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CLASSIFICATION OF TOTALLY UMBILICAL ξ⊥

CR-SUBMANIFOLDS OF COSYMPLECTIC
MANIFOLDS

SIRAJ UDDIN, VIQAR AZAM KHAN AND CENAP OZEL

ABSTRACT. In [6], Cabras, Ianus and Pitis proved
that in a cosymplectic manifold there does not exist any
extrinsic sphere tangent to the structure vector field ξ.
We consider the structure vector field ξ normal to the
submanifold in the sense of Papaghiuc [12] and derive that a
totally umbilical CR-submanifold of a cosymplectic manifold
is either (i) totally geodesic, (ii) anti-invariant or (iii) an
extrinsic sphere.

1. Introduction. A submanifold M tangent to the structure vec-
tor field ξ is called a contact CR-submanifold if it admits a pair of
differentiable distributions D and D⊥ such that D is invariant and
its orthogonal complementary distribution D⊥ is anti-invariant, i.e.,
TM = D ⊕ D⊥ ⊕ ⟨ξ⟩ with ϕ(Dx) ⊆ Dx and ϕ(D⊥

x ) ⊂ T⊥
x M , for ev-

ery x ∈ M . Thus, a CR-submanifold M tangent to ξ is invariant if
D⊥ is identically zero and an anti-invariant if D is identically zero,
respectively. If neither D = {0} nor D⊥ = {0}, then M is a proper
CR-submanifold.

A submanifold M of a Riemannian manifold M̃ is said to be totally
umbilical if h(X,Y ) = g(X,Y )H. If h(X,Y ) = 0, for any X and Y
tangent to M , then M is said to be a totally geodesic submanifold. If
H = 0, then it is called a minimal submanifold.

A submanifold M of dimM ≥ 2 is said to be an extrinsic sphere
[7] if it is totally umbilical and has a non-zero parallel mean curvature
vector H.
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In [1], Bejancu studied the CR-submanifolds of a Kaehler mani-
fold. Later on, many research articles have been published on CR-
submanifolds for different structures [4]. These submanifolds are the
natural generalization of both holomorphic and totally real submani-
folds of a Kaehler manifold. Totally umbilical CR-submanifolds of a
Kaehler manifold have been studied by Bejancu [2], Chen (see [7, 8]),
and Deshmukh and Husain [9].

An odd-dimensional counterpart of a Kaehler manifold is given by a
cosymplectic manifold, which is locally a product of a Kaehler manifold
with a circle or a line [5]. Indeed, a cosymplectic structure on a

(2n + 1)−dimensional manifold M̃ is a normal almost contact metric

structure (ϕ, ξ, η, g) on M̃ such that the 1−form η and the fundamental
2−form Φ are closed (see [3, 10]). A trivial example of a cosymplectic
manifold is given by the product of a 2n-dimensional Kaehler manifold
with a 1-dimensional manifold.

The submanifolds of a cosymplectic manifold have been studied by
Ludden [10]. Later on, Cabras, Ianus and Pitis [6] proved that in a
cosymplectic manifold there does not exist any extrinsic sphere tangent
to the structure vector field ξ. Thus, to study extrinsic spheres in a
cosymplectic manifold, we consider the structure vector field ξ normal
to the submanifold in the sense of Papaghiuc, the submanifold in this
case is called a ξ⊥−submanifold [12].

For a totally umbilical contact CR-submanifold tangent to the struc-
ture vector filed ξ of a cosymplectic manifold we proved the following
theorem.

Theorem 1.1 ([13]). Let M be a totally umbilical CR-submanifold of a

cosymplectic manifold M̃ . Then at least one of the following statements
is true.

(i) M is totally geodesic,
(ii) the anti-invariant distribution D⊥ is one-dimensional, i.e.,

dimD⊥ = 1,

(iii) the mean curvature vector H ∈ Γ(µ).

In this paper we study a totally umbilical contact CR-submanifold
of a cosymplectic manifold when the structure vector field ξ is normal
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to the submanifold. We discuss all possible cases on the classification
of a totally umbilical ξ⊥ CR-submanifold of cosymplectic manifolds.

2. Preliminaries. Let M̃ be a (2n + 1)-dimensional smooth man-
ifold with an almost contact structure (ϕ, ξ, η), that is, ϕ is a (1, 1)
tensor field, ξ is a vector field and η is a 1-form, satisfying the following
properties

(2.1) ϕ2 = −I + η ⊗ ξ, ϕξ = 0, η ◦ ϕ = 0, η(ξ) = 1.

In this case we call (M̃, ϕ, ξ, η) an almost contact manifold. From [3],

there exists a Riemannian metric g on an almost contact manifold M̃
satisfying the following compatibility condition

(2.2) g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ).

for any X,Y tangent to M̃ .

From [3], we have the following definition. An almost contact
structure (ϕ, ξ, η) is said to be normal if [ϕ, ϕ] + 2dη ⊗ ξ vanishes

identically on M̃ , where

[ϕ, ϕ](X,Y ) = ϕ2[X,Y ] + [ϕX, ϕY ]− ϕ[ϕX, Y ]− ϕ[X,ϕY ]

is the Nijenhuis tensor of ϕ for any vector fields X, Y tangent to M̃ .

The fundamental 2-form Φ on M̃ is defined as Φ(X,Y ) = g(X,ϕY ),

for any vector fields X, Y tangent to M̃ . If Φ = dη, the almost
contact structure is called a contact structure. A normal almost contact
structure with Φ and η is called a cosymplectic structure. It is well
known that the cosymplectic structure is characterized by

(2.3) ∇̃Xϕ = 0 and ∇̃Xη = 0,

where ∇̃ is the Levi-Civita connection of g on M̃ . From (2.3), it follows

that ∇̃Xξ = 0.

If we denote the curvature tensor of a cosymplectic manifold M̃ by

R̃, then we have the following equalities

R̃(ϕX, ϕY )Z = R̃(X,Y )Z(2.4)
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and

R̃(X,Y )ϕZ = ϕR̃(X,Y )Z.

Let M be a submanifold of an almost contact metric manifold
M̃ with the induced metric g, and let ∇ and ∇⊥ be the induced
connections on the tangent bundle TM and the normal bundle T⊥M of
M , respectively. We denote by F(M) the algebra of smooth functions
on M and by Γ(TM) the F(M)-module of all smooth sections of a
vector bundle TM over M . Then, the Gauss and Weingarten formulae
are given by

(2.5) ∇̃XY = ∇XY + h(X,Y )

(2.6) ∇̃XN = −ANX +∇⊥
XN,

for each X, Y ∈ Γ(TM) and N ∈ Γ(T⊥M), where h is the second
fundamental form and AN is the shape operator for the immersion of

M into M̃ . They are related as

(2.7) g(h(X,Y ), N) = g(ANX,Y ),

where g denotes the Riemannian metric on M̃ as well as induced on
M . The mean curvature vector H on M is given by

(2.8) H =
1

m

m∑
i=1

h(ei, ei),

where m is the dimension of M and {e1, e2, . . . , em} is a local orthonor-
mal frame of the vector fields on M .

The covariant derivative of the second fundamental form h is defined
as

(2.9) (∇Xh)(Y, Z) = ∇⊥
X(h(Y, Z))− h(∇XY,Z)− h(Y,∇XZ).

The equations of Gauss and Codazzi are given, respectively, by

R(X,Y ;Z,W ) = R̃(X,Y ;Z,W ) + g(h(X,W ), h(Y, Z))(2.10)

− g(h(X,Z), h(Y,W )),

(2.11) R̃(X,Y ;Z,N) = g((∇Xh)(Y, Z), N)− g((∇Y h)(X,Z), N),
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where R denotes the curvature tensor of M ,

R(X,Y ;Z,W ) = g(R(X,Y )Z,W ),

for any X,Y, Z,W vector fields tangent to M and N normal to M .

By the definition of totally umbilical submanifold, the equations
(2.5), (2.6), (2.9), (2.10) and (2.11) reduce to the following five equa-
tions, respectively:

(2.12) ∇̃XY = ∇XY + g(X,Y )H,

(2.13) ∇̃XN = −g(H,N)X +∇⊥
XN,

(2.14) (∇Xh)(Y, Z) = g(Y, Z)∇⊥
XH,

R(X,Y ;Z,W ) = R̃(X,Y ;Z,W )(2.15)

+ α2{g(X,W )g(Y, Z)− g(X,Z)g(Y,W )}

(2.16) R̃(X,Y ;Z,N) = g(Y, Z)g(∇⊥
XH,N)− g(X,Z)g(∇⊥

Y H,N)

where α = ∥H∥2.

3. Totally umbilical ξ⊥ CR-submanifolds. Throughout this sec-
tion, the structure vector field ξ is normal to the submanifold M , and
we say that M is a ξ⊥ submanifold. Thus, in this case we define CR-
submanifolds as follows. A ξ⊥ submanifold M of an almost contact

metric manifold M̃ is called a ξ⊥ CR-submanifold if there exists a pair
of differentiable distributions D and D⊥ on M such that D is invariant
and its orthogonal complementary distribution D⊥ is anti-invariant,
i.e., TM = D ⊕ D⊥ with ϕ(Dx) ⊆ Dx and ϕ(D⊥

x ) ⊂ T⊥
x M , for ev-

ery x ∈ M . Thus, a ξ⊥ CR-submanifold M is invariant if D⊥ = {0}
and anti-invariant if D = {0}, respectively. If neither D = {0} nor
D⊥ = {0}, then M is a proper ξ⊥ CR-submanifold. In the case of a
ξ⊥ CR-submanifold of an almost contact metric manifold, the normal
bundle T⊥M is decomposed as

T⊥M = µ⊕ ⟨ξ⟩ ⊕ ϕD⊥.

Now we give the following main result for a totally umbilical ξ⊥

CR-submanifold.
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Theorem 3.1. Let M be a totally umbilical ξ⊥ CR-submanifold of a

cosymplectic manifold M̃ . Then M is one of the following.

(i) It is totally geodesic.
(ii) It is an anti-invariant submanifold.
(iii) It is an extrinsic sphere.

Here we note that case (iii) occurs when dimM is odd.

Proof. Here we consider the structure vector field ξ normal to M .
Then, by direct calculations as in Theorem 1.1 [13], we get the following
equality

(3.1) g(H,ϕZ)

{
1− g(Z,W )2

∥Z∥2∥W∥2

}
= 0,

for any Z,W ∈ Γ(D⊥). From (3.1), we obtain that either H = 0, which
is case (i) or H ̸= 0 and H ∈ Γ(µ⊕ ⟨ξ⟩) or H ̸= 0 and H /∈ Γ(µ⊕ ⟨ξ⟩).

Now, if H ̸= 0 and H ∈ Γ(µ ⊕ ⟨ξ⟩), then for any X ∈ Γ(D) and
N ∈ Γ(ϕD⊥), we have

∇̃XϕN = ϕ∇̃XN.

Using (2.12) and (2.13), we obtain

(3.2) ∇XϕN + g(X,ϕN)H = −g(H,N)ϕX + ϕ∇⊥
XN.

The second part of the left hand side and the first part of the right
hand side are zero by the orthogonality of two distributions; hence,
we get ∇XϕN = ϕ∇⊥

XN . This means that ∇⊥
XN ∈ Γ(ϕD⊥). Since

H ∈ Γ(µ⊕ ⟨ξ⟩), then

(3.3) 0 = g(∇⊥
XN,H) = −g(N,∇⊥

XH).

Thus, it follows from (3.3) that ∇⊥
XH ∈ Γ(µ⊕ ⟨ξ⟩), for any X ∈ Γ(D).

Also, for a cosymplectic manifold, we have

∇̃XϕH = ϕ∇̃XH.

Then, from (2.13), we derive

−g(ϕH,H)X +∇⊥
XϕH = −g(H,H)ϕX + ϕ∇⊥

XH.
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By orthogonality of H and ϕH, the above equation takes the form

(3.4) ∇⊥
XϕH = −g(H,H)ϕX + ϕ∇⊥

XH.

Hence, equation (3.4) gives ϕX = 0, for all X ∈ Γ(D), i.e., D = {0}.
This proves case (ii) of the theorem.

Now, suppose H ̸= 0 and H /∈ Γ(µ ⊕ ⟨ξ⟩). Then, again by (3.1),
we obtain dimD⊥ = 1. Also, if we consider dimM ≥ 5, then there
are at most two unit orthonormal vectors X,Y ∈ Γ(D) such that
g(X,Y ) = g(ϕX, ϕY ) = g(ϕX, Y ) = −g(X,ϕY ) = 0. Then, from
(2.16), we have

R̃(ϕY, ϕX;X,N) = 0,

for any non zero vector field N ∈ Γ(T⊥M). Using (2.4), we obtain

R̃(Y,X;X,N) = 0. Again, using (2.16), we deduce that g(∇⊥
Y H,N) =

0, for all Y ∈ Γ(D) and N ∈ Γ(T⊥M), this means that

(3.5) ∇⊥
Y H = 0, for all Y ∈ Γ(D).

Now, for any X ∈ Γ(D) and Z ∈ Γ(D⊥), from (2.16), we can derive

R̃(Z,X;ϕX,N) = 0, for any N ∈ Γ(µ ⊕ ⟨ξ⟩). Using (2.4), we obtain

R̃(Z,X;X,N) = 0. Then, from (2.16), we obtain g(∇⊥
ZH,N) = 0, for

any N ∈ Γ(µ⊕ ⟨ξ⟩), which implies that

(3.6) ∇⊥
ZH ∈ Γ(ϕD⊥), for all Z ∈ Γ(D⊥).

Also, from (2.16), we get R(Z,X;ϕX, ϕZ) = 0, for any X ∈ Γ(D) and

Z ∈ Γ(D⊥). Hence, by (2.4), we derive R̃(Z,X;X,ϕZ) = 0. Thus,
from (2.16), we obtain that g(∇⊥

ZH,ϕZ) = 0, for any Z ∈ Γ(D⊥), that
is

(3.7) ∇⊥
ZH ∈ Γ(µ⊕ ⟨ξ⟩), for all Z ∈ Γ(D⊥).

Then from (3.6) and (3.7), we conclude that ∇⊥
ZH ∈ Γ(µ ⊕ ⟨ξ⟩) ∩

Γ(ϕD⊥), i.e.,

(3.8) ∇⊥
ZH = 0, for all Z ∈ Γ(D⊥).

Equations (3.5) and (3.8) imply that ∇⊥
XH = 0, for all X ∈ Γ(TM).

Hence, by definition, M is an extrinsic sphere in M̃ . This completes
the proof of the theorem. �
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Given a Riemannian manifold M̃ , for any two linearly independent

vectors X, Y ∈ Γ(TM̃), the sectional curvature denoted by K̃(X,Y )
is defined as

(3.9) K̃(X,Y ) =
R̃(X,Y ;Y,X)

∥X∥2∥Y ∥2 − g(X,Y )2

where R̃ is the Riemannian curvature tensor. If X and Y are orthonor-
mal vector fields on M̃ , then their sectional curvature is

(3.10) K̃(X,Y ) = R̃(X,Y ;Y,X).

For a CR-submanifold M normal to the structure vector field ξ, the
plane section X ∧ Z with X ∈ Γ(D) and Z ∈ Γ(D⊥) is called a CR-

section. The sectional curvature K̃(X ∧ Z) of a CR-section X ∧ Z is
called a CR-sectional curvature. Now we are ready to give the following
result.

Theorem 3.2. Let M be a totally umbilical ξ⊥ CR-submanifold of

a cosymplectic manifold M̃ . Then all CR-sectional curvatures of M̃
vanish.

Proof. For a totally umbilical submanifold we have

R̃(X,Y ;Z,N) = g(Y,Z)g(∇⊥
XH,N)− g(X,Z)g(∇⊥

Y H,N),

for any X,Y, Z ∈ Γ(TM) and N ∈ Γ(T⊥M). In particular, if for any
unit vectors X ∈ Γ(D) and Z ∈ Γ(D⊥), then the above equation takes
the form

R̃(X,Z;ϕX, ϕZ) = 0.

Using the property of Riemannian curvature tensor, we obtain

R̃(ϕX, ϕZ;X,Z) = 0.

Then, from (2.4) and the property of Riemannian curvature tensor, we
get

(3.11) R̃(X,Z;X,Z) = −R̃(X,Z;Z,X) = 0.

Hence, by equations (3.10) and (3.11), we obtain K̃(X ∧Z) = 0 which
is the desired result. �
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