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ZERO-DIVISOR GRAPHS OF MODULES VIA
MODULE HOMOMORPHISMS

M. AFKHAMI, E. ESTAJI, K. KHASHYARMANESH AND M.R. KHORSANDI

ABSTRACT. In this paper, using module endomor-
phisms, we extend the concept of the zero-divisor graph of a
ring to a module over an arbitrary commutative ring. The
main aim of this article is studying the interplay of module-
theoretic properties of a module with graph properties of its
zero-divisor graph.

1. Introduction. Throughout this paper, let R be a commutative
ring with non-zero identity and Z(R) the set of its zero-divisors. Also
we set Z∗(R) := Z(R)\{0}. The concept of a zero-divisor graph of
a commutative ring was introduced and studied by Beck in [6]. He
let all elements of the ring be vertices of the graph and was interested
mainly in colorings. The zero-divisor graph of R, denoted by Γ(R), is
the (undirected) graph with vertices in the set of non-zero zero-divisors
of R and, for two distinct elements x and y in Z∗(R), the vertices x and
y are adjacent if and only if xy = 0. Thus, Γ(R) is the empty graph if
and only if R is an integral domain. Moreover, a non-empty graph Γ(R)
is finite if and only if R is finite. (See [5, Theorem 2.2].) The above
definition of Γ(R) and the emphasis on studying the interplay between
graph-theoretic properties of Γ(R) and ring-theoretic properties of R
are from [5].

For example, in [5, Theorem 2.3], it was proved that Γ(R) is
connected with diam (Γ(R)) 6 3. There are several papers devoted
to studying the properties of zero-divisor graphs. (See [2, 3, 4, 9, 10,
14].) For an R-module M , consider the zero-divisor graph of R(+)M ,
where R(+)M is the idealization of M . Redmond, in [15], defined the
zero-divisor graph of M as the subgraph of Γ(R(+)M) with vertices
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in the set 0(+)M := {(0,m) | m ∈ M }. So, for all m,m′ ∈ M ,
the vertices (0,m) and (0,m′) are adjacent. Recently, Behboodi, in
[7], introduced the sets of weak zero-divisors, zero-divisors and strong
zero-divisors ofM , denoted by Z∗(M), Z(M) and Z∗(M), respectively.
Also, he associated three (simple) graphs Γ∗(M), Γ(M) and Γ∗(M) to
M with vertices in Z∗(M), Z(M) and Z∗(M), respectively, and the
vertices x and y are adjacent if and only if IxIyM = 0, where, for an
element z in M , Iz is the ideal AnnR(M/Rz) := {r ∈ R | rM ⊆ Rz}.

In this paper, for an R-module M , using endomorphisms on M , we
assign a zero-divisor graph HR(Γ(M)) to M . We show that the graph
HR(Γ(M)) coincides with the zero-divisor graph of R whenM = R and
Γ(R) is not a singleton. In Section 2, we study some basic properties
of the zero-divisor graph HR(Γ(M)). For instance, we show that if
ψ : R → S is a ring epimorphism, then the graphs HR(Γ(M)) and
HS(Γ(M)) coincide. In Section 3, we study the zero-divisor graphs of
decomposable modules and the Z-module Zpn , for a prime number
p. Also, we use the concept of the tensor product of graphs for
studying the graph HRk(Γ(M)), whenever M has a decomposition
M =M1⊕· · ·⊕Mk for some submodulesM1, . . . ,Mk ofM . Moreover,
we study the planarity of the graph HR(Γ(M)) in several cases.

We recall that, for a graph G, the set of vertices is denoted by V (G).
Moreover, if P = x0 − · · · − xk is a path and k > 2, then the graph
C := P + xk − x0 is called a cycle. The above cycle C may be written
as x0 − · · · − xk − x0. The length of a cycle is its number of edges (or
vertices). The minimum length of a cycle (contained) in a graph G is
the girth g (G) of G. The distance d (x, y) in G of two distinct vertices
x and y is the length of a shortest path from x to y in G. If no such
path exists, we set d(x, y) := ∞. The greatest distance between any
two vertices in G is the diameter of G, which is denoted by diam (G).
If all the vertices of G are pairwise adjacent, then G is complete. A
complete graph on n vertices is denoted by Kn. The greatest integer
r such that Kr ⊆ G is the clique number ω(G) of G. Let r > 2 be an
integer. A graph G = (V,E) is called r-partite if V admits a partition
into r classes such that every edge has its ends in different classes and
the vertices in the same partition class must not be adjacent. Instead
of 2-partite, one usually says bipartite. An r-partite graph in which
every two vertices from different partition classes are adjacent is called
complete. Note that a graph is bipartite if and only if it contains no
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odd cycle. The complete r-partite graph is denoted by Kn1,...,nr , where
ni is the cardinality of the ith partition of V . Graphs of the form K1,n

are called stars; the vertex in a singleton partition class of this K1,n is
the star’s center. A non-empty graph G is called connected if any two
of its vertices are linked by a path in G. A graph is said to be planar
if it can be drawn in the plane so that its edges intersect only at their
ends.

For a general reference on ring theory we use [13], and for a general
reference on graph theory we use [11].

2. Definition and basic properties. In this section, by using the
concept of endomorphisms of an R-module M , we define a zero-divisor
graph of M , denoted by HR(Γ(M)), which is a generalization of the
zero-divisor graph of a commutative ring. To do this, we first establish
our notation. For any f, g ∈ EndR(M), IK (f, g) is the Cartesian
product of Im (f) ∩Ker (g) and Ker (f) ∩ Im (g), and we put

IK(M) :=
∪

f,g∈EndR(M)

IK(f, g).

Now, we describe the zero-divisor graph HR(Γ(M)). For any two
non-zero distinct elements m,m′ ∈ M , we say that, in the graph
HR(Γ(M)), m and m′ are adjacent if and only if (m,m′) ∈ IK (M),
and moreover, m ∈M is a vertex in HR(Γ(M)) if there exists m′ ∈M
such that m and m′ are adjacent. If we omit the word “distinct” in the
definition of H(Γ(M)), we obtain the graph H(Γ(M)); this graph may
have loops.

The following theorem shows that HR(Γ(M)) is a generalization of
the concept of the zero-divisor graph of R.

Theorem 2.1. For any commutative ring R, if Γ(R) is not a singleton,
then we have HR(Γ(R)) = Γ(R).

Proof. Let r and r′ be adjacent vertices in HR(Γ(R)). So there
are f, g ∈ EndR(R) such that (r, r′) ∈ IK (f, g). Put c := f(1) and
c′ := g(1). Then f(s) = cs and g(s) = c′s for all s ∈ R. Thus,
c′r = 0 = cr′, ct = r and c′t′ = r′ for some t, t′ ∈ R. Hence, rr′ = 0.
This means that r and r′ are adjacent in Γ(R).
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Now suppose that r and r′ are adjacent vertices in Γ(R). Hence,
rr′ = 0. Consider the endomorphisms φ,ψ : R → R induced by
multiplication by r and r′, respectively. So (r, r′) ∈ IK (φ,ψ), and
hence r and r′ are adjacent in HR(Γ(R)). Also note that Γ(R) and
HR(Γ(R)) have the same vertices. �

Lemma 2.2. Let r1 and r2 be two elements of R and m ∈ M such
that r1r2m = 0. Then (r1m, r2m) ∈ IK (M).

Proof. Suppose that f, g : M → M are given by multiplication
by r1 and r2, respectively. Now it is easy to see that (r1m, r2m) ∈
IK (f, g). �

Note that, in Lemma 2.2, if r1m and r2m are non-zero distinct
elements of M , then r1m and r2m are adjacent in HR(Γ(M)).

Remark 2.3. Suppose that Z(R) is an ideal of R and there exists an
element m ∈ M such that Z(R) ∩ AnnR(m) = {0}. Then, in view of
Lemma 2.2,

g (HR(Γ(M))) 6 g (Γ(R)).

In the rest of this section, we study properties of the zero-divisor
graph of modules through change of rings. Recall that, for an S-
module M and a ring homomorphism ψ : R → S, one can construct
an R-module structure on M by the multiplication rm := ψ(r)m for
all r ∈ R and m ∈ M . In the following proposition, we compare the
graphs HR(Γ(M)) and HS(Γ(M)).

Proposition 2.4. Suppose that ψ : R → S is a ring homomorphism
and M is an S-module. Then HS(Γ(M)) is an induced subgraph of
HR(Γ(M)), where M has the R-module structure induced by ψ.

Proof. By using the structure of M as an R-module, it is easy to
check that every S-endomorphism on M is an R-endomorphism. This
implies that the adjacency is preserved from the S-module M to the
R-module structure of M . �
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Theorem 2.5. Assume that ψ : R→ S is a ring epimorphism. Then

HR(Γ(M)) = HS(Γ(M)).

Proof. It is routine to check that EndR(M) = EndS(M). Hence, the
graphs HR(Γ(M)) and HS(Γ(M)) coincide. �

Corollary 2.6. Let M be an R-module and I an ideal of R with
I ⊆ AnnR(M). Then HR(Γ(M)) = HR/I(Γ(M)).

Proof. Consider the natural ring epimorphism R→ R/I. The result
now follows from Theorem 2.5. �

3. Zero-divisor graph of certain modules. In this section, for
a Z-module M , we study the zero-divisor graph HZ(Γ(M)). We begin
with the following remark, which is an immediate consequence of
Corollary 2.6 and Theorem 2.1.

Remark 3.1. For every positive integer n, if Γ(Zn) is not a singleton,
then HZ(Γ(Zn)) = Γ(Zn).

Now, we recall the definition of a refinement of a simple graph.

Definition 3.2. A simple graph G is called a refinement of a simple
graph H if V (G) = V (H) and E(H) ⊆ E(G).

Theorem 3.3. Let p be a prime number and n be a positive integer
greater than 1 such that pn ̸= 4. Then:

(i) the zero-divisor graph HZ(Γ(Zpn)) is a refinement of a star graph
with center pn−1;

(ii) the graph HZ(Γ(Zpn)) is connected with diameter at most 2; and,
(iii) if HZ(Γ(Zpn)) has a cycle, then g (HZ(Γ(Zpn)) = 3.

Proof. Part (i) follows from the Corollary 2.6 and the fact that the
set of zero-divisors of Zpn is an ideal generated by p. The claims in (ii)
and (iii) immediately follow from (i). �
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Recall that an R-module M is decomposable if M ∼=M1⊕· · ·⊕Mk,
for some non-zero submodules M1, . . . ,Mk of M with k > 1. Suppose
that M is both an Artinian and a Noetherian R-module and f is an
endomorphism of M . Put f∞(M) :=

∩∞
n=1 f

n(M) and f−∞(0) :=∪∞
n=1 Ker (fn), where fn is the composition of n-times of f . Then,

by Fitting’s lemma, M = f−∞(0) ⊕ f∞(M). (See [12, page 113].)
Such a decomposition is called Fitting’s decomposition. Hence if M is
finite, then M has a Fitting decomposition. This allows us to study
the decomposable modules.

Suppose that M decomposes as M1 ⊕ · · · ⊕Mk. Then any element
m ∈ M can be represented uniquely by (m1, . . . ,mk), where mi ∈ Mi

for each i = 1, . . . , k. We define the support of m as follows:

Supp (m) := {i | mi ̸= 0}.

Also, note that, in this situation, M has an Rk-module structure by
the multiplication

(r1, . . . , rk)(m1, . . . ,mk) = (r1m1, . . . , rkmk),

for all (r1, . . . , rk) ∈ Rk and (m1, . . . ,mk) ∈M .

The following theorem shows that there exists a strong connec-
tion between the graphs HR(Γ(M1)), . . . , HR(Γ(Mk)) and the graph
HRk(Γ(M)).

Theorem 3.4. Suppose that an R-module M has a decomposition
M = M1 ⊕ . . .⊕Mk and that m = (m1, . . . ,mk) and n = (n1, . . . , nk)
are non-zero elements ofM . Then m and n are adjacent in HRk(Γ(M))
if and only if, for each i ∈ Supp (m)∩Supp (n), ni and mi are adjacent
in HR(Γ(Mi)).

Proof. Suppose that, for i ∈ Supp (m) ∩ Supp (n), ni and mi are
adjacent in HR(Γ(Mi)). Hence, there are homomorphisms fi, gi ∈
EndR(Mi) such that (mi, ni) ∈ IK (gi, fi). Also, for 1 6 i 6 k with
i ̸∈ Supp (m) ∩ Supp (n), we have that either mi or ni is zero and
consequently (mi, ni) ∈ IK(0, id) or (mi, ni) ∈ IK (id, 0), where id is
the identity endomorphism onM . Thus, for each i = 1, . . . , k, there are
homomorphisms fi, gi ∈ EndR(Mi) such that (mi, ni) ∈ IK(fi, gi). Put
f := (f1, . . . , fk) and g := (g1, . . . , gk). Clearly, these homomorphisms
satisfy the adjacency conditions for m and n in the graph HRk(Γ(M)).
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Conversely, assume thatm and n are adjacent vertices inHRk(Γ(M)).
Since by [8, Theorem 2.6.8 (iii)],

EndRk(M) ∼= EndR(M1)⊕ · · · ⊕ EndR(Mk),

there are f, g ∈ EndRk(M) with (m,n) ∈ IK (f, g) of the form f =
(f1, . . . , fk), g = (g1, . . . , gk) where fi, gi ∈ EndR(Mi), for i = 1, . . . , k.
Now, for i ∈ Supp (m) ∩ Supp (n), mi ̸= 0 ̸= ni. It is routine to check
that (mi, ni) ∈ IK (fi, gi), and so mi and ni are adjacent vertices in
HR(Γ(Mi)). �

Remark 3.5. Let M be an R-module such that M = M1 ⊕ · · · ⊕Mk

for some submodules M1, . . . ,Mk. Then, for a positive integer i with
1 6 i 6 k, by using the following multiplication, M has an Ri-module
structure

(r1, . . . , ri)(m1, . . . ,mk) := (r1, . . . , ri, 0, . . . , 0)(m1, . . . ,mk),

for all (m1, . . . ,mk) ∈ M and (r1, . . . , ri) ∈ Ri. So EndRi+1(M) ⊆
EndRi(M). This implies that HRi+1(Γ(M)) can be considered as an
induced subgraph of HRi(Γ(M)), and so it is easy to verify that we
have the following chain of subgraphs of HR(Γ(M))

HRk(Γ(M)) ⊆ · · · ⊆ HR(Γ(M)).

Corollary 3.6. Suppose that an R-module M has a decomposition
M1 ⊕ · · · ⊕Mk such that Mi ̸= 0 for all i with 1 ≤ i ≤ k. Then every
two distinct non-zero elements m = (m1, . . . ,mk) and n = (n1, . . . , nk)
with Supp (m) ∩ Supp (n) = ∅ are adjacent in HR(Γ(M)).

In view of Corollary 3.6, the maximum number of summands in the
decomposition of M is a lower bound for the clique number of the
graph HR(Γ(M)). Now, we show that the tensor product of graphs is
a powerful tool for studying the zero-divisor graph of module. To this
end, we first recall the definition of the tensor product of two graphs.

Definition 3.7. The tensor product G ⊗ H of graphs G and H is a
graph such that

• the vertex set of G⊗H is the Cartesian product V (G)×V (H);
and,
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• any two vertices (u, u′) and (v, v′) are adjacent in G⊗H if and
only if u is adjacent to v and u′ is adjacent to v′.

Notation 3.8. For an R-module M , if we add vertex 0 to vertex set
of HR(Γ(M)), then we obtain the graph H∗

R(Γ(M)). In this graph 0 is
adjacent to all vertices.

Remark 3.9.

(1) LetM have a decompositionM1⊕· · ·⊕Mk. Hence, by Theorem 3.4,
it is easy to see that

H∗
Rk(Γ(M)) = H∗

R(Γ(M1))⊗ · · · ⊗H∗
R(Γ(Mk)).

(2) LetM be a simple R-module. Then HR(Γ(M)) is the empty graph.
(3) LetM ∼= Zp

a1
1
⊕· · ·⊕Zp

ak
k

be a finite Z-module such that p1, . . . , pk
are prime numbers for all i = 1, . . . , k. Then by (1),

H∗
Zk(Γ(M)) = H∗

Z(Γ(Zp
a1
1
))⊗ · · · ⊗H∗

Z(Γ(Zp
ak
k
)).

Proposition 3.10. LetM be an R-module, and let x and y be adjacent
vertices in HR(Γ(M)). Then, for each r, s ∈ R, (sx, ry) ∈ IK (M).

Proof. Suppose that x and y are adjacent vertices in HR(Γ(M)).
We need only show that (x, ry) ∈ IK (M), for all r ∈ R. To this end,
suppose that f and g are endomorphisms on M such that (x, y) ∈
IK (f, g). Since Ker (g) ∩ Im (f) is a submodule of M , for any element
r ∈ R, ry ∈ Ker (f) ∩ Im (g). Hence, f and g satisfy the required
conditions for adjacency of x and ry. So (x, ry) ∈ IK (M). �

In the rest of the paper, we study the planarity of the zero-divisor
graph of M . We begin with the following examples.

Example 3.11.

(a) We show that the zero-divisor graph ofHZ(Γ(Z2⊕Z2⊕Z3)) contains
K3,3 as a subgraph, and so it is not planar. Set

V1 := {α1 = (1, 0, 0), α2 = (1, 1, 0), α3 = (0, 1, 0)}
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and

V2 := {β1 = (1, 1, 1), β2 = (0, 0, 1), β3 = (0, 0, 2)}.

Now, in view of Corollary 3.6, we need only show that {α1, β1},
{α2, β1}, {α3, β1} are edges in HZ(Γ(Z2 ⊕ Z2 ⊕ Z3)). Consider
the elements e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1) in
M = Z2 ⊕ Z2 ⊕ Z3. Then, for adjacency of α1 and β1, we define
f1(e1) = f1(e2) = e1, f1(e3) = g1(e1) = g1(e3) = 0 and g1(e2) =
e1 + e2 + e3. Hence, (α1, β1) ∈ IK (f1, g1), and so {α1, β1} ∈
E(HZ(Γ(M))). For {α2, β1}, consider the endomorphisms f2 and
g2 given by f2(e1) = f2(e2) = e1 + e2, g2(e1) = e1 + e2 + e3,
g2(e2) = e1 + e2 + 2e3 and f2(e3) = g2(e3) = 0. Then (α2, β1) ∈
IK (f2, g2). Finally, set f3(e1) = f3(e2) = e2, g3(e1) = e1 + e2 + e3
and f3(e3) = g3(e2) = g3(e3) = 0. Thus, (α3, β1) ∈ IK(f3, g3) as
required.

(b) It is routine to check that the zero-divisor graph HZ(Γ(Z2 ⊕ Z2 ⊕
Z2)) is isomorphic to the complete graphK7, and so it is not planar.

Theorem 3.12. Suppose that an R-module M has the decomposition
M = M1 ⊕ · · · ⊕Mk, for some non-zero R-module Mi with 1 6 i 6 k.
Then:

(a) if k > 4, then HR(Γ(M)) is not planar ;
(b) if k = 3, M ̸∼= Z2 ⊕Z2 ⊕Z3 and M ̸∼= Z2 ⊕Z2 ⊕Z2, as Z-modules,

then HR(Γ(M)) is not planar ; and,
(c) if M ∼= Z2 ⊕Z2 ⊕Z2 or M ∼= Z2 ⊕Z2 ⊕Z3, then HZ(Γ(M)) is not

planar, but when we consider M as a ring, the zero-divisor graph
Γ(M) is planar.

Proof.

(a) Consider the subsets V1 := M1 ⊕ M2 ⊕ {0} ⊕ · · · ⊕ {0} and
V2 := {0} ⊕ · · · ⊕ {0} ⊕ Mk−1 ⊕ Mk of M . By Corollary 3.6,
all non-zero elements of V1 are adjacent to all non-zero elements of
V2. Since |Vi\{0}| > 3, for i = 1, 2, HR(Γ(M)) contains K3,3 as a
subgraph, and so it is not planar.

(b) Suppose that |Mi| > 3 for some i with 1 6 i 6 3. Without loss of
generality, one can assume that i = 1. Set V1 := M1 ⊕ {0} ⊕ {0}
and V2 := {0} ⊕M2 ⊕M3. Again, by Corollary 3.6, all non-zero
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elements of V1 are adjacent to all non-zero elements of V2. Since
|Vi\{0}| > 3, for i = 1, 2, HR(Γ(M)) contains K3,3 as a subgraph.
Hence, we may assume that, for each i with 1 6 i 6 3, |Mi| 6 3
and that |M1| 6 |M2| 6 |M3|. Now, if M ∼= Z2 ⊕ Z3 ⊕ Z3 or
M ∼= Z3 ⊕ Z3 ⊕ Z3, as Z-modules, then it is not hard to see that
HZ(Γ(M)) has Γ(M) as a subgraph, and so, by [1, Case 2, page
171], is not planar.

(c) It follows from Examples 3.12 and [3, Theorem 5.1(b)]. �
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