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LOWER BOUNDS OF THE CANONICAL HEIGHT ON
QUADRATIC TWISTS OF ELLIPTIC CURVES

TADAHISA NARA

ABSTRACT. We compute a lower bound of the canonical
height on quadratic twists of elliptic curves over Q. Also, we
show a simple method for constructing families of quadratic
twists with an explicit rational point. Using the above lower
bound, we show that the explicit rational point is primitive
as an element of the Mordell-Weil group.

1. Introduction. The canonical height on an elliptic curve over a
number field is a non-negative real-valued function on the curve. It is
a tool for studying arithmetic of elliptic curves. In studies using the
canonical height, it is often useful to estimate its value numerically.

It is known that, for every elliptic curve, there exists a positive
lower bound of the canonical heights of non-torsion rational points
([7]). There is also an algorithm which computes a lower bound for
a given elliptic curve ([3, 12]).

In the paper [4, Proposition 8.3], Duquesne gave an explicit lower
bound of the canonical heights of rational points on a certain family
of elliptic curves. The family consists of quartic twists of the elliptic
curve y2 = x3 − x. Similarly, Fujita and the author gave an explicit
lower bound on a family consisting of sextic twists of the elliptic curve
y2 = x3 + 1 ([5]). Both results are used to show that a set of explicit
points is a part of a basis of the Mordell-Weil group.

In this paper, we give an explicit lower bound for a family consisting
of quadratic twists of an elliptic curve. There is already a non-explicit
bound ([8, Exercise 8.16]) given by a different method from ours (see
Remark 1.2). Making the bound explicit enables us to study explicitly
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the behavior of a certain family of the quadratic twists of an elliptic
curve. For example, we can prove Theorem 1.4 below.

Our lower bound is obtained by using the decomposition of the
canonical height into the local heights, and they are estimated by the
combination of Cohen’s algorithm ([1, Algorithm 7.5.7]) and Tate’s
theorem ([10, Theorem 4.1]). Each lower bound in [4, 5] is essentially
for twists of a single curve. Moreover, by the simplicity of the Weier-
strass equations, the estimates of the non-archimedean part of the local
height were available by ad hoc arguments. However, in this paper, we
give a lower bound for quadratic twists of an arbitrary curve, and more
systematic argument is required.

Our main results are as follows.

Theorem 1.1. Let E/Q be an elliptic curve and ED/Q the quadratic
twist of E/Q by a square-free integer D. If P ∈ ED(Q) is not a 2-
torsion point, then we have the following lower bound of the canonical
height of P ,

ĥ(P ) ≥ 1

8
log |D|+ 1

32
log

(1− |q|)8

|q|

+
1

8
log

∣∣∣∣ωE/Q

2π

∣∣∣∣− 5

96
log |DE/Q|

− 1

24
log |jdnmE | − 3

4
log 2,

where jdnmE is the denominator of the j-invariant of E (if jE = 0, then
put jdnmE = 1), DE/Q is the minimal discriminant of E/Q, ωmin

1 and

ωmin
2 are periods of a minimal Weierstrass equation of E/Q such that
ωmin
1 > 0, Im(ωmin

2 ) > 0 and Re(ωmin
2 /ωmin

1 ) = 0 or −1/2,

ωE/Q =

 ωmin
1 (D > 0)

Im(ωmin
2 ) (D < 0, DE/Q > 0)

2Im(ωmin
2 ) (D < 0, DE/Q < 0)

and q = exp(2πiωmin
2 /ωmin

1 ).

Remark 1.2. We have ĥ(P ) > (1/8) log |D| + O(1) by [8, Exercise
8.16 (c)]. The proof does not use the (Néron) local height functions.
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Remark 1.3. All the quantities in the bound in the theorem (i.e.,
jdnmE , DE/Q, ωE/Q and q), do not depend on the choice of a Weierstrass
equation of E/Q.

The value of the canonical height is always non-negative and so,
unless |D| is sufficiently large, this bound is trivial. But the bound is
suited for seeing a behavior of a family of elliptic curves. Indeed, using
Theorem 1.1, we can show the following theorem.

Theorem 1.4. Let t ∈ Z, D(t) = t6+4t4+30t3+5t2+54t+245, ED the
elliptic curve defined by y2 = x3+2D(t)x2+163D(t)2x+2205D(t)3 and
P the point (D(t)(t4+2t2+12t), D(t)2(t3+ t+3)) on ED. We assume
that D(t) is square-free. Then ED(Q) does not have torsion points
if |t| ≥ 31 and P is a primitive point if |t| ≥ 54485. In particular,
ED(Q) ≃ ⟨P ⟩ if rankED(Q) = 1 and |t| ≥ 54485.

Remark 1.5. This family of quadratic twists is an example given by
the method described in Section 4. For many other families given by
the method, we can show similar results. Without the assumption that
D(t) is square-free, at least it is true that the set of integers t such that
P is primitive has density 1 due to [6, Theorem 1].

The organization of this paper is as follows. In Section 2, we review
the notions of the canonical height and the local height function. In
Section 3, we compute the local height functions by using Cohen’s
algorithm and Tate’s theorem to prove Theorem 1.1. In Section 4,
we introduce a method of constructing families of quadratic twists. In
Section 5, we prove Theorem 1.4, which is a consequence for an example
given by the method in Section 4.

2. Preliminaries. For the Weierstrass equation y2 + a1xy + a3y =
x3 + a2x

2 + a4x + a6, by b2, b4, b6 and c4, c6 we denote the usual
quantities defined in [8, Chapter III.1]. We use the notation [u, r, s, t]
for a transformation of Weierstrass equations given by the substitution
x 7→ u2x + r, y 7→ u3y + u2sx + t. (For details see also [8, Chapter
III.1].)
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For an elliptic curve E/Q we denote the Mordell-Weil group and its
m-torsion subgroup by E(Q) and E(Q)[m], respectively. We denote
the j-invariant of E by jE .

First, we recall the definition of the canonical height of elliptic
curves. Let E/Q be an elliptic curve and P = (x, y) ∈ E(Q) with
x = n/d and gcd(n, d) = 1. Then the näıve height h(P ) is defined by

max{log |n|, log |d|} and the canonical height ĥ(P ) is defined by

ĥ(P ) =
1

2
lim

n→∞

h(2nP )

4n
.

It is known that the canonical height is decomposed to the sum
of functions, called the (Néron) local height functions. We use the
decomposition for computations of the canonical heights. The local
height function λv is defined by the following theorem.

Theorem 2.1 (Néron, Tate [11, Chapter VI, Theorem 1.1]). Let K
be a number field, v a place and Kv its completion with respect to the
absolute value | · |v, and put v(·) = − log | · |v. Let E/K be the elliptic
curve defined by y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6. Then there
exists a unique function λv : E(Kv) \ O → R which has the following
three properties.

(i) For all P ∈ E(Kv) with 2P ̸= O,

λv(2P ) = 4λv(P ) + v(2y(P ) + a1x(P ) + a3)−
1

4
v(∆).

(ii) The limit limP→O
v-adic

(
λv(P ) + (1/2)v(x(P ))

)
exists.

(iii) λv is continuous on E(Kv) \ {O} and bounded on any v-adic
open subset of E(Kv) disjoint from O.

Remark 2.2. There is an alternative definition of the local height
function, which is given by removing −(1/4)v(∆) from the right-hand
side of the property (i) (e.g., [9, page 341]). Let µv be the alternative
local height function. Then we have the equality

λv = µv +
1

12
v(∆).

Though µv depends on the choice of a Weierstrass equation, λv is
independent of the choice ([11, Chapter VI, Theorem 1.1 (b)]).
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References [10, 11] define the local height function as λv. References
[1, 9] define the local height function as µv.

Now, if K = Q, we have the decomposition

ĥ(P ) =
∑

p:prime,∞
λp(P ) =

∑
p:prime,∞

µp(P ).(2.1)

3. Uniform lower bound on quadratic twists. In this section
we compute a lower bound of the canonical height on quadratic twists
of elliptic curves. We use the decomposition (2.1).

Let C/Q be an elliptic curve defined by

(3.1) C/Q : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Definition 3.1. The quadratic twist of C by a square-free integer D
is the elliptic curve defined by

(3.2)

CD/Q : y2 + a1xy + a3y

= x3 +

(
a2D + a21

D − 1

4

)
x2 +

(
a4D

2 + a1a3
D2 − 1

2

)
x

+ a6D
3 + a23

D3 − 1

4
.

Remark 3.2. The definition of CD/Q is independent of the choice of
a Weierstrass equation of C/Q. Indeed, the equation of the quadratic
twist of the equation given by transforming (3.1) by [u, r, s, t] is identical
with the equation given by transforming (3.2) by [u, rD, s, t+ a1r(1−
D)/2] (see [2, Proposition 4.3.2 (e)]).

Remark 3.3. If a1 = a3 = 0, then we have

CD/Q : y2 = x3 + a2Dx
2 + a4D

2x+ a6D
3,

which is a familiar form.

Lemma 3.4. Let C be an elliptic curve over Q. Then, for the
Weierstrass equation of the curve, we can choose one in the form
y2 = x3 + ax2 + bx + c (a, b, c ∈ Z) with the discriminant 212mDC/Q
(m = 0, 1), where DC/Q is the minimal discriminant of C/Q.
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Proof. Let y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 (ai ∈ Z) be

a minimal Weierstrass equation of C/Q, that is, an equation which is
minimal at every p prime. Then the discriminant of this equation is
DC/Q.

By the substitution y 7→ y − (a1x+ a3)/2, we have

y2 = x3 +
b2
4
x2 +

b4
2
x+

b6
4
,

where bi are the usual quantities of the Weierstrass equation and they
are integral. Through the substitution, the discriminant does not
change.

Next, by the substitution x 7→ (2−2m)x, y 7→ (2−3m)y, we have

y2 = x3 + (22m)
b2
4
x2 + (24m)

b4
2
x+ (26m)

b6
4
.

It suffices to choose m = 0 or 1 in order to make all the coefficients of
this equation be integral. By the substitution, the discriminant changes
to 212mDC/Q. �

The canonical height is independent of the choice of a Weierstrass
equation, and so by Remark 3.2, for a proof of Theorem 1.1, we may
choose the equation of E/Q and ED/Q as follows.

E/Q : y2 = x3 + a2x
2 + a4x+ a6 (a2, a4, a6 ∈ Z),(3.3)

ED/Q : y2 = x3 + a2Dx
2 + a4D

2x+ a6D
3.(3.4)

We denote the discriminants of these equations by ∆, ∆D, respectively.
By Lemma 3.4, we may also assume

∆ = 212mDE/Q (m = 0, 1),

where DE/Q is the minimal discriminant of E/Q.

Rational points on an elliptic curve defined by a Weierstrass equation
can always be expressed as (α/δ2, β/δ3), where α, β, δ ∈ Z, δ > 0 and
gcd(α, δ) = gcd(β, δ) = 1. So let Q = (α/δ2, β/δ3) ∈ ED(Q)[2] with
the condition.

We first compute the archimedean part, that is, λ∞(Q), by using [1,
Algorithm 7.5.7].
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Throughout the paper, we define periods of an elliptic curve as are
computed by [1, Algorithm 7.4.7], which depend on the choice of a
Weierstrass equation. By ω1, ω2 and ωmin

1 , ωmin
2 we denote the periods

of (3.3) and of its minimal equation, respectively. Then we can easily
verify ω1 = 2−mωmin

1 , ω2 = 2−mωmin
2 (m = 0, 1). Further, if we let

ω1,D be the period of (3.4), then by straightforward computations, we
have the following lemma.

Lemma 3.5.

ω1,D =


ω1|D|−1/2 (D > 0)

Im(ω2)|D|−1/2 (D < 0,∆ > 0)

2Im(ω2)|D|−1/2 (D < 0,∆ < 0)

The estimate of the archimedean part is as follows.

Lemma 3.6. Let Q = (α/δ2, β/δ3) ∈ ED(Q) \ ED(Q)[2]. Then

(3.5)

λ∞(Q) ≥ 1

8
log |D|+ 1

32
log

(1− |q|)8

|q|
+

1

8
log

∣∣∣∣ωE/Q

2π

∣∣∣∣
− 3

4
log δ +

1

4
log |β| − 5

96
log |DE/Q|

− 3

4
log 2− 1

2
log |D|,

where q = exp(2πiω2/ω1), DE/Q is the minimal discriminant of E/Q
and

ωE/Q =

 ωmin
1 (D > 0)

Im(ωmin
2 ) (D < 0,∆ > 0)

2Im(ωmin
2 ) (D < 0,∆ < 0).

Remark 3.7. It is convenient for us to divide the term of log |D| as
above for later computations.

Proof. By [1, Algorithm 7.5.7], Lemma 3.5 and the trivial bound
|θ| ≤ 1/(1− |q|),

λ∞(Q) =
1

32
log

∣∣∣∣∆D

q

∣∣∣∣+ 1

8
log

∣∣∣∣( β

δ3

)2
ω1,D

2π

∣∣∣∣
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− 1

4
log |θ| − 1

12
log |∆D|

=
1

32
log

∣∣∣∣212mDE/QD
6

q

∣∣∣∣+ 1

8
log

∣∣∣∣β2

δ6
2−mωE/Q

2π|D|1/2

∣∣∣∣
− 1

4
log |θ| − 1

12
log |212mDE/QD

6|

=
1

8
log |D|+ 1

32
log

1

|q|
− 1

4
log |θ|

+
1

8
log

∣∣∣∣ωE/Q

2π

∣∣∣∣− 3

4
log |2m|

+
1

4
log

∣∣∣∣ βδ3
∣∣∣∣− 5

96
log |DE/Q| −

1

2
log |D|

≥ 1

8
log |D|+ 1

32
log

(1− |q|)8

|q|

+
1

8
log

∣∣∣∣ωE/Q

2π

∣∣∣∣− 3

4
log 2

+
1

4
log

∣∣∣∣ βδ3
∣∣∣∣− 5

96
log |DE/Q| −

1

2
log |D|. �

Remark 3.8. Note that we cannot use [1, Algorithm 7.5.7] for 2-
torsion points.

Next we estimate the non-archimedean part of the canonical height.
For this purpose, we use [10, Theorem 4.1] and [11, Chapter VI,
Theorem 4.1].

Definition 3.9. For a Weierstrass equation E : y2 + a1xy + a3y =
x3 + a2x

2 + a4x+ a6, we define polynomials of x, y as follows.

ψ0(x, y) = 3x2 + 2a2x+ a4 − a1y,

ψ2(x, y) = 2y + a1x+ a3,

ψ3(x, y) = 3x4 + b2x
3 + 3b4x

2 + 3b6x+ b8.

We also put
vp(·) = ordp(·) log p(= − log | · |p).
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Remark 3.10. ψ2 and ψ3 are known as the division polynomials of
elliptic curves. We use ψ3 in the proof of Lemma 5.2.

Theorem 3.11 ([11, Ch. VI, Theorem 4.1]). Let E/Q be an elliptic
curve defined by a Weierstrass equation y2 + a1xy+ a3y = x3 + a2x

2 +
a4x + a6 with p-integral coefficients (i.e. ordp(ai) ≥ 0). If P ∈ E(Q)
satisfies ordp(ψ0(P )) ≤ 0 or ordp(ψ2(P )) ≤ 0, then

λp(P ) =
1

2
max{vp(x(P )−1), 0}+ 1

12
vp(∆),

where ∆ is the discriminant of the equation.

Computing ψ0, ψ2 for (3.4) and denoting them by ψ0,D, ψ2,D, we
have

ψ0,D(x, y) = 3x2 + 2a2Dx+ a4D
2,

ψ2,D(x, y) = 2y.

In the following consideration, we fix a square-free integer D and a
rational point Q = (α/δ2, β/δ3) ∈ ED(Q). First for D and Q we divide
the set of primes into several subsets.

Definition 3.12. Let Ω be the set of all the rational primes. For Q
and D, we put

S+ = {p ∈ Ω; p | δ, p ̸= 2},
S− = {p ∈ Ω; p - δ, p ̸= 2},
T+ = {p ∈ Ω; p - δ, p | β, p ̸= 2},
T− = {p ∈ Ω; p - δ, p - β, p ̸= 2},
U+ = {p ∈ Ω; p - δ, p | β, p | D, p ̸= 2},
U− = {p ∈ Ω; p - δ, p | β, p - D, p ̸= 2}.

Remark 3.13. Note that

Ω = S+ ∪ T− ∪ U+ ∪ U− ∪ {2}.
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Lemma 3.14. If p ∈ S+ ∪ T− and Q = (α/δ2, β/δ3) ∈ ED(Q), then

λp(Q) ≥ vp(δ) +
1

2
vp(D) +

1

12
vp(DE/Q).

Proof. In this case, ordp(ψ2,D(Q)) = ordp(2β/δ
3) ≤ 0. So Q reduces

modulo p to a nonsingular point. Now, by [11, Ch. VI, Theorem 4.1]

λp(Q) =
1

2
max{−vp(α/δ2), 0}+

1

12
vp(D

6∆)

≥ vp(δ) +
1

2
vp(D) +

1

12
vp(DE/Q). �

Lemma 3.15. If p ∈ U+ and Q = (α/δ2, β/δ3) ∈ ED(Q), then

λp(Q) ≥ −1

4
vp(β) +

1

2
vp(D)− 1

24
max{vp(j−1

E ), 0}.

Proof. Using [10, Theorem 4.1], we have

λp(Q) ≥ 1

2
max{−vp(α/δ2), 0} −

1

24
max{vp(j−1

E ), 0}

= − 1

24
max{vp(j−1

E ), 0}.

Next, we have

β2

δ6
=
α3

δ6
+ a2D

α2

δ4
+ a4D

2 α

δ2
+ a6D

3,

since Q ∈ ED(Q). So p | α, since p | β and p | D. Then
ordp((α

3/δ6) + a2D(α2/δ4) + a4D
2(α/δ2) + a6D

3) ≥ 3. On the other
hand, ordp(β

2/δ6) is even, and so ordp(β
2) ≥ 4 and ordp(β) ≥ 2.

Therefore, we have

λp(Q) +
1

4
vp(β) ≥ − 1

24
max{vp(j−1

E ), 0}+ 2

4
log p

= − 1

24
max{vp(j−1

E ), 0}+ 1

2
vp(D),

since D is square-free. �

Lemma 3.16. If p ∈ U− and Q = (α/δ2, β/δ3) ∈ ED(Q), then

λp(Q) ≥ − 1

24
max{vp(j−1

E ), 0}.
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Proof. Using [10, Theorem 4.1], we have

λp(Q) ≥ 1

2
max{−vp(α/δ2), 0} −

1

24
max{vp(j−1

E ), 0}

= − 1

24
max{vp(j−1

E ), 0}. �

Lemma 3.17. If p = 2, then

λp(Q) ≥


−

1

24
max{vp(j−1

E ), 0} −
1

4
vp(β) +

1

2
vp(D) (2 - δ, 2 | D)

−
1

24
max{vp(j−1

E ), 0} (2 - δ, 2 - D)

vp(δ) +
1

2
vp(D) +

1

12
vp(DE/Q) (2 | δ).

Proof. If 2 | δ, then 2 - β and so ord2(ψ2,D(Q)) = ord2(2β/δ
3) < 0.

Then Q reduces modulo 2 to a nonsingular point, and so

λp(Q) = vp(δ) +
1

2
vp(D) +

1

12
vp(∆)

≥ vp(δ) +
1

2
vp(D) +

1

12
vp(DE/Q).

Next assume 2 - δ. If Q reduces modulo 2 to a nonsingular point,
then we have the same bound as above. So we assume Q reduces to a
singular point. If 2 | D, then 2 | α and so 2 | β. Therefore, again by
the same argument as that in the proof of Lemma 3.15, we obtain

λp(Q) ≥ − 1

24
max{vp(j−1

E ), 0} − 1

4
vp(β) +

1

2
vp(D).

If 2 - D, then by using [10, Theorem 4.1], we have

λp(Q) ≥ − 1

24
max{vp(j−1

E ), 0}.

These two lower bounds are clearly less than

vp(δ) +
1

2
vp(D) +

1

12
vp(DE/Q). �

We now finish the proof of Theorem 1.1.
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Proof of Theorem 1.1. By (2.1) and Lemma 3.6,

ĥ(P ) ≥ 1

8
log |D|+ 1

32
log

(1− |q|)8

|q|
+

1

8
log

∣∣∣∣ωE/Q

2π

∣∣∣∣
− 3

4
log δ +

1

4
log |β| − 5

96
log |DE/Q|

− 3

4
log 2− 1

2
log |D|+

∑
p:prime

λp(Q).

If 2 - δ and 2 | D, then by Lemmas 3.14–3.17,∑
p:prime

λp(Q) =
∑

p∈S+∪T−

λp(Q) +
∑
p∈U+

λp(Q) +
∑

p∈U−

λp(Q) + λ2(Q)

≥
∑

p∈S+∪T−

(
vp(δ) +

1

2
vp(D) +

1

12
vp(DE/Q)

)

+
∑

p∈U+∪{2}

(
− 1

4
vp(β) +

1

2
vp(D)− 1

24
max{vp(j−1

E ), 0}
)

+
∑

p∈U−

(
− 1

24
max{vp(j−1

E ), 0}
)

=
∑

p|δ, p ̸=2

vp(δ) +
∑
p|D

1

2
vp(D) +

∑
p-β, p ̸=2

1

12
vp(DE/Q)

+
∑

p-δ, p|D, p|β

(
− 1

4
vp(β)

)

+
∑

p-δ, p|β

(
− 1

24
max{vp(j−1

E ), 0}
)

≥ log δ +
1

2
log |D|+ 0− 1

4
log |β|

−
∑

p|DE/Q

1

24
max{vp(j−1

E ), 0}.

If 2 - δ and 2 - D, then by Lemmas 3.14–3.17,∑
p:prime

λp(Q) =
∑

p∈S+∪T−

λp(Q) +
∑
p∈U+

λp(Q) +
∑

p∈U−

λp(Q) + λ2(Q)
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≥
∑

p∈S+∪T−

(
vp(δ) +

1

2
vp(D) +

1

12
vp(DE/Q)

)

+
∑
p∈U+

(
− 1

4
vp(β) +

1

2
vp(D)− 1

24
max{vp(j−1

E ), 0}
)

+
∑

p∈U−∪{2}

(
− 1

24
max{vp(j−1

E ), 0}
)

=
∑
p|δ
p ̸=2

vp(δ) +
∑
p|D
p̸=2

1

2
vp(D) +

∑
p-β
p ̸=2

1

12
vp(DE/Q)

+
∑
p-δ
p|D
p|β
p̸=2

(
− 1

4
vp(β)

)
+

∑
p-δ
p|β

(
− 1

24
max{vp(j−1

E ), 0}
)

≥ log δ +
1

2
log |D|+ 0− 1

4
log |β|

−
∑

p|DE/Q

1

24
max{vp(j−1

E ), 0}.

If 2 | δ, then by seeing the decomposition as∑
p:prime

λp(Q) =
∑

p∈S+∪T−∪{2}

λp(Q) +
∑
p∈U+

λp(Q) +
∑

p∈U−

λp(Q),

we have the same bound by a similar computation.

Therefore,

ĥ(P ) ≥ 1

8
log |D|+ 1

32
log

(1− |q|)8

|q|

+
1

8
log

∣∣∣∣ωE/Q

2π

∣∣∣∣− 3

4
log δ +

1

4
log |β|

− 5

96
log |DE/Q| −

3

4
log 2− 1

2
log |D|

+ log δ +
1

2
log |D| − 1

4
log |β|
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−
∑

p|DE/Q

1

24
max{vp(j−1

E ), 0}

≥ 1

8
log |D|+ 1

32
log

(1− |q|)8

|q|

+
1

8
log

∣∣∣∣ωE/Q

2π

∣∣∣∣− 5

96
log |DE/Q|

−
∑

p|DE/Q

1

24
max{vp(j−1

E ), 0} − 3

4
log 2. �

Corollary 3.18. Let ED be the elliptic curve defined by y2 = x3 +
2Dx2 + 163D2x+ 2205D3 (D > 0) and Q ∈ ED(Q) \ ED(Q)[2]. Then

ĥ(Q) ≥ 1

8
logD − 2.5744.

Proof. Let E/Q be the elliptic curve defined by

(3.6) y2 = x3 + 2x2 + 163x+ 2205.

Then, by using PARI/GP v.2.3.4, we have ∆ = −2432133193, jE =
28539733−213−319−3, ω1 = 1.04995090 · · · , q = −0.10978666 · · · .
Since the discriminant is twelfth power-free, the equation (3.6) is min-
imal, and so ωE/Q = ω1,DE/Q = ∆. By Theorem 1.1 with the values
we have the bound. �

4. Families of quadratic twists. In this section we describe a
method to construct families of quadratic twists of elliptic curves with
an explicit point.

Let f ∈ Q[t] be a monic irreducible cubic polynomial (therefore with
no multiple roots), F ∈ Q[t] a polynomial such that F ′ = mf for some
m ∈ Q and α a root of f . The minimal polynomial of F (α) over Q is a
cubic polynomial, which is denoted by f1. Then f1 ◦F (t) has the factor
f(t)2, since f1◦F (α) = 0 and [d(f1 ◦ F )]/(dt)(α) = f ′1(F (α))F

′(α) = 0.
Therefore, there exists a polynomial D ∈ Q[t] such that D(t)f(t)2 =
f1(F (t)). So we obtain a family of the quadratic twists D(t)y2 = f1(x)
with a rational point (F (t), f(t)).
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For example, if

f = t3 + t+ 3, F = t4 + 2t2 + 12t,

we have

f1 = t3 + 2t2 + 163t+ 2205,

D = t6 + 4 t4 + 30 t3 + 5 t2 + 54 t+ 245.

In general, we can obtain f1 and D explicitly as follows.

Lemma 4.1. Let A,B ∈ Q, f = t3+At+B and F = t4+2At2+4Bt.
Then the polynomials f1 and D as above are as follows.

f1 = t3 + 2A2t2 +A(A3 + 18B2)t+B2(2A3 + 27B2),

D = t6 + 4At4 + 10Bt3 + 5A2t2 + 18ABt+ 2A3 + 27B2.

In particular, disc(f1) = B2 disc(f)3, where we denote discriminants
of polynomials by disc(·).

Proof. If we write f(t) = (t− α1)(t− α2)(t− α3), then

f1(t) = (t− F (α1))(t− F (α2))(t− F (α3)).

Since

F (α1) + F (α2) + F (α3),

F (α1)F (α2) + F (α2)F (α3) + F (α3)F (α1),

F (α1)F (α2)F (α3)

are all symmetric polynomials of α1, α2, α3, they are polynomials of
α1 + α2 + α3 (= 0), α1α2 + α2α3 + α3α1 (= A) and α1α2α3 (= −B).
Indeed, we can verify that

F (α1) + F (α2) + F (α3) = −2A2,

F (α1)F (α2) + F (α2)F (α3) + F (α3)F (α1) = A(A3 + 18B2),

F (α1)F (α2)F (α3) = −B2(2A3 + 27B2). �

5. An example. In this section, we consider a family of quadratic
twists of an elliptic curve. The family in the following lemma is
constructed by the method described in Section 4.
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Lemma 5.1. Let t ∈ Z, D(t) = t6 + 4t4 + 30t3 + 5t2 + 54t+ 245, ED

the elliptic curve defined by y2 = x3+2D(t)x2+163D(t)2x+2205D(t)3

and P the point (D(t)(t4 + 2t2 + 12t), D(t)2(t3 + t+ 3)) on ED. Then

λ∞(P ) <
5

6
logD(t) + 0.6089− 1

12
log |∆D|.

Proof. We fix an integer t. For the computation of λ∞(P ), we use
Tate’s series ([9, Theorem 1.2]). For this purpose, we transform the
Weierstrass equation by the substitution x 7→ x − 30D(t). This yields
the equation

(5.1) y2 = x3 − 88D(t)x2 + 2743D(t)2x− 27885D(t)3,

and P corresponds to the point (D(t)(t4 + 2t2 + 12t+ 30), D(t)2(t3 +
t + 3)). We denote them by E′

D and P ′, respectively. Now λ∞(P ) on
ED equals λ∞(P ′) on E′

D (Remark 2.2). Note that the discriminant
does not change through the transformation.

The polynomial x3 − 88x2 + 2743x − 27885 has only one real root,
which we denote by c, and its approximate value is 20.55166 · · · . So
the only real root of x3−88D(t)x2+2743D(t)2x−27885D(t)3 is cD(t),
and so we have x(Q) > 20.55166D(t) > 0 for Q ∈ E′

D(R) (it is easy to
see that D(t) > 0 for t ∈ R). So λ∞(P ′) is computable by using Tate’s
series, as follows.

λ∞(P ′) =
1

2
log |x(P ′)|+ 1

2

∞∑
i=0

1

4i+1
log |z(2iP ′)| − 1

12
log |∆D|,

where bi,D are usual quantities of (5.1) and

z(P ′) = 1− b4,D
x(P ′)2

− 2b6,D
x(P ′)3

− b8,D
x(P ′)4

.

Note that z(Q) > 0 for any Q ∈ E′
D(R), since z(Q) satisfies the equality

z(Q)x(Q)4 = ψ2(Q)2x(2Q).

By elementary calculus, we can compute the bounds of the series as
follows.

0 <
x(P ′)

D(t)5/3
=

t4 + 2t2 + 12t+ 30

(t6 + 4t4 + 30t3 + 5t2 + 54t+ 245)2/3
< 3.37933.
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So

1

2
log x(P ′) <

5

6
logD(t) +

1

2
log(3.37933) <

5

6
logD(t) + 0.6089.

For any point Q ∈ E′
D(R), if we put u = x(Q)/D(t), then u >

20.55166 as mentioned above. So

z(Q) = 1− b4,D
x(Q)2

− 2b6,D
x(Q)3

− b8,D
x(Q)4

= 1− 5486

u2
+

223080

u3
− 2291471

u4
< 1.

Therefore,
∞∑
i=0

1

4i+1
log z(2iP ′) < 0. �

Lemma 5.2. We consider the situation of Lemma 5.1, and assume
that D(t) is square-free. Then we have∑

p:prime

λp(P ) ≤ −1

2
logD(t) +

1

12
log |∆D|.

Proof. To ease the notation, we write D(t) = D. Since the discrim-
inant of ED is ∆D = D6∆ = −D6 · 2432133193 and D is square-free,
the equation defining ED is minimal. Since P is an integral point,
λp(P )− (1/12)vp(∆D) is not positive for every p by [9, Theorem 5.2].
(Note that the paper defines the local height function as µp in Re-
mark 2.2.) So we have∑

p:prime

(
λp(P )−

1

12
vp(∆D)

)
≤

∑
p|D

(
λp(P )−

1

12
vp(∆D)

)
.

To estimate the right-hand side we use [9, Theorem 5.2]. Computing
the division polynomials of ED we have

ψ2 = 2y,

ψ3 = 3x4 + 4a2Dx
3 + 6a4D

2x2 + 12a6D
3x+ (4a2a6 − a24)D

4,

a2 = 2, a4 = 163, a6 = 2205.
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ED has the additive reduction at p dividing D. If p | D, then
ordp(ψ2(P )) ≥ 2 and ordp(ψ3(P )) ≥ 4 and so we have

λp(P ) ≤ −4

8
log p+

1

12
vp(∆D)

or

λp(P ) ≤ −2

3
log p+

1

12
vp(∆D)

by [9, Theorem 5.2]. In any case, λp(P ) ≤ −(1/2) log p+(1/12)vp(∆D),
and so∑

p|D

(
λp(P )−

1

12
vp(∆D)

)
≤

∑
p|D

(
− 1

2
log p

)
= −1

2
logD. �

Lemmas 5.1 and 5.2 imply the following proposition.

Proposition 5.3. In the situation of Lemma 5.2, we have

ĥ(P ) ≤ 1

3
logD(t) + 0.6089.

We now finish the proof of Theorem 1.4.

Proof of Theorem 1.4. The polynomial x3 +2x2 +163x+2205 does
not have rational roots, and neither does x3 + 2D(t)x2 + 163D(t)2x+
2205D(t)3. Therefore, ED(Q) does not have 2-torsion points. Further,

if |t| ≥ 31, then ĥ(P ) > 0 for any rational point by Corollary 3.18, and
so ED(Q) does not have any torsion points. By elementary calculus,
we have

(1/3) logD(t) + 0.6089

(1/8) logD(t)− 2.5744
< 4,

for |t| ≥ 54485. Therefore, by the property of canonical height, there
does not exist a point R such that P = mR (|m| ≥ 2). �

Acknowledgments. The author is grateful to the referee for valu-
able comments on an earlier version of this paper, which enabled a
much improved result about the main theorem in this paper.



THE CANONICAL HEIGHT ON QUADRATIC TWISTS 2027

REFERENCES

1. H. Cohen, A course in computational algebraic number theory, Springer-
Verlag, New York, 1993.

2. I. Connell, Elliptic curve handbook, http://www.ucm.es/BUCM/mat/doc8354.pdf

or http://www.math.mcgill.ca/connell/, 1999.

3. J. Cremona and S. Siksek, Computing a lower bound for the canonical height

on elliptic curves over Q, in Algorithmic number theory, 7th Inter. Sympos., Vol.
ANTS-VII (2006), 275–286.

4. S. Duquesne, Elliptic curves associated with simplest quartic fields, J. Theor.

Nomb. Bordeaux 19 (2007), 81–100.

5. Y. Fujita and T. Nara, On the Mordell-Weil group of the elliptic curve
y2 = x3 + n, J. Num. Theor. 132 (2012), 448–466.

6. R. Gupta and K. Ramsay, Indivisible points on families of elliptic curves, J.
Num. Theor. 63 (1997), 357–372.

7. J.H. Silverman, Lower bound for the canonical height on elliptic curves, Duke
Math. J. 48 (1981), 633–648.

8. , The arithmetic of elliptic curves, Springer-Verlag, New York, 1986.

9. , Computing heights on elliptic curves, Math. Comp. 51 (1988), 339–
358.

10. , The difference between the Weil height and the canonical height on
elliptic curves, Math. Comp. 55 (1990), 723–743.

11. , Advanced topics in the arithmetic of elliptic curves, Springer-
Verlag, New York, 1994.

12. T. Thongjunthug, Computing a lower bound for the canonical height on

elliptic curves over number fields, Math. Comp. 79 (2010), 2431–2449.

Mathematical Institute, Tohoku University, Sendai 980-8578, Japan
Email address: sa4m19@math.tohoku.ac.jp


