
AAT (R+;X). This completes the proof. �

Set Sr := {x ∈ AAT (R+;X); ∥x∥∞ ≤ r} and Ωr := {x ∈
C0(R+;X); ∥x∥0 ≤ r} for some r > 0, which are convex closed sub-
sets of AAT (R+;X) and C0(R+;X), respectively. Let us introduce the
following assumptions:

(H1) f v (f1, f2) is semi-Lipschitz continuous with the Lipschitz
constant L. Moreover, there exists a function h ∈ C0(R+) and
a nondecreasing function Φ : R+ → R+ such that, for all t ∈ R+

and x ∈ X satisfying ∥x∥ ≤ r,

(3.3) ∥f2(t, x)∥ ≤ h(t)Φ(r), and lim inf
r→+∞

Φ(r)

r
= ρ1.

(H2) (i) H : AAT (R+;X) → X is continuous, there exists a nonde-
creasing function Ψ : R+ → R+ such that, for all u ∈ Sr,

(3.4) ∥H(u)∥ ≤ Ψ(r), and lim inf
r→+∞

Ψ(r)

r
= ρ2.

(ii) There exists a ς > 0 such that, for u, v ∈ AAT (R+;X)
with u(t) = v(t) for all t ∈ [ς,+∞), H(u) = H(v).

Write

σ1(t) :=

∫ t

0

e−δ(t−s)h(s) ds, t ∈ R+.

It is not difficult to see that 0 ≤ σ1(t) ≤ 1/δ sups∈R+ h(s) for every
t ∈ R+. Furthermore, an analog argument used in Lemma 3.5 gives
that σ1 ∈ C0(R+). Put ρ3 := supt∈R+ σ1(t).
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Remark 3.6. Let us note that assumption (H2) (ii) is the case when
the values of the solution u(t) for t near zero do not affect H(u). A
case in point was presented by Deng [11].

Let f v (f1, f2). Now we consider, for each m ≥ 1, the following
system of integral equations of the form

(3.5)



v(t) =

∫ t

−∞
T (t− s)f1(s, v(s)) ds, t ∈ R,

w(t) = T (t)T

(
1

m

)
H(v + w)

+

∫ t

0

T (t− s) [f1(s, v(s) + w(s))− f1(s, v(s))] ds

−
∫ 0

−∞
T (t− s)f1(s, v(s)) ds

+

∫ t

0

T (t− s)f2(s, v(s) + w(s)) ds, t ∈ R+.

Lemma 3.7. Let the hypotheses (H1) and (H2) (i) hold. Then the
system (3.5) has at least one solution (v, wm) ∈ PTA(R;X)×C0(R+;X)
for each m ≥ 1, provided that

(3.6) M(ρ2 + Lδ−1 + ρ1ρ3) < 1.

Proof. We start by defining a mapping Γ on PTA(R;X) as follows:

(3.7) (Γv)(t) =

∫ t

−∞
T (t− s)f1(s, v(s)) ds, t ∈ R.

Set, for v ∈ PTA(R;X), u1(·) = f1(·, v(·)). It easily follows from
(H1) that u1 ∈ PTA(R;X). From this and Lemma 3.5, we obtain that
Γ is well defined and maps PTA(R;X) into itself. Moreover, for any
t ∈ R and v1, v2 ∈ PTA(R;X),

∥(Γv1)(t)− (Γv2)(t)∥ ≤ ML

∫ t

−∞
e−δ(t−s)∥v1(s)− v2(s)∥ds

≤ MLδ−1∥v1 − v2∥′∞
by the semi-Lipschitz continuity of f . This enables us to get

∥Γv1 − Γv2∥′∞ ≤ MLδ−1∥v1 − v2∥′∞,
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which, together with (3.6), yields that Γ is a strict contraction on
PTA(R;X). Thus, in view of the Banach contraction principle we
conclude that Γ has a unique fixed point v ∈ PTA(R, X).

Put r′ := supt∈R ∥v(t)∥ and M∗ := supt∈R ∥f1(t, v(t))∥.

Next, we introduce the mappings Hv : C0(R+;X) → X and
Jv, f2v : R+ ×X → X, defined by

Hv(w) = H(v + w), w ∈ C0(R+;X),

Jv(t, x) = f1(t, v(t) + x)− f1(t, v(t)), t ∈ R+, x ∈ X,

f2v(t, x) = f2(t, v(t) + x), t ∈ R+, x ∈ X.

From (H2) (i), note that Hv is continuous. Also, by the semi-Lipschitz
continuity of f , one has

(3.8)
∥Jv(t, x)∥ ≤ L∥x∥ for all t ∈ R+, x ∈ X.
∥Jv(t, x)− Jv(t, x)∥ ≤ L∥x− y∥ for all t ∈ R+, x, y ∈ X.

Let m ≥ 1 be fixed. Define a mapping Γm on C0(R+;X) by

(Γmw)(t) = T (t)T

(
1

m

)
Hv(w) +

∫ t

0

T (t− s)Jv(s, w(s)) ds

−
∫ 0

−∞
T (t− s)f1(s, v(s)) ds

+

∫ t

0

T (t− s)f2v(s, w(s)) ds, t ∈ R+.

Noticing, from (H1) and (H2) (i), that f1(·, v(·)) ∈ PTA(R;X), and,
for each w ∈ C0(R+;X), Jv(·, w(·)), f2v(·, w(·)) ∈ C0(R+;X) and
T (1/m)Hv(w) ∈ X is independent of t, one has that Γm is well defined
and maps C0(R+;X) into itself due to Lemma 3.5.

To this end, it suffices to prove that Γm possesses at least one fixed
point in C0(R+;X). The proof will be divided into four steps.



440 DE-HAN CHEN AND RONG-NIAN WANG

For the sake of brevity, write

(Γ1
mw)(t) := T (t)T

(
1

m

)
Hv(w),

(Γ2w)(t) :=

∫ t

0

T (t− s)Jv(s, w(s)) ds,

(Γ3w)(t) := −
∫ 0

−∞
T (t− s)f1(s, v(s)) ds+

∫ t

0

T (t− s)f2v(s, w(s)) ds.

Step 1. There exists an r0 > 0 such that Γm maps Ωr0 into itself.

In fact, from (3.3), (3.4) and (3.6), it follows that there exists an
r0 > 0 such that

M(Ψ(r0 + r′) + Lδ−1r0 +M∗δ−1 + ρ3Φ(r0 + r′)) ≤ r0,

which, together with (2.1) and the first inequality in (3.8), implies that,
for any t ∈ R+ and w ∈ Ωr0 ,

∥(Γmw)(t)∥ ≤
∥∥∥∥T(t+ 1

m

)∥∥∥∥
L(X)

∥Hv(w)∥

+

∫ t

0

∥T (t− s)∥L(X)∥Jv(s, w(s))∥ds

+

∫ 0

−∞
∥T (t− s)∥L(X)∥f1(s, v(s))∥ ds

+

∫ t

0

∥T (t− s)∥L(X)∥f2v(s, w(s))∥ds

≤ MΨ(r0 + r′) +MLδ−1r0 +MM∗δ−1

+MΦ(r0 + r′)σ1(t)

≤ r0.

Accordingly, Γm maps Ωr0 into itself.

Step 2. Γ1 and Γ3 are completely continuous on Ωr0 .

Taking w1, w2 ∈ Ωr, we have, by (2.1),

∥(Γ1w1)(t)− (Γ1w2)(t)∥0 ≤ M∥Hv(w1)−Hv(w2)∥,

which, together with the continuity of Hv, enables us to deduce that
Γ1 is continuous on Ωr0 . Also, since Hv(Ωr0) is bounded in X in view
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of (H2) (i) and T (1/m) is compact in X, we justify by (2.1) that, for
each t ∈ R+,{

T (t)T ≤
(

1

m

)
Hv(w);w ∈ Ωr0

}
is precompact in X,

and, for 0 ≤ s ≤ t ≤ T ,∥∥∥∥T (t)( 1

m

)
Hv(w)− T (s)T

(
1

m

)
Hv(w)

∥∥∥∥
=

∥∥∥∥(T (t)− T (s)

)
T

(
1

m

)
Hv(w)

∥∥∥∥
−→ 0, as t → s

by the strong continuity of {T (t)}t≥0, and the compactness of T (1/m)
Hv(w) inX. Moreover, a direct computation gives that, for all w ∈ Ωr0 ,

∥T (t)T
(

1

m

)
Hv(w)∥ ≤ MΨ(r0 + r′)e−δt −→ 0 as t → +∞,

and the limit is independent of w ∈ Ωr0 . Thus, we verify, with the
aid of Lemma 2.1, that Γ1 is compact on Ωr0 . Consequently, Γ1 is
completely continuous on Ωr0 .

In the sequel, the mapping Γ3 is treated. Given ϵ > 0, since
h ∈ C0(R+), one can choose t0 big enough such that

h(t) <
δϵ

4MΦ(r0 + r′)
whenever t ≥ t0,

which, together with (2.1) and (3.3), implies that, for all t ≥ t0 and
w ∈ Ωr0 , ∥∥∥∥ ∫ t

t0

T (t− s)f2v(s, w(s)) ds

∥∥∥∥(3.9)

≤ MΦ(r0 + r′)

∫ t

t0

e−δ(t−s)h(s) ds <
ϵ

4
.

Taking {wk}+∞
k=1 ⊂ Ωr0 with wk → w0 in C0(R+;X) as k → +∞,

from the continuity of f2v and (3.3), it follows that for each t ∈ [0, t0],

lim
k→+∞

∥f2v(t, wk(t))− f2v(t, w(t))∥ = 0,
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and
∥f2v(t, wk(t))− f2v(t, w(t)∥ ≤ 2Φ(r + r′)h(t).

This, together with the Lebesgue dominated convergence theorem,
yields that there exists a K > 0 such that

M

∫ t0

0

∥f2v(s, wk(s))− f2v(s, w(s))∥ds <
ϵ

2

whenever k ≥ K. Noticing this and (2.1), (3.9), we obtain that for all
t ≥ 0,

∥(Γ3wk)(t)− (Γ3w)(t)∥

≤ M

∫ t0

0

∥f2v(s, wk(s))− f2v(s, w(s))∥ ds

+

∥∥∥∥ ∫ max{t,t0}

t0

T (t− s)f2v(s, w(s)) ds

∥∥∥∥
+

∥∥∥∥ ∫ max{t,t0}

t0

T (t− s)f2v(s, wk(s)) ds

∥∥∥∥
< ϵ,

whenever k ≥ K. Accordingly, Γ3 is continuous on Ωr0 .

Below, we show that Γ3 is compact on Ωr0 . Since

−
∫ 0

−∞
T (· − s)f1(s, v(s)) ds

belongs to C0(R+;X) due to Lemma 3.5 with (H1) and is independent
of w, we only need to show that the mapping Γ3

v : Ωr0 → C0(R+;X)
defined by

(Γ3
vw)(t) :=

∫ t

0

T (t− s)f2v(s, w(s)) ds, t ∈ R+

is compact.

Let t > 0 and 0 < ϵ0 < t. Since T (ϵ0) is compact and∥∥∥∥ ∫ t−ϵ0

0

T (t− ϵ0 − s)f2v(s, w(s)) ds

∥∥∥∥
is uniformly bounded for w ∈ Ωr0 in X in view of (2.1) and (3.3),
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{∫ t−ϵ0

0

T (t− s)f2v(s, w(s)) ds; u ∈ Ωr0

}
=

{
T (ϵ0)

∫ t−ϵ0

0

T (t− ϵ0 − s)f2v(s, w(s)) ds; u ∈ Ωr0

}
is relatively compact in X. Then, for every w ∈ Ωr0 , as∥∥∥∥(Γ3

vw)(t)−
∫ t−ϵ0

0

T (t− s)f2v(s, w(s)) ds

∥∥∥∥
≤

∫ t

t−ϵ0

∥T (t− s)f2v(s, w(s))∥ds

≤ MΦ(r0 + r′)

∫ t

t−ϵ0

e−δ(t−s)h(s) ds

−→ 0 as ϵ0 → 0+

in X, we conclude, in view of the total boundedness, that, for each
t ∈ R+, the set {(Γ3

vw)(t);w ∈ Ωr0} is relatively compact in X.

Now, we consider equicontinuity of the set {Γ3
vw;w ∈ Ωr0}. Given

ε > 0, we take t, τ ∈ R+ with t > τ , and we can choose an η′ > 0 such
that

Mδ−1Φ(r0 + r′) sup
s∈R+

h(s)
(
1− e−δ(t−τ)

)
≤ ε

4
(3.10)

when η′ ≥ t− τ,

and choose an η′′ ∈ (0, η′] such that

MΦ(r0 + r′) ∥T (t− τ + η′)− T (η′)∥L(X) sup
s∈R+

h(s)δ−1 ≤ ε

4
(3.11)

when η′′ ≥ t− τ.

For the case when τ ≤ η′, we write

(Γ3
vw)(t)− (Γ3

vw)(τ) =

∫ τ

0

(T (t− s)− T (τ − s)) f2v(s, w(s)) ds

+

∫ t

τ

T (t− s)f2v(s, w(s)) ds.
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From (2.1), (3.3) and (3.10), it follows that, for η′′ ≥ t− τ , w ∈ Ωr0 ,∥∥∥∥∫ τ

0

(T (t− s)− T (τ − s))f2v(s, w(s)) ds

∥∥∥∥
≤

∫ τ

0

∥(T (t− s)− T (τ − s))∥L(X)∥f2v(s, w(s))∥ds

≤ MΦ(r0 + r′)

∫ τ

0

(
e−δ(t−τ) + 1

)
e−δ(τ−s)h(s) ds

≤ 2Mδ−1Φ(r0 + r′) sup
s∈R+

h(s)(1− e−δτ )

≤ ε

2
,

and ∥∥∥∥∫ t

τ

T (t− s)f2v(s, w(s)) ds

∥∥∥∥
≤ MΦ(r0 + r′)

∫ t

τ

e−δ(t−s)h(s) ds

≤ Mδ−1Φ(r0 + r′) sup
s∈R+

h(s)
(
1− e−δ(t−τ)

)
≤ ε

4
.

For the case when τ > η′, we write

(Γ3
vw)(t)− (Γ3

vw)(τ)

=

∫ τ−η′

0

(T (t− s)− T (τ − s))f2v(s, w(s)) ds

+

∫ τ

τ−η′
(T (t− s)− T (τ − s))f2v(s, w(s)) ds

+

∫ t

τ

T (t− s)f2v(s, w(s)) ds.

Noticing (2.1), (3.3) and (3.10), and arguing as above, we can prove
that, for η′′ ≥ t− τ , w ∈ Ωr0 ,∥∥∥∥∫ τ

τ−η′
(T (t− s)− T (τ − s))f2v(s, w(s)) ds

∥∥∥∥
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≤ 2MΦ(r0 + r′) sup
s∈R+

h(s)δ−1(1− e−δη′
) ≤ ε

2
,

and ∥∥∥∥ ∫ t

τ

T (t− s)f2v(s, w(s)) ds

∥∥∥∥ ≤ ε

4
.

Moreover, in view of (3.11), a direct calculation yields∥∥∥∥∫ τ−η′

0

(T (t− s)− T (τ − s))f2v(s, w(s)) ds

∥∥∥∥
≤ ∥T (t− τ + η′)− T (η′)∥L(X)

×
∫ τ−η′

0

∥T (τ − η − s)f2v(s, w(s))∥ ds

≤ MΦ(r0 + r′) ∥T (t− τ + η′)− T (η′)∥L(X)

×
∫ τ−η′

0

e−(t−η′−s)h(s) ds

≤ Mδ−1Φ(r0 + r′) ∥T (t− τ + η′)− T (η′)∥L(X) sup
s∈R+

h(s)

≤ ε

4
,

when η′′ ≥ t− τ and w ∈ Ωr0 .

Summarizing the above, one can deduce that

∥(Γ3
vw)(t)− (Γ3

vw)(τ)∥ ≤ ε

when η′′ ≥ t−τ and w ∈ Ωr0 , which proves that the set {Γ3
vw;w ∈ Ωr0}

is equicontinuous.

At the end of this step, it remains to show, in view of Lemma 2.1,
that (Γ3

vw)(·) vanishes at infinity uniformly for w ∈ Ωr0 . Since
σ1 ∈ C0(R+), as

∥(Γ3
vw)(t)∥ ≤ MΦ(r0 + r′)σ1(t) for t ≥ 0, w ∈ Ωr0 ,

we deduce that the conclusion follows.

Thus, applying Lemma 2.1, we obtain that Γ3
v is compact on Ωr0 , so

is Γ3.

Step 3. Γ2 is a strict contraction on Ωr0 .
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For any t ∈ R+ and w1, w2 ∈ Ωr0 , we obtain by (H1) that

∥(Γ2w1)(t)− (Γ2w2)(t)∥

≤
∥∥∥∥ ∫ t

0

T (t− s) (Jv(s, w1(s))− Jv(s, w2(s))) ds

∥∥∥∥
≤ ML

∫ t

0

e−δ(t−s)∥w1(s)− w2(s)∥ ds

≤ MLδ−1∥w1 − w2∥0,

which means that Γ2 is a strict contraction due to (3.6).

Step 4. Combining the considerations in the above three steps with
(a), (b) and (d), we obtain that

µ(Γm(Ωr0)) ≤ µ(Γ1
m(Ωr0)) + µ(Γ2(Ωr0)) + µ(Γ3(Ωr0))

≤ MLδ−1µ(Ωr0),

which together with (3.6) implies that Γm is a µ-contraction. Applying
Darbo-Sadovskii’s fixed point theorem, one finds that Γm possesses at
least one fixed point wm ∈ Ωr0 . This completes the proof. �

Below, let (v, wm) ∈ PTA(R;X)× C0(R+;X), coming from Lemma
3.7, be a solution of the system (3.5) corresponding to m ≥ 1.

Lemma 3.8. Under the hypotheses (H1), (H2) and (3.6), the set
{wm;m ≥ 1}|[ς,+∞) is, with ς being the constant in (H2) (ii), relatively
compact in C0([ς,+∞);X).

Proof. As proved in Lemma 3.7, there exists an r0 > 0 such that
wm ∈ Ωr0 for all m ≥ 1 and wm satisfies the integral equation

wm(t) = (Γ1
mwm)(t) + (Γ2wm)(t) + (Γ3wm)(t),

t ∈ R+, m ≥ 1,

where the mappings Γ1
m, Γ2, and Γ3 are defined the same as in

Lemma 3.7. To this end, it suffices to show that the sets {Γ1
mwm;m ≥

1}|[ς,+∞), {Γ2wm;m ≥ 1}|[ς,+∞), and {Γ3wm;m ≥ 1}|[ς,+∞) are
relatively compact in C0([ς,+∞);X).

From the compactness of T (t) (t ≥ ς) in X, the boundedness of
T (1/m) and (H2) (i), it follows that the set {(Γ1

mwm)(t);m ≥ 1} for
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each t ∈ [ς,+∞) is precompact in X, and for s1, s2 ∈ [ς,+∞) with
s1 ≤ s2,∥∥(Γ1

mwm)(s2)− (Γ1
mwm)(s1)

∥∥
=

∥∥∥∥(T (s2)− T (s1)
)
T

(
1

m

)
Hv(wm)

∥∥∥∥
−→ 0, as s2 → s1

uniformly for m ≥ 1 (since the compactness of T (t) for t > 0 implies
continuity in the uniform operator topology). Moreover, by (2.1) and
(H2) (i), one has

∥Γ1
mwm)(t)∥ ≤ Me−δtΨ(r + r′) −→ 0 as t → +∞

uniformly for m ≥ 1. Hence, an application of Lemma 2.1 justifies that
the set {Γ1

mwm;m ≥ 1}|[ς,+∞) is relatively compact in C0([ς,+∞);X).

The same idea as in Lemma 3.7 step 2 can be used to prove that the
set {Γ3wm;m ≥ 1}|[ς,+∞) is relatively compact in C0([ς,+∞);X).

Next, we consider the set {Γ2wm;m ≥ 1}[ς,+∞). Let us decompose

the mapping Γ2 = Γ′ + Γ′′ as

(Γ′wm)(t) =

∫ t

ς

T (t− s)Jv(s, wm(s)) ds, t ∈ [ς,+∞),

(Γ′′wm)(t) =

∫ ς

0

T (t− s)Jv(s, wm(s)) ds, t ∈ [ς,+∞).

It follows from (H1) that, for any t ∈ [ς,+∞) and w1, w2 ∈
C0([ς,+∞);X),

∥(Γ′w1)(t)−(Γ′w2)(t)∥≤
∥∥∥∥∫ t

ς

T (t−s) (Jv(s, w1(s))−Jv(s, w2(s))) ds

∥∥∥∥
≤ ML

∫ t

ς

e−δ(t−s)∥w1(s)− w2(s)∥ ds

≤ MLδ−1∥w1 − w2∥ς ,

that is,

∥(Γ′w1)(t)− (Γ′w2)(t)∥ς ≤ MLδ−1∥w1 − w2∥ς .
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Also, noticing wm ∈ Ωr0 for all m ≥ 1, the first inequality in (3.8), and
the compactness of T (t) for t > 0, one can show by a similar argument
as that in Lemma 3.7 step 2, that the set {Γ′′wm;m ≥ 1}|[ς,+∞) is
relatively compact in C0([ς,+∞);X).

Thus, we obtain, thanks to (a), (b) and (d), that

µ({wm;m ≥ 1}|[ς,+∞)) ≤ µ(
{
(Γ1

mwm)(t);m ≥ 1
}
[ς,+∞)

)

+ µ({Γ′wm;m ≥ 1}[ς,+∞))

+ µ({Γ′′wm;m ≥ 1}[ς,+∞))

+ µ({Γ3wm;m ≥ 1}[ς,+∞))

≤ MLδ−1µ({wm;m ≥ 1}[ς,+∞)),

from which, together with (3.6), we see that µ({wm;m ≥ 1}|[ς,+∞)) =
0. The proof is then completed. �

Having at hand the above auxiliary results, we can state our main
results of this section.

Theorem 3.9. Let the hypotheses (H1), (H2) and (3.6) hold. Then the
Cauchy problem (1.1) admits at least an asymptotically T -anti-periodic
mild solution.

Proof. Assume that the mappings Γ1
m, Γ2, and Γ3 are defined the

same as in Lemma 3.7 and (v, wm) ∈ PTA(R;X)×C0(R+;X), coming
from Lemma 3.7, is a solution of the system (3.5) corresponding to
m ≥ 1. It has been shown, thanks to Lemma 3.8, that the set
{wm;m ≥ 1}|[ς,+∞) is relatively compact in C0([ς,+∞);X). Writing

wm(t) =

{
um(t) if t ∈ [ς,+∞),
wm(ς) if t ∈ [0, ς],

one can assume, without loss of generality, that

wm −→ w′ in C0(R+;X)

as m → +∞, which, together with the continuity of H and the strong
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continuity of T (t), gives that for any t ∈ [0, ς] and fixed v ∈ PTA(R;X),∥∥∥(Γ1
mwm)(t)− T (t)Hv(w

′)
∥∥∥

≤ M

∥∥∥∥T( 1

m

)
H(wm + v)−H(w′ + v)

∥∥∥∥
≤ M

∥∥∥∥(T( 1

m

)
− I

)
H(w′ + v)

∥∥∥∥
+M

∥∥∥∥T( 1

m

)
H(wm + v)− T

(
1

m

)
H(w′ + v)

∥∥∥∥
≤

∥∥∥∥(T( 1

m

)
− I

)
H(w′ + v)

∥∥∥∥
+M2

∥∥∥∥H(wm + v)−H(w′ + v)

∥∥∥∥
−→ 0 as m → +∞.

This proves that the set {(Γ1
mwm)(t);m ≥ 1} for any t ∈ [0, ς] is rela-

tively compact inX, which means, in particular, that {T (1/m)Hv(wm);
m ≥ 1} is relatively compact in X. From this and the strong continuity
of T (t), it follows readily that, for t, τ ∈ [0, ς], t ≥ τ ,∥∥(Γ1

mwm)(t)− (Γ1
mwm)(τ)

∥∥
≤

∥∥∥∥ (T (t)− T (τ))T

(
1

m

)
Hv(wm)

∥∥∥∥
−→ 0 as t− τ → 0

uniformly for m ≥ 1. Therefore, we conclude that the set {Γ1
mwm;m ≥

1}|[0,ς] is relatively compact in C([0, ς];X) due to Arzela-Ascoli’s
theorem. This proves, with the aid of Lemma 2.2, that the set
{Γ1

mwm;m ≥ 1} is relatively compact in C0([0,+∞);X), since the
set {Γ1

mwm;m ≥ 1}|[ς,+∞) is relatively compact in C0([ς,+∞);X). On

the other hand, as proved in Lemma 3.7, Γ2 is a strict contraction on
Ωr0 with Lipschitz constant MLδ−1, and Γ3 is completely continuous
on Ωr0 .

Thus, again by (a), (b) and (d), one has

µ({wm;m ≥ 1}) ≤ µ(
{
(Γ1

mwm)(t);m ≥ 1
}
)

+ µ({Γ2wm;m ≥ 1}) + µ({Γ3wm;m ≥ 1})
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≤ MLδ−1µ({wm;m ≥ 1}).

This proves that µ({wm;m ≥ 1}) = 0 due to (3.6), that is, {wm;m ≥ 1}
is relatively compact in C0([0,+∞);X). Hence, there is a subsequence
of {wm;m ≥ 1}, again denoted by {wm}, and a w ∈ C0([0,+∞);X)
such that wm → w in C0([0,+∞);X) as m → ∞.

Recall that (v, wm) ∈ PTA(R;X) × C0(R+;X) satisfies the integral
equation

v(t) =

∫ t

−∞
T (t− s)f1(s, v(s)) ds, t ∈ R,

wm(t) = T (t)T

(
1

m

)
H(v + wm)

+
∫ t

0
T (t− s) [f1(s, v(s) + wm(s))− f1(s, v(s))] ds

−
∫ 0

−∞ T (t− s)f1(s, v(s)) ds

+
∫ t

0
T (t− s)f2(s, v(s) + wm(s)) ds, t ∈ R+.

Letting m → ∞ on both sides, one finds, noticing the continuity of
H, f1 and f2 with respect to the second argument, that (v, w) satisfies
system (3.5) which, in particular, implies that v+w is an asymptotically
T -anti-periodic mild solution. This completes the proof. �

Remark 3.10. Let us note that Lemma 3.4 and Theorem 3.9 can
be easily extended to the case of the nonlinear item f being locally
semi-Lipschitz continuous.

The following corollaries are generalizations of Theorem 3.9.

Corollary 3.11. Under the hypotheses (H1), for every u0 ∈ X, the
Cauchy problem{

u′(t) = Au(t) + f(t, u(t)), t > 0,
u(0) = u0,

has at least one asymptotically T -anti-periodic mild solution provided
that M(Lδ−1 + ρ1ρ3) < 1.

Corollary 3.12. Assuming that the hypothesis (H1) is satisfied, the
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Cauchy problem with nonlocal initial condition in the form
u′(t) = Au(t) + f(t, u(t)), t > 0,

u(0) =

p∑
i=1

Ciu(si), 0 < s1 < · · · < sp−1 < sp < +∞,

where Ci (i = 1, . . . , p) are given constants, has at least one asymptoti-
cally T -anti-periodic mild solution provided that M(

∑p
i=1 |Ci|+Lδ−1+

ρ1ρ3) < 1.

Proof. Define

H(u) =

p∑
i=1

Ciu(si), u ∈ AAT (R+;X).

It is clear that H verifies the hypothesis (H2) with

Ψ(r) = r

p∑
i=1

|Ci|, ρ2 =

p∑
i=1

|Ci|

Hence, the conclusion holds due to Theorem 3.9. The proof is com-
pleted. �

In the following, we establish the existence and uniqueness result of
the asymptotically T -anti-periodic mild solution to the Cauchy problem
(1.1) under the hypotheses of f and H being Lipschitzian.

Theorem 3.13. Assume that

(H ′
1) f : R+ × X → X is asymptotically T -anti-periodic, and there

exists a constant Lf > 0 such that

∥f(t, x)− f(t, y)∥ ≤ Lf∥x− y∥

for all t ∈ R+ and x, y ∈ X,
(H ′

2) H : AAT (R+;X) → X is Lipschitz continuous with the Lips-
chitz constant LH , and

(H3) ML
H
+MLfδ

−1 < 1.

Then the Cauchy problem (1.1) has a unique asymptotically T -anti-
periodic mild solution.
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Proof. Let us define a mapping Λ on AAT (R+;X) as

(Λu)(t) := T (t)H(u) +

∫ t

0

T (t− s)f(s, u(s)) ds, t ∈ R+.

Set, for u ∈ AAT (R+;X), F (·) := f(·, u(·)). From Remark 3.3 and
Lemma 3.4, it follows that F ∈ AAT (R+;X), which together with
Lemma 3.5 implies that Λ is well defined, and it maps AAT (R+;X)
into itself. Moreover, for any t ∈ R+ and u1, u2 ∈ AAT (R+;X), by
(H ′

1) and (H ′
2), we have

∥(Λu1)(t)− (Λu2)(t)∥
≤ ∥T (t) (H(u1)−H(u2)) ∥

+

∫ t

0

∥T (t− s) (f(s, u1(s))− f(s, u2(s))) ∥ ds

≤ MLH∥u1 − u2∥∞

+MLf

∫ t

0

e−δ(t−s)∥u1(s)− u2(s)∥ds

≤ (MLH +MLfδ
−1)∥u1 − u2∥∞.

Consequently,

∥(Λu1)(t)− (Λu2)(t)∥∞ ≤ (MLH +MLfδ
−1)∥u1 − u2∥∞,

which, together with (H3), implies that Λ is a strict contraction
on AAT (R+;X). Thus, we conclude, using the Banach contraction
principle, that Λ has a unique fixed point in AAT (R+;X), which is an
asymptotically T -anti-periodic mild solution to the Cauchy problem
(1.1). This completes the proof. �

4. An example. In this section, we present an example as an
application of our abstract results.

Consider the partial differential equation with homogeneous Dirich-
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let boundary condition and nonlocal initial condition

(4.1)



∂u(t, ξ)

∂t
− a

∂2u(t, ξ)

∂ξ2
= cos

πt

T
sinu(t, ξ)

+e−tu(t, ξ) sinu2(t, ξ),
(t, ξ) ∈ (0,+∞)× [0, π],

u(t, 0) = u(t, π) = 0, t ∈ R+,

u(0, ξ) = u0(ξ) +
∑p

i=1 Ciu
1
3 (ti, ξ), ξ ∈ [0, π],

where 0 < t1 < · · · < tp < +∞, Ci (i = 1, . . . , p) and a > 0 are
given constants, and u0 ∈ L2[0, π]. Here, our objective is to show the
existence of asymptotically T -anti-periodic mild solution for the partial
differential equation (4.1).

Take X = L2[0, π] with the norm ∥·∥L2[0,π] and inner product (·, ·)2.
Define an operator A : D(A) ⊂ X → X by

Ax = a
∂2x

∂ξ2
, x ∈ D(A),

D(A) = {x ∈ X;x, x′ are absolutely continuous,

x′′ ∈ X, and x(0) = x(π) = 0}.

It is well known that A has a discrete spectrum, and its eigenvalues
are −an2, n ∈ N+ with the corresponding normalized eigenvectors
yn(ξ) =

√
2/π sin(nξ). Moreover, A generates a strongly continuous

semigroup {T (t)}t≥0 on X as

T (t)x =
+∞∑
n=1

e−an2t(x, yn)2yn, for all t ≥ 0, x ∈ X.

More details about these facts can be seen from the monograph [26] of
Pazy.

A direct computation yields

∥T (t)∥L(X) ≤ e−at for all t ≥ 0,

which means that {T (t)}t≥0 is uniformly exponentially stable with
M = 1 and δ = a. Note also that, for each t > 0, T (t) is a nuclear
operator, which gives the compactness of T (t) for t > 0.
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Define

f(t, x(ξ)) := cos
πt

T
sinx(ξ) + e−tx(ξ) sinx2(ξ), t ∈ R+, x ∈ X,

f1(t, x(ξ)) := cos
πt

T
sinx(ξ), t ∈ R, x ∈ X,

f2(t, x(ξ)) := e−tx(ξ) sinx2(ξ), t ∈ R+, x ∈ X,

H(u(t, ξ)) := u0(ξ) +

p∑
i=1

Ciu
1/3(ti, ξ), u ∈ AAT (R+;X).

Then it is not difficult to verify that H : AAT (R+;X) → X, f1 : R ×
X → X and f2 : R+×X → X are continuous, f1(t+T,−x) = −f1(t, x)
for all t ∈ R and x ∈ X,

∥f1(t, x)− f1(t, y)∥ ≤ ∥x− y∥
for all t ∈ R+, x, y ∈ X,

and
∥f2(t, x)∥ ≤ e−t∥x∥ for t ∈ R+ and all x ∈ X,

which implies that f v (f1, f2) is semi-Lipschitz continuous with the
Lipschitz constant L = 1. Therefore, (4.1) can be reformulated as the
abstract Cauchy problem (1.1), and the assumptions (H1) and (H2)
hold with

L = 1, Φ(r) = r, Ψ(r) = ∥u0∥+ π1/3r1/3
p∑

i=1

|Ci|,

h(t) = e−t, ρ1 = 1, ρ2 = 0, ρ3 ≤ 1

a
.

Hence, we deduce by Theorem 3.9 that, when a > 2, the partial dif-
ferential equation (4.1) has at least one asymptotically T -anti-periodic
mild solution.
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