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ABSTRACT. We compute the monoid V[Lg (F)] of iso-
morphism classes of finitely generated projective modules of
a Leavitt path algebra over an arbitrary directed graph. Our
result generalizes the result of Ara, Moreno and Pardo in
which they computed the monoid V[Li(E)] of a Leavitt
path algebra over a countable row-finite directed graph.

1. Introduction. In [1], Abrams and Aranda Pino introduced a
class of algebras over a field K, which they constructed from directed
graphs called Leavitt path algebras. The definition in [1] was for count-
able row-finite directed graphs, but they later extended the definition
in [2] to all countable directed graphs. Goodearl in [17] extended the
notion of Leavitt path algebras Ly (E) to all (possibly uncountable) di-
rected graphs E. Leavitt path algebras are generalizations of the Leav-
itt algebras L(1,n) of [18] and also contain many interesting classes of
algebras (see [1, 2]). Moreover, there are nice relationships between
the class of Leavitt path algebras and their analytic counterparts, graph
C*-algebras (see [19] for the definition of graph C*-algebras). In par-
ticular, Tomforde showed in [22] that, for any countable directed graph
E, we have that L¢(E) is #-isomorphic to a dense sub-algebra of C*(E).
Also, Abrams and Tomforde showed in [3] that, for countable directed
graphs E and F with no cycles, L¢(FE) and L (F) are Morita equivalent
if and only if C*(E) and C*(F') are strongly Morita equivalent.

The monoid V[A] of a C*-algebra A or a K-algebra has played
an extremely important role in the theories of both structures. For
example, V[A] can be used to classify direct limits of finite dimensional
C*-algebras or classify direct limits of finite dimensional C-algebras
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(see [14]). Structural properties of the algebra and its projective
modules are reflected in the structure of V[A]. This machinery has
become known as non-stable K -theory (see [4, 5, 8]). Other important
properties of A such as the lattice of (closed) two-sided ideals of A are
encoded in V[A] (see [10, Proposition IV.5.1], [15, Theorem 2.1] and
[6, Theorem 5.3]).

In [6], Ara, Moreno and Pardo computed the monoid V[Lk(F)]
of isomorphism classes of finitely generated projective modules over
Lk (FE) associated with a countable row-finite directed graph E. They
showed that V[Lk(F)] is naturally isomorphic to a universal abelian
monoid Mg. The monoid Mg is isomorphic to Fg/ ~, where Fg is
the free abelian monoid on the set of vertices of F, and ~ is a certain
congruence on Fg defined by E. A consequence of their result is that
the natural inclusion L¢(E) — C*(FE) induces a monoid isomorphism
V[Lc(E)] — V[C*(E)]. As a result, there is a natural isomorphism
between the monoid Mg and V[C*(FE)]. Their result, together with the
K-theory computation of C*(E) given in [20], completely describes the
ordered K-theory of C*(E) for a countable row-finite directed graph
E. Another consequence of this isomorphism is that C*(F) has stable
weak cancellation or, equivalently, C*(E) is separative. The fourth-
named author, together with Eilers and Restorff in [13] used this fact
to give a K-theoretical description of when an extension of a graph
C*-algebra is a full extension. Also, together with Arklint, the fourth-
named author in [7] used the monoid isomorphism Mg = V[C*(E)] to
prove permanence properties for graph C*-algebras associated to finite
graphs.

The objective of this paper is to compute V[L g (E)] for an arbitrary
directed graph E. A consequence of this computation is that the
natural inclusion L¢(E) — C*(E) induces a monoid isomorphism
V[Lc(E)] = V[C*(E)] for every countable directed graph E. Following
Ara, Moreno and Pardo in [6], we define a universal abelian monoid
Mg and prove that Mg is naturally isomorphic to V[Lk(E)]. The
monoid Mg is defined as follows. Let E° be the set of vertices of E,
and let S be the set consisting of a, g, one for each infinite emitter
v € E° and finite non-empty subset S of edges with source v. Then
Mpg = Fpoys/ ~, where Fro s is the free abelian monoid on E° U S
and ~ is a certain congruence on Fro s defined by E. In the case that
E is row-finite, we have that Mz = Mpg. The monoid isomorphism
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Mg = V[C*(E)] can be used to reprove the results in [21], where the
ordered Ky-group of C*(E) was computed for a countable directed
graph E. The authors have recently been informed by Filers and
Katsura that they have independently proved Theorem 3.4 in their
study of semi-projective graph C*-algebras [12]. We expect that the
monoid isomorphisms Mz = V[C*(E)] = V[Lk(FE)] can be used to
study other structural properties of C*(E) and L (E).

The main result of the paper, that Mg is naturally isomorphic to
V[Lg(E)] for an arbitrary directed graph E, is proved in two steps.
The first step is to prove Mg is naturally isomorphic to V[Ly(E)]
in the case that E is a countable directed graph. This is done by
reducing the problem to the row-finite case using the Drinen-Tomforde
disingularization of E. The next step is to use the fact that every
directed graph is the limit of countable directed graphs to reduce the
general case to the countable case. Along the way, it is shown that
M g is a continuous functor from CKGr to CMong. Here CKGr is the
category whose objects are directed graphs and whose set of morphisms
are CK-morphisms (as defined in [17]) and CMony is the category
whose objects are abelian monoids and whose set of morphisms are
monoid homomorphisms that preserve the identity element.

2. Definitions. A (directed) graph E = (EY, E', 7, sg) consists of
a set E° of vertices, a set E! of edges, and maps rg,sg : B! — E°
identifying the range and source of each edge. A graph E is countable
if £° and E' are countable sets. A vertex v € E° is called a sink if
|sz'(v)| = 0, and v is called an infinite emitter if |s5'(v)] = co. A
graph E is said to be row-finite if it has no infinite emitters. If v is
either a sink or an infinite emitter, then we call v a singular vertex.
We write Eging for the set of singular vertices. Vertices that are not
singular vertices are called regular vertices, and we write E?Cg for the
set of regular vertices.

2.1. Leavitt path algebras. We now recall the definition of Leavitt
path algebras given in [17]. Let E be a graph. The path algebra of E
over K, denoted by KFE, is the K-algebra based on the vector space
over K with basis the set of all paths in F, and with multiplication
induced by concatenation of paths: p =ejes---€e, and q = f1fo--- fin
are paths in E, and their product in KF is given by

pq = {6162 s 6nf1f2 s fm, if TE(en) = SE(fl)

0, otherwise.
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Note that KF is the K-algebra presented by generators from E° LI E!
with the following relations

(1) v? = v for all v € EY;
(2) vw = &, 4 for all v,w € EY and
(3) sp(e)e =erp(e) =e for all e € E*.

Let E be a graph. The dual graph of F is a graph E* consisting of
the same vertices as F but with all edges reversed. Then the double or
(extended graph) of E, denoted by E, is the union of F and E*.

Definition 2.1 (Definition 1.4 of [17]). Let E = (E°, E',rg,sg) be
a graph, and let K be a field. The Leavitt path algebra of E over K,
denoted by Lg (E), is the quotient of KE modulo the ideal generated
by the following elements:

(1) e*e —rg(e) for all e € E*;
(2) e*f for all distinct e, f € E'; and
(3) v— Zeesgl(v) ee* whenever v € EJ..

The above definition coincides with the definition given in [1] (see
[1, Definition 1.3]) for countable row-finite graphs.

Definition 2.2 (Definition 2.4 of [23]). Let E = (E°, E',rg,sg) be
a graph, and let R be a ring. A collection {P,, S, Sex : v € E% e €
E'} C Ris a Leavitt E-family in R if {P, : v € E°} consists of pairwise
orthogonal idempotents, and the following conditions are satisfied:

(1) Psye)Se = SePryey = Se for all e € EY;
(2) Pry(e)Ser = SexPyp(e) = Se- for all e € E';
(3) SexSf =10e,fPrye) foralle, f € E'; and
(4) Py =3 cesz1(y) SeSer whenever v € E?

reg*

Remark 2.3. Let FE be a graph. Note that, if A is a K-algebra and
{P,,S¢,S.- :v € E% ec B}

is a Leavitt F-family in A, then there exists a K-algebra homomor-
phism ¢ : Lg(E) — A such that

¢(U) = Py, ¢(6) = Se, ¢(€*) = Sex.
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Hence, Lk (FE) is the universal K-algebra generated by a Leavitt E-
family. Therefore, the definition of Leavitt path algebras for arbitrary
graphs given here coincides with the definition given in [2] (see [2,
Definition 1.1]) for countable graphs.

Remark 2.4. Let E be a graph, and let K be a field. We will denote
the generators of Ly (E) by

{pv,te:v € E°, ec B},

Although this is not the common notation used in the literature, we
find it more convenient to distinguish the generators of Lg (F) from
the vertices and edges.

2.2. Abelian monoids associated to directed graphs. Let CMon,
be the category whose objects are abelian monoids and with morphisms
that preserve the identity element.

Definition 2.5. Let R be a ring. Let Mo (R) be the ring [ J;2 ; M,,(R)
where we identify M,,(R) € My, 41(R) by the homomorphism

a 0
al—)(o 0>—a®0.

Let e, f € My (R) be idempotents. We write e ~ f if there exist
x,y € My (R) such that
e=xzy and yx=/f.

Define V[R] to be the monoid {[e] : e an idempotent in My, (R)} with
addition defined as

el +[f]1 = [e® f].

Definition 2.6. Let £ = (E°, E',rp,sg) be a graph. Set Mg to be
the abelian monoid generated by

{a, :v € E°} U{a, s : v an infinite emitter
and S a non-empty finite subset of s;'(v)}

with the relation given by

Ay = Z Qg (e)

eEsEl(v)
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if v is not a singular vertex, and

Qy,5 + ZarE(e) = Qy
ecS

and

Gy,s + Z Orp(e) = Ou,T + Z Qrp(e)

eeS\T eeT\S

for all non-empty finite subsets, S and T, of sgl(v) if v is an infinite
emitter.

Ara, Moreno and Pardo in [6] associated to every countable row-
finite graph £ a monoid Mg generated by {a, : v € E°} satisfying the

relation
Ay = Z Qpp (e)

eEsEl(v)

for every v € E° with |s;'(v)| # 0. Moreover, they proved the
following.

Theorem 2.7 (Theorem 3.5 of [6]). Let E be a countable row-finite
graph, let K be a field, and let

{pv,te,t: v € E° e c E'}

be a Leavitt E-family generating Li (E). Then there exists a monoid
isomorphism

such that yg([a,]) = [py] for all v € EY.

Remark 2.8. It turns out that the techniques in [6] can be used for
Leavitt path algebras Ly (E) for an uncountable row-finite graph. Since
their results precede the notion of Leavitt path algebras for uncountable
graphs, Ara, Moreno and Pardo in [6] implicitly assumed that all
graphs are countable. Thus, we explicitly state the fact that F is a
countable row-finite graph here.
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The purpose of the paper is to generalize their results to arbitrary
graphs. We first prove that there is a monoid morphism vg from Mg
to V[Lk (F)] for arbitrary graphs.

Lemma 2.9. Let E = (E°, E',rg,sg) be a graph, let K be a field and
let
{pu,te,t: v € E’, e€ B}

be a Leavitt E-family generating Li (E). Then there exists a monoid
morphism vg : Mg — V[Lk(E)] such that vg(la,]) = [p»] and
YE([av,s]) = [Po — D ecgtets] when v is an infinite emitter with S
a non-empty finite subset of sgl(v).

Proof. Let v € E° be a finite emitter. Note that

’VE(av)Z[p]Z[ > tet:}: 2 et

eEsEl(U) eEsEl(v)

Yootl= Y Pl = DL ()

eEsEl('u) eEsEl(v) eEsEl(v)

Let v € E° be an infinite emitter and S a non-empty finite subset
of s,*(v). Note that

el = ) = [ = Sonti + Sout]

e€sS e€eS
= |po— Y _teti| + {Ztet:]
- e€sS - ecS
= |po = Dttt + > [tet?]
- ecsS - ecsS
= |po— Yttt + D [tite]
- ecS - ecS
= |Pv — Z tetz + Z[p75(e)]
- eeS - ecS

=78(av.s) + Y 12(050)-
ecsS
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Now let T’ be a non-empty finite subset of sy (v). Then

'YE(CL'U,S) =+ Z 'VE(arE(e)) = |:pv - Ztet::l + Z [pTE(E)]

eeS\T e€S eeS\T
= |:p1, oot + tetz]
ecSUT e€T\S
+ > [t
eeS\T
= [pv -y tet:} + [ > tetZ}
e€SUT eeT\S
+ > [tetd]
eeS\T
= {py— > tet:} + > [tet:]
ecSUT e€T\S
+{ > tetz}
eeS\T
— [pv— dooteti+ Y tet:]
e€SUT eeS\T
+ Y [t
ecT\S
= |:pv - ZtetZ] + Z [pTE(E)]
eeT e€T\S

=ve(av,T) + Z 'YE(CLTE(E))-
e€T\S

We have just shown that vg is a well-defined monoid homomorphism.
O

Remark 2.10. Note that, if E is a row-finite graph, then Mg = Mg
and the natural monoid isomorphism in Theorem 2.7 is the same as the
monoid morphism given in Lemma 2.9.
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3. Isomorphism for countable graphs. In this section, we will
show that the monoid morphism vg given in Lemma 2.9 is a monoid
isomorphism for countable graphs. In order to do this, we will first
show that there exists a monoid isomorphism from Mg to M which
respects vg and g, where F' is the disingularization of F.

Definition 3.1 (Definition 2.2 of [11]). Let E = (EY, E*,rg,sg) be a
countable graph. The disingularization of E is the graph F' defined as
follows:

(1) F° = {wo(v) | v € E°} U{w,(v) | v is an infinite emitter or a
sink and n € N}.
(2) F* is the union of {g¥ | n € N>g,v € E’,

sing} and
{f?|ve E%wvisnot asink, and 0 < n < |sp*(v)|}.

(3) The range and source maps rr and sp are defined by:
(a) If s (v) = {el | 0 < k < |s5'(v)|}, then

sr(f?) = wp(v), if v is a finite emitter
" wp,(v), if v is an infinite emitter.

and
rr(fn) = wo(re(ey))-

(b) 7r(gn) = wny1(v) and sp(gy) = wa(v).
Proposition 3.2. Let E' be a countable graph. Let F' be the disingu-

larization of E. Then there exists a monoid isomorphism o : Mg —
Mrp.

Proof. Let v € E° and n € N. Let TV = {e} | 0 < k < n,
sp(e}) = v}. Define

. ) 0
AU, s inf. emit, Ynen T, — F

by A(e2) = f¢. Consider the following map: ¢ : Mg — M g, where

@(av) = bwo (v)
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and
(P(av,S) = bwn+1(v) + Z bTF(f)‘
FEXMTYNN(S)

Here n is the largest number such that e;, € S. We want to show that
o respects our relations from M pg. Let v be a finite emitter in E with
n edges coming out of it. Note that

Ay = Z Ay (e)-
eEsEl(v)

We want to show that

pla) = D Plars(e)-

eEsEl('u)
Note that
0(a0) =bug) = D b = Z brp ()
fesz (wo(v))
n—1 n—1
=D bugerstery = Y Plarsen) = D Plarg(e)-
1=0 1=0

eEsEl(v)
Let v be an infinite emitter in . Let S be a non-empty finite subset
of 51_51(”)~ Note that a, = a, s + ZeeS Arp(e)- We want to show that

p(ay) = 9(an.s) + > P(arg(e))-
e€sS

Let n be the greatest number such that e, € S. Note that
brp(gr ) = brp(gy) + brp(sy) for all k& > 0. By repeated use of the
recursive formula,

@(av) = bwo(v) = Z bTF(f)

fes;l(wo(v))
= by (o) + Do) = breay) T D bre(r2)

1=0
- ww+1(v Z bTF(f)
fexy)
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—bu )t Y, beint D b
FENTD\AS) FEX(S)

o(ay,s) Z brp(p)

Fex(s)

= ¢(av,s) + Z buo(re(e))
e€sS

= 0(av,5) + Y P(arg(e))-
eesS

Let v be an infinite emitter in £. Let S and T be non-empty finite
subsets of s5'(v). Note that

Qy,s + Z Arpe) = Qy, 7 + Z Arp(e):

eeS\T e€T\S

Let ng be the greatest number such that e}, . € S and nr is the greatest
number such that e}, . € T'. Without loss of generality, we can assume
that ng < np. Thus, we want to show that

plavs) + Y Plarge) =elavr) + Y @lare)-

eeS\T eeT\S
Note that
P(a0.9)+ D Darn@) =bugn) T D e+ D bunrien
e€S\T FEMTE\A(S) e€S\T

nr
= bwppa ) + Z brr(ry)

i=ngs+1

+ > bre(h) + Y buo(re(e))

FENT)\A(S) ceS\T

= bw,pia(v) + > brr(£)
FENTY \NTY,)

+ Yoo bt D b

FEMTENNS) FEASNNT)

= bw,p g (0) F Yo b
FENTE,)\A(S)
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+ Z bTF(f)

FEASNAN(T)

= bwn,T+1(U) + Z bT‘F(f)
FENTH,)\NT)

+ Y b

FEMTN\A(S)

= ‘P(av,T) + Z ‘P(arE(e))-

ecT\S

Thus, we have shown that ¢ respects the given relations, which implies
that ¢ is a well-defined monoid morphism.

We now construct the inverse of ¢. Define ¢ : Mp — Mg by
¢(bwo(v)) = Gy

for all v € E° and

q/}(bwn(v)) = {

Ay TV if v is an infinite emitter
v, TV 15

Ay, if v is a sink.

We want to show that 1 respects the relations of M, i.e.,
Do) = D brein)-
g (wo(v))

Hence, if v is a finite emitter and not a sink where ¥(by,()) = a., then
we must prove that

'w(bwo(v)) = Z d](bT’F(f))
fespt(wo(v))
Let v be a finite emitter that is not a sink. Note that

Pup) == Y gy = > Ybu(ra(e))

eEsEl(v) eEsEl(v)

= > vr(f).

feszt (wo(v))

Let v be an infinite emitter. Here we have two cases:
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(1) For wo(v), ¥ (bwe(v)) = @v- Let n € Zxg.
V(brp(ey)) T ¥ (Orp(sy)) = V(bwyw) + P brp(sy))

= ay1y + w(bwo(m(es))) = o, Ty + Qrp(ey)
=Gy = w(bwo(v))'

(2) For wy(v) with n > 1, ¥(by, (v)) = @v,>_ . We want to show
that 1 respects the relation given by

Dus(w) = bwpr(v) Fore(re) = D bea(p)-
fesmt (wn(v))

Let n > 1. Note that
Y(buw, () = o1y, = Qo1 + Grgien) = Y(bu,y(0) T P Ouwg(rp(en)))
= ,l/](bwn+1(0)) + w(bTF(fﬁ)) = Z w(bTF(f))
fespt (wn(v))

Now let v be a sink and n > 0. Note that
Qp(bwn(v)) =0y = Qp(bwnﬂ(v))'

Thus, we have shown that 1 respects the given relations, which implies
that ¥ is a well-defined monoid morphism.

We will now show that 9 is indeed the inverse of ¢. Let v € E°.
Then

w(cp(av)) = w(bwo(v)) = Qy.

Consider an infinite emitter v € E°, and let S be a non-empty finite
subset of s5'(v). Let n be the largest integer such that ! € S. Note
that

1/}(90(%,5)) = (bwn+1(v) + Z bTF(f)) = ¢<bwn+1(v))

FEXMTNA(S)

Y o)

FEXMTZNANS)

=avry+ Y, Ul

FEMTNA(S)

= Gy, Ty + E Org(e) = Ou,S-
e€TP\S
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Since 1) o ¢ is the identity function on the generators of M g, we have
that 1o ¢ =idg; .

We now show that ¢ o) = idg; . Consider wo(v) € F. Note that
OV (bug(v))) = ©(av) = byy(v). Consider wy,(v) € FO, where v € EY is
a sink. Note that

@(w(bwn(v))) = @(av) = bwo(v) = bwn(v)~

Consider wy, (v) € F°, where v € E? is an infinite emitter. Note that
L)O(w<bwn(v))) = (P(a/v,T;‘l’il)

= bwn (v) + Z bTF(f) = bwn(”)'
FEXT_ N\MTE_1)

Since ¢ o %) is the identity function on the generators of M, we have
We have just shown that ¢ and 1 are inverse functions. Hence, ¢ is
a monoid isomorphism which implies that M g = M. O

The next lemma is probably well-known to the experts in the field,
but we were not able to find a reference. For the convenience of the
reader we provide the proof here.

Lemma 3.3. Let R be a ring, and let e be an idempotent in R. If p,q
are idempotents in eRe and there exist x,y € R such that p = xy and
yxr = q, then there exist v,w € eRe such that p = vw and wv = q.
Consequently, the usual embedding {¢ : eRe — R} induces an injective
monoid morphism V(| : V[eRe] — V[R)].

Proof. Suppose p, q are idempotents in eRe and there exist z,y € R
such that p = zy and yr = q. Set v = pxrq and w = qyp. Then
vw = prqyp = pryryp = pppp = p and wv = qyprq = qyryrq =
9999 = q- O

Theorem 3.4. Let E = (E°,E',rg,sg) be a countable graph, let
F = (F° F' rp,sp) be the desingularization of E, and let K be a field.
Let pg be given in Proposition 3.2. Then there exists a homomorphism
kg : L (E) — Li(F) such that V[kg] is a monoid isomorphism and
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the diagram
Mp—"=V[Lg(E)]

%El lV[I{E]

M ——= VIL ()]
is commutative. Consequently, vg is a monoid isomorphism.

Proof. Let {py,ts,t} + v € FO f € F'} be a Leavitt F-family
generating L (F), and let {P,,T., TS : v € E°,e € E'} be a set
of Leavitt E-family generating Lx (FE). Let e € E'. Then e = ey where
v = sg(e). If v is not a singular vertex, then set s, = tyy and s = t}],_,.
Suppose v is an infinite emitter. Set s, = t,, = g etgy Ty
and s; =t} = tjlvt*u L ootges where o = gggi ---gj_1f]. By [2,
Proposition 5.5], there exists a monomorphism kg : Lx(E) = Lx(F)
such that kg(P,) = puy(w) for each v € E° kp(T.) = s. and
kp(T?) = s® for each e € EL.

We now show that the diagram is commutative. Let v € E°. Then
Virel(ve(aw)) = VIEe]([P]) = [Pwow)]
and

YF(PE(av)) = VP (buwg(v)) = [Puwo(v)]-

Let v € E° be an infinite emitter, S a non-empty finite subset of s3*(v)
and n = max{k € Z> : €} € S}. Then

Vi) (ve(a,5)) = Vi) ( [Pv -2 LI D

({Pw - EXT: T.T* + ee;\ST T])
kg QPU ; T, TD +V]kE qee;\sT TD
(- g oven( 5[]

eeTy e€Ty\S
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Vi) ([pv_ 5 TET;D+ S Vikg) (LT7).

eeTy e€TY\S
Therefore,
Vel ( [P - T 1] )+ ¥ viesl ()
ecTy e€TY\S
- [pwom 3 } Y fsest)
cE€Ty c€TZ\S

n
_ * * gk *
= |:pwo(v) —tgthe = Y tgytgy - -tgy tppthets, "'tgz;}

i=1

n
= {Pwow) —tpgthe = Y tgster o -tgr  (tww) — tortos)ty | "'tZg]
=1

e€TP\S
= [pw0<v> —trethe — togtow F gy tgn tortouten - 'tZ&’]
+ Z [sest]
e€TP\S
= {fga"'tg;i_ltgzt;zt%_l"'t:vg} + 2 lsesi:
e€Ty\S
Note that [t7,t5, -+ tgutge - tgn  tgn] = [tg,tgy]. Since
Purir] + D Pren] = Pona] + D [Precr)]
FEXTYNA(S) e €TY\S
= [tyutge] + > [sisel,

e€Ty\S
we have that

V[KE](VE(av)) = [pwn+1(v)] + Z [pTF(f)]~

FEMTINA(S)
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Since

vr(pE(ays)) =vr (bwn+1(u) + Z brF(f))

FEMTNA(S)

= VF(bw, 1 (v) +VF ( Z brF(f))
(S)

FEMTNA

- ’YF(b’uJTH,l(’U)) + Z ’YF (b"‘F(f)>
FEMTI\A(S)

= [pwn+1(”)] + Z [pTF(f)]7

FEMTHNANS)

we have that
Vikel(ve(av,s)) = vr(PE(as,s))-

Since V[kg] ovE is equal to v o pp on the generators of M g, we have
that V[kg] ovg = vr 0 ¢E.

We now show that V[xg] is a monoid isomorphism. First note that,
since F' is a row-finite graph, by Theorem 2.7 and Remark 2.10, yr is a
monoid isomorphism. By Proposition 2.1, ¢ g is a monoid isomorphism.
By the commutativity of the diagram, we have that V[kg] is surjective.

Set E° = {v, : n € N}. Set P, g = > ,_, Py, and set P, p =
> h_i Pu.- By the proof of [2, Theorem 5.6],

tin = (KE)|Py 5L (BE)Pus * PrELK(E)Py g — Py pLi(F)Py F
is an isomorphism, and the diagram

ln, E

P, gLk (E)P, p —> Lk (E)

P, pLg(F)P, r e Li(F)
is commutative. Note that |J;, P, gLk (E)P, g = Lk(E). Sup-
pose e and ¢ are idempotents in M,,,(Lk(E)) such that V[kg|([e]) =
V[k£|([¢]). Then there exists n € N such that e and ¢ are idempotents
in My, (P, gLk (E)P,, ). By the commutativity of the above diagram,

Vien pl o Vrnl(le]) = Vien ] o V[rn](la])-
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By Lemma 3.3, V[k,]([e]) = V[kn]([g]). Since k,, is an isomorphism,
we have that [e] = [¢]. Therefore, V[kg] is injective. Hence, V[kg] is a
monoid isomorphism. O

Corollary 3.5. Let E = (E°, E',rg,sg) be a countable graph, and let
tg : Le(E) = C*(E) be the natural inclusion. Then V[ig] is a monoid
isomorphism.

Proof. Let F be the desingularization of E. By the proof of [11,
Lemma 2.9] and the definition of kg, there exists a *-homomorphism
of kg : C*(E) — C*(F) such that

L¢e(F) —— C*(F)

LR
is commutative. Applying the functor V[—], we get that the diagram

VLe(B)]) 22k vier(B))

V[HE]J/ iV[KE]

VILe(F)] 5 VICH(F)

commutes.

Let {P,p,Ter : v € F' e € F'} be a universal set of Cuntz-
Krieger F-family generating C*(F'). Then, by [11, Theorem 2.11],
there exists a projection P in the multiplier algebra of C*(F') such that
Rg(C*(E)) = PC*(F)P and PC*(F)P is not contained in a closed
ideal of C*(F'), where P = ) _po P, r (the sum converges in the
strict topology).

By [6, Theorem 7.1], V[tp] is a monoid isomorphism. By The-
orem 3.4, V[kg] is a monoid isomorphism. Hence, V[RFg] is surjec-
tive. Suppose e and f are idempotents in Mo, (PC*(F)P) such that
VI[kEe]([e]) = V[EE]([f]). Note that

PC*(F)P = | P,C*(F)P,,
n=1
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where P, = Y,_, P, r with E° = {v, : k € N}. By [9,
Proposition 4.5.2], every idempotent in My, (PC*(F)P) is equivalent
to an idempotent in My, (P,C*(F)P,). Hence, there exist €', f’ €
Moo (P,C*(F)P,) for some n € N, [Fg(e)] = [¢/] and [Re(f)] = [f]
in V[P,C*(F)P,]. Since V[rg]([e]) = VI[Ee]([f]) in V]C*(F)], we
have that [¢/] = [f'] in V[C*(F)]. By Lemma 3.3, [¢/] = [f] in
V[P,C*(F)P,]. Therefore, [Rg(e)] = [Fr(f)] in V[PC*(F)P], which
implies that [e] = [f] in V[C*(F)] since kg : C*(E) — PC*(F)P is
a *-isomorphism. Hence, V[Fg] is injective. Thus, V[Rg] is a monoid
isomorphism.

By the above paragraphs,
V[ig] = V[EE] ' o V[ir] o V[kE]

is a monoid isomorphism. O

4. Isomorphism for arbitrary directed graphs. To prove that
ve : Mg — V[Lk(E)] is a monoid isomorphism for an arbitrary
graph E, we will use the fact that g is a monoid isomorphism for
countable graphs and the fact that E' can be expressed as a direct limit
of countable graphs. In order to use these facts, we will need to prove
that E +— M g is a continuous functor for direct limits with morphisms
being CK-morphisms as defined in [17, page 8].

We begin by establishing some results in the category CMong, which
are probably well-known to the experts, but for which we were unable
to find a reference. For the convenience of the reader we provide the
proofs here. The first fact is that direct limits exist in this category.

Lemma 4.1. Let & = ((S:i)ier, (1hij)i<jer) be a direct system in
CMong. Then there exists an abelian monoid S together with mor-
phisms {fti 0o : Si = Soc} such that

(a) Moo = Hjco © pij for alli < j €I,

(b) for each a € S, there exists a; € S; for some i € I with
a = ft; oo(a1); and

(c) given any other abelian monoid M and morphisms

(i + Si — M)ie]
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such that v; = Yjop; for alli < j € I, there exists a morphism
{1 Soo = M} such that V¥; = o ;00 for alli e I.

Proof. Let S denote the disjoint union of the sets S;, for i € I. Define
a relation on S as follows. If s € S; and t € S;, then s ~ ¢ if and only
if there exists k € I such that k > ¢, j in I and px(s) = p,x(t). One
easily shows that ~ is an equivalence relation. Define So, = S/ ~, and
let [s] be the equivalence class corresponding to s € S;. Given s € S;
and t € S, define [s] + [t] = [pir(s) + p;x(t)] for any k > 4,5 € I. An
easy check shows that this operation is well-defined, and commutative
with identity element [0].

Now define p; 00 : S; = Soo by fi.00(s) = [s]. Then it follows easily
that 11 oo is an identity-preserving monoid morphism with the property
that ;0o = Hjoo © pij for all ¢ < j € I. Also, (b) follows from the
definition of S and p; -

Now suppose M is an abelian monoid and that, for each i € I, we
have identity-preserving morphisms ¢ : S; — M such that ¥; = ¥ opu;.
Define ¢ : Soo — M as follows. Let [s] = pi,0(s) € S be such that
s € 8; for some ¢ € I. Now define ¥ by ¥([s]) = ¥i(s). If [s] = [t] in
Soo for some t € Sj, then there exists k € I with & > 4,7 such that
i (s) = pe(t) and

Vi(s) = Vr(pin(s)) = Yr(pjn(t)) = ¥;(1).
So 1 is well defined.

Note that, for s € S;, we have (i 00(s)) = 1¥i(s) by definition,
so that 9 = ¥ o p; . A final quick check shows that ¥([0]) =
Y(i00(0)) = 1;(0) = 0, so that ¢ is indeed an identity-preserving
monoid morphism. (|

Lemma 4.2. L€t8 = ((Si)ieh (/Lij)igjg[) and T: ((Ti)ie], (Vij)igjel)
be direct systems in CMong. Suppose there exists a collection of mor-
phisms

(i : S — Ti)ie[
such that vijo; = jou; for alli < j € I. Then there exists a unique
morphism 1 : Seo = Too such that

Vioo © WV = ¥ 0 i o0
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for all i € I. Consequently, if 1; are monoid isomorphisms for all
i € 1, v is a monoid isomorphism.

Proof. Let ¢ < j € I. Note that
Voo O Wi = Vj oo O Vsj O = Vj oo O O flyj.
Hence, by Lemma 4.1, there exists a morphism ¢ : S, — T'» such that
Vioo © Vi = 9 0 [hj oo
Suppose ¢ : Seo = T is a morphism such that

Vi oo © wz = ¢ O i, o0-

Let a € Sw. By Lemma 4.1, there exist ¢ € I and a; € .S; such that
a = fti,00(a1). Therefore,

P(a) = P(pioo(a1)) = Vioo 0 Pi(a1) = d(piec(ar)) = ¢(a). O

Definition 4.3. Let E and F be arbitrary graphs. By definition (see
[17, page 8]), a graph morphism n : E — F is a CK-morphism,
provided

(1) The restrictions 7° to the vertex set E° and n' to edge set E*
are both injective;

(2) For each v € E° which is neither a sink nor an infinite emitter,
n' induces a bijection s (v) — st (n°(v)).

Note that any CK-morphism must map infinite emitters to infinite
emitters. So v € E°, an infinite emitter, implies n(v) € F° is an
infinite emitter.

Let CKGr be the category whose objects are directed graphs and
whose set of morphisms are CK-morphisms. By [17, Lemma 2.5], ar-
bitrary direct limits exist in this category. As in [17, subsection 2.2],
given a field K, K-Alg will denote the category of (not necessarily
unital) K-algebras. Thus, objects in K-Alg are arbitrary K-algebras
(that is, arbitrary vector spaces over K, equipped with an associative,
K-bilinear multiplication), and sets of morphisms are arbitrary mul-
tiplicative K-linear maps. It is well known that direct limits exist in
categories related to many algebraic structures (see [16, subsection
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L.5]). In particular, given a directed system of K-algebras, a direct
limit exists in the category of (not necessarily unital) rings. It is a
straightforward exercise to define a K-algebra structure on this direct
limit. So direct limits exist in K-Alg.

Making use of [17, Lemma 2.5]7 let & = ((Ei)iela(¢ij)i§jel> be
a direct system in CKGr. Let &/ = ((Ai)ier, (Vij)i<jer) be the
corresponding direct system of Leavitt path algebras (so that A; =
Lk (E;) and 7;; = L (¢;5)). Let Ao be the direct limit of this system
in K-Alg (so Ao = Lx(Ex)). Then we have maps ¢; = Li(n;) with
i+ Ay = Ao such that ¢; = ¢ o5 and where n; are CK-morphisms.

A direct system o/ = ((Ai)ier, (Vij)i<jer) in K-Alg gives rise to
a direct system V[&Z/] = ((V[Ai])ier, V[vij])i<jer) in CMong. By
Lemma 4.1, there exists an abelian monoid V., that is the direct limit

of this system. So there are maps A; : V[A;] = Vo such that
)\i = /\j e} V[’y”}

This leads to the following.

Lemma 4.4. Let o = ((Ai)ier, (Vij)i<jer) be a direct system as
above. Then, for any [e] € V[Ax], there exists a positive integer n and
i € I such that e € M, (1;(A;)). Moreover, the algebra homomorphism
1+ A;j = A induces an identity-preserving monoid morphism from

VIA] to V[Ao].

Proof. Let [e] € V[Ax]. By definition of V[A], we have that
e € My(Ax). Since Moo(As) = Uo2y Mn(As), any element of
Mo (As) must belong to some M, (As). So e € M, (As) for some n.

By definition of A, each element of A, is in the image of ¢ :
Ap — Ao for some k. For each (r,s)-entry e, of e, let 155 be such
a map. Choose i > j(r,s) for all (r,s). Since 1; = tj(r5) © Vij(r,s), We
have a € Mn(bz(Az))

For the final claim, for each n, the map ¢; : A; — A clearly gives
a family of homomorphisms ¢} : M, (A4;) - M, (Aw). Note that for
fe M, (Ay), f®0 € M,(A;) for m > n and

) = () @0,
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Therefore, ¢; induces a well-defined map
V] : Moo (A;) — Moo (Aso)
defined by V[i;](f) = (7(f) (where f € M, (4;) C M (4;)).

Now consider [f] = [¢] in V[A;]. By definition, f = ab and g = ba
for some matrices a,b € My, (A;). For some sufficiently large n we have

V[u](f) = ' (f) = ¢’ (ab) = ¢ (a)e} (b) = V]ui] (@) V][] (b),

using the fact that ] is a homomorphism. A similar result shows
V[eil(g) = V[;](0)V]es](a). This shows V[;](f) is equivalent to V[i;](g)
in Mo (Ax). Clearly, V[1;](0) = 0. Therefore,

V0] V(4;) — V(Aw)

is a well defined identity-preserving monoid morphism. O

Lemma 4.5. Let ((Ai)ier, (¢ij)i<jer) be a direct system of algebras,
and let Ay be the direct limit. Let e, f be idempotents in A; such that
Gico(€) ~ Gico(f) in As. Then there exists j € I with i < j and
pij(e) ~ ¢ij(f) in A;.

Proof. Let x,y € A be such that ¢; o (€) = zy and ¢; o (f) = yz.
Then there exists k € I with ¢ < k and there exist s,t € Ay such that
Ok,00(8) = x and @y oo (t) = y. Hence,

Piroo(€) = Proo(st) and i oo(f) = dr,00(ts).
Hence, there exists j € I with ¢ < j and k < j such that
Gij(e) = d;(st) and  ¢i;(f) = dr;(ts).
Therefore, ¢;;(e) ~ ¢;;(f) in A;. O

Lemma 4.6. Let ((E;)icr, (¢ij)i<jcr) be a direct system in CKGr with
corresponding object Eo,, and let

(Lx(E:))ier, (Lx(¢ij))i<jer)

be the direct system in K-Alg. Set v;j = V[Lk(¢ij)]. If Voo is the
direct limit of
((VILk(E)))ier, (VU)Z<]€I)
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in CMony, there exists a monoid isomorphism ¥y : Voo = V[Lk(Es)]
such that
wv O Vijoo = V[LK((ZSI,OO)]

Proof. The algebra homomorphisms v;; : A; = Ajand ¢; : 4; - Ax
induce maps

Vi) P vy and v 24 v

so that, for each ¢ € I, we have that V(] : V[A;] = V[Ac]| with the
property
VIui] = VIs] o Vil

By the universal property of V., there exists a monoid morphism
1 Voo = V[As] such that

Y 0 V00 = V[ti].
We now show that v is a monoid isomorphism.

Let [e] € V[Ax]. By Lemma 4.4, e € M, (+;(A;)) for some integer n
and i € I. Let e,s denote the (7, s)-entry of the matrix e. Then there
exists a matrix f € M, (A;) with (r, s)-entry f,s such that ¢;(f.s) = ers.
Then we have

e=V[ul(f)-

Since V[i;] = 1 o V; 0, we have that

le] = ¥(vioo([f1))

so that 1 is surjective. By Lemma 4.5, ¥ is injective. Therefore, 1 is a
monoid isomorphism. O

We want to show that M(—) is a continuous functor. Let ((E;)ier,
(¢ij)i<jer) be a direct system in CKGr. For clarity, we write a,, a,.g
for elements of MEk and by, by, for elements of MEOO- Note that any
CK-morphism sends regular vertices to regular vertices (and infinite
emitters to infinite emitters). Therefore, if w € EY, is a regular vertex,

then there is some i € I and v € E? such that w = 200(1)) and
|s]51(v)| = |sgio (w)|. We often write by, = by, () or just b, = b, for

this situation.

Similarly, for w € E2, an infinite emitter and 7" a finite subset of
sp. (w), there are i € I and v € E where w = ¢! (v) and, for

1,00
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every f € T, there is e € sgl(v) with f = ¢; (). For notational
convenience, we often take S to be the set of all such e € sgil(v) and
write by, T = by, (v),6:.00(5) OF just by, = by s.

Lemma 4.7. Let ((E;)icr, (¢ij)i<jer) be a direct system in CKGr,
and let (Es,®;) be the direct limit of this system. Let (Mg,)ier,
(M(¢i;))ijer) be the direct system in CMong, and let (M oo, j1i,00) be
the direct limit of this system. Set wi; = M(¢i;). Then there exists a
monotd isomorphism g7 : Mo, — Mg such that

W O Ui co = M(¢z,oo)

Proof. For any ¢ € I, the CK-morphism ¢, induces a monoid
morphism M (¢; o) : Mg, — Mg, given by

M(¢i00)(av) = by, _(v)

and
M (¢i00)(@,5) = by, . (v).61.00(S)-

It follows easily that M (¢ oo) = M(j00) © p1ij. That there exists a

surjective monoid morphism 957 : Mo — ME__ is seen from the defini-
tion of M« as the direct limit of the system (Mg, )icr, (M (¢i;))ijer)-

Showing that 37 is injective is the remainder of the proof. Our
strategy is as follows. We define a monoid morphism 6 : Mgy — M
on the free abelian monoid M, generated by the same generators of
Mp__, but without any relations. We then use 6 to define a monoid
morphism 6 : Mg — M, such that 6o Y37 is the identity map on
M. It then follows that 37 is injective.

We define 8 on M as follows. For a generator of the form b,, € Mg
with w € EY, let

e(bw) = ,ui,oo(av)a
where w = ¢; oo (v) for some i € I and v € EY.

For a generator of the form b, 1 € M, with w € B, and T a finite
subset of SE; (w), there is an i € I with v € E? and a finite subset
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S C sgl (v) with ¢;,00(S) = T. Define the map 6 on by, r by
G(bw,T) = /J/i,oo(av,S)-

We now show that 6 is well defined.

Since there are no relations on M, we only need to show that @
does not depend on our choice of ¢ € I. First consider the generator
by € Mgy. Suppose w = ¢;oo(v) = ¢joo(v') for some i,j € I,
v € EY and v/ € E;’ Without loss of generality, we may assume
i < j. Since ¢io(v) = ¢j0o(v'), we must have ¢9;(v) = v/, so that
gy (v) = o Thus, pij(ay) = M(¢i;)(ay) = ar, and it follows that
Mi,oo(av) = Mj,oo(av’)-

A similar approach works for the generator b, 7 € My. Suppose
w = ¢i,oo(v) = ¢j,oo(vl) and T = d)z,oc(‘s’) = (bj,oo(sl) for some
i,j € I, v € E and v' € EY. Without loss of generality, we may
assume 7 < j. Since ¢ 0(v) = ¢;00(v'), we must have ¢;(v) = v'.
Similarly, ¢} . (S) = ¢} .(5), so for every e € S we have ¢’ € S" such
that qbllj (e) = ¢/. We denote this succinctly by ¢;;(S) = S’. Then
M (¢ij)(ap,s) = U, (v),6:;(S) = Qo5 and it follows that i oo (a,,s) =
Hj,00(@y 57). So the map @ does not depend upon a choice of ¢ € I.

We now see that 6 is well-defined on the generators. Now extend
additively to give a map My — M, e.g.,

9<waj + wak,Tk) = Za(bw7) + Za(bwk’Tk)
= Z :ui,oo(a’vj) + Z /J’i,oo(avmsk)'

Our next goal is to essentially quotient out by the kernel of 6 to
obtain a monoid morphism 6 on M g__. For this to work we need to show
that the kernel of # contains our relations on Mg_. To this end, let
R denote the set of relations (defined on the generators) distinguishing
Mg from M, and let p denote the equivalence relation generated by
R, so that M p__ = Mg/p. Note that, one typically does not distinguish
between R and p, but we are being overly cautious in our treatment
here. When thinking of these as ordered pairs, technically, we have
R C p. Let @ be the natural quotient map taking a word z in M
to its equivalence class in Mp_. Thinking of ker§ as a collection of



NON-STABLE K-THEORY 1843

ordered pairs (z,y) where 6(xz) = 6(y), we now wish to show that
p C kerf.

Let x and y be words in Mg such that 2 = y in Mpg_, that is,
(x,y) € p, or equivalently, Q(z) = Q(y). Then there exists a finite
sequence of words x1,...,TEy1 in Mo with z; = = and Tk+1 = Y such
that ;41 is obtained from z; by substituting a term z; of z; by y;
for some y; in Mg such that “z; = y,;” is one of the relations in R
((z:,y:) € R). Now, if 6(z;) = 0(y;) for every such pair in R, then by
transitivity we will have 0(x) = 6(y). Thus, to conclude that p C ker 6,
it now suffices to show that 0 respects the three forms of relations found
in R.

We first consider relations in R of the form b, = Zfesgl (w) br(p)

for a regular vertex w € EY . In this case, we have w = ¢; - (v) for
some v € EY and 0(by) = i 00(ay,). For some choice ¢ € I, we have
W = ¢yp00(v) and |sgio (w)] = \5;3[1(11’)\ so that

9( Z br(f)>: Z 0(br(s)) = Z Pt 00 (ar(e))-

fespl (w) fespl (w) e€sp, (v')

. b . . vertex. this i
Since f,o0 is @ monoid morphism and v’ a regular vertex, this in turn

equals
W700< Z a?‘(@)) = pe,00 ().

ees;;; (v")

As argued previously, we must have iy, o0 (@y) = i 00(@v), SO 6 Tespects
the relation defined on finite emitters.

Next consider the relations on infinite emitters in R of the form
by = b1+ ZfeT b,(s) for an infinite emitter w. Since CK-morphisms
map infinite emitters to infinite emitters, we must have some i € [
and infinite emitter v € EY such that 0(b,) = i 00(ay). Now consider
O(bw,r+ > rer br(p)) = 0(bw,r) + 3 per 0(br(s)). As before, there is an
¢ € I and an infinite emitter v/ € EY with w = ¢y 00(v'). Since T is
finite, we also must have a finite set S C 5;321 (v') such that T = ¢; . (S).
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Then

a(bw,T) + Z e(br(f)) = Nl,oo(a'u’,S) + Z,U/E,oo(ar(e))

fer ecsS

= He,00 (av’,S + Z ar(e)) .

ecS

Since v € EY is an infinite emitter with finite subset S C sgel(v’ ), we
must have a,/ s + ). cg r(e) = @y and

9<bw,T + Z br(f)> = ug,oo(avl).

fer

Again, because 6 does not depend upon the choice of index, we must

have
H(bw) = 9<bw,T + Z br(f)) .

fer

Lastly, we consider the relations in R of the form

b+ D b (n=bur Y b (1)
fer\1’ fET\T

Again, since CK-morphisms map infinite emitters to infinite emitters,
there is some i € I and infinite emitter v € E? such that (b,) =
i o0 (ay). Now consider

G(bw,TJr > br(f))=9(bw,T)+ > 0buey))-

feT\T’ feT\T’

As before, there is an ¢ € I and an infinite emitter ' € EY with
W = ¢p,00(v'). Since T and T” are finite, we also must have finite sets
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S,58" C sgj(v’) such that T' = ¢} _(S) and T" = @700(5’). Then

Obwr)+ Y 00p) = peso(turs) + D prco(tre)
FeT\T cES\S’

::uf,oo<a'u’,s+ Z ar(e))

eeS\s’

= M 00 <av’,S + Z ar(e))

eeS'\S

=0(bwr)+ Y Oby):

fET'\T
Once again, we see that this relation is preserved by 6 and we conclude

that indeed p C ker 6.

Finally we can define § : Mp_ — My, by 0(Q(x)) = §(x). This is
well-defined since if Q(z) = Q(y), we have (z,y) € p C ker6 so that
0(x) = 0(y).

Now, if goq/zﬁ equals the identity map on M ., then 137 is injective.
Since M , is generated by the set

{Ui,OO(av) HECRS Ezo} U {Ui,OO(av,S) :

v an inf. emitter, fin. non-empty S C s;;l (v)},

we need only check the above condition on this set of generators. In
this direction, suppose that f; o (ay) € Moo, where v € E; for some
i € 1. Then

9(%(%,00(%)) = g(ﬁ((bl,oo)(av)) = 9(btbi,(x,(v)) = /’Li,oo(av)-

Similarly, suppose that p; oo(ay,s) € Moo, where v € E; for some
i € I and S is a finite non-empty subset of sgil (v). Then

a(q/fﬁ(ﬂi,oomv,s)) M((Jbi,oo)(av,s))
D o (v),61.00(5)) = Mi oo (u,5)-

o
o

Thus, 157 is injective and 157 : Mo — M g__ is a monoid isomorphism.
d
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Lemma 4.8. Letn: E — F be a CK-morphism. For the maps vg and
~vr defined in Lemma 2.9, and the maps M[n] and (V o Lk )[n] induced
by the functors M and (V o L), respectively, the diagram

Mp—"=V[Lk(E)]
M[n]l \L(VOLK)[U]
Mp — V[Lk (F)]

s commutative.

Proof. For graphs E = (E°, E', rp, sgp)and F = (F°, F!, rp, sp),
let {py,te,t’ 1 v € E° e € E'} and {qw,up,uf+ we FO feFl}
be the Leavitt E-family and F-family, respectively, generating L (FE)
and Ly (F), respectively.

Similarly, suppose Mg and M p are generated by elements
{ay:v € E°} U {ay s:v € E° v an inf. emitter, finite § # S Csy' (v)}
and
{by:w€F} U {b, r:v€F” w an inf. emitter, finite () # T Csy' (w)},
respectively.

Let v € E° be a non-singular vertex. By the definition of 7,
~vE([ay]) = [pv]. Then by [17, Lemma 2.5], using the functor (Vo Lg),
we have

(Vo L) n)([po]) = [gn0)]-
Hence, (V o Lk)[n]) o ve([ay]) = [gyv] for v non-singular.
Similarly, the functor M induces the map M|n] defined for non-
singular v by M([n]([a,]) = [by(»)]. Then, since
WF([bn(v)]) = [qW(v)L

we have (Vo Lx)[n] o7g)([av]) = (Fp o M[n])([a,]) for non-singular
v e E°.

Now, assume v € E° is an infinite emitter. Since n: E — F is a
CK-morphism, we also have n(v) € F? is an infinite emitter. For each
element e;, of a finite subset S of s'(v), let f;, = n'(e;,) and set
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Tys = {fi,---, fi,}. Note that the cardinality of T, s equals that of
S because of property (1) of CK-morphisms.

By the definition of v, for an infinite emitter v € E° and S, a non-
empty finite subset of s5'(v), we have Vg([av,s]) = [pv — D ocg teti].
Again by [17, Lemma 2.5],

(Vo Lk)[n (pv -y tetZ) = Qyw) = D, Uy

e€S n(e)en(S)

However, n(e) = f € T}, s. Hence,

(Vo Lg)nlove(lavs]) = [qn(v) - “f“?}

fE€Ty,s

Also, for v € E° an infinite emitter and S a non-empty finite subset
of s;'(v), the induced map M|n] is defined by

Mn)([av,s]) = [bu7]
where w = n(v) and T = {fi,,... f;,} is the finite subset of s'(w)

such that f;, = n(e;,). So Mg(lavs]) = [byw)rs,)- Then, by the
definition of vg

VF([by ()15, 1) = {qn(v) > ufu}}

f€Ts

It follows then that (V o Lx)[n] o vg = vF o M[n] for all generators of
M g. Hence, the diagram above commutes. O

We are now ready to use the results of the previous section to
show that the monoid morphism vg given in Lemma 2.9 is a monoid
isomorphism for an arbitrary graph.

Theorem 4.9. Let E be an arbitrary graph and let K be a field. Then
vE : Mp — V[Lkg(E)] is a monoid isomorphism.

Proof. By [17, Proposition 2.7], there exists a direct system ((E;);cr,
(¢ij)ijer) in CKGr such that E = lim(E;, ¢;;), E; are countable
graphs, and

Lk (E) = lim(Lk (E:), Lk (¢45))-
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By Lemma 4.8, for each i,j € I with ¢ < j, the diagram

— Ml¢ij) —

Mg, Mg,
YE; l l’)’Ej
VL (Bl — o= VL (B))]

is commutative. By Theorem 3.4, vg, is a monoid isomorphism
for all ¢ € I. By Lemma 4.2, there exists a monoid isomorphism
¥ Moo = Voo such that v; o 0y, = 10 i 00, where v;; = V[Lk(¢i;)]
and pi;; = M ().

By Lemmas 4.6 and 4.7, there exist monoid isomorphisms
Yy 1 Voo = V[ILg(E)] and ¢57: Mo — Mg
such that
Py 0 Vioo = V[Li(dioo)] and 970 i co = M(Gi00)-

We claim that yg = ¢y o) o 1/Jﬁ1~ First note that, by Lemma 4.8,
the diagram

M, [¢i,0c] s

VL (E;)] V[Lk(E)]

- 5
VIL i (¢i,00)]

is commutative. Let a € M g_. Then there exists a; € M g, such that
i) = i (a). Then
Yy oo l(a) = Py," 0o tioo(ar) = Yy o Vi 0 e, (a1)
M
= V[Lk(¢i,o0)] ©7E, (a1)
=80 My, . (a1) = B 0 V57 © Hi,eo(a1)
= 7B o Yyro ¢t (a) = ve(a).

We have just proved the claim. Since yg = ¥y o o w% is the
composition of monoid isomorphisms, vg is a monoid isomorphism. [
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