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EXISTENCE AND UNIQUENESS OF SOLUTIONS
FOR SINGLE-POPULATION

MCKENDRICK-VON FOERSTER MODELS
WITH RENEWAL

AGNIESZKA BART LOMIEJCZYK, HENRYK LESZCZYŃSKI

AND PIOTR ZWIERKOWSKI

ABSTRACT. We study a McKendrick-von Foerster type
equation with renewal. This model is represented by a
single equation which describes one species which produces
young individuals. The renewal condition is linear but
takes into account some history of the population. This
model addresses nonlocal interactions between individuals
structured by age. The vast majority of size-structured
models are also treatable. Our model generalizes a number
of earlier models with delays and integrals. The existence
and uniqueness is proved through a fixed-point approach to
an equivalent integral problem in L∞ ∩ L1.

1. Introduction. Von Foerster-McKendrick models (originated in
[12]) describe populations with structure given by age [15], size [17]
or level of maturation of individuals [21]. In the literature there are
discrete models of that type with finite [22] or infinite matrices [28].

We consider one population with a structure given by the size of
individual members or level of maturity and with the birth process
expressed by a linear renewal equation. An elementary outline of such
models, together with their biological interpretation, is provided in
[3]. The best general reference here is the seminal work [26] and,
for the case of age structure, the books [9, 31]. There are a number
of existence and uniqueness proofs in literature for different versions
of the McKendrick-von Foerster equations and which extend size and
age-structured problems, e.g., [2, 6]. Closer to the techniques used
in the paper are the papers [4, 17, 19]. In [11], a model concerning

2010 AMS Mathematics subject classification. Primary 35L45, 35L50, 35D05,
92D25.

Keywords and phrases. Existence, uniqueness, characteristics, renewal.
Received by the editors on October 28, 2012, and in revised form on March 24,

2013.
DOI:10.1216/RMJ-2015-45-2-401 Copyright c⃝2015 Rocky Mountain Mathematics Consortium

401



402 BART LOMIEJCZYK, LESZCZYŃSKI AND ZWIERKOWSKI

demographic and economics problems of ageing populations is studied.
The model consists of two McKendrick type equations: for a population
and for a capital stock.

The governing equation of a structured population is formulated
either in the conservation law form

∂u

∂t
+

∂(cu)

∂x
= λ̃u

or in the standard form of a hyperbolic equation

∂u

∂t
+ c

∂u

∂x
= λu.

These equations are closely related to each other; it suffices to put

λ̃ = λ+ ∂c
∂x . In our work λ̃ is denoted by W , and it is associated with

the change of variables in the integral
∫
u dx. The occurrence of ∂c

∂x
follows from the Liouville theorem. This change of variables shows the

dynamics of the initial mass transport
∫
φ exp(

∫ t

0
W ) dx. The global

Lipschitz condition for c and λ is not sufficient for the global existence
and uniqueness, because the nonlinearity uλ is strong, e.g.,

∂u

∂t
+

∂u

∂x
= u2

possesses local solutions. Global existence is due to boundedness of c
and λ. This assumption is reasonable and commonly used for these
terms.

We continue the sequence of results [7, 23, 24], which are focused on
integral fixed-point equations, generated by the differential-functional
problems. As a main tool, we construct integral fixed-point equations
and a functional space, invariant with respect to these equations. The
space consists of u and z describing densities and sizes, respectively.
These densities are absolutely continuous in t and Lipschitz continuous
in x, and the total sizes are continuous. The Banach contraction
principle is applied in this functional space. The renewal condition
causes serious problems for any fixed point theorem, not to mention
a functional dependence. For instance, [27] deals with a simple
McKendrick-von Foerster model without functionals, but the Banach
fixed point theorem demands some sophisticated technicalities.

We formulate the differential problem. Let a > 0 and denote
E = [0, a] × R+ and Ea = [−τ, a] × R+, where R+ = [0,+∞). If
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t ∈ [0, a] and z : [−τ, a] → R+, then the Hale functional zt is given by
zt(s) = z(t + s) for s ∈ [−τ, 0], see [16]. If u : Ea → R+, then we
consider a natural family of Hale functionals ut(·, x) : [−τ, 0] → R+ for
x ∈ R+, defined by ut(s, x) = u(t+s, x) for s ∈ [−τ, 0] (this is the same
Hale functional with the parameter x). Suppose that c : E × C+ → R
and λ : E × C+ × C+ → R, where C+ is the positive cone of the space
of continuous functions from [−τ, 0] into R+. Let φ : E0 → R, where
E0 = [−τ, 0]× R+. Consider the differential-functional equation

(1) ∂tu(t, x) + c (t, x, zt) ∂xu(t, x) = u(t, x)λ (t, x, ut(·, x), zt)

with the initial condition

(2) u(t, x) = φ(t, x) for (t, x) ∈ E0,

and the renewal condition

(3) u(t, 0) =

∫ ∞

0

K(t, x)ut(·, x) dx for t ∈ [0, a],

where K : E → C∗
+, C∗

+ is the cone of positive continuous functionals
over C+ and

(4) z(t) =

∫ ∞

0

u(t, x) dx for t ∈ [−τ, a].

Since u = φ on E0, the well posedness of the problem requires the
following consistency condition

φ(0, 0) =

∫ ∞

0

K(0, x)φ(·, x) dx,

which is valid throughout the paper. We illustrate the functional
dependence appearing in the right sides of equations (1) and (3) by
several examples:

1. Classical age structured models without delays or integrals:

−u(t, x)µ(t, x, u(t, x), z(t))

and ∫ ∞

0

K̃(t, x)u(t, x) dx,

where µ : E × R+ × R+ → R and K̃ : E → R+, [14, 15],
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2. delayed structures, where death and birth rates depend on certain
past states of u and z:

−u(t, x)µ(t, x, u(t− τ, x), z(t− τ))

and ∫ ∞

0

K̃(t, x)u(t− τ, x) dx

with the same functions K̃, µ, [25, 29];
3. moving averages for densities and total sizes, typical for cumulation

effects in mathematical biology and medicine:

−u(t, x)µ

(
t, x,

1

τ

∫ t

t−τ

u(s, x) ds,
1

τ

∫ t

t−τ

z(s) ds

)
and ∫ ∞

0

K̃(t, x)
1

τ

∫ t

t−τ

u(s, x) ds dx

with the same functions K̃, µ, [8],
4. the size structured model:

−u(t, x) [µ(x, z(t)) + ∂xγ(x, z(t))] ,

where µ and γ denote the mortality and growth rates of individuals,
respectively, and K ≡ 0, [10].

In the literature one can observe various differential-functional models:
classical arguments [14, 15], delays [5, 13, 20], integrals [8], Hale
functionals zt [16, 18], mixed-types (e.g., zt and its multidimensional
generalization [32]). We have chosen a unified approach to both
functional arguments by means of one-dimensional Hale functional,
applied to u and z. Then the description becomes simple but sufficiently
general. This approach, despite its simplicity, is surprisingly feasible
in mathematical biology. It is worth mentioning that the results of our
paper are new even for classical arguments. Our paper is the first work
in which there are such unified Hale functionals for u and z. One can
raise the question whether anything is missing when solutions u, z are
considered in the subclass of continuous functions instead the whole
space L∞ ∩L1, while it is more natural to consider integrable densities
u in the biological modeling. The main reason of this restriction lies in
the method of the proof where the class of continuous functions seems
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to be unavoidable. On the other hand, having proved existence results
for continuous functions, we can consider problem (1)–(4) with the
initial function of the class L1. This initial function is approximated
by continuous functions of the class L1. This gives a sequence of
approximate solutions which converges weakly to the unique solution
of our problem. Since our paper is very extensive and technical, we do
not intend to provide any details of this corollary.

The aim of this paper is to look for Carathéodory’s solutions to (1)–
(4), i.e., continuous functions u : Ea → R+ which satisfy (1) almost
everywhere on E, their derivatives ∂tu, ∂xu exist almost everywhere
on E, and conditions (2), (4) hold. Condition (3) can be regarded
as a definition of z(t) by means of u(t, ·). In the present paper we
understand that the solutions to problem (1)–(4) consist of pairs (u, z)
such that u is the Carathéodory solution and z is given by (4). We
recall its biological interpretation: (u, z) means the density and total
size of the population. We focus on equivalent integral equations.

The paper is organized as follows. In Section 2, we introduce bicha-
racteristics of the hyperbolic equation and give their basic properties.
We also formulate main assumptions and define the space of admissible
functions, where the solution of problem (1)–(4) will be found. In
Section 3, we prove the main existence and uniqueness theorem by
virtue of the Banach contraction principle. The space of admissible
functions is mapped into the same space. The integral operator is
a contraction with respect to a Bielecki type norm. Because of the
number of technical details the proofs of auxiliary lemmas are collected
in the last section.

2. Preliminaries. We start with the formulation of characteristic
equations and an analysis of u along these characteristics. For a
given continuous function z : [−τ, a] → R+, consider the characteristic
equations for problem (1)–(2):

(5)
d

ds
η(s) = c (s, η(s), zs) , η(t) = x,

where (t, x) ∈ E. Let η(·) = η[z](·; t, x) be the characteristic curve
passing through the point (t, x) ∈ E, i.e., the solution of (5) in
the Carathéodory sense, cf., [30]. We denote the maximal existence
interval of η[z](·; t, x) by [α, a], where α = α[z](t, x). It is clear that
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either α = 0 or α ∈ (0, a]. If α = 0, then the characteristic curve starts
from (0, η(0)). If α > 0, then it starts from (α, 0). Equation (1) along
a characteristic η(·) = η[z](·; t, x) is rewritten in the form

(6)
d

ds
u(s, η(s)) = u(s, η(s))λ(s, η(s), us(·, η(s)), zs)

with the initial and boundary condition

u(α, η(α)) =


φ(α, η(α)) for α = 0,∫ ∞

0

K(α, y)ut(α, y) dy for α > 0.

If α = α[z](t, x) = 0, then equation (6) is accompanied by the initial
condition (2). If α = α[z](t, x) > 0, then (6) is equipped with the
boundary condition (3). Denote by η0 the characteristic which starts
from (0, 0), i.e., η0(t) = η[z](t; 0, 0).

Remark 2.1. The differential equation (5) leads to the integral equa-
tion

(7) η[z](s; t, x) = x−
∫ t

s

c(ζ, η[z](ζ; t, x), zζ) dζ.

We denote by Cb(X,Y ) the space of all continuous and bounded
functions. By L1(X,Y ), we understand the space of all integrable
functions with a natural L1-norm, denoted by ∥ · ∥1. The symbol ∥ · ∥
stands for any supremum norm. We need the following assumptions.

Assumption [φ]. Suppose that:

1. φ ∈ Cb(E0,R+), φ(t, ·) ∈ L1(R+,R+) for t ∈ [−τ, 0], and the
function [−τ, 0] ∋ t 7→

∫∞
0

φ(t, x) dx is continuous and

∥φ∥∞,1 :=

∫ ∞

0

sup
t′∈[−τ,0]

φ(t′, x) dx < ∞.

2. There is a constant Lφ > 0 such that:

|φ(t, x)− φ(t, x)| ≤ Lφ|x− x| on E0.

Assumption [c]. Suppose that:
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1. the function c : E ×C+ → R is bounded and measurable in t ∈ [0, a]
for every (x, q) ∈ R+ × C+,

2. |c(t, x, q) − c(t, x, q)| ≤ Lc(t)(|x − x| + ∥q − q∥) on E × C+, where
Lc ∈ L1([0, a],R+),

3. the function c satisfies the estimates

ĉ(t) ≥ ∥c(t, x, q)∥ on E × C+

and
c(t, x, q) ≥ ε0ĉ(t) for 0 ≤ t ≤ a,

0 ≤ x ≤
∫ t

0

ĉ(s) ds,

with some ε0 ∈ (0, 1) and ĉ ∈ L1([0, a],R+).

Concerning Assumption [c, 3], notice that the function c must be
strictly positive near the lateral boundary, in reach of characteristic
curves which start from this boundary. The condition c ≥ 0 is natural
in mathematical biology, when c describes ageing or maturation, see
examples in [15, 21]. In size-structured population models, the renewal
condition may occur not only at 0, but also at other points. All
newborns have the same age 0 but not the same size. Our general
model refers to the classical Kermack-McKendrick-von Foerster model
with c = const > 0, [14]. Assumption [c, 3] is not satisfied in the
Lasota model ([21]), where c(t, x, q) = x, hence c(t, 0, q) = 0. Our
results can be generalized to the case of the nonlocal and nonlinear
renewal condition

c(t, 0, zt)u(t, 0) =

∫
K(t, x, zt)ut(·, x) dx,

see [4]. Under our assumption c(t, 0, q) > 0, the coefficient c(t, 0, zt)
can be incorporated in K; hence, we can write it as follows

u(t, 0) =

∫
K(t, x, zt)ut(·, x) dx.

The results of our paper carry over to equation (1) with such renewal
conditions. Due to the large number of details we omit the generaliza-
tion.

Assumption [λ]. Suppose that the function λ : E × C+ × C+ → R
satisfies the conditions:
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1. λ is Lebesgue integrable in t ∈ [0, a] for every (x,w, q) ∈ R+ ×C+ ×
C+,

2. there is Lλ ∈ L1([0, a],R+) such that

|λ(t, x, w, q)− λ(t, x, w, q)|
≤ Lλ(t)(|x− x|+ ∥w − w∥+ ∥q − q∥)

for t ∈ [0, a], x, x ∈ R+, w,w, q, q ∈ C+,
3. there exists Mλ ∈ L1([0, a],R+) such that

|λ(t, x, w, q)| ≤ Mλ(t) for (t, x) ∈ E, w, q ∈ C+.

Denote

(8) W (t, x, w, q) = λ(t, x, w, q) + ∂xc(t, x, q)

for (t, x) ∈ E, w, q ∈ C+.
Assumption [W ]. Suppose that W : E × C+ × C+ → R satisfies the
conditions:

1. W is Lebesgue integrable in t ∈ [0, a] for every (x,w, q) ∈ R+×C+×
C+,

2. there exists LW ∈ L1([0, a],R+) such that

|W (t, x, w, q)−W (t, x, w, q)| ≤ LW (t)(|x− x|+ ∥w − w∥+ ∥q − q∥)

for t ∈ [0, a], x, x ∈ R+, w,w, q, q ∈ C+,
3. there is MW ∈ L1([0, a],R+) such that

|W (t, x, w, q)| ≤ MW (t) for (t, x) ∈ E, w, q ∈ C+.

Assumption [K]. Suppose that:

(1) ∥K(t, x)∥C∗
+
≤ κ on E for some constant κ ∈ R+, where ∥ · ∥C∗

+

is the standard functional norm,
(2) K is absolutely continuous on E in the following sense:

∥K(t, x)−K(t, x)∥C∗
+
≤ LK

[∣∣∣∣ ∫ t

t

ĉ(s) ds

∣∣∣∣+ |x− x|
]

with some LK ∈ R+ and the function ĉ from Assumption [c].

Assumption [L,M ]. The functions Lc/ĉ, Lλ/ĉ, LW /ĉ Mλ/ĉ, MW /ĉ
are bounded on [0, a].
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Remark 2.2. The most convenient realization of Assumption [L,M ]
can be achieved by the substitution Lc = const. ĉ, Lλ = const. ĉ,
LW = const. ĉ, Mλ = const. ĉ, MW = const. ĉ. In particular, one
can put Lc = Lλ = LW = Mλ = MW = ĉ.

3. Main results. Now we are ready to define a space X of admis-
sible functions in terms of constants from the previous assumptions,
where a priori estimates of solutions to (1)–(4) are fulfilled.

Definition 3.1. We say that a pair (u, z) belongs to X if and only if
u : Ea → R+ and z : [−τ, a] → R+ are continuous and

1. (u, z) satisfies conditions (2) and (4),
2. u(t, 0) ≤ κZ(t), z(t) ≤ Z(t), u(t, x) ≤ U(t) for t ∈ [0, a] and x ∈ R+,

where

Z(t) = ∥φ∥∞,1 exp

(∫ t

0

[κ ĉ(s) +MW (s)] ds

)
,

U(t) = exp

(∫ t

0

Mλ(s) ds

)
max {∥φ∥, κZ(t)} ,

3. |u(t, 0)− u(t, 0)| ≤ Gu

∫ t

t
ĉ(s) ds for 0 ≤ t ≤ t ≤ a, where

Gu =

{
κ2Z(a) +

[
2LK + κ2Z(a)

∥∥∥∥MW

ĉ

∥∥∥∥ ]
×
[ ∫ a

0

ĉ(s) ds+ ∥φ∥∞,1

]}
exp

(∫ a

0

MW (s) ds

)
,

4. |u(t, x) − u(t, x)| ≤ Lu(t) |t − x| for t ∈ [0, a] and x, t ∈ R+, where
Lu is given by

Lu(t) = −1 + (1 + Lu(0))

× exp

{
[κZ(a) + ∥φ∥]

∫ t

0

Lλ(s) ds

× exp

(∫ a

0

(Lc(s) +Mλ(s)) ds

)}
,
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where

Lu(0) =

{
Lφ +

Gu + κZ(a)∥Mλ/ĉ∥
ε0

}
exp

(∫ a

0

(Lc(s) +Mλ(s)) ds

)
.

Remark 3.2. If u : Ea → R+ is a bounded, continuous and integrable
function, then the corresponding function z : [−τ, a] → R+ is measur-
able and bounded. However, for (u, z) ∈ X , the function z has an
enhanced regularity, so that it becomes absolutely continuous on [0, a].
In fact, the function z is as regular as u(·, 0) on [0, a].

Let us formulate the main result of this paper.

Theorem 3.3. Suppose that Assumptions [φ], [c], [λ], [W ], [K] and
[L,M ] are satisfied. Then there exists exactly one solution (u, z) of
problem (1)–(4) in the class X .

Our main existence theorem will be proved by means of the Banach
contraction principle in the space X . Suppose that (u, z) ∈ X . We
construct a new pair of functions (ũ, z̃) via the renewal condition (3)
as follows. Suppose that η = η[z](·; t, x) is a characteristic determined
by the Cauchy problem (5). Denote

Pu,z
t,x (s) := (s, η[z](s; t, x), us(·, η[z](s; t, x)), zs) .

Let ũ(t, 0) for t ∈ [0, a] be the solution of the following Volterra integral
equation

ũ(t, 0) =

∫ t

0

K(t, η[z](t; ξ, 0)) ũξ(·, 0) c(ξ, 0, zξ)

× exp

(∫ t

ξ

W
(
Pu,z
ξ,0 (s)

)
ds

)
dξ

+

∫ ∞

0

K(t, η[z](t; 0, y))φ(·, y)

× exp

(∫ t

0

W
(
Pu,z
0,y (s)

)
ds

)
dy,

(9)

where W is defined by (8). The explanation of the changes of variables
x 7→ ξ and x 7→ y is given in Remark 4.2 at the very end of the paper.
Because the Volterra integral equation (9) provides a natural boundary
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condition, the function ũ on the whole set E will be the only solution
of the PDE:

∂tũ(t, x) + c (t, x, zt) ∂xũ(t, x) = ũ(t, x)λ (t, x, ut(·, x), zt)

with the initial condition ũ = φ on E0. Considering this problem along
the characteristics satisfying (5), we get its solution by the explicit
formula

(10) ũ(t, x) = ũ(α, η[z](α; t, x)) exp

(∫ t

α

λ
(
Pu,z
t,x (s)

)
ds

)
for (t, x) ∈ E, where α = α[z](t, x). According to (4), we have

z̃(t) =

∫ ∞

0

ũ(t, x) dx for t ∈ [−τ, a].

This way we have constructed an integral operator T which maps a pair
of functions (u, z) to a pair (ũ, z̃) = T (u, z). By virtue of the Banach
contraction principle we show that the operator T has exactly one fixed
point (u, z) ∈ X . This fixed point satisfies the differential-functional
problem (1)–(4). This goal will be achieved in three auxiliary lemmas:

(1) If (u, z) ∈ X , then T (u, z) satisfies conditions 1–2 of Defini-
tion 3.1,

(2) T (u, z) satisfies conditions 3–4 of Definition 3.1,
(3) the operator T : X → X is a contraction.

Because of multitudes of technical details we relegate the proofs of these
lemmas to the next section.

Lemma 3.4. Suppose that Assumptions [c, 3], [λ, 3], [W, 3] and [K, 1]
are satisfied. If (u, z) ∈ X , then ũ is bounded and continuous, the pair
(ũ, z̃) = T (u, z) satisfies condition (4), and the following estimates hold
true:

0 ≤ ũ(t, 0) ≤ κZ(t),

z̃(t) ≤ Z(t),

ũ(t, x) ≤ U(t) for (t, x) ∈ E.

Lemma 3.5. Suppose that Assumptions [φ], [c], [λ], [W ], [K] and
[L,M ] are satisfied. If (u, z) ∈ X , then the pair (ũ, z̃) = T (u, z)
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satisfies the conditions

|ũ(t, 0)− ũ(t, 0)| ≤ Gu

∫ t̄

t

ĉ(s) ds for 0 ≤ t ≤ t ≤ a,

|ũ(t, x)− ũ(t, x)| ≤ Lu(t) |x̄− x| for t ∈ [0, a], x, x ∈ R+,

where Gu and Lu(t) are the same as in Definition 3.1, 3–4.

Definition 3.6. The Bielecki norm is given by

∥(u, z)∥B = max{∥u/B∥, ∥z/B∥},

where B = B(t), and B : R+ → R+ is a positive, continuous, nonde-
creasing function. The meaning of the supremum norms ∥u/B∥ and
∥z/B∥ is obvious, see [1].

Lemma 3.7. Suppose that Assumptions [φ], [c], [λ], [W ], [K] and
[L,M ] are satisfied. Then the operator T : X → X is a contraction
with respect to a Bielecki norm ∥ · ∥B for some B : R+ → R+, that is:
there is a Θ ∈ (0, 1) such that

∥T (u, z)− T (u, z)∥B ≤ Θ∥(u, z)− (u, z)∥B on X .

In fact, for any Θ ∈ (0, 1), we can find a function B of the form

B(t) = exp(C
∫ t

0
ĉ(s) ds) such that the above contraction inequality

holds true.

Corollary 3.8. If the functions λ, c and ∂xc are bounded and continu-
ous; λ is Lipschitz continuous in x, p, q; c and ∂xc are Lipschitz continu-
ous in x, q; K is nonnegative and Lipschitz continuous; c is nonnegative
on E; c(t, x, q) ≥ ε1 > 0 for all t ∈ [0, a] and x ∈ [0, tx0/a] with some
x0 > 0; φ is Lipschitz continuous and satisfies Assumption [φ], then
there is a solution to (1)–(4) which is Lipschitz continuous with respect
to both variables t, x.

Proof. All assumptions of Theorem 3.3 are satisfied with the func-
tions Mλ, MW , Lλ, LW , ĉ, Lc that are constant. Observe that
ε0 = ε1/ĉ, that is, Assumption [c, 3] is also satisfied. Since the func-
tions mentioned above are constant, the functions α[z], η[z] and u(·, 0)
inherit the Lipschitz continuity with respect to t. Therefore, using (10),
we obtain that u is Lipschitz continuous. �
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Corollary 3.9. Suppose that the assumptions of Corollary 3.8 are
satisfied. If φ, c and K are C1 functions, then the solution of (1)–
(4) is a C1 function in the whole domain E, except the characteristic
curve which starts from (0, 0).

Proof. Since the initial function φ is of the class C1 and (ũ, z̃) =
T (u, z) ∈ X , it follows from (10) that ũ is of the class C1 for (t, x) such
that x > η0(t), t ∈ [0, a]. Due to the Volterra integral equation (9),
C1-regularity of K results in the same regularity of ũ for x < η0(t),
t ∈ [0, a], provided that α[z] is C1, which follows from the smoothness
property of the function c. �

4. Proofs of lemmas.

Proof of Lemma 3.4. Let t ∈ [0, a]. It follows from the Volterra
equation (9) that

ũ(t, 0) ≤ κ

∫ t

0

ĉ(ξ) ∥ũξ(·, 0)∥ exp

(∫ t

ξ

MW (s) ds

)
dξ

+ κ ∥φ∥∞,1 exp

(∫ t

0

MW (s) ds

)
.

Since the right-hand side is increasing with respect to t, the left-hand
side can be replaced by ∥ũt(·, 0)∥. Applying the Gronwall lemma, we
get the inequality

∥ũt(·, 0)∥ exp

(
−
∫ t

0

MW (s) ds

)
≤ κ ∥φ∥∞,1 exp

(∫ t

0

κĉ(s) ds

)
.

Therefore, we have ũ(t, 0) ≤ κZ(t), where Z(t) is described in Defini-
tion 3.1 2. Since z̃ has the estimate

z̃(t) ≤
∫ t

0

κZ(ξ) ĉ(ξ)

× exp

(∫ t

ξ

MW (s) ds

)
dξ + ∥φ∥∞,1 exp

(∫ t

0

MW (s) ds

)
,

it is easy to observe that z̃(t) ≤ Z(t).

Now we show the estimate for ũ(t, x). From (10), we deduce that
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1) if x ≥ η0(t), then

ũ(t, x) = φ(0, η[z](0; t, x)) exp

(∫ t

0

λ
(
Pu,z
t,x (s)

)
ds

)
≤ ∥φ∥ exp

(∫ t

0

Mλ(s) ds

)
;

2) if x ≤ η0(t), then

ũ(t, x) = u(α, 0) exp

(∫ t

α

λ
(
Pu,z
t,x (s)

)
ds

)
≤ κZ(α) exp

(∫ t

α

Mλ(s) ds

)
= κ ∥φ∥∞,1 exp

(∫ α

0

[κ ĉ(s) +MW (s)] ds

)
× exp

(∫ t

α

Mλ(s) ds

)
≤ κ ∥φ∥∞,1 exp

(∫ t

0

max {κ ĉ(s) +MW (s), Mλ(s)} ds

)
,

where α = α[z](t, x). Both estimates in cases 1) and 2) can be unified
as follows

ũ(t, x) ≤ max {∥φ∥, κ ∥φ∥∞,1}

× exp

(∫ t

0

max {κ ĉ(s) +MW (s), Mλ(s)} ds

)
,

hence ũ(t, x) ≤ U(t) on E. Regularity assertions and condition (4) for
ũ, z̃ are trivial. This completes the proof. �

Proof of Lemma 3.5. Let (u, z) ∈ X . In order to demonstrate the
Lipschitz condition of ũ(t, ·) and the absolute continuity of ũ(·, 0), we
analyze properties of η[z] and α[z]. Take arbitrary (t, x) ∈ E and
x ∈ R+.

Step 1. Estimate of increments of η for x and x. We derive from
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(7) the integral inequality

|η[z](s; t, x)− η[z](s; t, x)| ≤ |x− x|

+

∣∣∣∣ ∫ t

s

Lc(ζ) |η[z](ζ; t, x)− η[z](ζ; t, x)| dζ
∣∣∣∣.

Applying the Gronwall lemma, we get

|η[z](s; t, x)− η[z](s; t, x)| ≤ |x− x| exp
(∣∣∣∣ ∫ t

s

Lc(ζ) dζ

∣∣∣∣).
Step 2. Estimate of increments of η for t and t. From (7), we get

the inequality

|η[z](s; t, x)− η[z](s; t, x)| ≤
∫ t

t

ĉ(ζ) dζ

+

∣∣∣∣ ∫ t

s

Lc(ζ)
∣∣η[z](ζ; t, x)− η[z](ζ; t, x)

∣∣ dζ∣∣∣∣
for 0 ≤ t ≤ t ≤ a. Applying the Gronwall lemma, we get

|η[z](s; t, x)− η[z](s; t, x)| ≤
∫ t

t

ĉ(ζ) dζ exp

(∣∣∣∣ ∫ t

s

Lc(ζ) dζ

∣∣∣∣).
Similarly, we have

|η[z](s; t, x)− η[z](s; t, x)| =
∣∣∣∣ ∫ s

s

c(ζ, η[z](ζ; t, x), zζ) dζ

∣∣∣∣
≤

∣∣∣∣ ∫ s

s

ĉ(ζ) dζ

∣∣∣∣.
Step 3. Estimate of some integrals. By the definition of α =

α[z](t, x), we have the integral identity

0 = x−
∫ t

α

c(ζ, η[z](ζ; t, x), zζ) dζ for α > 0.

Denote α = α[z](t, x). Suppose that α ≤ α. Then we have

0 = x−
∫ t

ᾱ

c(ζ, η[z](ζ; t, x), zζ) dζ.
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If we subtract these identities, then∣∣∣∣ ∫ ᾱ

α

c(ζ, η[z](ζ; t, x), zζ) dζ

∣∣∣∣
≤ |x− x|+

∫ t

α

Lc(ζ) |η[z](ζ; t, x)− η[z](ζ; t, x)| dζ.

Applying Assumption [c, 2, 3] and Step 1 we get

ε0

∫ ᾱ

α

ĉ(ζ) dζ ≤ |x− x|+
∫ t

α

Lc(ζ) |x− x| exp
(∫ t

ζ

Lc(s) ds

)
dζ.

Consequently, we have

ε0

∫ ᾱ

α

ĉ(ζ) dζ ≤ |x− x| exp
(∫ t

α

Lc(ζ) dζ

)
.

Step 4. Estimate of increments of λ and W along characteristics.
Since u(s, ·) is Lipschitz continuous, we get

|u(s, η[z](s; t, x))− u(s, η[z](s; t, x))|
≤ Lu(s) |η[z](s; t, x)− η[z](s; t, x)|

≤ Lu(s) |x− x| exp
(∫ t

s

Lc(ζ) dζ

)
for 0 ≤ s ≤ t. This inequality is applied to the estimates of increments
of λ and W ; in particular, we have∣∣∣λ(Pu,z

t,x (s))− λ
(
Pu,z
t,x (s)

)∣∣∣
≤ Lλ(s) |η[z](s; t, x)− η[z](s; t, x)|
+ Lλ(s) |u(s, η[z](s; t, x))− u(s, η[z](s; t, x))|

≤ Lλ(s) |x− x| (1 + Lu(s)) exp

(∫ t

s

Lc(ζ) dζ

)
for 0 ≤ s ≤ t. The estimate of |W (Pu,z

t,x (s))−W (Pu,z
t,x (s))| is similar.

Step 5. Estimate of ũ(t, 0)− ũ(t, 0). Take t ≤ t. From (9), we obtain
the inequality

|ũ(t, 0)− ũ(t, 0)| ≤
∫ t̄

t

∥∥K(t, η[z](t; ξ, 0))
∥∥
C∗
+

∥ũξ(·, 0)∥ c(ξ, 0, zξ)
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× exp

(∫ t̄

ξ

W
(
Pu,z
ξ,0 (s)

)
ds

)
dξ

+

∫ t

0

∥∥K(t, η[z](t; ξ, 0))−K(t, η[z](t; ξ, 0))
∥∥
C∗
+

× ∥ũξ(·, 0)∥ c(ξ, 0, zξ)

× exp

(∫ t̄

ξ

W
(
Pu,z
ξ,0 (s)

)
ds

)
dξ

+

∫ t

0

∥K(t, η[z](t; ξ, 0))∥C∗
+
∥ũξ(·, 0)∥ c(ξ, 0, zξ)

×
∣∣∣∣ exp(∫ t̄

ξ

W
(
Pu,z
ξ,0 (s)

)
ds

)
− exp

(∫ t

ξ

W
(
Pu,z
ξ,0 (s)

)
ds

)∣∣∣∣ dξ
+

∫ ∞

0

∥∥∥K(t, η[z](t; 0, y))

−K(t, η[z](t; 0, y))
∥∥∥
C∗
+

∥φ(·, y)∥

× exp

(∫ t̄

0

W
(
Pu,z
0,y (s)

)
ds

)
dy

+

∫ ∞

0

∥K(t, η[z](t; 0, y))∥C∗
+
∥φ(·, y)∥

×
∣∣∣∣ exp(∫ t̄

0

W
(
Pu,z
0,y (s)

)
ds

)
− exp

(∫ t

0

W
(
Pu,z
0,y (s)

)
ds

)∣∣∣∣ dy.
Applying Lemma 3.4, Step 4 and Assumptions [K], [c, 3] and [W, 3], we
obtain

|ũ(t, 0)− ũ(t, 0)| ≤ κ2

∫ t̄

t

Z(ξ) ĉ(ξ) exp

(∫ t̄

ξ

MW (s) ds

)
dξ

+ κLK

∫ t

0

[ ∫ t̄

t

ĉ(s) ds
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+ |η[z](t; ξ, 0)− η[z](t; ξ, 0)|
]
Z(ξ) ĉ(ξ)

× exp

(∫ t̄

ξ

MW (s) ds

)
dξ

+ κ2

∫ t

0

Z(ξ) ĉ(ξ)

∫ t̄

t

∣∣∣W (
Pu,z
ξ,0 (s)

)∣∣∣ ds
× exp

(∫ t̄

ξ

MW (s) ds

)
dξ

+ LK

∫ ∞

0

[ ∫ t̄

t

ĉ(s) ds

+ |η[z](t; 0, y)− η[z](t; 0, y)|
]
∥φ(·, y)∥

× exp

(∫ t̄

0

MW (s) ds

)
dy

+ κ

∫ ∞

0

∥φ(·, y)∥
∫ t̄

t

∣∣W (
Pu,z
0,y (s)

)∣∣ ds
× exp

(∫ t̄

0

MW (s) ds

)
dy.

By the last inequality from Step 2 we arrive at condition 4 for ũ:

|ũ(t, 0)− ũ(t, 0)| ≤ Gu

∫ t̃

t

ĉ(s) ds,

where Gu is the same as in Definition 3.1 3.

Step 6. Estimates of increments of ũ for x and x. Denote α =
α[z](t, x) and α = α[z](t, x). If α = α = 0, then Assumptions [φ] and
[λ, 3], together with Steps 1 and 4, applied to equation (10), imply the
estimates

|ũ(t, x)− ũ(t, x)| ≤ Lφ |η[z](0; t, x)− η[z](0; t, x)| exp
(∫ t

0

Mλ(s) ds

)
+ ∥φ∥ exp

(∫ t

0

Mλ(s) ds

)
×

∫ t

0

Lλ(s) |x− x| (1 + Lu(s))
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× exp

(∫ t

s

Lc(ζ) dζ

)
ds

≤ |x− x| exp
(∫ t

0

(Lc(s) +Mλ(s)) ds

)
×

{
Lφ + ∥φ∥

∫ t

0

Lλ(s)(1 + Lu(s)) ds

}
.

If 0 < α < α, then, utilizing Step 4, we obtain

|ũ(t, x)− ũ(t, x)| ≤ Gu

∫ ᾱ

α

ĉ(s) ds exp

(∫ t

ᾱ

Mλ(s) ds

)
+ κZ(α) exp

(∫ t

α

Mλ(s) ds

)
×

{∫ ᾱ

α

Mλ(s) ds+

∫ t

ᾱ

Lλ(s) |x̄− x| (1 + Lu(s))

× exp

(∫ t

s

Lc(ζ) dζ

)
ds

}
.

By Step 3, we have∫ ᾱ

α

ĉ(s) ds ≤ 1

ε0
|x− x| exp

(∫ t

α

Lc(s) ds

)
.

Hence, we get the inequality

|ũ(t, x)− ũ(t, x)| ≤ |x− x| exp
(∫ t

0

(Lc(s) +Mλ(s)) ds

)
×

{
Gu

ε0
+ κZ(a)

[
∥Mλ/ĉ∥

ε0
+

∫ t

0

Lλ(s) (1 + Lu(s)) ds

]}
.

For arbitrary x, x ∈ R+, one can find an intermediate point x∗ between
them such that the differences |ũ(t, x)− ũ(t, x∗)| and |ũ(t, x∗)− ũ(t, x)|
have the upper bounds from the above two cases. Thus, we deduce the
desired inequality

|ũ(t, x)− ũ(t, x)| ≤ Lu(t) |x− x|

for all x, x ∈ R+, where Lu is defined in Definition 3.1 4. �
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Remark 4.1. The function Lu from Definition 3.1 4 satisfies the
following integral equation:

Lu(t) = exp

(∫ a

0

(Lc(s) +Mλ(s)) ds

)
×
{
Lφ +

Gu + κZ(a) ∥Mλ/ĉ∥
ε0

+ [κZ(a) + ∥φ∥]

×
∫ t

0

Lλ(s) (1 + Lu(s)) ds

}
.

Proof of Lemma 3.7. Take any (u, z), (u, z) ∈ X and (t, x) ∈ E. Let
B : [0, a] → R be a positive, continuous and nondecreasing function
whose precise specification will be given later.

Step 1. Estimate of increments of η for z and z. By the Gronwall
lemma, we get

|η[z](s; t, x)− η[z](s; t, x)|

≤ ∥(z − z)/B∥
∣∣∣∣ ∫ t

s

B(ζ)Lc(ζ) dζ exp

(∫ t

s

Lc(ζ) dζ

)∣∣∣∣
whenever s belongs to the domains of both characteristics.

Step 2. Estimate of some integrals for α[z] and α[z]. Denote
α = α[z](t, x) and α = α[z](t, x). Assume that 0 < α < α. Applying
(7) to both characteristics and Assumption [c, 3], we obtain the estimate

ε0

∫ ᾱ

α

ĉ(s) ds

≤
∫ t

α

Lc(s) {|η[z](s; t, x)− η[z](s; t, x)|+ ∥zs − zs∥} ds

≤ ∥(z − z)/B∥
∫ t

α

Lc(s)

{∫ t

s

B(ζ)Lc(ζ) dζ

× exp

(∫ t

s

Lc(ζ) dζ

)
+B(s)

}
ds.

The second inequality is a simple consequence of Step 1.

Step 3. Estimate of increments of λ and W along characteristics.
We start with the difference of u and u taken along their characteristics
η[z] and η[z]. Using the function Lu, defined by the formula in
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Remark 4.1, we get

|u(s, η[z](s; t, x))− u(s, η[z](s; t, x))|
≤ ∥(u− u)/B∥B(s)

+ Lu(s) ∥(z − z)/B∥
∣∣∣∣ ∫ t

s

B(ζ)Lc(ζ) dζ exp

(∫ t

s

Lc(ζ) dζ

)∣∣∣∣.
By Assumption [λ, 2] and the above inequality, we obtain∣∣∣λ(Pu,z

t,x (s)
)
−λ

(
Pu,z
t,x (s)

)∣∣∣ ≤ Lλ(s)

{
(1 + Lu(s)) ∥(z − z)/B∥

×
∣∣∣∣ ∫ t

s

B(ζ)Lc(ζ) dζ exp

(∫ t

s

Lc(ζ) dζ

)∣∣∣∣
+ ∥(u− u)/B∥B(s) + ∥(z − z)/B∥B(s)

}
.

A similar estimate can be derived for increments of W .

Step 4. Estimate of ũ(t, 0)− ũt, 0). From (9), we have

|ũ(t, 0)− ũ(t, 0)|

≤ κLK

∫ t

0

|η[z](t; ξ, 0)− η[z](t; ξ, 0)|Z(ξ) ĉ(ξ)

× exp

(∫ t

ξ

MW (s) ds

)
dξ

+ κ

∫ t

0

∥ũξ(·, 0)− ũξ(·, 0)∥ ĉ(ξ)

× exp

(∫ t

ξ

MW (s) ds

)
dξ

+ κ2

∫ t

0

Z(ξ)Lc(ξ) ∥zξ − zξ∥

× exp

(∫ t

ξ

MW (s) ds

)
dξ

+ κ2

∫ t

0

Z(ξ)ĉ(ξ)

∣∣∣∣ exp(∫ t

ξ

W
(
P ū,z̄
ξ,0 (s)

)
ds

)
− exp

(∫ t

ξ

W
(
Pu,z
ξ,0 (s)

)
ds

)∣∣∣∣ dξ
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+ LK

∫ ∞

0

|η[z](t; 0, y)− η[z](t; 0, y)| ∥φ(·, y)∥

× exp

∣∣∣∣( ∫ t

0

MW (s) ds

)
dy

+ κ

∫ ∞

0

∥φ(·, y)∥
∣∣∣∣ exp(∫ t

0

W
(
Pu,z
0,y (s)

)
ds

)
− exp

(∫ t

0

W
(
Pu,z
0,y (s)

)
ds

)∣∣∣∣ dy.
Applying the Gronwall inequality, we get

|ũ(t, 0)− ũ(t, 0)| ≤ C0 ∥(u− u, z − z)∥B
∫ t

0

ĉ(s)B(s) ds

with a positive constant C0 depending on the data. Applying the same
technique to (12), we get the following estimate

|z̃(t)− z̃(t)| ≤ C1 ∥(u− u, z − z)∥B
∫ t

0

ĉ(s)B(s) ds.

Step 5. Estimate of ũ(t, x) − ũ(t, x). Denote α = α[z](t, x) and
α = α[z](t, x). If α = α = 0, then Assumptions [φ], [λ, 3] and Step 3
imply

|ũ(t, x)− ũ(t, x)| ≤ C2 ∥u− u, z − z)∥B
∫ t

0

ĉ(s)B(s) ds.

If 0 < α < α, then Assumption [λ, 3], previous Steps 2, 3, 4 and
Lemma 3.5 imply

|ũ(t, x)− ũ(t, x)| ≤ C3 ∥(u− u, z − z)∥B
∫ t

0

ĉ(s)B(s) ds.

In the third case 0 = α < α (or 0 = α < α) we consider the family of
functions

(uθ, zθ) := θ(u, z) + (1− θ)(ū, z̄) for θ ∈ [0, 1].

We analyze the mapping

[0, 1] ∋ θ 7−→ (α[zθ](t, x), η[zθ](α[zθ](t, x); t, x)) ,

whose values belong to the axes 0t and 0x. By the continuous de-
pendence there exists θ ∈ [0, 1] for which the point (0, 0) is attained.
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Then we have α[zθ](t, x) = 0; thus, η[zθ](0; t, x) = 0. Hence, we get an
intermediate point (ũθ, z̃θ) = T (uθ, zθ), for which we have

|ũθ(t, x)− ũ(t, x)| ≤ C2 ∥(uθ − u, zθ − z)∥B
∫ t

0

ĉ(s)B(s) ds

and

|ũ(t, x)− ũθ(t, x)| ≤ C3 ∥(u− uθ, z − zθ)∥B
∫ t

0

ĉ(s)B(s) ds.

Due to this observation, we can reduce the estimate of |ũ(t, x)− ũ(t, x)|
to the previous two cases

|ũ(t, x)− ũ(t, x)| ≤ |ũ(t, x)− ũθ(t, x)|+ |ũθ(t, x)− ũ(t, x)|

≤ (C2 + C3) ∥(u− u, z − z)∥B
∫ t

0

ĉ(s)B(s) ds.

Step 6. The Bielecki norm. Recall that (u, z), (u, z) ∈ X . In force
of Steps 4 and 5 we derive

|z̃(t)− z̃(t)|
B(t)

≤ ∥(u− u, z − z)∥B
C1

B(t)

∫ t

0

ĉ(s)B(s) ds

and

|ũ(t, x)− ũ(t, x)|
B(t)

≤ ∥(u − u, z − z)∥B
C2 + C3

B(t)

∫ t

0

ĉ(s)B(s) ds.

From these relations, we get

max

{
|ũ(t, x)− ũ(t, x)|

B(t)
,
|z̃(t)− z̃(t)|

B(t)

}
≤ ∥(u− u, z − z)∥B

C1 + C2 + C3

B(t)

∫ t

0

ĉ(s)B(s) ds.

Since we intend to estimate the right-hand side by Θ∥(u− u, z− z)∥B,
it suffices to solve the following elementary comparison equation

Θ + (C1 + C2 + C3)

∫ t

0

ĉ(s)B(s) ds = ΘB(t).
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Its solution is given by

B(t) = exp

(
C1 + C2 + C3

Θ

∫ t

0

ĉ(s) ds

)
.

Now it is seen that

∥(ũ− ũ, z̃ − z̃)∥B ≤ Θ ∥(u− u, z − z)∥B .

This completes the proof. �

Remark 4.2. We explain how formula (9) can be regarded as a fixed
point equation for the renewal condition (3). Based on (3) and (10),
we get

ũ(t, 0) =

∫ η0(t)

0

K(t, x) ũα(·, 0)

× exp

(∫ t

α

λ
(
Pu,z
t,x (s)

)
ds

)
dx

+

∫ ∞

η0(t)

K(t, x)φ(·, η[z](0; t, x))

× exp

(∫ t

0

λ
(
Pu,z
t,x (s)

)
ds

)
dx

(11)

for (t, x) ∈ E, where α = α[z](t, x). Using the appropriate change
of variables, i.e., ξ = α[z](t, x) to the first integral in (11) and y =
η[z](0; t, x) to the second integral, we obtain (9). Similar arguments
apply to the function z̃, for which we get the explicit formula

z̃(t) =

∫ t

0

ũ(ξ, 0) c(ξ, 0, zξ)

× exp

(∫ t

ξ

W
(
Pu,z
ξ,0 (s)

)
ds

)
dξ

+

∫ ∞

0

φ(0, y)

× exp

(∫ t

0

W
(
Pu,z
0,y (s)

)
ds

)
dy

(12)

for (t, x) ∈ E. These representations of ũ(t, 0) and z̃(t) are useful in
a priori estimates.
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