# ZERO-DIVISOR GRAPHS OF MODULES VIA MODULE HOMOMORPHISMS 

M. AFKHAMI, E. ESTAJI, K. KHASHYARMANESH AND M.R. KHORSANDI


#### Abstract

In this paper, using module endomorphisms, we extend the concept of the zero-divisor graph of a ring to a module over an arbitrary commutative ring. The main aim of this article is studying the interplay of moduletheoretic properties of a module with graph properties of its zero-divisor graph.


1. Introduction. Throughout this paper, let $R$ be a commutative ring with non-zero identity and $Z(R)$ the set of its zero-divisors. Also we set $Z^{*}(R):=Z(R) \backslash\{0\}$. The concept of a zero-divisor graph of a commutative ring was introduced and studied by Beck in [6]. He let all elements of the ring be vertices of the graph and was interested mainly in colorings. The zero-divisor graph of $R$, denoted by $\Gamma(R)$, is the (undirected) graph with vertices in the set of non-zero zero-divisors of $R$ and, for two distinct elements $x$ and $y$ in $Z^{*}(R)$, the vertices $x$ and $y$ are adjacent if and only if $x y=0$. Thus, $\Gamma(R)$ is the empty graph if and only if $R$ is an integral domain. Moreover, a non-empty graph $\Gamma(R)$ is finite if and only if $R$ is finite. (See [5, Theorem 2.2].) The above definition of $\Gamma(R)$ and the emphasis on studying the interplay between graph-theoretic properties of $\Gamma(R)$ and ring-theoretic properties of $R$ are from [5].

For example, in [5, Theorem 2.3], it was proved that $\Gamma(R)$ is connected with diam $(\Gamma(R)) \leqslant 3$. There are several papers devoted to studying the properties of zero-divisor graphs. (See $[\mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{9}, \mathbf{1 0}$, 14].) For an $R$-module $M$, consider the zero-divisor graph of $R(+) M$, where $R(+) M$ is the idealization of $M$. Redmond, in [15], defined the zero-divisor graph of $M$ as the subgraph of $\Gamma(R(+) M)$ with vertices

[^0]in the set $0(+) M:=\{(0, m) \mid m \in M\}$. So, for all $m, m^{\prime} \in M$, the vertices $(0, m)$ and $\left(0, m^{\prime}\right)$ are adjacent. Recently, Behboodi, in [7], introduced the sets of weak zero-divisors, zero-divisors and strong zero-divisors of $M$, denoted by $Z_{*}(M), Z(M)$ and $Z^{*}(M)$, respectively. Also, he associated three (simple) graphs $\Gamma_{*}(M), \Gamma(M)$ and $\Gamma^{*}(M)$ to $M$ with vertices in $Z_{*}(M), Z(M)$ and $Z^{*}(M)$, respectively, and the vertices $x$ and $y$ are adjacent if and only if $I_{x} I_{y} M=0$, where, for an element $z$ in $M, I_{z}$ is the ideal Ann $R(M / R z):=\{r \in R \mid r M \subseteq R z\}$.

In this paper, for an $R$-module $M$, using endomorphisms on $M$, we assign a zero-divisor graph $\mathcal{H}_{R}(\Gamma(M))$ to $M$. We show that the graph $\mathcal{H}_{R}(\Gamma(M))$ coincides with the zero-divisor graph of $R$ when $M=R$ and $\Gamma(R)$ is not a singleton. In Section 2, we study some basic properties of the zero-divisor graph $\mathcal{H}_{R}(\Gamma(M))$. For instance, we show that if $\psi: R \rightarrow S$ is a ring epimorphism, then the graphs $\mathcal{H}_{R}(\Gamma(M))$ and $\mathcal{H}_{S}(\Gamma(M))$ coincide. In Section 3, we study the zero-divisor graphs of decomposable modules and the $\mathbb{Z}$-module $\mathbb{Z}_{p^{n}}$, for a prime number p. Also, we use the concept of the tensor product of graphs for studying the graph $\mathcal{H}_{R^{k}}(\Gamma(M))$, whenever $M$ has a decomposition $M=M_{1} \oplus \cdots \oplus M_{k}$ for some submodules $M_{1}, \ldots, M_{k}$ of $M$. Moreover, we study the planarity of the graph $\mathcal{H}_{R}(\Gamma(M))$ in several cases.

We recall that, for a graph $G$, the set of vertices is denoted by $V(G)$. Moreover, if $P=x_{0}-\cdots-x_{k}$ is a path and $k \geqslant 2$, then the graph $C:=P+x_{k}-x_{0}$ is called a cycle. The above cycle $C$ may be written as $x_{0}-\cdots-x_{k}-x_{0}$. The length of a cycle is its number of edges (or vertices). The minimum length of a cycle (contained) in a graph $G$ is the girth $\mathrm{g}(G)$ of $G$. The distance $\mathrm{d}(x, y)$ in $G$ of two distinct vertices $x$ and $y$ is the length of a shortest path from $x$ to $y$ in $G$. If no such path exists, we set $d(x, y):=\infty$. The greatest distance between any two vertices in $G$ is the diameter of $G$, which is denoted by $\operatorname{diam}(G)$. If all the vertices of $G$ are pairwise adjacent, then $G$ is complete. A complete graph on $n$ vertices is denoted by $K_{n}$. The greatest integer $r$ such that $K_{r} \subseteq G$ is the clique number $\omega(G)$ of $G$. Let $r \geqslant 2$ be an integer. A graph $G=(V, E)$ is called $r$-partite if $V$ admits a partition into $r$ classes such that every edge has its ends in different classes and the vertices in the same partition class must not be adjacent. Instead of 2-partite, one usually says bipartite. An $r$-partite graph in which every two vertices from different partition classes are adjacent is called complete. Note that a graph is bipartite if and only if it contains no
odd cycle. The complete $r$-partite graph is denoted by $K_{n_{1}, \ldots, n_{r}}$, where $n_{i}$ is the cardinality of the $i$ th partition of $V$. Graphs of the form $K_{1, n}$ are called stars; the vertex in a singleton partition class of this $K_{1, n}$ is the star's center. A non-empty graph $G$ is called connected if any two of its vertices are linked by a path in $G$. A graph is said to be planar if it can be drawn in the plane so that its edges intersect only at their ends.

For a general reference on ring theory we use [13], and for a general reference on graph theory we use [11].
2. Definition and basic properties. In this section, by using the concept of endomorphisms of an $R$-module $M$, we define a zero-divisor graph of $M$, denoted by $\mathcal{H}_{R}(\Gamma(M))$, which is a generalization of the zero-divisor graph of a commutative ring. To do this, we first establish our notation. For any $f, g \in \operatorname{End}_{R}(M)$, $\operatorname{IK}(f, g)$ is the Cartesian product of $\operatorname{Im}(f) \cap \operatorname{Ker}(g)$ and $\operatorname{Ker}(f) \cap \operatorname{Im}(g)$, and we put

$$
\operatorname{IK}(M):=\bigcup_{f, g \in \operatorname{End}_{R}(M)} \operatorname{IK}(f, g) .
$$

Now, we describe the zero-divisor graph $\mathcal{H}_{R}(\Gamma(M))$. For any two non-zero distinct elements $m, m^{\prime} \in M$, we say that, in the graph $\mathcal{H}_{R}(\Gamma(M)), m$ and $m^{\prime}$ are adjacent if and only if $\left(m, m^{\prime}\right) \in \operatorname{IK}(M)$, and moreover, $m \in M$ is a vertex in $\mathcal{H}_{R}(\Gamma(M))$ if there exists $m^{\prime} \in M$ such that $m$ and $m^{\prime}$ are adjacent. If we omit the word "distinct" in the definition of $\mathcal{H}(\Gamma(M))$, we obtain the graph $H(\Gamma(M))$; this graph may have loops.

The following theorem shows that $\mathcal{H}_{R}(\Gamma(M))$ is a generalization of the concept of the zero-divisor graph of $R$.

Theorem 2.1. For any commutative ring $R$, if $\Gamma(R)$ is not a singleton, then we have $\mathcal{H}_{R}(\Gamma(R))=\Gamma(R)$.

Proof. Let $r$ and $r^{\prime}$ be adjacent vertices in $\mathcal{H}_{R}(\Gamma(R))$. So there are $f, g \in \operatorname{End}_{R}(R)$ such that $\left(r, r^{\prime}\right) \in \operatorname{IK}(f, g)$. Put $c:=f(1)$ and $c^{\prime}:=g(1)$. Then $f(s)=c s$ and $g(s)=c^{\prime} s$ for all $s \in R$. Thus, $c^{\prime} r=0=c r^{\prime}, c t=r$ and $c^{\prime} t^{\prime}=r^{\prime}$ for some $t, t^{\prime} \in R$. Hence, $r r^{\prime}=0$. This means that $r$ and $r^{\prime}$ are adjacent in $\Gamma(R)$.

Now suppose that $r$ and $r^{\prime}$ are adjacent vertices in $\Gamma(R)$. Hence, $r r^{\prime}=0$. Consider the endomorphisms $\varphi, \psi: R \rightarrow R$ induced by multiplication by $r$ and $r^{\prime}$, respectively. So $\left(r, r^{\prime}\right) \in \operatorname{IK}(\varphi, \psi)$, and hence $r$ and $r^{\prime}$ are adjacent in $\mathcal{H}_{R}(\Gamma(R))$. Also note that $\Gamma(R)$ and $\mathcal{H}_{R}(\Gamma(R))$ have the same vertices.

Lemma 2.2. Let $r_{1}$ and $r_{2}$ be two elements of $R$ and $m \in M$ such that $r_{1} r_{2} m=0$. Then $\left(r_{1} m, r_{2} m\right) \in \operatorname{IK}(M)$.

Proof. Suppose that $f, g: M \rightarrow M$ are given by multiplication by $r_{1}$ and $r_{2}$, respectively. Now it is easy to see that $\left(r_{1} m, r_{2} m\right) \in$ $\operatorname{IK}(f, g)$.

Note that, in Lemma 2.2, if $r_{1} m$ and $r_{2} m$ are non-zero distinct elements of $M$, then $r_{1} m$ and $r_{2} m$ are adjacent in $\mathcal{H}_{R}(\Gamma(M))$.

Remark 2.3. Suppose that $Z(R)$ is an ideal of $R$ and there exists an element $m \in M$ such that $Z(R) \cap \operatorname{Ann}_{R}(m)=\{0\}$. Then, in view of Lemma 2.2,

$$
\mathrm{g}\left(\mathcal{H}_{R}(\Gamma(M))\right) \leqslant \mathrm{g}(\Gamma(R)) .
$$

In the rest of this section, we study properties of the zero-divisor graph of modules through change of rings. Recall that, for an $S$ module $M$ and a ring homomorphism $\psi: R \rightarrow S$, one can construct an $R$-module structure on $M$ by the multiplication $r m:=\psi(r) m$ for all $r \in R$ and $m \in M$. In the following proposition, we compare the graphs $\mathcal{H}_{R}(\Gamma(M))$ and $\mathcal{H}_{S}(\Gamma(M))$.

Proposition 2.4. Suppose that $\psi: R \rightarrow S$ is a ring homomorphism and $M$ is an $S$-module. Then $\mathcal{H}_{S}(\Gamma(M))$ is an induced subgraph of $\mathcal{H}_{R}(\Gamma(M))$, where $M$ has the $R$-module structure induced by $\psi$.

Proof. By using the structure of $M$ as an $R$-module, it is easy to check that every $S$-endomorphism on $M$ is an $R$-endomorphism. This implies that the adjacency is preserved from the $S$-module $M$ to the $R$-module structure of $M$.

Theorem 2.5. Assume that $\psi: R \rightarrow S$ is a ring epimorphism. Then

$$
\mathcal{H}_{R}(\Gamma(M))=\mathcal{H}_{S}(\Gamma(M))
$$

Proof. It is routine to check that $\operatorname{End}_{R}(M)=\operatorname{End}_{S}(M)$. Hence, the graphs $\mathcal{H}_{R}(\Gamma(M))$ and $\mathcal{H}_{S}(\Gamma(M))$ coincide.

Corollary 2.6. Let $M$ be an $R$-module and $I$ an ideal of $R$ with $I \subseteq \operatorname{Ann}_{R}(M)$. Then $\mathcal{H}_{R}(\Gamma(M))=\mathcal{H}_{R / I}(\Gamma(M))$.

Proof. Consider the natural ring epimorphism $R \rightarrow R / I$. The result now follows from Theorem 2.5.
3. Zero-divisor graph of certain modules. In this section, for a $\mathbb{Z}$-module $M$, we study the zero-divisor graph $\mathcal{H}_{\mathbb{Z}}(\Gamma(M))$. We begin with the following remark, which is an immediate consequence of Corollary 2.6 and Theorem 2.1.

Remark 3.1. For every positive integer $n$, if $\Gamma\left(\mathbb{Z}_{n}\right)$ is not a singleton, then $\mathcal{H}_{\mathbb{Z}}\left(\Gamma\left(\mathbb{Z}_{n}\right)\right)=\Gamma\left(\mathbb{Z}_{n}\right)$.

Now, we recall the definition of a refinement of a simple graph.

Definition 3.2. A simple graph $G$ is called a refinement of a simple graph $H$ if $V(G)=V(H)$ and $E(H) \subseteq E(G)$.

Theorem 3.3. Let $p$ be a prime number and $n$ be a positive integer greater than 1 such that $p^{n} \neq 4$. Then:
(i) the zero-divisor graph $\mathcal{H}_{\mathbb{Z}}\left(\Gamma\left(\mathbb{Z}_{p^{n}}\right)\right)$ is a refinement of a star graph with center $p^{n-1}$;
(ii) the graph $\mathcal{H}_{\mathbb{Z}}\left(\Gamma\left(\mathbb{Z}_{p^{n}}\right)\right)$ is connected with diameter at most 2 ; and, (iii) if $\mathcal{H}_{\mathbb{Z}}\left(\Gamma\left(\mathbb{Z}_{p^{n}}\right)\right)$ has a cycle, then $\mathrm{g}\left(\mathcal{H}_{\mathbb{Z}}\left(\Gamma\left(\mathbb{Z}_{p^{n}}\right)\right)=3\right.$.

Proof. Part (i) follows from the Corollary 2.6 and the fact that the set of zero-divisors of $\mathbb{Z}_{p^{n}}$ is an ideal generated by $p$. The claims in (ii) and (iii) immediately follow from (i).

Recall that an $R$-module $M$ is decomposable if $M \cong M_{1} \oplus \cdots \oplus M_{k}$, for some non-zero submodules $M_{1}, \ldots, M_{k}$ of $M$ with $k>1$. Suppose that $M$ is both an Artinian and a Noetherian $R$-module and $f$ is an endomorphism of $M$. Put $f^{\infty}(M):=\bigcap_{n=1}^{\infty} f^{n}(M)$ and $f^{-\infty}(0):=$ $\bigcup_{n=1}^{\infty} \operatorname{Ker}\left(f^{n}\right)$, where $f^{n}$ is the composition of $n$-times of $f$. Then, by Fitting's lemma, $M=f^{-\infty}(0) \oplus f^{\infty}(M)$. (See [12, page 113].) Such a decomposition is called Fitting's decomposition. Hence if $M$ is finite, then $M$ has a Fitting decomposition. This allows us to study the decomposable modules.

Suppose that $M$ decomposes as $M_{1} \oplus \cdots \oplus M_{k}$. Then any element $m \in M$ can be represented uniquely by $\left(m_{1}, \ldots, m_{k}\right)$, where $m_{i} \in M_{i}$ for each $i=1, \ldots, k$. We define the support of $m$ as follows:

$$
\operatorname{Supp}(m):=\left\{i \mid m_{i} \neq 0\right\} .
$$

Also, note that, in this situation, $M$ has an $R^{k}$-module structure by the multiplication

$$
\left(r_{1}, \ldots, r_{k}\right)\left(m_{1}, \ldots, m_{k}\right)=\left(r_{1} m_{1}, \ldots, r_{k} m_{k}\right)
$$

for all $\left(r_{1}, \ldots, r_{k}\right) \in R^{k}$ and $\left(m_{1}, \ldots, m_{k}\right) \in M$.
The following theorem shows that there exists a strong connection between the graphs $H_{R}\left(\Gamma\left(M_{1}\right)\right), \ldots, H_{R}\left(\Gamma\left(M_{k}\right)\right)$ and the graph $H_{R^{k}}(\Gamma(M))$.

Theorem 3.4. Suppose that an $R$-module $M$ has a decomposition $M=M_{1} \oplus \ldots \oplus M_{k}$ and that $m=\left(m_{1}, \ldots, m_{k}\right)$ and $n=\left(n_{1}, \ldots, n_{k}\right)$ are non-zero elements of $M$. Then $m$ and $n$ are adjacent in $H_{R^{k}}(\Gamma(M))$ if and only if, for each $i \in \operatorname{Supp}(m) \cap \operatorname{Supp}(n), n_{i}$ and $m_{i}$ are adjacent in $H_{R}\left(\Gamma\left(M_{i}\right)\right)$.

Proof. Suppose that, for $i \in \operatorname{Supp}(m) \cap \operatorname{Supp}(n), n_{i}$ and $m_{i}$ are adjacent in $H_{R}\left(\Gamma\left(M_{i}\right)\right)$. Hence, there are homomorphisms $f_{i}, g_{i} \in$ $\operatorname{End}_{R}\left(M_{i}\right)$ such that $\left(m_{i}, n_{i}\right) \in \operatorname{IK}\left(g_{i}, f_{i}\right)$. Also, for $1 \leqslant i \leqslant k$ with $i \notin \operatorname{Supp}(m) \cap \operatorname{Supp}(n)$, we have that either $m_{i}$ or $n_{i}$ is zero and consequently $\left(m_{i}, n_{i}\right) \in \operatorname{IK}(0, i d)$ or $\left(m_{i}, n_{i}\right) \in \operatorname{IK}(i d, 0)$, where $i d$ is the identity endomorphism on $M$. Thus, for each $i=1, \ldots, k$, there are homomorphisms $f_{i}, g_{i} \in \operatorname{End}_{R}\left(M_{i}\right)$ such that $\left(m_{i}, n_{i}\right) \in \operatorname{IK}\left(f_{i}, g_{i}\right)$. Put $f:=\left(f_{1}, \ldots, f_{k}\right)$ and $g:=\left(g_{1}, \ldots, g_{k}\right)$. Clearly, these homomorphisms satisfy the adjacency conditions for $m$ and $n$ in the graph $H_{R^{k}}(\Gamma(M))$.

Conversely, assume that $m$ and $n$ are adjacent vertices in $H_{R^{k}}(\Gamma(M))$. Since by [8, Theorem 2.6.8 (iii)],

$$
\operatorname{End}_{R^{k}}(M) \cong \operatorname{End}_{R}\left(M_{1}\right) \oplus \cdots \oplus \operatorname{End}_{R}\left(M_{k}\right),
$$

there are $f, g \in \operatorname{End}_{R^{k}}(M)$ with $(m, n) \in \operatorname{IK}(f, g)$ of the form $f=$ $\left(f_{1}, \ldots, f_{k}\right), g=\left(g_{1}, \ldots, g_{k}\right)$ where $f_{i}, g_{i} \in \operatorname{End}_{R}\left(M_{i}\right)$, for $i=1, \ldots, k$. Now, for $i \in \operatorname{Supp}(m) \cap \operatorname{Supp}(n), m_{i} \neq 0 \neq n_{i}$. It is routine to check that $\left(m_{i}, n_{i}\right) \in \operatorname{IK}\left(f_{i}, g_{i}\right)$, and so $m_{i}$ and $n_{i}$ are adjacent vertices in $H_{R}\left(\Gamma\left(M_{i}\right)\right)$.

Remark 3.5. Let $M$ be an $R$-module such that $M=M_{1} \oplus \cdots \oplus M_{k}$ for some submodules $M_{1}, \ldots, M_{k}$. Then, for a positive integer $i$ with $1 \leqslant i \leqslant k$, by using the following multiplication, $M$ has an $R^{i}$-module structure

$$
\left(r_{1}, \ldots, r_{i}\right)\left(m_{1}, \ldots, m_{k}\right):=\left(r_{1}, \ldots, r_{i}, 0, \ldots, 0\right)\left(m_{1}, \ldots, m_{k}\right),
$$

for all $\left(m_{1}, \ldots, m_{k}\right) \in M$ and $\left(r_{1}, \ldots, r_{i}\right) \in R^{i}$. So $\operatorname{End}_{R^{i+1}}(M) \subseteq$ $\operatorname{End}_{R^{i}}(M)$. This implies that $\mathcal{H}_{R^{i+1}}(\Gamma(M))$ can be considered as an induced subgraph of $\mathcal{H}_{R^{i}}(\Gamma(M))$, and so it is easy to verify that we have the following chain of subgraphs of $\mathcal{H}_{R}(\Gamma(M))$

$$
\mathcal{H}_{R^{k}}(\Gamma(M)) \subseteq \cdots \subseteq \mathcal{H}_{R}(\Gamma(M)) .
$$

Corollary 3.6. Suppose that an $R$-module $M$ has a decomposition $M_{1} \oplus \cdots \oplus M_{k}$ such that $M_{i} \neq 0$ for all $i$ with $1 \leq i \leq k$. Then every two distinct non-zero elements $m=\left(m_{1}, \ldots, m_{k}\right)$ and $n=\left(n_{1}, \ldots, n_{k}\right)$ with $\operatorname{Supp}(m) \cap \operatorname{Supp}(n)=\emptyset$ are adjacent in $\mathcal{H}_{R}(\Gamma(M))$.

In view of Corollary 3.6, the maximum number of summands in the decomposition of $M$ is a lower bound for the clique number of the graph $\mathcal{H}_{R}(\Gamma(M))$. Now, we show that the tensor product of graphs is a powerful tool for studying the zero-divisor graph of module. To this end, we first recall the definition of the tensor product of two graphs.

Definition 3.7. The tensor product $G \otimes H$ of graphs $G$ and $H$ is a graph such that

- the vertex set of $G \otimes H$ is the Cartesian product $V(G) \times V(H)$; and,
- any two vertices $\left(u, u^{\prime}\right)$ and $\left(v, v^{\prime}\right)$ are adjacent in $G \otimes H$ if and only if $u$ is adjacent to $v$ and $u^{\prime}$ is adjacent to $v^{\prime}$.

Notation 3.8. For an $R$-module $M$, if we add vertex 0 to vertex set of $H_{R}(\Gamma(M))$, then we obtain the graph $H_{R}^{*}(\Gamma(M))$. In this graph 0 is adjacent to all vertices.

## Remark 3.9.

(1) Let $M$ have a decomposition $M_{1} \oplus \cdots \oplus M_{k}$. Hence, by Theorem 3.4, it is easy to see that

$$
H_{R^{k}}^{*}(\Gamma(M))=H_{R}^{*}\left(\Gamma\left(M_{1}\right)\right) \otimes \cdots \otimes H_{R}^{*}\left(\Gamma\left(M_{k}\right)\right)
$$

(2) Let $M$ be a simple $R$-module. Then $H_{R}(\Gamma(M))$ is the empty graph.
(3) Let $M \cong \mathbb{Z}_{p_{1}^{a_{1}}} \oplus \cdots \oplus \mathbb{Z}_{p_{k}^{a_{k}}}$ be a finite $\mathbb{Z}$-module such that $p_{1}, \ldots, p_{k}$ are prime numbers for all $i=1, \ldots, k$. Then by (1),

$$
H_{\mathbb{Z}^{k}}^{*}(\Gamma(M))=H_{\mathbb{Z}}^{*}\left(\Gamma\left(\mathbb{Z}_{p_{1}^{a_{1}}}\right)\right) \otimes \cdots \otimes H_{\mathbb{Z}}^{*}\left(\Gamma\left(\mathbb{Z}_{p_{k}^{a_{k}}}\right)\right)
$$

Proposition 3.10. Let $M$ be an $R$-module, and let $x$ and $y$ be adjacent vertices in $\mathcal{H}_{R}(\Gamma(M))$. Then, for each $r, s \in R,(s x, r y) \in \operatorname{IK}(M)$.

Proof. Suppose that $x$ and $y$ are adjacent vertices in $\mathcal{H}_{R}(\Gamma(M))$. We need only show that $(x, r y) \in \operatorname{IK}(M)$, for all $r \in R$. To this end, suppose that $f$ and $g$ are endomorphisms on $M$ such that $(x, y) \in$ $\operatorname{IK}(f, g)$. Since $\operatorname{Ker}(g) \cap \operatorname{Im}(f)$ is a submodule of $M$, for any element $r \in R$, $r y \in \operatorname{Ker}(f) \cap \operatorname{Im}(g)$. Hence, $f$ and $g$ satisfy the required conditions for adjacency of $x$ and $r y$. So $(x, r y) \in \operatorname{IK}(M)$.

In the rest of the paper, we study the planarity of the zero-divisor graph of $M$. We begin with the following examples.

## Example 3.11.

(a) We show that the zero-divisor graph of $\mathcal{H}_{\mathbb{Z}}\left(\Gamma\left(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{3}\right)\right)$ contains $K_{3,3}$ as a subgraph, and so it is not planar. Set

$$
V_{1}:=\left\{\alpha_{1}=(1,0,0), \alpha_{2}=(1,1,0), \alpha_{3}=(0,1,0)\right\}
$$

and

$$
V_{2}:=\left\{\beta_{1}=(1,1,1), \beta_{2}=(0,0,1), \beta_{3}=(0,0,2)\right\}
$$

Now, in view of Corollary 3.6, we need only show that $\left\{\alpha_{1}, \beta_{1}\right\}$, $\left\{\alpha_{2}, \beta_{1}\right\},\left\{\alpha_{3}, \beta_{1}\right\}$ are edges in $\mathcal{H}_{\mathbb{Z}}\left(\Gamma\left(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{3}\right)\right)$. Consider the elements $e_{1}=(1,0,0), e_{2}=(0,1,0)$ and $e_{3}=(0,0,1)$ in $M=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{3}$. Then, for adjacency of $\alpha_{1}$ and $\beta_{1}$, we define $f_{1}\left(e_{1}\right)=f_{1}\left(e_{2}\right)=e_{1}, f_{1}\left(e_{3}\right)=g_{1}\left(e_{1}\right)=g_{1}\left(e_{3}\right)=0$ and $g_{1}\left(e_{2}\right)=$ $e_{1}+e_{2}+e_{3}$. Hence, $\left(\alpha_{1}, \beta_{1}\right) \in \operatorname{IK}\left(f_{1}, g_{1}\right)$, and so $\left\{\alpha_{1}, \beta_{1}\right\} \in$ $E\left(\mathcal{H}_{\mathbb{Z}}(\Gamma(M))\right)$. For $\left\{\alpha_{2}, \beta_{1}\right\}$, consider the endomorphisms $f_{2}$ and $g_{2}$ given by $f_{2}\left(e_{1}\right)=f_{2}\left(e_{2}\right)=e_{1}+e_{2}, g_{2}\left(e_{1}\right)=e_{1}+e_{2}+e_{3}$, $g_{2}\left(e_{2}\right)=e_{1}+e_{2}+2 e_{3}$ and $f_{2}\left(e_{3}\right)=g_{2}\left(e_{3}\right)=0$. Then $\left(\alpha_{2}, \beta_{1}\right) \in$ $\operatorname{IK}\left(f_{2}, g_{2}\right)$. Finally, set $f_{3}\left(e_{1}\right)=f_{3}\left(e_{2}\right)=e_{2}, g_{3}\left(e_{1}\right)=e_{1}+e_{2}+e_{3}$ and $f_{3}\left(e_{3}\right)=g_{3}\left(e_{2}\right)=g_{3}\left(e_{3}\right)=0$. Thus, $\left(\alpha_{3}, \beta_{1}\right) \in \operatorname{IK}\left(f_{3}, g_{3}\right)$ as required.
(b) It is routine to check that the zero-divisor graph $\mathcal{H}_{\mathbb{Z}}\left(\Gamma\left(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus\right.\right.$ $\left.\mathbb{Z}_{2}\right)$ ) is isomorphic to the complete graph $K_{7}$, and so it is not planar.

Theorem 3.12. Suppose that an $R$-module $M$ has the decomposition $M=M_{1} \oplus \cdots \oplus M_{k}$, for some non-zero $R$-module $M_{i}$ with $1 \leqslant i \leqslant k$. Then:
(a) if $k \geqslant 4$, then $\mathcal{H}_{R}(\Gamma(M))$ is not planar;
(b) if $k=3, M \nsubseteq \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{3}$ and $M \nsubseteq \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$, as $\mathbb{Z}$-modules, then $\mathcal{H}_{R}(\Gamma(M))$ is not planar; and,
(c) if $M \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$ or $M \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{3}$, then $\mathcal{H}_{\mathbb{Z}}(\Gamma(M))$ is not planar, but when we consider $M$ as a ring, the zero-divisor graph $\Gamma(M)$ is planar.

Proof.
(a) Consider the subsets $V_{1}:=M_{1} \oplus M_{2} \oplus\{0\} \oplus \cdots \oplus\{0\}$ and $V_{2}:=\{0\} \oplus \cdots \oplus\{0\} \oplus M_{k-1} \oplus M_{k}$ of $M$. By Corollary 3.6, all non-zero elements of $V_{1}$ are adjacent to all non-zero elements of $V_{2}$. Since $\left|V_{i} \backslash\{0\}\right| \geqslant 3$, for $i=1,2, \mathcal{H}_{R}(\Gamma(M))$ contains $K_{3,3}$ as a subgraph, and so it is not planar.
(b) Suppose that $\left|M_{i}\right|>3$ for some $i$ with $1 \leqslant i \leqslant 3$. Without loss of generality, one can assume that $i=1$. Set $V_{1}:=M_{1} \oplus\{0\} \oplus\{0\}$ and $V_{2}:=\{0\} \oplus M_{2} \oplus M_{3}$. Again, by Corollary 3.6, all non-zero
elements of $V_{1}$ are adjacent to all non-zero elements of $V_{2}$. Since $\left|V_{i} \backslash\{0\}\right| \geqslant 3$, for $i=1,2, \mathcal{H}_{R}(\Gamma(M))$ contains $K_{3,3}$ as a subgraph. Hence, we may assume that, for each $i$ with $1 \leqslant i \leqslant 3,\left|M_{i}\right| \leqslant 3$ and that $\left|M_{1}\right| \leqslant\left|M_{2}\right| \leqslant\left|M_{3}\right|$. Now, if $M \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{3}$ or $M \cong \mathbb{Z}_{3} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{3}$, as $\mathbb{Z}$-modules, then it is not hard to see that $\mathcal{H}_{\mathbb{Z}}(\Gamma(M))$ has $\Gamma(M)$ as a subgraph, and so, by [1, Case 2, page 171], is not planar.
(c) It follows from Examples 3.12 and [3, Theorem 5.1(b)].

Acknowledgments. The authors are deeply grateful to the referee for careful reading of the manuscript and helpful suggestions.

## REFERENCES

1. S. Akbari, H.R. Maimani and S. Yassemi, When a zero-divisor graph is planar or a complete r-partite graph, J. Alg. 270 (2003), 169-180.
2. D.D. Anderson and M. Naseer, Beck's coloring of a commutative ring, J. Alg. 159 (1993), 500-514.
3. D.F. Anderson, A. Frazier, A. Lauve and P.S. Livingston, The zero-divisor graph of a commutative ring, II, Lect. Notes Pure Appl. Math. 220, Dekker, New York, 2001.
4. D.F. Anderson, R. Levy and J. Shapiro, Zero-divisor graphs, von Neumann regular rings, and Boolean algebras, J. Pure Appl. Alg. 180 (2003), 221-241.
5. D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Alg. 217 (1999), 434-447.
6. I. Beck, Coloring of commutative rings, J. Alg. 116 (1988), 208-226.
7. M. Behboodi, Zero divisor graphs of modules over a commutative rings, J. Comm. Alg. 4 (2012), 175-197.
8. A.J. Berrick and M.E. Keating, An introduction to ring and modules with K-theory in view, Cambridge University Press, Cambridge, 2000.
9. F.R. DeMeyer, T. McKenzie and K. Schneider, The zero-divisor graph of a commutative semigroup, Semigroup Forum 65 (2002), 206-214.
10. F.R. DeMeyer and K. Schneider, Automorphisms and zero-divisor graphs of commutative rings, Comm. Rings 25-37, Nova Science Publishers, Hauppauge, NY, 2002.
11. R. Diestel, Graph theory, Grad. Texts Math. 173, Springer-Verlag, Heidelberg, 2005.
12. N. Jacobson, Basic algebra II: Second edition, Dover Publications, New York, 2009.
13. H. Matsumura, Commutative ring theory, Cambridge University Press, Cambridge, 1986.
14. S.B. Mulay, Cycles and symmetries of zero-divisors, Comm. Alg. 30 (2002), 3533-3558.
15. S.P. Redmond, Generalizations of the zero divisor graph of a ring, Ph.D. thesis, The University of Tennessee, Knoxville, 2001.

Department of Mathematics, University of Neyshabur, P.O. Box 91136899, Neyshabur and School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O.Box 19395-5746, Tehran, Iran
Email address: mojgan.afkhami@yahoo.com
Department of Pure Mathematics, Ferdowsi University of Mashhad, P.O. Box 1159-91775, Mashhad, Iran
Email address: ehsan.estaji@hotmail.com
Department of Pure Mathematics, Ferdowsi University of Mashhad, P.O. Box 1159-91775, Mashhad, Iran
Email address: khashyar@ipm.ir
Department of Mathematics, University of Shahrood, P.O. Box 3619995161316, Shahrood, Iran
Email address: khorsandi@shahroodut.ac.ir


[^0]:    2010 AMS Mathematics subject classification. Primary 05C25, Secondary 05C10, 13C05.

    Keywords and phrases. Zero-divisor graph, endomorphism of a module, girth, decomposable module, planar graph, tensor product of graphs.

    Received by the editors on May 7, 2012, and in revised form on December 18, 2012.

