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NEW CHARACTERIZATIONS OF
MINIMAL CUSCO MAPS

ĽUBICA HOLÁ AND DUŠAN HOLÝ

ABSTRACT. We give new characterizations of minimal
cusco maps in the class of all set-valued maps extending
results from [5, 11]. Let X be a topological space and
Y a Hausdorff locally convex linear topological space. Let
F : X → Y be a set-valued map. The following are
equivalent: (1) F is minimal cusco; (2) F has nonempty
compact values, there is a quasicontinuous, subcontinuous
selection f of F such that F (x) = co f(x) for every x ∈ X;
(3) F has nonempty compact values, there is a densely
defined subcontinuous, quasicontinuous selection f of F such
that F (x) = co f(x) for every x ∈ X; (4) F has nonempty
compact convex values, F has a closed graph, every extreme
function of F is quasicontinuous, subcontinuous and any
two extreme functions of F have the same closures of their
graphs. Some applications to known results are given.

1. Introduction. The acronym usco (cusco) stands for a (con-
vex) upper semicontinuous non-empty compact-valued set-valued map.
Such set-valued maps are interesting because they describe common
features of maximal monotone operators, of the convex subdifferential
and of the Clarke generalized gradient. Examination of cuscos and us-
cos leads to serious insights into the underlying topological properties
of the convex subdifferential and the Clarke generalized gradient. (It
is known that the Clarke subdifferential of a locally Lipschitz function
and, in particular, the subdifferential of a convex continuous functions
are weak* cuscos, see [5].)

In our paper we are interested in minimal usco and minimal cusco
maps. Minimal usco and minimal cusco maps are used in many papers
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(see [5, 6, 8, 11, 12, 26]). We give new characterizations of minimal
usco and minimal cusco maps in the class of all set-valued maps using
densely defined subcontinuous quasicontinuous selections. We also have
a new characterization of minimal cusco maps using extreme selections.
Notice that all known characterizations of minimal usco (cusco) maps
are given in the class of usco (cusco) maps (see [5, 11]). Our approach
gives a possibility of constructing a minimal usco (cusco) map very
easily.

2. Minimal cusco maps. In what follows, let X and Y be Haus-
dorff topological spaces, R the space of real numbers with the usual
metric and Z+ the set of positive integers. Also, for x ∈ X, U(x) is
always used to denote a base of open neighborhoods of x in X. The
symbol A and IntA will stand for the closure and interior of the set A
in a topological space.

A set-valued map, or multifunction, from X to Y , is a function that
assigns to each element of X a subset of Y . If F is a set-valued map
from X to Y , then its graph is the set {(x, y) ∈ X × Y : y ∈ F (x)}.
Conversely, if F is a subset of X × Y and x ∈ X, define F (x) = {y ∈
Y : (x, y) ∈ F}. Then we can assign to each subset F of X × Y a
set-valued map which takes the value F (x) at each point x ∈ X and
whose graph is F . In this way, we identify set-valued maps with their
graphs. Following [8], the term map is reserved for a set-valued map.

Notice that, if f : X → Y is a single-valued function, we will use the
symbol f also for the graph of f .

Given two maps F,G : X → Y , we write G ⊂ F and say that G is
contained in F if G(x) ⊂ F (x) for every x ∈ X.

A map F : X → Y is upper semicontinuous at a point x ∈ X if, for
every open set V containing F (x), there exists U ∈ U(x) such that

F (U) = ∪{F (u) : u ∈ U} ⊂ V.

F is upper semicontinuous if it is upper semicontinuous at each point
of X. Following Christensen [7], we say that a map F is usco if it is
upper semicontinuous and takes nonempty compact values. A map F
from a topological space X to a linear topological space Y is cusco if
it is usco and F (x) is convex for every x ∈ X.
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Finally, a map F from a topological space X to a topological (linear
topological space) Y is said to be minimal usco (minimal cusco) if it is a
minimal element in the family of all usco (cusco) maps (with domain X
and range Y ), that is, if it is usco (cusco) and does not properly contain
any other usco (cusco) map from X into Y . By an easy application of
the Kuratowski-Zorn principle we can guarantee that every usco (cusco)
map from X to Y contains a minimal usco (cusco) map from X to Y
(see [5, 6, 8]).

Other approaches to the minimality of set-valued maps can be found
in [17, 19].

In the paper [12], we can find an interesting characterization of min-
imal usco maps using quasicontinuous and subcontinuous selections.

A function f : X → Y is quasicontinuous at x ∈ X [22] if for every
neighborhood V of f(x) and every U ∈ U(x) there is a nonempty open
set G ⊂ U such that f(G) ⊂ V . If f is quasicontinuous at every point
of X, we say that f is quasicontinuous.

The notion of quasicontinuity was perhaps used for the first time by
Baire in [2] in the study of points of separately continuous functions.
As Baire indicated in his paper [2], the condition of quasicontinuity has
been suggested by Vito Volterra. There is a rich literature concerning
the study of quasicontinuity, see for example, [2, 4, 15, 16, 17,
22]. A condition under which the pointwise limit of a sequence of
quasicontinuous functions is quasicontinuous was studied in [13].

A function f : X → Y is subcontinuous at x ∈ X [10] if, for every
net (xi) convergent to x, there is a convergent subnet of (f(xi)). If f
is subcontinuous at every x ∈ X, we say that f is subcontinuous.

Let F : X → Y be a set-valued map. Then a function f : X → Y is
called a selection of F if f(x) ∈ F (x) for every x ∈ X.

It is well known that every selection of a usco map is subcontinuous
([12, 14]).

Theorem 2.1. (see [12, Theorem 2.5]). Let X,Y be topological spaces
and Y a T1 regular space. Let F be a map from X to Y . The following
are equivalent :

(1) F is a minimal usco map;
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(2) There exist a quasicontinuous and subcontinuous selection f of
F such that f = F ;

(3) Every selection f of F is quasicontinuous, subcontinuous and
f = F .

Let Y be a linear topological space and B ⊂ Y a set. By coB we
denote the closed convex hull of the set B (see [1]).

The following lemma is a folklore.

Lemma 2.1. Let X be a topological space and Y a Hausdorff locally
convex linear topological space. Let G be a usco map from X to Y
and coG(x) is compact for every x ∈ X. Then the map F defined as
F (x) = coG(x) for every x ∈ X is a cusco map.

Remark 2.1. There are at least three important cases when the closed
convex hull of a compact set is compact. The first is when the compact
set is a finite union of compact convex sets. The second is when the
space is completely metrizable and locally convex. This includes the
case of all Banach spaces with their norm topologies. The third case is
a compact set in the weak topology on a Banach space, see [1].

A set-valued map F from a topological space X to a linear topolog-
ical space Y is hyperplane minimal [5] if for every open half-space W
in Y and open set U in X with F (U) ∩ W ̸= ∅ there is a nonempty
open subset V ⊂ U such that F (V ) ⊂ W . It is known [5] that a cusco
map from a topological space X into a Hausdorff locally convex linear
topological space Y is minimal cusco if, and only if, it is hyperplane
minimal.

If f : X → Y is a quasicontinuous function from a topological
space to a linear topological space, then f is hyperplane minimal.
The following example is an example of a hyperplane minimal function
which is not quasicontinuous.

Example 2.1. Let X = Y = R with the usual topology. Define
f : X → Y as follows: f(x) = −1 if x < 0, f(0) = 0 and f(x) = 1 if
x > 0.
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Notice that all known characterizations of minimal cusco maps are
given in the class of cusco maps (see [5, 11]). So the following
characterization of minimal cusco maps in the class of all set-valued
maps can be of some interest:

Theorem 2.2. Let X be a topological space and Y a Hausdorff locally
convex (linear topological) space. Let F be a map from X to Y . Then
the following are equivalent :

(1) F is a minimal cusco map;
(2) F has nonempty compact values and there is a quasicontinuous,

subcontinuous selection f of F such that co f(x) = F (x) for
every x ∈ X;

(3) F has nonempty compact values, and there is a hyperplane
minimal, subcontinuous selection f of F such that co f(x) =
F (x) for every x ∈ X;

(4) F has nonempty compact values and every selection f of F
is hyperplane minimal, subcontinuous and co f(x) = F (x) for
every x ∈ X.

Proof. (1) ⇒ (2). Let G ⊂ F be a minimal usco map contained in F .
Let f be a selection of G. By Theorem 2.1, f is a quasicontinuous and
subcontinuous selection of G such that f = G. So f is also a selection
of F . By [5, Proposition 2.7], we have co f(x) = F (x) for every x ∈ X.

(2) ⇒ (3) is trivial, since every quasicontinuous function from X to
Y is hyperplane minimal.

(3) ⇒ (1). Let f be a hyperplane minimal, subcontinuous selection
of F . Since f is subcontinuous, f is usco by [14]. Since co f(x) = F (x)
for every x ∈ X and F (x) is compact for every x ∈ X, F is cusco by
Lemma 2.1. Thus, it is sufficient to show that F is minimal. Suppose,
by way of contradiction, that F is not minimal. Thus, there is a minimal
cusco map L ⊂ F such that there is a point (x0, y0) ∈ F \ L. Since
L(x0) is a convex set and co f(x0) = F (x0), without loss of generality
we can suppose that y0 ∈ f(x0) \L(x0). Since L(x0) is a closed convex
set and y0 /∈ L(x0), there is a nonzero continuous linear functional
strongly separating L(x0) and y0. So let h : Y → R be a continuous
linear functional and λ ∈ R such that

L(x0) ⊂ {y ∈ Y : h(y) < λ} and h(y0) > λ.
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Since the map L is upper semicontinuous, there is U ∈ U(x0) such
that L(U) ⊂ {y ∈ Y : h(y) < λ} and, since y0 ∈ f(x0) and f is
hyperplane minimal, there is a nonempty open set V ⊂ U such that
f(V ) ⊂ {y ∈ Y : h(y) > λ}. Thus, f(V ) ⊂ {y ∈ Y : h(y) ≥ λ}. For
every x ∈ V , we have co f(x) ∩ L(x) = ∅, a contradiction.

Since (4) ⇒ (3) is trivial, it is sufficient to prove that (1) ⇒ (4).
Let f be a selection of F . Since every selection of a usco map is
subcontinuous, f must be subcontinuous. f is usco and f ⊂ F implies
that co f(x) is compact for every x ∈ X. By Lemma 2.1, the map G
defined as G(x) = co f(x) for every x ∈ X is cusco. Since G ⊂ F
and F is minimal by the assumption, we have co f(x) = F (x) for every
x ∈ X. It is easy to verify from [5, Theorem 2.6] that f is hyperplane
minimal. �

We have the following variant of Theorem 2.2:

Theorem 2.3. Let X be a topological space and Y a Hausdorff locally
convex (linear topological) space in which the closed convex hull of a
compact set is compact. Let F : X → Y be a set-valued map. The
following are equivalent :

(1) F is a minimal cusco map;
(2) There is a quasicontinuous subcontinuous function f : X → Y

such that co f(x) = F (x) for every x ∈ X;
(3) There is a hyperplane minimal subcontinuous function f : X →

Y such that co f(x) = F (x) for every x ∈ X;
(4) Every selection f of F is hyperplane minimal and subcontinu-

ous and co f(x) = F (x) for every x ∈ X.

Notice that Theorem 2.3 gives us a rule for how to construct minimal
cusco maps with values in Hausdorff locally convex (linear topological)
spaces in which the closed convex hull of a compact set is compact.

It is interesting to note that our Theorem 2.2 (and also Theorem 2.3)
implies the well-known result that every convex function on an open
convex subset of a finite dimensional normed linear space is Frechet
differentiable on a dense Gδ subset of its domain. Let f be a convex
function defined on an open convex subset A of a finite dimensional
normed linear space X. It is known that the subdifferential mapping



MINIMAL CUSCO MAPS–NEW CHARACTERIZATIONS 1857

x → ∂f(x) is a minimal cusco map from A into X [24]. Further,
f is Frechet differentiable at x ∈ A if and only if the subdifferential
mapping x → ∂f(x) is single-valued. By Theorem 2.2 (2), there is a
quasicontinuous selection h of the subdifferential mapping such that
co h(x) = ∂f(x). It is easy to verify that if x is a point of continuity of
h, then co h(x) = {h(x)}. It is well known (see for example [15, 22])
that the set of points of continuity of a quasicontinuous function defined
on a Baire space with values in a metrizable space is a dense Gδ set.

In the last part of this section we will extend Theorem 2.18 in [5].

Notice that the notion of subcontinuity can be extend for so-called
densely defined functions.

Let A be a dense subset of a topological space X and Y a topological
space. Let f : A → Y be a function. We say that f is densely defined.
Further, we say that f : A → Y is subcontinuous at x ∈ X [18] if,
for every net (xi) ⊂ A converging to x, there is a convergent subnet
of (f(xi)). It is easy to verify that (∗) f : A → Y is subcontinuous at
x ∈ X if and only if for every open cover H of Y there is a finite subset
F of H and U ∈ U(x) such that f(U ∩A) ⊂ ∪F (a slight modification
of [23, Theorem 2.1]).

We say that f : A → Y is subcontinuous if it is subcontinuous at
every x ∈ X.

First we extend Theorem 2.1 using densely defined selections. Let
X and Y be topological spaces and F : X → Y a map. We say that a
densely defined function f is a densely defined quasicontinuous selection
of a set-valued map F , if f(x) ∈ F (x) for every x ∈ dom f , the domain
of f and f : dom f → Y is quasicontinuous with respect to the induced
topology on dom f .

Theorem 2.4. Let X,Y be topological spaces and Y be a T1 regular
space. Let F : X → Y be a map. The following are equivalent :

(1) F is minimal usco;
(2) There is a densely defined quasicontinuous subcontinuous se-

lection f of F such that f = F .

Proof. (1) ⇒ (2) is clear from Theorem 2.1.
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(2) ⇒ (1). Let f be a densely defined quasicontinuous subcontinuous
selection of F . Thus, dom f , the domain of f , is a dense set in X.
We show that the subcontinuity of f implies that f(x) is a nonempty
compact set for every x ∈ X. Let x ∈ X. Of course, f(x) ̸= ∅. LetH be
an open cover of f(x). Let H′ be a refinement of H such that, for every
H ′ ∈ H′, there is H ∈ H with H ′ ⊂ H and f(x) ⊂ ∪H′. For every y ∈
Y \f(x), let Oy be an open neighborhood of y such that Oy ∩f(x) = ∅.
Then the family H′∪{Oy : y ∈ Y \ f(x)} is an open cover of Y . By (∗)
there is U ∈ U(x), H ′

1,H
′
2, . . . ,H

′
n ∈ H′ and a finite indexed set I such

that f(U ∩ dom f) ⊂ ∪{H ′
i : i = 1, 2, . . . , n}

∪
∪{Oyi : i ∈ I}. Thus,

f(x) ⊂ f(U ∩ dom f) ⊂ (H ′
1 ∪H ′

2 ∪ · · · ∪H ′
n)

∪
∪{Oyi : i ∈ I}.

Thus, f(x) ⊂ H1 ∪H2 ∪ · · · ∪Hn, where Hi ∈ H for i = 1, 2, . . . , n.

Now we will show that f is upper semicontinuous. Suppose there
is x ∈ X such that f is not upper semicontinuous at x. Let V be
an open set in Y with f(x) ⊂ V such that for every U ∈ U(x) there
are xU ∈ U and yU ∈ f(xU ) \ V . The regularity of Y implies that
there is an open set G in Y such that f(x) ⊂ G ⊂ G ⊂ V . Thus,
for every U ∈ U(x) we have (xU , yU ) ∈ f ∩ (U × (Y \ G)). For every
U ∈ U(x) there is aU ∈ dom f ∩ U such that f(aU ) ∈ Y \ G. Since
the net (aU )U∈U(x) converges to x, the subcontinuity of f at x implies
that there is a cluster point y ∈ Y \ G of the net (f(aU ))U∈U(x), a

contradiction, since y ∈ f(x) ⊂ G.

To prove that f is minimal usco, it is sufficient to show (by Theorem
2.1) that every selection g : X → Y of f is quasicontinuous, since
every selection of f is subcontinuous (see [12, Proposition 2.3]). Let
g : X → Y be a selection of f . Let x ∈ X, U ∈ U(x) and V be
an open neighborhood of g(x). Let G be an open neighborhood of
g(x) such that g(x) ∈ G ⊂ G ⊂ V . Since (x, g(x)) ∈ f , there is
(z, f(z)) ∈ (U ∩dom f)×G. The quasicontinuity of f at z implies that
there is a nonempty open set H in X such that H ∩dom f ⊂ U ∩dom f
and f(H∩dom f) ⊂ G. The setH∩U is a nonempty open set contained
in U and f(H ∩ U) ⊂ G ⊂ V . Thus, g(H ∩ U) ⊂ V . �

Remark 2.2. Let X be a Baire space, and let F : X → R be usco.
Let f : X → R be a function defined as follows: f(x) = inf {t ∈ R :
t ∈ F (x)} for x ∈ X. Then f is a lower semicontinuous function. It is
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known (see [9]) that the set C(f) of the points of continuity of f is a

dense Gδ set in X. Thus, by Theorem 2.4, the map G = f � C(f) is a
minimal usco map from X to R and G ⊂ F (by f � C(f) we mean the
restriction of f to C(f)).

Also if h : X → R is defined as h(x) = sup{t ∈ R : t ∈ F (x)} for
x ∈ X, then h is upper semicontinuous and by [9] the set C(h) of the
points of continuity of h is a dense Gδ set in X. Thus, by Theorem 2.4,
the map H = h � C(h) is a minimal usco map from X to R and H ⊂ F .

[6, Proposition 5.1.24] gives a construction of a minimal usco map
contained in a given usco map from a general topological space with
values in R.

We have the following extension of [5, Theorem 2.18]:

Theorem 2.5. Let X be a topological space and Y a Hausdorff locally
convex (linear topological) space. Let F : X → Y be a map. The
following are equivalent :

(1) F is minimal cusco;
(2) F has nonempty compact values and there is a densely de-

fined quasicontinuous, subcontinuous selection f of F such that
co f(x) = F (x) for every x ∈ X;

(3) F has nonempty compact values and there is a densely defined
hyperplane minimal, subcontinuous selection f of F such that
co f(x) = F (x) for every x ∈ X.

Proof. (1) ⇒ (2) is clear from Theorem 2.2.

(2) ⇒ (3) is trivial.

(3) ⇒ (1). Let f be a densely defined hyperplane minimal, subcon-
tinuous selection of F such that co f(x) = F (x) for every x ∈ X. As
in the above proof, we can show that f is usco. Since F has compact
values, the map x → c f(x) is cusco (by Lemma 2.1). To prove that
F is minimal cusco we can use the same argument as in the proof of
(3) ⇒ (1) of Theorem 2.2. �

To see that our Theorem 2.5 is an extension of [5, Theorem 2.18],
we need the following comment:
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LetX be a topological space and Y a Hausdorff locally convex (linear
topological) space. If f is a densely defined subcontinuous function such
that co f(x) is compact for every x ∈ X, then CSC(f)(x) = co f(x)
for every x ∈ X, where

CSC(f)(x) = ∩{co f(V ) : V ∈ U(x)}[5].

Notice that the authors in [5] work in their Theorem 2.18 only
with densely defined selections of cusco maps; i.e., with subcontinuous
selections f such that co f(x) is compact for every x ∈ X.

However, the condition of subcontinuity of f is essential as the
following example shows. (The inclusion co f(x) ⊂ CSC(f)(x) can
be proper.)

Example 2.2. Let X = R = Y with the usual topology. Let
f : X → Y be defined as follows: f(x) = 0 for every x ≤ 0 and
f(x) = 1/x for every x > 0. Then co f(x) = {f(x)} for every x ∈ X
and CSC(f)(0) = [0,∞) and CSC(f)(x) = {f(x)} otherwise. Of
course f is not subcontinuous at 0.

We have the following variant of Theorem 2.5:

Theorem 2.6. Let X be a topological space and Y a Hausdorff locally
convex (linear topological) space in which the closed convex hull of a
compact set is compact. Let F : X → Y be a map. The following are
equivalent :

(1) F is minimal cusco;
(2) There is a densely defined quasicontinuous subcontinuous func-

tion f with values in Y such that co f(x) = F (x) for every
x ∈ X;

(3) There is a densely defined hyperplane minimal subcontinuous
function f with values in Y such that co f(x) = F (x) for every
x ∈ X.

Notice that [5, Theorem 2.14] is an easy consequence of our Theo-
rem 2.6. The function f : G → R from [5, Lemma 2.13] is defined on
a dense Gδ-set G of a topological space T . It is easy to verify that f
is subcontinuous. Since f is continuous on G, by our Theorem 2.6 the
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map x → co f(x) (for every x ∈ T ) is minimal cusco. Of course, for Φ
in [5, Theorem 2.14], we have Φ(x) = co f(x) for every x ∈ T .

Remark 2.3. Let X be a Baire space and F : X → R cusco. Let
f : X → R be a function defined as f(x) = inf {t ∈ R : t ∈ F (x)} for
x ∈ X. Using Remark 2.2 and our Theorem 2.6 we see that the map
x → co f � C(f)(x) is a minimal cusco map contained in F .

Similarly, if h : X → R is a function defined as h(x) = sup{t ∈ R :

t ∈ F (x)} for x ∈ X, then the map x → co h � C(h)(x) is a minimal
cusco map contained in F .

3. Minimal cusco maps and extreme functions. Let B be a
subset of a linear topological space. By E(B), we denote the set of all
extreme points of B.

Let X be a topological space and Y a Hausdorff locally convex
(linear topological) space. Let F : X → Y be a map with nonempty
compact values. Then a selection f of F such that f(x) ∈ E(F (x))
for every x ∈ X is called an extreme function of F . (By [1, Corollary
7.66], every nonempty compact subset of a Hausdorff locally convex
(linear topological) space has an extreme point. The hypothesis of
local convexity cannot be dispensed [1, page 298].)

Lemma 3.1. Let X be a topological space and Y a Hausdorff locally
convex (linear topological) space. Let F : X → Y be a minimal cusco
map and G : X → Y a minimal usco map such that G ⊂ F . Then
E(F (x)) ⊂ G(x) for every x ∈ X.

Proof. Let x ∈ X. By [5, Proposition 2.7], we have that F (x) =
coG(x) for every x ∈ X. By [20, Theorem 2.10.15] which was proved
by Milman in his paper [21] every extreme point of coG(x) is contained
in G(x). Thus, E(F (x)) ⊂ G(x) for every x ∈ X. �

Theorem 3.1. Let X be a topological space and Y a Hausdorff locally
convex (linear topological) space. Let F : X → Y be a map. The
following are equivalent :

(1) F is a minimal cusco map;
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(2) F has nonempty compact, convex values, F has a closed graph,
every extreme function of F is quasicontinuous, subcontinuous
and any two extreme functions of F have the same closures of
their graphs;

(3) F has nonempty compact values, every extreme function f of
F is quasicontinuous, subcontinuous and F (x) = co f(x) for
every x ∈ X.

Proof. (1) ⇒ (2). Of course, F has to have nonempty, compact,
convex values and F has to have a closed graph. Let f be an
extreme function of F . We will show that f is quasicontinuous and
subcontinuous. Let G be a minimal usco map contained in F (there
is a unique minimal usco map contained in F by Theorem 4.1). By
Lemma 3.1, we have E(F (x)) ⊂ G(x) for every x ∈ X. Since
f(x) ∈ E(F (x)) for every x ∈ X, f is a selection of G. By Theorem 2.1,
f must be quasicontinuous, subcontinuous and f = G. Thus, every two
extreme functions have to have the same closures of their graphs.

(2) ⇒ (3). Let f be an extreme function of F . (Such a function
exists, for F (x) is a nonempty compact set for every x ∈ X.) Since
f is quasicontinuous and subcontinuous, f is a minimal usco map by
Theorem 2.1 and f ⊂ F . We claim that F (x) = co f(x) for every
x ∈ X.

Suppose there is (x, y) ∈ X×Y such that y ∈ F (x)\co f(x). Without
loss of generality, we can suppose that y ∈ E(F (x)), since by the Krein-
Milman theorem, a compact convex set is the closed convex hull of its
extreme points. Since y /∈ co f(x), there are two open and disjoint sets
O1, O2 in Y such that

co f(x) ⊂ O1 and y ∈ O2.

Let U ∈ U(x) be such that f(U) ⊂ O1. Let g be an extreme function
of F such that g(x) = y, a contradiction with the fact that every two
extreme functions of F have the same closures of their graphs.

(3) ⇒ (1). To prove that F is a minimal cusco map, let f be an
extreme function of F . Since f is quasicontinuous and subcontinuous,
by Theorem 2.1, f is minimal usco and, by [5, Lemma 2.1 and
Proposition 2.7] a map x → co f(x) is minimal cusco. Since F (x) =
co f(x) for every x ∈ X, we are done. �
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Let F ⊂ X × R be such that F (x) is a nonempty bounded set
for every x ∈ X. Then there are two real-valued functions supF
and inf F defined on X by supF (x) = sup {t ∈ R : t ∈ F (x)} and
inf F (x) = inf {t ∈ R : t ∈ F (x)}.

Theorem 3.2. Let X be a topological space and F : X → R a map.
The following are equivalent :

(1) F is a minimal cusco map;
(2) F has nonempty compact, convex values, F has a closed graph,

supF and inf F are quasicontinuous, subcontinuous functions
and supF = inf F ;

(3) F has nonempty compact values, supF and inf F are quasi-
continuous, subcontinuous functions and F (x) = co supF (x) =
co inf F (x).

Proof. (1) ⇒ (2) is clear from the above theorem.

(2) ⇒ (3). We will prove that F (x) = co supF (x) for every x ∈ X.
Suppose there is (x, y) ∈ X × R such that y ∈ F (x) \ co supF (x). Let
ϵ > 0 be such that

(y − 2ϵ, y + 2ϵ) ∩ co supF (x) = ∅.

The upper semicontinuity of z → co supF (z) at x ∈ X implies that
there is U ∈ U(x) such that co supF (z) ⊂ (y + ϵ,∞) for every z ∈ U .
Since supF = inf F and inf F (x) ≤ y < y+ ϵ, we have a contradiction.

(3) ⇒ (1). By Theorem 2.1, supF is minimal usco. By [5, Lemma
2.1, Proposition 2.7], the map x → co supF (x) is minimal cusco, so we
are done. �

It is interesting to note that [5, Theorem 2.14] follows also from our
Theorem 3.2. In fact, let f : G → R be the function from [5, Lemma
2.13] defined on a dense Gδ-set G in a topological space T . Let H = f
be the closure of the graph of f . Then, for Φ in Theorem 2.14, we have
Φ(t) = [infH(t), supH(t)]. Since infH = f = supH and infH, supH
are quasicontinuous and subcontinuous, Φ is minimal cusco. It is clear
that H(x) = {f(x)} at every x ∈ G.
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4. Minimal cusco and minimal usco.

Theorem 4.1. Let X be a topological space and Y a Hausdorff locally
convex (linear topological) space. Let F : X → Y be a minimal cusco
map. There is a unique minimal usco map contained in F .

Proof. Let G,H be two minimal usco maps contained in F . It is
sufficient to prove that G(x)∩H(x) ̸= ∅ for every x ∈ X. Then a map
L : X → Y defined as L(x) = G(x)∩H(x) for every x ∈ X is usco and
L ⊂ G, L ⊂ H. Thus, G = L = H.

Let τ be a Hausdorff locally convex topology on Y and Γ a system
of seminorms on X which generate τ . For every x ∈ X, every p ∈ Γ
and ϵ > 0, we denote

Sp,ϵ(x) = {y ∈ Y : p(x− y) < ϵ} and Sp,ϵ(A) = ∪a∈ASp,ϵ(a).

Suppose there is x ∈ X such that G(x)∩H(x) = ∅. Since G(x),H(x)
are compact sets, there is a seminorm p and ϵ > 0 such that

Sp,ϵ(G(x)) ∩ Sp,ϵ(H(x)) = ∅.

The upper semicontinuity of G and H implies that there is U ∈ U(x)
such that

G(z) ⊂ Sp,ϵ(G(x)) and H(z) ⊂ Sp,ϵ(H(x))

for every z ∈ U . Let g ⊂ G and h ⊂ H be selections of G and
H, respectively. The quasicontinuity of h at x implies that there is a
nonempty open set V ⊂ U such that

h(V ) ⊂ Sp,ϵ/2(h(x)) ⊂ Sp,ϵ/2(h(x)) ⊂ Sp,ϵ(h(x)).

Thus, h(V ) ⊂ Sp,ϵ/2(h(x)), i.e., co h(z) ⊂ Sp,ϵ/2(h(x)) ⊂ Sp,ϵ(h(x)) for

every z ∈ V . For every z ∈ V , we have F (z) = co h(z) ⊂ Sp,ϵ(h(x)).
Since g(z) ∈ F (z), we have g(z) ∈ Sp,ϵ(h(x)), a contradiction. �
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