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FULL-DERIVABLE POINTS OF
J -SUBSPACE LATTICE ALGEBRAS

XIAOFEI QI AND JINCHUAN HOU

ABSTRACT. Let L be a J -subspace lattice on a complex
Banach space X and AlgL the associated J -subspace lattice
algebra. We say that an operator Z ∈ AlgL is a full-
derivable point of AlgL if every linear map δ from AlgL
into itself derivable at Z (i.e., δ(A)B + Aδ(B) = δ(Z) for
any A,B ∈ AlgL with AB = Z) is a derivation and is a
full-generalized-derivable point of AlgL if every linear map
δ from AlgL into itself generalized derivable at Z (i.e.,
δ(A)B + Aδ(B) − Aδ(I)B = δ(Z) for any A,B ∈ AlgL with
AB = Z) is a generalized derivation. In this paper, we prove
that if Z ∈ AlgL is an injective operator or an operator with
dense range, then Z is a full-derivable point as well as a
full-generalized-derivable point of AlgL.

1. Introduction. Let A be an algebra with unit I and δ : A → A
a linear map. Recall that a linear map δ from A into itself is called a
derivation if δ(AB) = δ(A)B + Aδ(B) for all A,B ∈ A and is called
a generalized derivation if δ(AB) = δ(A)B + Aδ(B) − Aδ(I)B for all
A,B ∈ A. As is well known, derivations and generalized derivations
are very important linear maps both in theory and applications, and
are studied intensively. The question under what conditions a linear
(even additive) map becomes a derivation or a generalized derivation
attracts much attention from mathematicians and has been studied
(for instance, see [1]). We say that δ is a map derivable at Z if
δ(A)B + Aδ(B) = δ(Z) for any A,B ∈ A with AB = Z and δ is a
map generalized derivable at Z if δ(AB) = δ(A)B + Aδ(B) − Aδ(I)B
for any A,B ∈ A with AB = Z. In addition, we say that an element
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Z ∈ A is a full-derivable point (a full-generalized-derivable point) ofA if
every linear map from A into itself which is derivable at Z (generalized
derivable at Z) is in fact a derivation (a generalized derivation).

It is natural and interesting to discuss what kind of elements are
full-derivable points (full-generalized-derivable points) of an algebra,
especially, of an operator algebra, and thus to be able to get some new
characterizations and criteria of derivations (generalized derivations).

In this direction, some work has been done.

Jing et al. in [4] showed that, for the case of nest algebras on a
Hilbert space, every linear map derivable at zero point with δ(I) = 0
is an inner derivation. Zhu and Xiong showed in [13] that every norm
continuous linear map generalized derivable at zero point between finite
nest algebras on Hilbert spaces is a generalized inner derivation (i.e.,
has the form A 7→ TA + AS) and it was shown in [14] that every
norm continuous linear map on a finite CSL algebra that generalized
derivable at a zero point is a generalized derivation. Recently, the
above results for the nest algebra case have been improved. Let AlgN
and AlgM be a nest algebra of a real or complex Banach space X
with N ∈ N complemented whenever N− = N (this assumption is
superfluous when X is a Hilbert space). Hou and Jiao in [2] proved
that, if δ : AlgN → AlgM is an additive map derivable at zero point,
then δ(A) = τ(A) + cA for some (linear) derivation τ and some scalar
c; if δ is an additive map generalized derivable at zero point, then δ is
a generalized derivation. Thus, zero is not a full-derivable point of nest
algebras but a full-generalized-derivable point of nest algebras.

For the nonzero elements case, letN be a nest of a complex separable
Hilbert space H. Zhu and Xiong proved in [15] that the unit operator I
and, further, Zhu proved in [11] that every invertible operator in nest
algebra AlgN is a full-derivable point (there “all-derivable point” is
used) of AlgN for the strongly operator topology, that is, if Z ∈ AlgN
is invertible, then every strongly continuous linear map that is derivable
at Z is a derivation. Zhu also proved in [16] that if N is a continuous
nest, then every orthogonal projection P ̸= 0 with P (H) ∈ N is a
full-derivable point of AlgN for the strongly operator topology. Note
that Hilbert space and some kind of continuity of maps are assumed in
all the above results.
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The class of JSL algebras is another important kind of lattice
algebra, and it is interesting to ask the question what kind of elements
are full-derivable points or full-generalized-derivable points of JSL
algebras. Let L be a J -subspace lattice on a Banach space X over
real or complex field F with dimX > 2 and AlgL the associated J -
subspace lattice algebra. Hou and Qi in [3] proved, with no continuity
assumption on the maps, that every additive map derivable at a zero
point on AlgL is of the form δ(A) = τ(A)+ cA for all A, where τ is an
additive derivation and c is a scalar and every additive map generalized
derivable at zero point on AlgL is a generalized derivation. Tt is also
shown that, if X is complex, then every linear map on JSL algebra
AlgL derivable at unit operator I is a derivation. Hence, zero is a
full-generalized-derivable point of JSL algebras on Banach spaces, and,
as the first known example of full derivable points, the unit I is a
full-derivable point of JSL algebras on complex Banach spaces.

The main purpose of the present paper is to find more full-derivable
points and full-generalized-derivable points of JSL algebras. In fact,
we prove that injective operators and operators with dense range are
full-derivable points as well as full-generalized-derivable points of JSL
algebras (Theorem 2.1). Note that, by [10], derivations on JSL algebras
are quasi-spacial.

Let X be a Banach space over the real or complex field F. A family
L of subspaces of X is a subspace lattice of X which contains {0}
and X and is closed under the operations closed linear span ∨ and
intersection ∧ in the sense that ∨γ∈ΓLγ ∈ L and ∧γ∈ΓLγ ∈ L for every
family {Lγ : γ ∈ Γ} of elements in L. For a subspace lattice L of X,
the associated subspace lattice algebra AlgL is the set of operators in
B(X) leaving every subspace in L invariant. Given a subspace lattice
L of X, put

J (L) = {K ∈ L : K ̸= {0} and K− ̸= X},

where K− = ∨{L ∈ L : K * L}. Call L a J -subspace lattice (simply,
JSL) on X if it satisfies the following conditions:

(1) ∨{K : K ∈ J (L)} = X;
(2) ∧{K− : K ∈ J (L)} = {0};
(3) K ∨K− = X, for all K ∈ J (L);
(4) K ∧K− = {0}, for all K ∈ J (L).
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If L is a JSL, the associated subspace lattice algebra AlgL is called a J -
subspace lattice algebra, briefly, JSL algebra. It should be mentioned
that both atomic Boolean subspace lattices and pentagon subspace
lattices are members of the class of J -subspace lattices [9]. We will
denote by F(L) the ideal of all finite rank operators in AlgL. For
L ∈ L, denote L⊥

− = (L−)
⊥, where L⊥ denotes the annihilator of

L. Denote by ⟨J (L)⟩ and ⟨J (L)⊥−⟩ the (not necessarily closed) linear

span of ∪{K : K ∈ J (L)} and the linear span of ∪{K⊥
− : K ∈ J (L)},

respectively. For x ∈ X and f ∈ X∗, x ⊗ f stands for the operator
on X with rank not greater than one defined by (x ⊗ f)y = f(y)x.
Sometimes we use ⟨x, f⟩ to present the value f(x) of f at x. We refer
readers to [7, 8, 9] for more properties of JSL algebras.

2. Results and proofs. In this section, we state the results
promised in the introduction and give their proofs. Let AlgL be a
JSL algebra. We show that every linear map on AlgL is derivable
(generalized derivable) at an injective operator or an operator with
dense range is a derivation (generalized derivation). Hence, injective
operators as well as operators with dense range are both full-derivable
points and full-generalized-derivable points of JSL algebras.

The following is our main result.

Theorem 2.1. Let L be a J -subspace lattice on a complex Banach
space X and AlgL the associated J -subspace lattice algebra. Let
δ : AlgL → AlgL be a linear map and Z ∈ AlgN an injective operator
or an operator with dense range. If δ is derivable at Z, then δ is a
derivation.

It follows from Theorem 2.1 that a linear map that is generalized
derivable at Z, an injective operator or one with dense range, must be
a generalized derivation, and therefore the injective operators and the
operators with dense range are full-generalized-derivable points for JSL
algebras. This is a short calculation with the map τ(T ) = δ(T )−δ(I)T ,
which is derivable at Z. For details, see the proof of [3, Theorem 2.2].

To prove Theorem 2.1, we need several lemmas which are valid for
both real and complex cases.
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Lemma 2.2 ([6]). Let L be a J -subspace lattice on a Banach space
X. Then x⊗f ∈ AlgL if and only if there exists a subspace K ∈ J (L)
such that x ∈ K and f ∈ K⊥

− .

Lemma 2.3 ([9]). Let L be a J -subspace lattice on a Banach space
X. Then the following statements hold true.

(1) For any K,L ∈ J (L), K ̸= L implies that K ∩ L = (0).
(2) If K ∈ J (L), then, for any nonzero vector x ∈ K, there exists

f ∈ K⊥
− such that f(x) = 1; dually, for any nonzero functional

f ∈ K⊥
− , there exists x ∈ K such that f(x) = 1.

Lemma 2.4. Let L be a J -subspace lattice on a Banach space X.
Suppose that δ : AlgL → AlgL is a linear map. If there exists an
injective operator or an operator with dense range Z ∈ AlgL such that
δ is derivable at Z, then δ(I) = 0.

Proof. Since δ is derivable at Z and Z = IZ = ZI, we have
δ(Z) = δ(I)Z + Iδ(Z) = δ(Z) + Zδ(I). So δ(I)Z = Zδ(I) = 0. If
Z is injective, by Zδ(I) = 0, we get δ(I) = 0; if Z is an operator with
dense range, then, by δ(I)Z = 0, we get again δ(I) = 0. �

Lemma 2.5. Let L be a J -subspace lattice on a Banach space X and
δ : AlgL → AlgL a linear map derivable at Z ∈ AlgL.

If Z is an operator with dense range, then

(1) for every idempotent operator P ∈ AlgL, we have δ(PZ) =
δ(P )Z + Pδ(Z) and δ(P ) = δ(P )P + Pδ(P );

(2) for every operator N ∈ AlgL with N2 = 0, we have δ(NZ) =
δ(N)Z +Nδ(Z) and δ(N)N +Nδ(N) = 0.

If Z is an injective operator, then

(1′) for every idempotent operator P ∈ AlgL, we have δ(ZP ) =
δ(Z)P + Zδ(P ) and δ(P ) = δ(P )P + Pδ(P );

(2′) for every operator N ∈ AlgL with N2 = 0, we have δ(ZN) =
δ(Z)N + Zδ(N) and δ(N)N +Nδ(N) = 0.
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Proof. Let P ∈ AlgL be any idempotent operator. If Z is an
operator with dense range, then by Lemma 2.4, we have

δ(Z) = δ(4P − I)(43P − I)Z + (4P − I)δ( 43PZ − Z)
= 16

3 δ(P )PZ − 4δ(P )Z + 16
3 Pδ(PZ)− 4Pδ(Z)

− 4
3δ(PZ) + δ(Z)

since Z = (4P − I)(43P − I)Z. That is,

(1) 16
3 δ(P )PZ − 4δ(P )Z + 16

3 Pδ(PZ)− 4Pδ(Z)− 4
3δ(PZ) = 0.

On the other hand, since Z = ( 43P − I)(4P − I)Z, we have

(2) 16
3 δ(P )PZ − 4

3δ(P )Z + 16
3 Pδ(PZ)− 4

3Pδ(Z)− 4δ(PZ) = 0.

Combining equation (1) with (2) yields that

(3) δ(PZ) = δ(P )Z + Pδ(Z).

Then, replacing δ(PZ) by δ(P )Z + Pδ(Z) in equation (2), we see that
δ(P )Z = δ(P )PZ +Pδ(P )Z. Since Z is an operator with dense range,
it follows that δ(P ) = δ(P )P + Pδ(P ). This completes the proof of
assertion (1).

If Z is an injective operator, one can discuss dually. In fact, by the
equation

Z = Z(4P − I)(43P − I) = Z( 43P − I)(4P − I),

and using a similar argument as above, one can get that δ(ZP ) =
δ(Z)P + Zδ(P ) and δ(P ) = δ(P )P + Pδ(P ). Hence, (1′) holds true.

For every operator N ∈ AlgL with N2 = 0, if Z is an operator with
dense range, then, noting that Z = (I−N)(I+N)Z = (I+N)(I−N)Z,
we have

(4) δ(N)Z − δ(N)NZ − δ(NZ) +Nδ(Z)−Nδ(NZ) = 0

and

(5) −δ(N)Z − δ(N)NZ + δ(NZ)−Nδ(Z)−Nδ(NZ) = 0

since δ is derivable at Z. Comparing the above two equations, we get

(6) δ(NZ) = δ(N)Z +Nδ(Z).

Replacing δ(NZ) by δ(N)Z +Nδ(Z) in equation (4) and noting that
the range of Z is dense, it follows that δ(N)N +Nδ(N) = 0.



FULL-DERIVABLE POINTS OF JSL ALGEBRAS 351

If Z is an injective operator, consider the equation Z = Z(I−N)(I+
N) = Z(I +N)(I −N). Hence (2) and (2′) hold true, completing the
proof. �

Lemma 2.6. Let L be a J -subspace lattice on a Banach space X and
δ : AlgL → AlgL be a linear map derivable at Z ∈ AlgL. For any
rank one operator x⊗ f ∈ AlgL, we have

δ(x⊗ f) ker(x⊗ f) ⊆ span {x}.

Proof. By Lemma 2.5, we have proved that δ(P ) = δ(P )P + Pδ(P )
holds for every idempotent operator P ∈ AlgL and δ(N)N +Nδ(N) =
0 holds for every operator N ∈ AlgL with N2 = 0. The following
argument is similar to the proof of Claim 1 in the proof of [3, Theorem
3.1]. We give the details here for reader’s convenience.

We shall prove the lemma by considering two cases.

Case 1. ⟨x, f⟩ = λ ̸= 0. By the linearity of δ, we have

δ(λ−1x⊗ f) = δ(λ−1x⊗ f)(λ−1x⊗ f) + (λ−1x⊗ f)δ(λ−1x⊗ f),

that is, δ(x ⊗ f) = λ−1δ(x ⊗ f)(x ⊗ f) + λ−1(x ⊗ f)δ(x ⊗ f), which
implies that the lemma holds true.

Case 2. ⟨x, f⟩ = 0. By Lemma 2.2, there exists K ∈ J (L) such
that x ∈ K and f ∈ K⊥

− . Then, by Lemma 2.3 (2), there exists
z ∈ K such that ⟨z, f⟩ = 1. Thus, (x + z) ⊗ f , z ⊗ f ∈ AlgL are
both idempotents. So we have δ((x+ z)⊗f)ker (f) ⊆ span {x+ z} and
δ(z⊗f)ker (f) ⊆ span {z}. Note that δ(x⊗f) = δ((x+z)⊗f)−δ(z⊗f).
Hence, δ(x ⊗ f)ker (f) ⊆ (span {x + z} − span {z}). Taking any
y ∈ ker (f), and then there exist α(y), β(y) ∈ C such that

(7) δ(x⊗ f)y = α(y)(x+ z)− β(y)z = α(y)x+ (α(y)− β(y))z.

Since (x⊗ f)2 = 0, we get

δ(x⊗ f)(x⊗ f) + (x⊗ f)δ(x⊗ f) = 0.

It follows that 0 = (δ(x⊗f)(x⊗f)+(x⊗f)δ(x⊗f))y = ⟨δ(x⊗f)y, f⟩x
for every y ∈ ker (f), that is, ⟨δ(x ⊗ f)y, f⟩ = 0. Thus, we get from
equation (7) that

0 = ⟨δ(x⊗ f)y, f⟩ = ⟨α(y)x+ (α(y)− β(y))z, f⟩
= (α(y)− β(y))⟨z, f⟩ = α(y)− β(y),
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that is, δ(x ⊗ f)y = α(y)x for every y ∈ ker (f), completing the proof
of the lemma. �

Now we are at a position to give the proof of our main result in this
section.

Proof of Theorem 2.1. We only give the proof for the case that Z
is an operator with dense range. For the case that Z is an injective
operator, one can deal with dually. Hence, in the sequel, we always
assume that Z is an operator with dense range. We’ll complete the
proof of the theorem by checking several claims.

Claim 2.7. For each K ∈ J (L), there exist linear maps CK : K⊥
− →

K⊥
− and BK : K → K such that

δ(x⊗ f) = x⊗ CKf +BKx⊗ f for all x ∈ K and f ∈ K⊥
− .

Since, by Lemma 2.6, δ(x ⊗ f)ker (x ⊗ f) ⊆ span {x} holds for all
rank one operator x⊗ f ∈ AlgL, by similar arguments as those in the
proofs of [12, Theorem 3], one can show that the claim holds. We give
an outline of its proof here.

For any K ∈ J (L) and any nonzero vector f ∈ K⊥
− , by Lemma

2.6, there exists a continuous linear functional λK
f,x on ker (f) such that

δ(x ⊗ f)(u) = ⟨u, λK
f,x⟩x for all u ∈ ker (f). So, for any y ∈ K, on the

one hand, we have

(8) δ((x+ y)⊗ f)(u) = ⟨u, λK
f,x+y⟩(x+ y).

On the other hand,
(9)
δ((x+ y)⊗ f)(u)=δ(x⊗ f)(u)+ δ(y ⊗ f)(u)=⟨u, λK

f,x⟩x+ ⟨u, λK
f,y⟩y.

Comparing equation (8) with (9), we see that ⟨u, λK
f,x+y − λK

f,x⟩x +

⟨u, λK
f,x+y − λK

f,y⟩y = 0, which implies that λK
f,x+y = λK

f,x = λK
f,y. So

λK
f,x is independent of x. Write λK

f = λK
f,x. Let gKf be a continuous

linear extension of λK
f to K. Then we have

(10) δ(x⊗ f)(u) = ⟨u, gKf ⟩x for all u ∈ ker(f).
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For any u ∈ K \ ker (f), we define an operator BK
u,f : K → K as

follows:
BK

u,fx = ⟨u, f⟩−1(δ(x⊗ f)(u)− ⟨u, gKf ⟩x).

It is obvious that BK
u,f is a linear operator on K, and that

(11) δ(x⊗ f)(u) = ⟨u, f⟩BK
u,fx+ ⟨u, gKf ⟩x for all x ∈ K.

For any v ∈ K \ ker (f) with v ̸= −u, v ̸= 0, we have

δ(x⊗ f)(v) = ⟨v, f⟩BK
v,fx+ ⟨v, gKf ⟩x,(12)

δ(x⊗ f)(u+ v) = ⟨u+ v, f⟩BK
u+v,fx+ ⟨u+ v, gKf ⟩x.(13)

Comparing equations (11)–(13), we get that BK
u,f = BK

v,f . Thus, BK
u,f

is independent to u, and we may write BK
f = BK

u,f . It follows from

equation (11) that

(14) δ(x⊗ f)(u) = ⟨u, f⟩BK
f x+ ⟨u, gKf ⟩x for every u ∈ K \ ker (f).

Combining equation (14) with (10), we obtain

δ(x⊗ f)(u) = ⟨u, f⟩BK
f x+ ⟨u, gKf ⟩x = (x⊗ gKf +BK

f x⊗ f)(u),

for all u ∈ K.

Hence,

(15) δ(x⊗ f) = x⊗ gKf +BK
f x⊗ f for all x ∈ K.

Next, we’ll prove that there exists a linear map BK : K → K such
that

(16) δ(x⊗ f) = x⊗ gKf +BKx⊗ f holds for all x ∈ K.

In fact, fix a nonzero vector f0 ∈ K⊥
− . By equation (15), we may take

gKf0 ∈ K∗ and BK
f0

: K → K such that

δ(x⊗ f0) = x⊗ gKf0 +BK
f0x⊗ f0 for all x ∈ K.

Let BK = BK
f0
. If dimK⊥

− = 1, equation (16) holds. So we assume

that dimK⊥
− ≥ 2. For any f ∈ K⊥

− , if f and f0 are linearly dependent,
equation (16) is true; if f and f0 are linearly independent, we will
show that BK

f − BK = λI for some λ ∈ C. If this is the case, then

for every x ∈ K, we have δ(x ⊗ f) = x ⊗ (gKf + λf) + BKx ⊗ f ,
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and therefore equation (16) also holds. For f + f0, by equation (15),
there exists a continuous linear functional gKf+f0

on K and a linear map

BK
f+f0

: K → K such that

δ(x⊗ (f + f0)) = x⊗ gKf+f0 +BK
f+f0x⊗ (f + f0) for all x ∈ K.

On the other hand, we have

δ(x⊗ (f + f0)) = δ(x⊗ f) + δ(x⊗ f0)
= x⊗ gKf +BK

f x⊗ f + x⊗ gKf0 +BKx⊗ f0.

Combining the above two equations, we get that

(17) x⊗ gKf+f0 +BK
f+f0x⊗ (f + f0)

= x⊗ gKf +BK
f x⊗ f + x⊗ gKf0 +BKx⊗ f0.

Since f and f0 are linearly independent, there exist x1, x2 ∈ K such
that ⟨x1, f⟩ = ⟨x2, f0⟩ = 1 and ⟨x1, f0⟩ = ⟨x2, f⟩ = 0. Applying
equation (17) to x1 and x2, respectively, we get that B

K
f+f0

−BK = λ1I

for some λ1 ∈ C and BK
f+f0

− BK
f = λ2I for some λ2 ∈ C. So

BK
f −BK = (λ1 − λ2)I.

Now fix a nonzero vector x ∈ K, and fix h ∈ K⊥
− such that

⟨x, h⟩ = 1. For each f ∈ K⊥
− , by equation (16), we have gKf =

(δ(x ⊗ f) − BKx ⊗ f)∗(h). Define an operator CK by CK(f) = gKf
for every f ∈ K⊥

− . It is obvious that CK : K⊥
− → K⊥

− is linear. Hence,
we have

δ(x⊗ f) = x⊗ CKf +BKx⊗ f for all x ∈ K.

Claim 2.8. There exists a linear operator B : ⟨J (L)⟩ → ⟨J (L)⟩ such
that δ(x ⊗ f) = B(x ⊗ f) − (x ⊗ f)B for every rank one operator
x⊗ f ∈ AlgL.

We first prove that BK : K → K is bounded. In fact, for any
x ⊗ f ∈ AlgL with x ∈ K, f ∈ K⊥

− and ⟨x, f⟩ = 1, by Lemma
2.5 (1) and (1′), we can easily get that (x⊗ f)δ(x⊗ f)(x⊗ f) = 0. So
(⟨x,CKf⟩+ ⟨BKx, f⟩)x⊗ f = 0. It follows that

⟨x,CKf⟩+ ⟨BKx, f⟩ = 0 holds for all x ∈ K,(18)

f ∈ K⊥
− with ⟨x, f⟩ = 1.
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Now let x ∈ K and f ∈ K⊥
− be arbitrary. If ⟨x, f⟩ ̸= 0, it is obvious

that equation (18) holds. If ⟨x, f⟩ = 0, there exists f1 ∈ K⊥
− such that

⟨x, f1⟩ = 1. Let f2 = f1 − f . So ⟨x, f2⟩ = 1. Thus, we have

⟨x,CKf⟩+ ⟨BKx, f⟩ = ⟨x,CK(f1 − f2)⟩+ ⟨BKx, (f1 − f2)⟩
= ⟨x,CKf1⟩+ ⟨BKx, f1⟩
− ⟨x,CKf2⟩ − ⟨BKx, f2⟩ = 0.

Hence, we obtain that

(19) ⟨x,CKf⟩+ ⟨BKx, f⟩ = 0 holds for all x ∈ K, f ∈ K⊥
− .

If {xn} ⊆ K so that xn → x0 and BKxn → y0 as n → ∞, then

0 = ⟨xn, CKf⟩+ ⟨BKxn, f⟩ 7→ ⟨x0, CKf⟩+ ⟨y0, f⟩ = 0.

Combining equation (19) with the above equation, we have ⟨BKx0, f⟩ =
⟨y0, f⟩ holds for all f ∈ K⊥

− . This entails that BKx0 = y0, since,

otherwise, there would be some f ∈ K⊥
− such that ⟨BKx0, f⟩ ̸= ⟨y0, f⟩.

It follows from the closed graph theorem that BK ∈ B(K). Similarly,
we can check that CK ∈ B(K⊥

− ).

Now, define a linear map B : ⟨J (L)⟩ → ⟨J (L)⟩ such that B|K = BK

for any K ∈ J (L) and a linear map C : ⟨J (L)⊥−⟩ → ⟨J (L)⊥−⟩ such that

C|K⊥
−

= CK for any K⊥
− ∈ J (L)⊥−. B and C are well defined as, by

Lemma 2.3 (1), J (L) is a collection of linearly independent subspaces
K and ⟨J (L)⟩ = span {K | K ∈ J (L)}.

Since K ∧K− = {0} and K ∨K− = X, we may regard K⊥
− as the

dual space K∗ of K. Thus, by equation (19), we get CK = −(BK)∗.
Hence, C = −B∗.

Thus, there exists a linear map B : ⟨J (L)⟩ → ⟨J (L)⟩ such that

δ(x⊗ f) = Bx⊗ f − x⊗ fB holds for all x ∈ K, f ∈ K⊥
− .

Claim 2.9. δ(Z) = BZ − ZB.

By Lemma 2.5 (1), we have δ(PZ) = δ(P )Z + Pδ(Z) for all
idempotents in AlgL. Since we know that every rank one operator in
AlgL is a linear combination of idempotents in AlgL (see [3, Lemma
1.4]), it follows that, for every rank one operator x ⊗ f ∈ AlgL, we
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have

(20) δ((x⊗ f)Z) = δ(x⊗ f)Z + (x⊗ f)δ(Z).

Combining Claim 2.8 with equation (20), we have

B(x⊗ f)Z − (x⊗ f)ZB = B(x⊗ f)Z − (x⊗ f)BZ + (x⊗ f)δ(Z),

that is, (x ⊗ f)(δ(Z) − BZ + ZB) = 0 for all x ⊗ f ∈ AlgL, which
implies δ(Z) = BZ − ZB (see [5]).

Now, for every invertible operator A ∈ AlgL, since Z = AA−1Z and
δ is derivable at Z, we have δ(Z) = δ(A)A−1Z+Aδ(A−1Z). Hence, by
Claim 2.9, we get

(21)
δ(A−1Z) = A−1δ(Z)−A−1δ(A)A−1Z

= A−1BZ −A−1ZB −A−1δ(A)A−1Z.

Claim 2.10. For every T ∈ AlgL, we have δ(T )|⟨J (L)⟩ = BT |⟨J (L)⟩−
TB.

So far, the complexity of X has not be used. Since X is complex,
for any T and any x ⊗ f ∈ AlgL, we can take λ ∈ C such that
|λ| > ∥T∥ and ∥(λI − T )−1x∥∥f∥ < 1. Then both λI − T and
λI−T −x⊗f = (λI−T )(I− (λI−T )−1x⊗f) are invertible with their
inverses are still in AlgL. It is obvious that (I− (λI−T )−1x⊗ f)−1 =
I + (1− α)−1(λI − T )−1x⊗ f , where α = ⟨(λI − T )−1x, f⟩.

In the following, for simpleness, let W = λI − T and R = x⊗ f .

Then, by Claim 2.9, Lemma 2.4 and equation (21), we have

BZ − ZB = δ(Z)
= δ(W −R)(I + (1− α)−1W−1R)W−1Z

+(W −R)δ((I + (1− α)−1W−1R)W−1Z)
= (−δ(T )−BR+RB)[W−1Z + (1− α)−1W−1RW−1Z]

+(W −R)[W−1BZ −W−1ZB +W−1δ(T )W−1Z
+(1− α)−1BW−1RW−1Z − (1− α)−1W−1RW−1ZB].

Expanding this equation, and using RW−1R = αR, it follows that

0 = (1− α)−1δ(T )W−1RW−1Z +RW−1BZ +RW−1δ(T )W−1Z
−(1− α)−1WBW−1RW−1Z −RBW−1Z
+(1− α)−1BRW−1Z.
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Since the range of Z is dense, the above equation implies that

0 = (1− α)−1δ(T )W−1RW−1 +RW−1B +RW−1δ(T )W−1

−(1− α)−1WBW−1RW−1 −RBW−1 + (1− α)−1BRW−1.

Multiplying the above equation by W from the right, we get

0 = (1− α)−1δ(T )W−1R+RW−1BW +RW−1δ(T )
−(1− α)−1WBW−1R−RB + (1− α)−1BR.

So we have (δ(T )W−1 −WBW−1 +B)R = R(1− α)(B −W−1BW −
W−1δ(T )), that is,

[δ(T )(λI − T )−1 − (λI − T )B(λI − T )−1 +B]x⊗ f
= (x⊗ f)(1− α)[B − (λI − T )−1B(λI − T )− (λI − T )−1δ(T )].

Hence, [δ(T )(λI − T )−1 − (λI − T )B(λI − T )−1 + B]x is linearly
dependent to x for every x ∈ ⟨J (L)⟩. This entails that there is a
scalar βλ such that

δ(T )(λI − T )−1 − (λI − T )B(λI − T )−1 +B = βλI

on ⟨J (L)⟩. It follows that

(22) δ(T ) = BT − TB + βλ(λI − T )

holds on ⟨J (L)⟩. By taking different λ in equation (22), we see that
βλ = 0 and consequently δ(T )|⟨J (L)⟩ = BT |⟨J (L)⟩ − TB holds for all
T ∈ AlgL, as desired.

Claim 2.11. δ is a derivation.

For any T, S ∈ AlgL, by Claim 2.10, we have

δ(TS)|⟨J (L)⟩ = BTS|⟨J (L)⟩ − TSB = BT |⟨J (L)⟩S|⟨J (L)⟩ − TSB

and

(δ(T )S + Tδ(S)|⟨J (L)⟩ = (BT |⟨J (L)⟩ − TB)S|⟨J (L)⟩
+T (BS|⟨J (L)⟩ − SB)

= BT |⟨J (L)⟩S|⟨J (L)⟩ − TSB.

Comparing the above two equations, we get δ(TS)|⟨J (L)⟩ = (δ(T )S +
Tδ(S)|⟨J (L)⟩. Thus,

δ(TS) = δ(T )S + Tδ(S)
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holds for all T, S ∈ AlgL since ⟨J (L)⟩ is dense in X. Hence, δ is a
derivation. �
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