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ASYMPTOTIC BEHAVIOR OF THE FINITE-TIME
RUIN PROBABILITY WITH PAIRWISE

QUASI-ASYMPTOTICALLY INDEPENDENT CLAIMS
AND CONSTANT INTEREST FORCE

QINGWU GAO, NA JIN AND HOUCAI SHEN

ABSTRACT. This paper will obtain an asymptotic for-
mula of the finite-time ruin probability in a generalized risk
model with constant interest force, in which the claim sizes
are pairwise quasi-asymptotically independent and their ar-
rival process is an arbitrary counting process. In particular,
when the claim inter-arrival times follow a certain depen-
dence structure, the result obtained can also include an as-
ymptotic formula for the infinite-time ruin probability.

1. Risk model. In this paper, we investigate the finite-time ruin
probability in a generalized risk model with constant interest force,
where the claim sizes {Xi, i ≥ 1} form a sequence of nonnegative,
identically distributed, but not necessarily independent, random vari-
ables (r.v.s) with common distribution F , and the claim arrival process
{N(t), t ≥ 0} is a general counting process, independent of {Xi, i ≥ 1}.
Hence, the aggregate claim amount up to time t ≥ 0 is expressed as

S(t) =

N(t)∑
i=1

Xi
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with S(t) = 0 if N(t) = 0. Assume that the total amount of premiums
accumulated before time t ≥ 0, denoted by C(t), is a nonnegative and
nondecreasing stochastic process with C(0) = 0 and C(t) < ∞ almost
surely (a.s.) for every 0 ≤ t < ∞. Let 0 ≤ r < ∞ be the constant
interest force and 0 ≤ x < ∞ the insurer’s initial reserve. Thus, the
total reserve up to time 0 ≤ t <∞ of the insurance company, denoted
by Ur(t), satisfies

(1.1) Ur(t) = xert +

∫ t

0

er(t−s)C(ds)−
∫ t

0

er(t−s)S(ds).

Apparently, by the conditions on C(t), one can easily know that, for
any fixed 0 < t <∞,

(1.2) 0 ≤ C̃(t) =

∫ t

0

e−rsC(ds) <∞ almost surely,

where C̃(t) is the discounted value of premiums accumulated before
time t. The ruin probability within a finite time T is defined by

(1.3) ψr(x, T ) = P (Ur(t) < 0 for some 0 ≤ t ≤ T ),

and the infinite-time ruin probability is

(1.4) ψr(x,∞) = P (Ur(t) < 0 for some 0 ≤ t <∞).

For later use, let {θi, i ≥ 1} denote the claim inter-arrival times,

and then let τk =
∑k

i=1 θi, k ≥ 1, denote the arrival times of successive
claims, which can constitute a counting process

(1.5) N(t) =
∞∑
k=1

1{τk≤t}, t ≥ 0,

where 1A is the indicator function of an event A. If {θi, i ≥ 1} are
independent and identically distributed (i.i.d.) r.v.s, then {N(t), t ≥ 0}
is the renewal process and the risk model with {N(t), t ≥ 0} a renewal
process which was studied by Tang [18], Chen and Ng [2], Hao and
Tang [7] and some others. If {θi, i ≥ 1} follows a certain dependence
structure, then {N(t), t ≥ 0} is a quasi-renewal process and the risk
model with {N(t), t ≥ 0} a quasi-renewal process was studied by Li et
al. [13], Yang and Wang [25], Wang et al. [23], Liu et al. [14] and so
on. However, for the model of this paper {N(t), t ≥ 0} is an arbitrary
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counting process, and thus no assumption is made on the dependence
structure of {θi, i ≥ 1}, also see Wang [22].

2. Introduction and main results. Throughout this paper, all
limit relationships are taken as x → ∞ unless stated otherwise. For
two positive functions a(·) and b(·), we write a(x) = O(b(x)) if
lim sup a(x)/b(x) = C < ∞, write a(x) . b(x) or b(x) & a(x) if
C ≤ 1, write a(x) ∼ b(x) if a(x) . b(x) and b(x) . a(x), and write
a(x) = o(b(x)) if C = 0.

As generally admitted, in the insurance industry how to model
dangerous claim sizes is one of the main worries of practicing actuaries,
and actually most practitioners choose the claim-size distribution from
the heavy-tailed distribution class, one of which is the subexponential
class. Say that a distribution V belongs to the subexponential class,
denoted by V ∈ S, if V (x) = 1− V (x) > 0 for all x > 0 and

V ∗2(x) ∼ 2V (x),

where V ∗2 denotes the 2-fold convolution of V . Clearly, if V ∈ S then
V is long-tailed, denoted by V ∈ L and characterized by

V (x+ y) ∼ V (x) for all y ̸= 0.

Another important class of heavy-tailed distributions is the dominated
variation class, say that a distribution V belongs to the dominated
variation class, denoted by V ∈ D, if

V (xy) = O(V (x)) for all y > 0.

A slightly smaller class of D is the consistent variation class, say that
a distribution V belongs to the consistent variation class, denoted by
V ∈ C, where

lim
y↘1

lim inf
x→∞

V (xy)/V (x) = 1,

or equivalently,
lim
y↗1

lim sup
x→∞

V (xy)/V (x) = 1.

It is well known that the following inclusion relationships are valid and
proper:

C ⊂ L ∩ D ⊂ S ⊂ L.
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For a distribution V and y > 0, we set

J+
V = − lim

y→∞
log V ∗(y)/ log y with V ∗(y) = lim inf

x→∞
V (xy)/V (x)

and

J−
V = − lim

y→∞
log V

∗
(y)/ log y with V

∗
(y) = lim sup

x→∞
V (xy)/V (x).

For more details of heavy-tailed distributions and their applications to
insurance and finance, the readers are referred to Bingham et al. [1]
and Embrechts et al. [4].

For the risk model with constant interest force and i.i.dḣeavy-tailed
claims, there are many results on the asymptotic behavior for the finite-
time ruin probability ψr(x, T ), 0 < T ≤ ∞, see Klüppelberg and
Stadtmüller [10], Kalashnikov and Konstantinides [9], Konstantinides
et al. [12], Tang [18, 19], Wang [22], Hao and Tang [7], among others.
In particular, Wang [22] showed that, in a risk model, the claim sizes
{Xi, i ≥ 1} are i.i.d. and nonnegative r.v.s with common distribution
F ∈ L∩D, and their arrival process {N(t), t ≥ 0} is a general counting
process satisfying EN(T ) > 0 and E(1 + δ)N(T ) < ∞ for any fixed
0 < T <∞ and some δ = δ(T ) > 0, and {Xi, i ≥ 1}, {N(t), t ≥ 0} and
{C(t), t ≥ 0} are mutually independent. Then, for fixed 0 < T <∞,

(2.1) ψr(x, T ) ∼
∫ T

0

F (xert) dEN(t).

But, in most practical situations the independence assumption on
claim sizes is unrealistic. Recently, more and more researchers have
paid attention to a risk model with dependent claim sizes and/or
dependent inter-arrival times, see Chen and Ng [2], Kong and Zong
[11], Li et al. [13], Yang andWang [25], Wang et al. [23], Gao et al. [5],
Liu et al. [13], and so on. Therein, Wang et al. [23] have introduced a
new dependence structure among r.v.s, which is as follows:

Definition 2.1. Say that the r.v.s {ξn : n ≥ 1} are widely upper
orthant dependent (WUOD), if there exists a finite positive real number
sequence {gU (n) : n ≥ 1} such that, for each n ≥ 1 and for all
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xi ∈ (−∞,∞), 1 ≤ i ≤ n,

(2.2) P

( n∩
i=1

{ξi > xi}
)

≤ gU (n)
n∏

i=1

P (ξi > xi).

If the inequality (2.2) is changed into

P

( n∩
i=1

{ξi ≤ xi}
)

≤ gL(n)
n∏

i=1

P (ξi ≤ xi),

where {gL(n) : n ≥ 1} is another finite positive real number se-
quence, then say that {ξn : n ≥ 1} are widely lower orthant dependent
(WLOD).

Clearly, if {ξi, i ≥ 1} are WLOD, then {−ξi, i ≥ 1} are WUOD.
From the definitions of WLOD and WUOD r.v.s, Wang et al. [23] gave
the following proposition.

Proposition 2.1.

(i) Assume that {ξi, i ≥ 1} are WLOD (WUOD) r.v.s. If
{fi(·), i ≥ 1} are nondecreasing, then {fi(ξi), i ≥ 1} are also
WLOD (WUOD); if {fi(·), i ≥ 1} are nonincreasing, then
{fi(ξi), i ≥ 1} are WUOD (WLOD).

(ii) If {ξi, i ≥ 1} are nonnegative and WUOD r.v.s, then for each
n ≥ 1,

E
n∏

i=1

ξi ≤ gU (n)
n∏

i=1

Eξi.

In particular, if {ξi, i ≥ 1} are WUOD, then for each n ≥ 1
and any s > 0,

E exp

{
s

n∑
i=1

ξi

}
≤ gU (n)

n∏
i=1

E exp{sξi}.

For some properties and examples of WUOD and WLOD r.v.s,
we refer the readers to Wang et al. [23] and Wang and Cheng [24].
For a nonstandard renewal risk model with WUOD claim sizes and
WLOD inter-arrival times, Wang et al. [23] assumed that {Xi, i ≥ 1},
{N(t), t ≥ 0} and {C(t), t ≥ 0} are mutually independent, and proved
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that if F ∈ L∩D, then relation (2.1) holds uniformly for time T varying
in a finite interval.

In this paper, we will consider the dependence structure among
claim sizes from the WUOD structure to a more general dependence
structure, whose definition is given below.

Definition 2.2. Say that the r.v.s {ξi, i ≥ 1} with distributions Vi,
i ≥ 1, respectively, are pairwise quasi-asymptotically independent if

(2.3) P (ξi > x, ξj > x) = o(Vi(x) + Vj(x)) for i ̸= j, i, j ≥ 1.

Remark 2.1. The term “pairwise quasi-asymptotic independence”
is borrowed from Resnick [17] and Chen and Yuen [3]. Clearly, if
{ξi, i ≥ 1} are identically distributed, relation (2.3) is equivalent to

P (ξi > x, ξj > x) = o(P (Xi > x)) for i ̸= j, i, j ≥ 1,

that is to say, {ξi, i ≥ 1} are pairwise asymptotically independent or
bivariate upper tail independent, see Zhang et al. [27], Gao and Wang
[6], and the references therein. We also remark that the pairwise quasi-
asymptotically independent r.v.s can cover not only common negatively
dependent r.v.s but also some positively dependent r.v.s.

Inspired by the above results, in this paper we aim at establishing an
asymptotic formula (2.1) for the finite-time ruin probability ψr(x, T ),
0 < T ≤ ∞, in a generalized risk model with constant interest force,
where the claim sizes are pairwise quasi-asymptotic independent and
their arrival process is an arbitrary counting process. In our main
results, we will discuss two cases: one that is the premium process
{C(t); t ≥ 0} is independent of {Xi, i ≥ 1} and {N(t), t ≥ 0}, and the
other is that {C(t); t ≥ 0} is not necessarily independent of {Xi, i ≥ 1}
or {N(t), t ≥ 0}.

The following are our main results, the first one is concerned with
the finite-time ruin probability for any fixed 0 < T <∞.

Theorem 2.1. Consider the generalized risk model introduced in Sec-
tion 1 with r ≥ 0, where the claim sizes {Xi, i ≥ 1} are pairwise quasi-
asymptotically independent r.v.s with common distribution F ∈ C, and
for any fixed 0 < T < ∞ such that EN(T ) > 0, there exists some
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p > J+
F such that E(N(T ))p+1 < ∞. Then relation (2.1) holds for the

fixed 0 < T <∞, if one of the following conditions is valid :

(i) the premium process {C(t), t ≥ 0} is independent of {Xi, i ≥ 1}
and {N(t), t ≥ 0};

(ii) the discounted value of premiums accumulated by time T , de-
fined in (1.2), satisfies that

P (C̃(T ) > x) = o(F (x)).

Evidently, for any fixed 0 < T < ∞, the condition that EN(T ) > 0
is equivalent to P (N(T ) > 0) = P (τ1 ≤ T ) > 0, and the condition that
E(N(T ))p+1 <∞ for some p > J+

F , is more relaxed than that of Wang

[22], namely, E(1 + δ)N(T ) < ∞ for some δ > 0. In the next main
result, we extend the set for T to an infinite set (0,∞].

Theorem 2.2. Under the conditions of Theorem 2.1 with r > 0 and
J−
F > 0, we further assume that the claim inter-arrival times {θi, i ≥ 1}

are WLOD r.v.s such that

(2.4) lim
n→∞

gL(n)e
−ϵ0n = 0 for some ϵ0 > 0,

and that the total discounted amount of premiums is finite, that is,

(2.5) 0 ≤ C̃ =

∫ ∞

0

e−rsC(ds) <∞ almost surely.

Then relation (2.1) still holds for all 0 < T ≤ ∞, if one of the following
conditions is valid :

(i) the premium process {C(t), t ≥ 0} is independent of {Xi, i ≥ 1}
and {N(t), t ≥ 0};

(ii) the total discounted amount of premiums satisfies

P (C̃ > x) = o(F (x)).

Remark 2.2. In Theorems 2.1 and 2.2 above, condition (i) has been
considered by Wang [22], Yang and Wang [25], Wang et al. [23],
Liu et al. [14] and many others; while condition (ii), which does
not require independence between the premium process and the claim
process, allows for a more realistic case that the premium rate varies as
a deterministic or stochastic function of the insurer’s current reserve, as
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that considered by Petersen [16], Michaud [15], Jasiulewicz [8], Tang
[18] and Gao et al. [5].

Applying Theorem 2.1, we now put forward a special case when
r = 0.

Corollary 2.1. Consider the above risk model with r = 0, if the other
conditions of Theorem 2.1 are true, then for fixed 0 < T <∞ and any
α > 0,

(2.6) ψr(x, T ) ∼ F (x)EN(T ) ∼ α−1

∫ x+αEN(T )

x

F (y) dy.

The remaining part of the paper is divided into two parts. In
Section 3 we present some lemmas that are crucial to proving our main
results in Section 4.

3. Lemmas. In order to prove the main results, we need the fol-
lowing lemmas, among which the first lemma is a combination of [1,
Proposition 2.2.1] and [20, Lemma 3.5].

Lemma 3.1. If a distribution V ∈ C, then:

(i) for any p > J+
V , there are positive constants C and D such that

(3.1)
V (y)

V (x)
≤ C (x/y)

p

holds for all x ≥ y ≥ D; and, for any p̂ < J−
V , there are positive

constants Ĉ and D̂ such that

(3.2)
V (y)

V (x)
≥ Ĉ (x/y)

p̂

holds for all x ≥ y ≥ D̂;
(ii) for any p > J+

V , the following holds:

(3.3) x−p = o(V (x)).
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The following second lemma will play an important role in proving
the main results and is also of its own merit and close to the spirit of
[21, Proposition 5.1].

Lemma 3.2. If {ξi, 1 ≤ i ≤ n} are n real-valued and pairwise quasi-
asymptotically independent r.v.s with distributions Vi ∈ C, 1 ≤ i ≤ n,
respectively, such that

(3.4) Vi(−x) = o(Vi(x)), 1 ≤ i ≤ n,

then for any fixed 0 < a ≤ b <∞,

(3.5) P

( n∑
i=1

ciξi > x

)
∼

n∑
i=1

P (ciξi > x)

holds uniformly for all cn = (c1, c2, . . . , cn) ∈ [a, b]n, that is,

lim
x→∞

sup
cn∈[a,b]n

∣∣∣∣P
(∑n

i=1 ciξi > x
)

∑n
i=1 P (ciξi > x)

− 1

∣∣∣∣ = 0.

Proof. Relation (3.5) is clear if n = 1. Hence, we assume n ≥ 2. On
the one hand, for an arbitrarily fixed v ∈ (1/2, 1),

P

( n∑
i=1

ciξi > x

)
≤ P

( n∪
i=1

{ciξi > vx}
)

(3.6)

+ P

( n∑
i=1

ciξi > x,

n∩
i=1

{ciξi ≤ vx}
)

= I1 + I2.

For I1, by Vi ∈ C, 1 ≤ i ≤ n, and the arbitrariness of v ∈ (1/2, 1), we
have

lim
v↗1

lim sup
x→∞

sup
cn∈[a,b]n

I1∑n
i=1 P (ciξi > x)

(3.7)

≤ lim
v↗1

lim sup
x→∞

sup
cn∈[a,b]n

∑n
i=1 Vi(vx/ci)∑n
i=1 Vi(x/ci)

= 1.
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For I2, it follows that

I2 = P

( n∑
i=1

ciξi > x,
x

n
< max

1≤k≤n
ckξk ≤ vx

)
(3.8)

≤
n∑

k=1

P

( n∑
i=1,i̸=k

ciξi > (1− v)x, ckξk >
x

n

)

≤
n∑

k=1

n∑
i=1,i ̸=k

P

(
ciξi >

(1− v)x

n− 1
, ckξk >

x

n

)
.

Since 1/n > (1− v)/(n− 1), we obtain from (2.3), (3.8) and Vi ∈ C ⊂
D, 1 ≤ i ≤ n, that, for all cn ∈ [a, b]n,

lim
x→∞

I2∑n
i=1 P (ciξi > x)

≤ lim
x→∞

n∑
k=1

n∑
i=1,i ̸=k

(3.9)

· P (ciξi > [(1− v)x]/(n− 1), ckξk > [(1− v)x]/(n− 1))

P (ciξi > x) + P (ckξk > x)

≤ lim
x→∞

n∑
k=1

n∑
i=1,i ̸=k

· P (ξi > (1− v)/(n− 1)(x/b), ξk > (1− v)/(n− 1)(x/b))

Vi([1− v]/[n− 1](x/b)) + Vk([1− v]/[n− 1](x/b))

· Vi([1− v]/[n− 1](x/b)) + Vk([1− v]/[n− 1](x/b))

Vi(x/a) + Vk(x/a)
= 0.

Thus, substituting (3.7) and (3.9) into (3.6) yields that

(3.10) P

( n∑
i=1

ciξi > x

)
.

n∑
i=1

P (ciξi > x)

holds uniformly for all cn ∈ [a, b]n.
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On the other hand, for an arbitrarily fixed w > 1,

P

( n∑
i=1

ciξi > x

)
≥ P

( n∑
i=1

ciξi > x, max
1≤k≤n

ckξk > wx

)
(3.11)

≥
n∑

k=1

P

( n∑
i=1

ciξi > x, ckξk > wx

)
−

∑
1≤i<j≤n

P (ciξi > wx, cjξj > wx)

= I3 − I4.

For I3, it holds that

I3 ≥
n∑

k=1

P

(
ckξk > wx,

n∑
i=1,i̸=k

ciξi > (1− w)x

)
(3.12)

≥
n∑

k=1

P (ckξk > wx)−
n∑

k=1

n∑
i=1,i ̸=k

P

(
ciξi <

(1− w)x

n− 1

)

=
n∑

k=1

P (ckξk > wx)− I5.

By (3.4) and Vi ∈ C ⊂ D, 1 ≤ i ≤ n, we have that, for all cn ∈ [a, b]n,

lim sup
x→∞

I5∑n
i=1 P (ciξi > x)

≤ lim sup
x→∞

n∑
k=1

n∑
i=1

i ̸=k

P (ciξi < (1− w)x/n− 1)

P (ciξi > x)

≤ lim sup
x→∞

n∑
k=1

n∑
i=1,i ̸=k

P (ξi < (1− w)/(n− 1)(x/b))

P (ξi > (w − 1)/(n− 1)(x/b))

· P (ξi > (w − 1)/(n− 1)(x/b))

P (ξi > x/a)
= 0.

This, along with (3.12), leads to

(3.13) lim inf
x→∞

I3∑n
i=1 P (ciξi > x)

≥ lim inf
x→∞

∑n
k=1 P (ckξk > wx)∑n
k=1 P (ckξk > x)

.
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For I4, by (2.3) we see that, for all cn ∈ [a, b]n,

lim sup
x→∞

I4∑n
i=1 P (ciξi > x)

(3.14)

≤ lim sup
x→∞

∑
1≤i<j≤n

P (ciξi > wx, cjξj > wx)

P (ciξi > wx) + P (cjξj > wx)

≤ lim sup
x→∞

∑
1≤i<j≤n

P (ξi > wx/b, ξj > wx/b)

Vi(wx/b) + Vj(wx/b)

· Vi(wx/b) + Vj(wx/b)

Vi(wx/a) + Vj(wx/a)

= 0.

From (3.11) to (3.14), it follows that

lim
w↘1

lim inf
x→∞

inf
cn∈[a,b]n

P (
∑n

i=1 ciξi > x)∑n
i=1 P (ciξi > x)

≥ lim
w↘1

lim inf
x→∞

inf
cn∈[a,b]n

∑n
i=1 Vi(wx/ci)∑n
i=1 Vi(x/ci)

= 1,

which implies that

(3.15) P

( n∑
i=1

ciξi > x

)
&

n∑
i=1

P (ciξi > x)

holds uniformly for all cn ∈ [a, b]n.

Consequently, we will complete the proof of this lemma by combining
(3.10) and (3.15). �

Remark 3.3. Clearly, if {ξi, 1 ≤ i ≤ n} are nonnegative and pair-
wise quasi-asymptotically independent, then condition (3.4) is satisfied
naturally, and it can be canceled for Lemma 3.2.

Lemma 3.3. Consider the counting process {N(t), t ≥ 0} in (1.5) with
WLOD inter-arrival times {θi, i ≥ 1} satisfying (2.4). Then, for any
fixed T > 0 and any p > 0,

(3.16) E(N(T ))p <∞.
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Proof. Note that, by the Markov inequality and Proposition 2.1,

E(N(T ))p ≤
∞∑

n=1

npP (τn ≤ T )(3.17)

≤ eT
∞∑

n=1

npE(e−τn)

≤ eT
∞∑

n=1

gL(n)n
p exp{n log(Ee−θ1)}.

Applying (2.4) and setting ϵ0 = − log(Ee−θ1) − c for some c > 0, we
can find some n0 ≥ 0 such that, for all n ≥ n0,

gL(n) ≤ e−cn exp{−n log(Ee−θ1)},

which, along with (3.17), leads to

E(N(T ))p ≤ eT
( n0−1∑

n=1

gL(n)n
p(Ee−θ1)n +

∑
n≥n0

npe−cn

)
<∞.

This ends the proof. �

The lemma below is due to [22, Lemma 3.5].

Lemma 3.4. For the generalized risk model introduced in Section 1
with EN(T ) > 0, for any fixed 0 < T <∞, we have

∞∑
i=1

P (Xie
−rτi1{τi≤T} > x) =

∫ T

0

F (xert) dEN(t).

4. Proofs of main results.

Proof of Theorem 2.1. We now proceed to prove Theorem 2.1, and
the ideas are inspired by the proof of [22, Theorem 2.2]. Recalling the
surplus process (1.1), we attain its discounted value as

(4.1) Ũr(t) = e−rtUr(t) = x+ C̃(t)−
N(t)∑
i=1

Xie
−rτi , t ≥ 0,
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where C̃(t) is defined by (1.2). By the definition (1.3) of the finite-time
ruin probability, we have

ψr(x, T ) = P (Ũr(t) < 0 for some 0 < t ≤ T )

= P

(N(t)∑
i=1

Xie
−rτi > x+ C̃(t) for some 0 < t ≤ T

)
.

Then, it follows that

(4.2) ψr(x, T ) ≤ P

(N(T )∑
i=1

Xie
−rτi > x

)
and

ψr(x, T ) = P

( ∪
0<t≤T

{N(t)∑
i=1

Xie
−rτi > x+ C̃(t)

})
(4.3)

≥ P

(N(T )∑
i=1

Xie
−rτi > x+ C̃(T )

)
.

According to the conditions of Theorem 2.1, we conclude that, for
any given ε > 0 and any fixed T > 0, there exists a positive integer
m0 = m0(T, ε) > 1 such that

(4.4)
CerTpE(N(T ))p+11{N(T )>m0}

EN(T )
≤ ε,

where C > 0 and p > J+
F are two constants as (similar to?)that in

(3.1).

On the one hand, we deal with (4.2) to show the upper bound of
ψr(x, T ). Let m0 be fixed as above. It is easy to see that

P

(N(T )∑
i=1

Xie
−rτi > x

)(4.5)

=

( m0∑
n=1

+
∞∑

n=m0+1

)
P

( n∑
i=1

Xie
−rτi > x,N(T ) = n

)
= H1 +H2.
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First consider H1. Let G(t1, t2, . . . , tn+1) be the joint distribution of
the random vector (τ1, τ2, . . . , τn+1), where n = 1, 2, . . . ,m0. Thus, by
Lemma 3.2 and the independence of {Xi, i ≥ 1} and {N(t), t ≥ 0}, we
derive that there exists an x1 = x1(T, ε) such that, for all x > x1,

H1 =

m0∑
n=1

∫
{0<t1≤t2≤··· .≤tn≤T,tn+1>T}

(4.6)

· P
( n∑

i=1

Xie
−rti > x

)
dG(t1, t2, . . . , tn+1)

≤ (1 + ε)

m0∑
n=1

n∑
i=1

∫
{0<t1≤t2≤···≤tn≤T,tn+1>T}

· P (Xie
−rti > x) dG(t1, t2, . . . , tn+1)

= (1 + ε)

m0∑
n=1

n∑
i=1

P (Xie
−rτi > x,N(T ) = n)

≤ (1 + ε)
∞∑
i=1

∞∑
n=i

P (Xie
−rτi > x,N(T ) = n)

= (1 + ε)
∞∑
i=1

P (Xie
−rτi1(τi≤T ) > x)

= (1 + ε)

∫ T

0

F (xert) dEN(t),

where, in the last step, we used Lemma 3.4. Next consider H2, which
is divided into two parts as:

H2 =

( ∑
m0<n<x/D

+
∑

n≥x/D

)
P

( n∑
i=1

Xie
−rτi > x,N(T ) = n

)
(4.7)

= H21 +H22,

where the constant D is the same one as in (3.1). For H21, for the fixed
T > 0, it follows from (3.1) and (4.4) that, for all x ≥ D,

H21 ≤
∑

m0<n<x/D

P

( n∑
i=1

Xi > x

)
P (N(T ) = n)(4.8)
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≤
∑

m0<n<x/D

nF (x/n)P (N(T ) = n)

≤ CF (x)
∑

m0<n<x/D

np+1P (N(T ) = n)

≤ CF (x)E(N(T ))p+11{N(T )>m0}

≤ εF (x)
EN(T )

erTp

≤ Cε

∫ T

0

F (xert) dEN(t).

For H22, by (3.3) and (4.4), there exists an x2 = x2(ε) such that, for
all x > max{D,x2},

H22 ≤ P (N(T ) ≥ x/D)(4.9)

≤ (x/D)−p−1E(N(T ))p+11{N(T )>m0}

≤ ε F (x)E(N(T ))p+11{N(T )>m0}

≤ ε2
∫ T

0

F (xert) dEN(t).

Therefore, we obtain from (4.5)-(4.9) that, for all x>x3= max{D,x1,x2},

(4.10) ψr(x, T ) ≤ (1 + ε+ Cε+ ε2)

∫ T

0

F (xert) dEN(t).

On the other hand, we now deal with (4.3) to estimate the lower

bound of ψr(x, T ). Under Theorem 2.1 (i), by conditioning on C̃(T )
defined in (1.2) and along similar lines to the derivation of H1, there
exists an x4 = x4(T, ε) such that, for all x > x4,

ψr(x, T ) ≥
m0∑
n=1

∫
{0<t1≤t2≤···≤tn≤T,tn+1>T}

∞∫
0

P

( n∑
i=1

Xie
−rti > x+ y

)(4.11)

· P (C̃(T ) ∈ dy) dG(t1, t2, . . . , tn+1)

≥ (1− ε)

m0∑
n=1

n∑
i=1

∫
{0<t1≤t2≤···≤tn≤T,tn+1>T}

∞∫
0
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· P (Xi > xerti + yerT )P (C̃(T ) ∈ dy) dG(t1, t2, . . . , tn+1)

≥ (1− ε)2
m0∑
n=1

n∑
i=1

P (Xie
−rτi > x,N(T ) = n)

= (1− ε)2
( ∞∑

n=1

−
∞∑

n=m0+1

) n∑
i=1

P (Xie
−rτi > x,N(T ) = n)

= (1− ε)2
∫ T

0

F (xert) dEN(t)− (1− ε)2H3,

where m0 is defined in (4.4), and the third step is from the dominated
convergence theorem and F ∈ C ⊂ L. For H3, we obtain from (3.1)
and (4.4) that, for all x ≥ D,

H3 ≤
∞∑

n=m0+1

n∑
i=1

P (Xi > x,N(T ) = n)

= F (x)
∞∑

n=m0+1

nP (N(T ) = n)

= F (x)EN(T )1{N(T )>m0}

≤ εF (x)
EN(T )

CerTp
≤ ε

∫ T

0

F (xert) dEN(t),

which, together with (4.11), implies that, for all x ≥ x5 = max{x4, D},

ψr(x, T ) ≥ (1− ε)2
∫ T

0

F (xert) dEN(t)(4.12)

− (1− ε)2ε

∫ T

0

F (xert) dEN(t)

= (1− ε)3
∫ T

0

F (xert) dEN(t).

Therefore, we conclude from (4.10) and (4.12) that, for all x ≥
max{x3, x5},

(1− ε)3
∫ T

0

F (xert) dEN(t) ≤ ψr(x, T )

(4.13)
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≤ (1 + ε+ Cε+ ε2)

∫ T

0

F (xert) dEN(t).

Under Theorem 2.1 (ii), we see from F ∈ C that, for each ti > 0,
i = 1, 2, . . . , n, appearing in (4.6),

lim
l↘0

lim inf
x→∞

F ((1 + l)xerti)

F (xerti)
= 1,

which means that there exist an l0 > 0 and an x6 = x6(ε, ti) such that,
for all x ≥ x6,

(4.14) F ((1 + l0)xe
rti) ≥ (1− ε)F (xerti).

It follows from (4.3) that, for l0 > 0 as above,

ψr(x, T ) ≥ P

(N(T )∑
i=1

Xie
−rτi > x+ C̃(T ), C̃(T ) ≤ l0x

)
(4.15)

≥ P

(N(T )∑
i=1

Xie
−rτi > (1 + l0)x, C̃(T ) ≤ l0x

)

≥ P

(N(T )∑
i=1

Xie
−rτi > (1 + l0)x

)
− P (C̃(T ) > l0x)

= H4 −H5.

For H4, arguing as (4.11) and H3 and using (4.14) can yield that, for
all x ≥ max{x5, x6},

H4 ≥
m0∑
n=1

∫
{0<t1≤t2≤··· .≤tn≤T,tn+1>T}

(4.16)

· P
( n∑

i=1

Xie
−rti > (1 + l0)x

)
dG(t1, t2, . . . , tn+1)

≥ (1− ε)

m0∑
n=1

n∑
i=1

∫
{0<t1≤t2≤···≤tn≤T,tn+1>T}

· P (Xi > (1 + l0)xe
rti)dG(t1, t2, . . . , tn+1)
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≥ (1− ε)2
m0∑
n=1

n∑
i=1

P (Xie
−rτi > x,N(T ) = n)

≥ (1− ε)3
∫ T

0

F (xert) dEN(t).

For H5, by Theorem 2.1 (ii) and F ∈ C ⊂ D, we get

lim sup
x→∞

H5

F (x)
= lim sup

x→∞

P (C̃(T ) > l0x)

F (l0x)

F (l0x)

F (x)
= 0,

from which we derive that there exists an x7 = x7(ε) such that, for all
x ≥ max{x7, D},

(4.17) H5 ≤ εF (x) ≤ C0ε

∫ T

0

F (xert) dEN(t),

where C0 = CerTp/EN(T ). Substituting (4.16) and (4.17) into (4.15),
we have that, for all x ≥ x8 = max{x5, x6, x7},

(4.18) ψr(x, T ) ≥ ((1− ε)3 − C0ε)

∫ T

0

F (xert) dEN(t).

Hence, for all x ≥ max{x3, x8}, it holds that(
(1− ε)3 − C0ε

) ∫ T

0

F (xert) dEN(t) ≤ ψr(x, T )(4.19)

≤ (1 + ε+ Cε+ ε2)

×
∫ T

0

F (xert) dEN(t).

As a result, by using (4.13) and (4.19), and taking into account the
arbitrariness of ε > 0, we prove that, for any fixed 0 < T <∞, relation
(2.1) holds under either of conditions (i) and (ii) of Theorem 2.1. �

Proof of Theorem 2.2. When 0 < T < ∞, we know from (2.4)
and Lemma 3.3 that Theorem 2.2 is a special case of Theorem 2.1, and
then it follows immediately from the proof of Theorem 2.1. Hence, in
the rest, we only need to prove the case when T = ∞. By (1.4) and
(4.1), we have

ψr(x,∞) = P (Ũr(t) < 0 for some 0 ≤ t <∞).
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Thus, we see that

(4.20) P

( ∞∑
i=1

Xie
−rτi > x+C̃

)
≤ ψr(x,∞) ≤ P

( ∞∑
i=1

Xie
−rτi > x

)
,

where C̃ is defined by (2.5). According to [26, Remark 2], we find that,
if F ∈ C with J−

F > 0 and r > 0, then
(4.21)

P

( ∞∑
i=1

Xie
−rτi > x

)
∼

∞∑
i=1

P
(
Xie

−rτi > x
)
=

∫ ∞

0

F (xert) dEN(t).

This and (4.20) show that, for any given ε > 0, there exists an
x9 = x9(ε) such that, for all x ≥ x9,

(4.22) ψr(x,∞) ≤ (1 + ε)

∫ ∞

0

F (xert) dEN(t).

Subsequently, we will analyze the lower bound of ψr(x,∞). For any
fixed p and p̂, p > J+

F , p̂ < J−
F , we apply (3.1) and (3.2) to derive that,

for all x ≥ max{D, D̂} and all 0 < T <∞,
(4.23)∫∞
T
F (xert) dEN(t)∫∞

0
F (xert) dEN(t)

=

∫∞
T
F (xert)/F (x) dEN(t)∫∞

0
F (xert)/F (x) dEN(t)

≤ C

Ĉ
·
∫∞
T
e−rp̂tdEN(t)∫∞

0
e−rptdEN(t)

.

By Proposition 2.1, it follows that∫ ∞

0

e−rp̂tdEN(t) =
∞∑

n=1

∫ ∞

0

e−rp̂tdP (τn ≤ t) =
∞∑

n=1

E(e−rp̂τn)

≤
∞∑

n=1

gL(n) exp{n log(Ee−rp̂θ1)}.

Setting ϵ0 = − log(Ee−rp̂θ1) − c in (2.4) for some c > 0 proves that,
there exists some n0 ≥ 0 such that, for all n ≥ n0,

gL(n) ≤ e−cn exp{−n log(Ee−rp̂θ1)}.

Hence, we get that

(4.24)

∫ ∞

0

e−rp̂tdEN(t) ≤
n0−1∑
n=1

gL(n)(Ee
−rp̂θ1)n +

∑
n≥n0

e−cn <∞.



FINITE-TIME RUIN PROBABILITY 1525

Likewise, we also get

(4.25)

∫ ∞

0

e−rptdEN(t) <∞.

Consequently, combining (4.23), (4.24) and (4.25), the right-hand side
of (4.23) tends to 0 as T tends ∞, which yields that, for the given ε > 0,
there exists a 0 < T0 <∞ such that

(4.26)

∫ ∞

T0

F (xert) dEN(t) ≤ ε

∫ ∞

0

F (xert) dEN(t)

holds for all x ≥ max{D, D̂}. Under Theorem 2.2 (i), by applying

(4.20), conditioning on C̃ and arguing as in (4.11) and (4.12), we obtain

that there exists an x10 = max{D̂, x5} such that, for all x ≥ x10 and
for the fixed 0 < T0 <∞ as that in (4.26),

ψr(x,∞) ≥ P

(N(T0)∑
i=1

Xie
−rτi > x+ C̃

)
(4.27)

≥ (1− ε)3
∫ T0

0

F (xert) dEN(t)

= (1− ε)3
(∫ ∞

0

−
∫ ∞

T0

)
F (xert) dEN(t)

= (1− ε)4
∫ ∞

0

F (xert) dEN(t),

where, in the last step, we used the inequality (4.26). Thus, combining
(4.22) and (4.27), we derive that, for all x ≥ max{x9, x10},
(4.28)

(1−ε)4
∫ ∞

0

F (xert) dEN(t) ≤ ψr(x,∞) ≤ (1+ε)

∫ ∞

0

F (xert) dEN(t).

Under Theorem 2.2 (ii), by using (4.20) and arguing as in the derivation
of (4.15), we attain that for l0 > 0 and 0 < T0 < ∞ as in (4.14) and
(4.26), respectively,

ψr(x,∞) ≥ P

(N(T0)∑
i=1

Xie
−rτi > (1 + l0)x

)
− P (C̃ > l0x)(4.29)

= H6 −H7.
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For H6, along the same lines of H4 with T replaced by T0 can imply
that, for all x ≥ x11 = max{x6, x10},

H6 ≥ (1− ε)3
∫ T0

0

F (xert) dEN(t)(4.30)

≥ (1− ε)4
∫ ∞

0

F (xert) dEN(t),

where the last step is from (4.26). For H7, by a derivation similar to
(4.17), Theorem 2.2 (ii) and F ∈ C ⊂ D, there exists an x12 = x12(ε)
such that, for all x ≥ x12,

(4.31) H7 ≤ εF (x) ≤ C0ε

∫ ∞

0

F (xert) dEN(t),

where C0 is the same as that in (4.17). So, from (4.29)–(4.31), it follows
that, for all x ≥ max{x11, x12},

ψr(x,∞) ≥ ((1− ε)4 − C0ε)

∫ ∞

0

F (xert) dEN(t).

This, along with (4.22), can show that, for all x ≥ max{x9, x11, x12},

((1− ε)4 − C0ε)

∫ ∞

0

F (xert) dEN(t) ≤ ψr(x,∞)

(4.32)

≤ (1 + ε)

∫ ∞

0

F (xert) dEN(t).

Therefore, combining (4.28) with (4.32) and using the arbitrariness of
ε > 0, we prove that, for T = ∞, relation (2.1) holds under either of
conditions (i) and (ii) of Theorem 2.2, and this ends the proof. �

Proof of Corollary 2.1. Clearly, by Theorem 2.1, we obtain that,
for any fixed 0 < T <∞,

ψr(x, T ) ∼ F (x)EN(T ).

Note that, for fixed 0 < T <∞,

F (x)EN(T ) ≥ α−1

∫ x+αEN(T )

x

F (y) dy

≥ F (x+ αEN(T ))EN(T ) ∼ F (x)EN(T ),
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where the last step is due to F ∈ C ⊂ L. So, we get relation (2.6)
immediately. �
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