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THICK SPANIER GROUPS AND
THE FIRST SHAPE GROUP

JEREMY BRAZAS AND PAUL FABEL

ABSTRACT. We develop a new route through which to
explore kerΨX , the kernel of the π1-shape group homomor-
phism determined by a general space X, and establish, for
each locally path connected, paracompact Hausdorff space
X, kerΨX is precisely the Spanier group of X.

1. Introduction. It is generally challenging to understand the fun-
damental group of a locally complicated space X. A common tac-
tic is to consider the image ΨX(π1(X,x0)) as a subgroup of the
first shape homotopy group π̌1(X,x0) via the natural homomorphism
ΨX : π1(X,x0) → π̌1(X,x0) arising from the Čech expansion. In par-
ticular, if ΨX is injective, X is said to be π1-shape injective and one
gains a characterization of the elements of π1(X,x0) as sequences in
an inverse limit of fundamental groups of polyhedra. Thus, kerΨX can
be thought of as the data of the fundamental group forgotten when
passing to the first shape group. In this paper, we develop a new lens
in which to study ΨX and identify new characterizations of kerΨX in
terms of familiar subgroups of the fundamental group.

The Spanier group πSp(X,x0) of a space X, introduced in [12], is
a subgroup of π1(X,x0) useful for identifying loops deformable into
arbitrarily small neighborhoods [17, 21, 22]. Moreover, the existence
of generalized covering maps [2, 6, 14] is intimately related to both
πSp(X,x0) and kerΨX .

It is apparently an open question to understand exactly when
πSp(X,x0) = kerΨX . On the one hand, for a general space X, the
inclusion πSp(X,x0) ⊆ kerΨX holds [14]. On the other hand, ex-
amples show inclusion can be strict if X fails to be non-locally path
connected [12, 14]. Our main result, Theorem 6.1, captures a decent
class of spaces such that πSp(X,x0) = kerΨX .
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If X is a locally path connected paracompact Hausdorff space, then
kerΨX is precisely the Spanier group πSp(X,x0).

In particular, if X is a Peano continuum, then kerΨX = πSp(X,x0).
A variety of two-dimensional examples help motivate this paper’s
content as follows.

The occurrence of π1-shape injectivity (i.e., the vanishing of kerΨX)
has been studied in a number of cases. For example, if X has Lebesgue
covering dimension ≤ 1 [3, 7], if X is a subspace of a closed surface
(or a planar set) [13], or if X is a fractal-like tree of manifolds [11],
then kerΨX = 1. The equality πSp(X,x0) = kerΨX now indicates X
is π1-shape injective if and only if πSp(X,x0) = 1.

At the other extreme, the equality kerΨX = π1(X,x0) can happen
if X is a two-dimensional Peano continuum (e.g., if X is the join of
two cones over the Hawaiian earring). In particular, this equality will
occur if every loop in X is a “small loop” [21, 22] or, more generally,
if X is a Spanier space [17]. For such spaces, understanding π1(X,x0)
is equivalent to understanding kerΨX .

Finally, there is a rich “middle ground” where kerΨX lies strictly
between 1 and π1(X,x0). Two important such Peano continua appear
in [4, 12], one of which is “homotopically path Hausdorff” and one
of which is “strongly homotopically path Hausdorff.” In both cases,
the verification of the aforementioned properties and the attempts to
manufacture generalized notions of covering spaces, rely heavily on an
understanding of πSp(X,x0).

To investigate when kerΨX = πSp(X,x0), we first modify the fa-
miliar definition. The Spanier group with respect to an open cover
U (denoted πSp(U , x0)) was introduced in Spanier’s celebrated text-
book [20]. Recall πSp(X,x0) is defined as the intersection of the groups
πSp(U , x0) over all open covers U . While the usual groups πSp(U , x0)
are useful for studying covering space theory and its generalizations, our
modified version, the so-called thick Spanier group of X with respect
to U (denoted ΠSp(U , x0)) is useful for studying the shape homomor-
phism ΨX . In particular, the main technical achievement of this paper,
Theorem 5.1, states:

If U is an open cover consisting of path connected sets and pU :
X → |N(U )| is a canonical map to the nerve of U , then there is a
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short exact sequence

1 // ΠSp(U , x0) // π1(X,x0)
pU ∗ // π1(|N(U )|, U0) // 1 .

The utility of this short exact sequence is the identification of a
convenient set of generators of ker pU ∗. The same sequence with the
ordinary Spanier group πSp(U , x0) in place of ΠSp(U , x0) fails to be
exact even in simple cases: See Example 3.6.

This paper is structured as follows:

In Section 2, we include necessary preliminaries on simplicial com-
plexes and review the constructions of the Čech expansion of a space
X in terms of canonical maps pU : X → |N(U )| (where |N(U )| is
the nerve of an open cover U of X), the first shape group, and the
homomorphism ΨX .

In Section 3, we define and study thick Spanier groups and their
relationship to ordinary Spanier groups. Thick Spanier groups are
constructed by specifying generators represented by loops lying in
pairs of intersecting elements of U ; Section 4 is then devoted to
characterizing generic elements of ΠSp(U , x0) in terms of a homotopy-
like equivalence relation on loops which depends on the given open
cover U .

Section 5 is devoted to a proof of Theorem 5.1 guaranteeing the
exactness of the above sequence.

Sections 6 and 7 include applications of the above level short exact
sequences: In Section 6, we obtain an exact sequence:

1 // πSp(X,x0) // π1(X,x0)
ΨX // π̌1(X,x0)

and thus identify kerΨX and πSp(X,x0) for a large class of spaces
(See Theorem 6.1). Finally, in Section 7, we find application in the
theory of a topologically enriched version of the fundamental group.
By construction, the first shape group π̌1(X,x0) is the inverse limit of
discrete groups; the fundamental group π1(X,x0) inherits the structure
of a topological group when it is given the pullback topology with
respect to ΨX (the so-called shape topology). We apply the above
results to identify a convenient basis for the topology of π1(X,x0) and
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show this topology consists precisely of the data of the covering space
theory of X.

2. Preliminaries and definitions. Throughout this paper, X is
assumed to be a path connected topological space with basepoint x0.

2.1. Simplicial complexes and paths. We call upon the theory of
simplicial complexes in standard texts such as [16, 19]. Much of the
notation used is in line with these sources.

If K is an abstract or geometric simplicial complex and n ≥ 0
is an integer, Kn denotes the n-skeleton of K and if v is a vertex
of K, St(v,K) and St(v,K) denote the open and closed star of the
vertex v respectively. When K is abstract, |K| denotes the geometric
realization. If vertices v1, . . . , vn span an n-simplex of |K|, then
[v1, v2, . . . , vn] denotes the n-simplex with the indicated orientation.
Finally, for each integer n ≥ 0, sdn|K| denotes the n-th barycentric
subdivision of K.

We frequently make use of the standard abstract 2-simplex ∆2

which consists of a single 2-simplex and its faces and whose geometric
realization is |∆2| = {(t1, t2) ∈ R2|t1 + t2 ≤ 1, t1, t2 ≥ 0}. The
boundary ∂∆2 ⊆ ∆2 is the 1-skeleton (∆2)1 and its realization |∂∆2|
is homeomorphic to the unit circle. If K is a geometric subcomplex of
a subdivision of |∆2| containing the origin, then the origin is assumed
to be the basepoint.

We use the following conventions for paths and loops in simplexes
and general spaces. A path in a spaceX is a map p : [0, 1]→ X from the
unit interval. The reverse path of p is the path given by p(t) = p(1− t)
and the constant path at a point x ∈ X will be denoted cx. If
p1, p2, . . . , pn : [0, 1] → X are paths in X such that pj(1) = pj+1(0),
the concatenation of this sequence is the unique path p1 ∗ p2 ∗ · · · ∗ pn,
sometimes denoted ∗nj=1pj , whose restriction to [(j − 1)/n, j/n] is pj .

A path p : [0, 1] → X is a loop if p(0) = p(1). Quite often, it will
be convenient to view a loop as a map |∂∆2| → X where |∂∆2| is
identified with [0, 1]/{0, 1} ∼= S1 ⊆ R2 by an orientation preserving
homeomorphism in R2. A loop p : |∂∆2| → X is nonessential if it
extends to a map |∆2| → X and is essential if no such extension exists.
Two loops p, p′ : |∂∆2| → X are freely homotopic if there is a homotopy
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H : |∂∆2|× [0, 1]→ X such that H(x, 0) = p(x) and H(x, 1) = p′(x). If
p, p′ are loops based at x0 ∈ X, then they are homotopic rel. basepoint
if there is a homotopy H as above such that H({(0, 0)} × [0, 1]) = x0.

We use special notation for edge paths in a geometric simplicial
complex K: if v1, v2 are vertices in K, we identify the oriented 1-
simplex [v1, v2] with the linear path from vertex v1 to v2 on [v1, v2].
Similarly, [v, v] denotes the constant path at a vertex v. An edge path
is a concatenation E = [v0, v1] ∗ [v1, v2] ∗ · · · ∗ [vn−1, vn] of linear or
constant paths in the 1-skeleton ofK. If E(0) = E(1), then E is an edge
loop. It is a well-known fact that all homotopy classes (rel. endpoints)
of paths from v0 to v1 are represented by edge paths.

2.2. The Čech expansion and the first shape group. We now
recall the construction of the first shape homotopy group π̌1(X,x0) via
the Čech expansion. For more details, see [16].

Let O(X) be the set of open covers of X direct by refinement.
Similarly, let O(X,x0) be the set of open covers with a distinguished
element containing the basepoint, i.e., the set of pairs (U , U0) where
U ∈ O(X), U0 ∈ U and x0 ∈ U0. We say (V , V0) refines (U , U0) if V
refines U as a cover and V0 ⊆ U0.

The nerve of a cover (U , U0) ∈ O(X,x0) is the abstract sim-
plicial complex N(U ) whose vertex set is N(U )0 = U and ver-
tices A0, . . . , An ∈ U span an n-simplex if

∩n
i=0Ai ̸= ∅. The

vertex U0 is taken to be the basepoint of the geometric realization
|N(U )|. Whenever (V , V0) refines (U , U0), construct a simplicial
map pU V : N(V ) → N(U ) , called a projection, given by send-
ing a vertex V ∈ N(V ) to a vertex U ∈ U such that V ⊆ U .
In particular, V0 must be sent to U0. Any such assignment of ver-
tices extends linearly to a simplicial map. Moreover, the induced map
|pU V | : |N(V )| → |N(U )| is unique up to based homotopy. Thus, the
homomorphism pU V ∗ : π1(|N(V )|, V0) → π1(|N(U )|, U0) induced on
fundamental groups is independent of the choice of simplicial map.

Recall that an open cover U of X is normal if it admits a partition
of unity subordinated to U . Let Λ be the subset of O(X,x0) (also
directed by refinement) consisting of pairs (U , U0) where U is a normal
open cover of X and such that there is a partition of unity {ϕU}U∈U

subordinated to U with ϕU0(x0) = 1. It is well-known that every
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open cover of a paracompact Hausdorff space X is normal. Moreover,
if (U , U0) ∈ O(X,x0), it is easy to refine (U , U0) to a cover (V , V0)
such that V0 is the only element of V containing x0 and therefore
(V , V0) ∈ Λ. Thus, for paracompact Hausdorff X, Λ is cofinal in
O(X,x0).

The first shape homotopy group is the inverse limit

π̌1(X,x0) = lim←− (π1(|N(U )|, U0), pU V ∗,Λ) .

Given an open cover (U , U0) ∈ O(X,x0), a map pU : X → |N(U )|
is a (based) canonical map if p−1

U (St(U,N(U ))) ⊆ U for each U ∈ U
and pU (x0) = U0. Such a canonical map is guaranteed to exist
if (U , U0) ∈ Λ: find a locally finite partition of unity {ϕU}U∈U

subordinated to U such that ϕU0(x0) = 1. When U ∈ U and x ∈ U ,
determine pU (x) by requiring its barycentric coordinate belonging to
the vertex U of |N(U )| to be ϕU (x). According to this construction,
the requirement ϕU0(x0) = 1 gives pU (x0) = U0.

A canonical map pU is unique up to based homotopy and when-
ever (V , V0) refines (U , U0); the compositions pU V ◦ pV and pU are
homotopic as based maps. Therefore, the homomorphisms pU ∗ :
π1(X,x0) → π1(|N(U )|, U0) satisfy pU V ∗ ◦ pV ∗ = pU ∗. These ho-
momorphisms induce a canonical homomorphism

ΨX : π1(X,x0)→ π̌1(X,x0) given by ΨX([α]) = ([pU ◦ α])

to the limit.

It is of interest to characterize kerΨX since, when kerΨX = 1,
π̌1(X,x0) retains all the data in the fundamental group of X. A space
for which kerΨX = 1 is said to be π1-shape injective.

3. Thick Spanier groups and their properties. We begin by

recalling the construction of Spanier groups [12, 20]. Let X̃ denote the
set of homotopy classes (rel. endpoints) of paths starting at x0, i.e., the
star of the fundamental groupoid of X at x0. As in [20], multiplication
of homotopy classes of paths is taken in the fundamental groupoid of
X so that [α][β] = [α ∗ β] when α(1) = β(0).

Definition 3.1. Let U be an open cover of X. The Spanier group of
X with respect to U is the subgroup of π1(X,x0), denoted π

Sp(U , x0),
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generated by elements of the form [α][γ][α] where [α] ∈ X̃ and γ :
[0, 1]→ U is a loop based at α(1) for some U ∈ U .

Note, in the above definition, [α] is left to vary among all homotopy
(rel. endpoint) classes of paths starting at x0 and ending at γ(0) = γ(1).
Thus, πSp(U , x0) is a normal subgroup of π1(X,x0). Also, observe
that if V is an open cover of X which refines U , then πSp(V , x0) ⊆
πSp(U , x0).

Definition 3.2. The Spanier group of X is the intersection

πSp(X,x0) =
∩

U ∈O(X)

πSp(U , x0)

of all Spanier groups with respect to open covers of X. Equivalently,
πSp(X,x0) is the inverse limit lim←−π

Sp(U , x0) of the inverse system of

inclusions πSp(V , x0)→ πSp(U , x0) induced by refinement in O(X).

Note the Spanier group of X is a normal subgroup of π1(X,x0).

Remark 3.3. In the previous two definitions, we are actually using
the unbased Spanier group as defined by the authors of [12]. These
authors also define the based Spanier group by replacing covers with
covers by pointed sets; the two definitions agree when X is locally path
connected. The unbased version is sufficient for the purposes of this
paper since our main results apply to locally path connected spaces.

To study ΨX , we require similar but potentially larger versions of
the Spanier groups constructed above.

Definition 3.4. Let U be an open cover of X. The thick Spanier
group of X with respect to U is the subgroup of π1(X,x0), denoted
ΠSp(U , x0), generated by elements of the form [α][γ1][γ2][α] where

[α] ∈ X̃ and γ1 : [0, 1] → U1 and γ2 : [0, 1] → U2 are paths for some
U1, U2 ∈ U .
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Figure 1. A loop representing a generator of the thick Spanier group of X
with respect to U .

Proposition 3.5. For every open cover U of X, ΠSp(U , x0) is a
normal subgroup of π1(X,x0) such that πSp(U , x0) ⊆ ΠSp(U , x0).
If V is an open cover of X which refines U , then ΠSp(V , x0) ⊆
ΠSp(U , x0).

Proof. The subgroup ΠSp(U , x0) is normal in π1(X,x0) for the same
reason πSp(U , x0) is normal. We have πSp(U , x0) ⊆ ΠSp(U , x0) since
the generators [α][γ1][γ2][α] of Π

Sp(U , x0) where γ1, γ2 have image in
U1 = U2 ∈ U are precisely the generators of πSp(U , x0). The second
statement follows as it does for ordinary Spanier groups. �

Example 3.6. It is not necessarily true that πSp(U , x0) = ΠSp(U , x0)
even in the simplest cases. Suppose U = {U1, U2} is an open cover
of the unit circle X = S1 consisting of two connected intervals U1, U2

such that U1∩U2 is the disjoint union of two connected intervals. Since
both U1, U2 are simply connected, we have πSp(U , x0) = 1. On the
other hand, ΠSp(U , x0) contains a generator of π1(S

1, x0) and thus
ΠSp(U , x0) = π1(S

1, x0).

Remark 3.7. Spanier groups and thick Spanier groups with re-
spect to covers are natural in the following sense: If f : X → Y
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is a map such that f(x0) = y0 and W is an open cover of Y ,
then f−1W = {f−1(W )|W ∈ W } is an open cover of X. Ob-
serve if f∗ : π1(X,x0) → π1(Y, y0) is the homomorphism induced
on fundamental groups, then f∗(π

Sp(f−1W , x0)) ⊆ πSp(W , y0) and
f∗(Π

Sp(f−1W , x0)) ⊆ ΠSp(W , y0).

Definition 3.8. The thick Spanier group of X is the intersection

ΠSp(X,x0) =
∩

U ∈O(X)

ΠSp(U , x0)

of all thick Spanier groups with respect to open covers of X. Equiv-
alently, ΠSp(X,x0) is the inverse limit lim←−ΠSp(U , x0) of the inverse

system of inclusions ΠSp(V , x0) → ΠSp(U , x0) induced by refinement
in O(X).

The following proposition follows directly from previous observa-
tions.

Proposition 3.9. For every space X, πSp(X,x0) ⊆ ΠSp(X,x0). If ev-
ery open cover U of X admits a refinement V such that ΠSp(V , x0) ⊆
πSp(U , x0), then ΠSp(X,x0) = πSp(X,x0).

We apply Proposition 3.9 to find two conditions (those in Proposi-
tion 3.10 and Theorem 3.13) guaranteeing the equality of the Spanier
group and thick Spanier group.

Proposition 3.10. If V is an open cover of X such that V ∩ V ′ is
path connected (or empty) for every pair V, V ′ ∈ V , then ΠSp(V , x0) =
πSp(V , x0). Consequently, if every open cover U of X has an open
refinement V with this property, then ΠSp(X,x0) = πSp(X,x0).

Proof. Suppose V is as in the statement of the proposition. It
suffices to show ΠSp(V , x0) ⊆ πSp(V , x0). Let g = [α][γ1][γ2][α] be

a generator of ΠSp(V , x0) where [α] ∈ X̃, and γi : [0, 1] → Vi for
Vi ∈ V . Since, by assumption, V1 ∩ V2 is path connected and the
points x1 = α(1) and x2 = γ1(1) = γ2(0) both lie in V1 ∩ V2, there
is a path β : [0, 1] → V1 ∩ V2 from x1 to x2. Note g1 = [α][γ1 ∗ β][α]
and g2 = [α][β ∗ γ2][α] are generators of πSp(V , x0). Since g = g1g2,
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it follows that g ∈ πSp(V , x0). The second statement in the current
proposition now follows from Proposition 3.9. �

Example 3.11. Let K be a geometric simplicial complex and v ∈ K
a vertex. It is well known that the open star St(v,K) is contractible
(and thus path connected). Therefore, S = {St(v,K)|v ∈ K} is an
open cover of K such that πSp(S , v0) = 1.

Moreover, if St(v1,K) ∩ St(v2,K) ̸= ∅, then the open 1-simplex
(v1, v2) ⊂ St(v1,K) ∩ St(v2,K), and hence there is a canonical strong
deformation from St(v1,K)∩St(v2,K) onto (v1, v2). For a given point
p ∈ St(v1,K)∩St(v2,K), fix the coefficients of v1 and v2 while linearly
contracting to 0 the remaining barycentric coordinates of p. Hence,
since (v1, v2) is contractible, St(v1,K) ∩ St(v2,K) is contractible and,
in particular, path connected. Thus, it follows from Proposition 3.10
that ΠSp(S , v0) = πSp(S , v0) = 1.

It is known that πSp(X,x0) ⊆ kerΨX for any space X: see [14,
Proposition 4.8]. Thus, the Spanier group of X vanishes whenever X
is π1-shape injective. We use Proposition 3.10 to prove the analogous
inclusion for the thick Spanier group; note the proof is similar to that
in [14].

Proposition 3.12. For any space X, ΠSp(X,x0) ⊆ kerΨX .

Proof. Let g ∈ ΠSp(X,x0), and suppose (U , U0) ∈ Λ. It suf-
fices to show g ∈ ker pU ∗. Recall that, for each U ∈ U , we have
p−1

U (St(U,N(U ))) ⊆ U . Therefore, V = {p−1
U (St(U,N(U )))|U ∈ U }

is an open cover of X which refines U . Since g ∈ ΠSp(V , x0), by
assumption, g is a product of generators of the form [α][γ1][γ2][α]

where [α] ∈ X̃ and γi : [0, 1] → p−1
U (St(Ui, N(U ))) for Ui ∈ U ,

i = 1, 2. Note pU ◦α is a path in |N(U )| based at U0 with pU (α(1)) ∈
St(U1, N(U )) ∩ St(U2, N(U )) and pU ◦ γi : [0, 1]→ St(Ui, N(U )) for
i = 1, 2. Thus, if S = {St(U,N(U ))|U ∈ U } is the cover of |N(U )|
by open stars, then

pU ∗([α][γ1][γ2][α]) = [pU ◦ α][pU ◦ γ1][pU ◦ γ2][pU ◦ α]
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is a generator of ΠSp(S , U0). But it is observed in Example 3.11 that
ΠSp(S , U0) = 1. Since generators multiplying to g lie in the subgroup
ker pU ∗ of π1(X,x0), so does g. �

In the non-locally path connected case, the inclusion ΠSp(X,x0) ⊆
kerΨX need not be equality; a counterexample is given later in Exam-
ple 6.3.

The following theorem calls upon the theory of paracompact spaces.
Recall if U is an open cover of X and x ∈ X, the star of x with
respect to U is the union St(x,U ) =

∪
{U ∈ U |x ∈ U}. A barycentric

refinement of U is an open refinement V of U such that, for each
x ∈ X, there is a U ∈ U with St(x,V ) ⊆ U . It is known that a
T1 space is paracompact if and only if every open cover has an open
barycentric refinement [8, 5.1.12].

Theorem 3.13. If X is T1 and paracompact, then ΠSp(X,x0) =
πSp(X,x0).

Proof. We apply the second statement of Proposition 3.9. Given
an open cover U of X, take V to be a barycentric refinement of U .

Suppose g = [α][γ1][γ2][α] is a generator of ΠSp(V , x0) where [α] ∈ X̃
and γi : [0, 1] → Vi for Vi ∈ V , i = 1, 2. Since α(1) ∈ V1 ∩ V2
and V is chosen to be a barycentric refinement, we have V1 ∪ V2 ⊆
St(α(1),V ) ⊆ U for some U ∈ U . Note γ1 ∗ γ2 is a loop in U based at
α(1) and g = [α][γ1 ∗ γ2][α]. Thus, g ∈ πSp(U , x0), and the inclusion
ΠSp(V , x0) ⊆ πSp(U , x0) follows. �

Corollary 3.14. If X is metrizable, then ΠSp(X,x0) = πSp(X,x0).

4. Thick Spanier groups and U -homotopy. While the defini-
tion of the thick Spanier group ΠSp(U , x0) in terms of generators is
often convenient, it is desirable to characterize generic elements. We
do this by replacing homotopies as continuous deformations of paths
with finite step homotopies through open covers. This approach is
closely related to that of Dugundji in [5] and differs from the notions
of U -homotopy in [15, 16].

Fix an open cover U of X, and define a relation ∼U on paths in
X. If α, β : [0, 1] → X are paths in X, let α ∼U β when α(0) = β(0),
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α(1) = β(1), and there are partitions 0 = a0 < a1 < · · · < an = 1 and
0 = b0 < b1 < · · · < bn = 1 and a sequence U1, . . . , Un ∈ U of open
neighborhoods such that α([ai−1, ai]) ⊆ Ui and β([bi−1, bi]) ⊆ Ui for
i = 1, . . . , n. Note if V is an open refinement of U , then α ∼V β ⇒
α ∼U β.

Definition 4.1. Two paths α and β in X are said to be U -homotopic
if α(0) = β(0), α(1) = β(1), and there is a finite sequence α =
γ0, γ1, . . . , γn = β such that γj−1 ∼U γj for each j = 1, 2, . . . , n. The
sequence γ0, γ1, . . . , γn is called a U -homotopy from α to β. If a loop
α is U -homotopic to the constant path, we say it is null -U -homotopic.

Note U -homotopy defines an equivalence relation ≃U on the set of
paths in X.

Lemma 4.2. If two paths are homotopic (rel. endpoints), then they
are U -homotopic.

Proof. Suppose α and β are paths in X with α(0) = β(0) and
α(1) = β(1), and H : [0, 1] × [0, 1] → X is a homotopy such that
H(s, 0) = α(s), H(s, 1) = β(s), H(0, t) = α(0), and H(1, t) = β(1) for
all s, t ∈ [0, 1]. Find an integer n ≥ 1 such that, for each square

Si,j =

[
i− 1

n
,
i

n

]
×

[
j − 1

n
,
j

n

]
, i, j ∈ {1, 2, . . . , n},

H(Si,j) ⊆ Ui,j for some Ui,j ∈ U . Let γj be the path which is the
restriction of H to [0, 1] × {j/n}. We have α = γ0, β = γn and
γj−1 ∼U γj for each j = 1, 2, . . . , n and thus α ≃U β. �

Observe that U -homotopy respects inversion and concatenation of
paths in the sense that, if α ≃U β and α′ ≃U β′, then α ≃U β and
α ∗ α′ ≃U β ∗ β′ when the concatenations are defined.

Since nonessential loops are null-U -homotopic by Lemma 4.2, the
set ν(U , x0) of null-U -homotopic loops is a subgroup of π1(X,x0). In
fact, ν(U , x0) is normal in π1(X,x0) since, if α is null-U -homotopic
and [β] ∈ π1(X,x0), then

β ∗ α ∗ β ≃U β ∗ cx0 ∗ β ≃U cx0 .
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We now compare ΠSp(U , x0) and ν(U , x0) as subgroups of π1(X,x0).

Lemma 4.3. Suppose U is an open cover of X consisting of path
connected sets. If α and β are U -homotopic paths with α(0) = x0 =
β(0), then [α ∗ β] ∈ ΠSp(U , x0).

Proof. First, consider the case when α ∼U β. Take open neighbor-
hoods U1, . . . , Un ∈ U and partitions 0 = a0 < a1 < · · · < an = 1
and 0 = b0 < b1 < · · · < bn = 1 such that α([ai−1, ai]) ⊆ Ui

and β([bi−1, bi]) ⊆ Ui. Since Ui is path connected, there are paths
ϵi : [0, 1] → Ui from α(ai) to β(bi) for i = 1, . . . , n − 1. Addi-
tionally, there are paths δi : [0, 1] → Ui+1 from α(ai) to β(bi) for
i = 1, . . . , n− 1. Let δ0 be the constant path at x0 and ϵn the constant
path at α(1) = β(1). Observe ϵi ∗ δi is a loop in Ui ∪ Ui+1 based at
α(ai) for i = 1, . . . , n− 1.

Let αi and βi be the paths given by restricting α and β to [ai−1, ai]
and [bi−1, bi], respectively. Note the following paths gi are generators
of πSp(U , x0):

(1) g1 = [cx0
][α1 ∗ ϵ1 ∗ β1][cx0

]
(2) gi = [β1 ∗ β2 ∗ · · · ∗ βi−1][δi−1 ∗ αi ∗ ϵi ∗ βi][β1 ∗ β2 ∗ · · · ∗ βi−1]

for i = 2, . . . , n− 1
(3) gn = [β1 ∗ · · · ∗ βn−1][δn−1 ∗ αn ∗ βn][β1 ∗ · · · ∗ βn−1]

Since πSp(U , x0) ⊆ ΠSp(U , x0), we have gi ∈ ΠSp(U , x0) for i =
1, . . . , n. Additionally, for i = 1, . . . , n− 1,

hi = [β1 ∗ · · · ∗ βi][ϵi][δi][β1 ∗ · · · ∗ βi]

is a generator of ΠSp(U , x0). Note

[α ∗ β] = [α1][α2] · · · [αn][βn] · · · [β2][β1] = g1h1g2h2 · · · gn−1hn−1gn,

and thus [α ∗ β] ∈ ΠSp(U , x0).

For the general case, suppose there is a U -homotopy α=γ0, γ1,. . .,
γn = β where γj−1 ∼U γj for each j = 1, 2, . . . , n. The first case gives
[γi−1 ∗ γi] ∈ ΠSp(U , x0) for each i = 1, . . . , n and thus

[α ∗ β] = [γ0 ∗ γ1][γ1 ∗ γ2] . . . [γn−1 ∗ γn] ∈ ΠSp(U , x0). �
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Theorem 4.4. For every open cover U , ΠSp(U , x0) ⊆ ν(U , x0).
Moreover, if U consists of path connected sets, then ΠSp(U , x0) =
ν(U , x0).

Proof. Since ν(U , x0) is a subgroup of π1(X,x0), the inclusion
ΠSp(U , x0) ⊆ ν(U , x0) follows from showing ν(U , x0) contains the
generators of ΠSp(U , x0). Suppose [β] = [α][γ1][γ2][α] is such a
generator where γi has an image in Ui ∈ U . We claim if β =
α ∗ γ1 ∗ γ2 ∗ α, then β ∼U α ∗ α.

Find a sequence of neighborhoods V1, . . . , Vn ∈ U and a partition
0 = s0 < s1 < · · · < sn = 1 such that α([sj−1, sj ]) ⊆ Vj . Since
α(1) ∈ U1 ∩ U2, we may assume α([sn−1, 1]) ⊆ U1 ∩ U2.

For c > 0, let Lc : [0, 1] → [0, c] be the order-preserving, linear
homeomorphism. Define a partition 0 = t0 < t1 < · · · < t2n = 1 by
tk = L1/2(sk) if 0 ≤ k ≤ n− 1, tn = 1/2 and tk = 1− L1/2(s2n−k) for
n+1 ≤ k ≤ 2n. Rewrite the sequence V1, . . . , Vn−1, U1, U2, Vn−1, . . . , V1
in U as W1, . . . ,W2n. Note α ∗ α([tk−1, tk]) ⊆Wk for k = 1, . . . , 2n.

Define a partition 0 = r0 < r1 < · · · < r2n = 1 by rk = L1/4(sk) if
0 ≤ k ≤ n− 1, rn = 1/2, and rk = 1−L1/4(s2n−k) for n+1 ≤ k ≤ 2n.
Note β([rk−1, rk]) ⊆Wk for k = 1, . . . , 2n, and thus β ∼U α ∗α. Since
α ∗ α is a nonessential loop, β is null-U -homotopic by Lemma 4.2.

In the case that U consists of path connected sets, note that if α is a
null-U -homotopic loop based at x0, then [α] = [α ∗ cx0 ] ∈ ΠSp(U , x0)
by Lemma 4.3. This gives the inclusion ν(U , x0) ⊆ ΠSp(U , x0). �

5. A Čech-Spanier short exact sequence. The following theo-
rem, which identifies the kernel of the homomorphism pU ∗ : π1(X,x0)→
π1(|N(U )|, U0) for certain covers U , is the main technical achievement
of this paper.

Theorem 5.1. Suppose (U , U0) ∈ Λ is such that U consists of path
connected sets and pU : X → |N(U )| is a canonical map. The sequence

1 // ΠSp(U , x0)
iU // π1(X,x0)

pU ∗ // π1(|N(U )|, U0) // 1

where iU is inclusion is exact.
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The above theorem is proved in the following three subsections in
which the hypotheses of the statement are assumed; exactness follows
from Theorems 5.6, 5.8 and 5.16. Note if (V , V0) ∈ Λ is a normal
refinement of (U , U0), where V also consists of path connected sets
and pV : X → |N(V )| is a canonical map, then there is a morphism

1 // ΠSp(V , x0)

iU V

��

iV //// π1(X,x0)

id

��

pV ∗ // π1(|N(V )|, V0)

pU V ∗

��

// 1

1 // ΠSp(U , x0)
iU

// π1(X,x0) pU ∗
// π1(|N(U )|, U0) // 1

of short exact sequences of groups where the left square consists of
three inclusion maps and (at least) one identity.

Corollary 5.2. Suppose X is paracompact Hausdorff and Λ′ is a di-
rected subset of Λ such that if (U , U0) ∈ Λ′, then U contains only
path connected sets. There are level morphisms of inverse systems i :
(ΠSp(U , x0), iU V ,Λ

′)→ (π1(X,x0), id,Λ
′) and p : (π1(X,x0), id,Λ

′)→
(π1(|N(U )|, U0), pU V ∗,Λ

′) such that

1 // ΠSp(U , x0)
iU // π1(X,x0)

pU ∗ // π1(|N(U )|, U0) // 1

is exact for each (U , U0) ∈ Λ′. Moreover,

1 // (ΠSp(U , x0), iU V ,Λ
′)

i // (π1(X,x0), id,Λ
′)

p
// (π1(|N(U )|, U0), pU V ∗,Λ

′) // 1

is an exact sequence in the category of pro-groups.

Proof. The level sequences, i.e., the sequences for each element of
Λ′, are exact by Theorem 5.1. This gives rise to the exact sequence in
the category of pro-groups [16, Chapter II, subsection 2.3, Theorem
10]. �

Theorems 4.4 and 5.1 combine to give a characterization of ker pU ∗
in terms of the U -homotopy of the previous section.
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Corollary 5.3. If U consists of path connected sets and α : [0, 1]→ X
is a loop based at x0, then [α] ∈ ker pU ∗ if and only if α is null-U -
homotopic.

5.1. Surjectivity of pU ∗.

Lemma 5.4. Let K be a simplicial complex and L,L′ : [0, 1] → |K|
loops where L(0) = z1 = L(1) and L′(0) = z2 = L′(1). If there are
vertices v1, v2, . . . , vm ∈ K and partitions

0 = s0 < s1 < s2 < · · · < sm = 1

and

0 = t0 < t1 < t2 < · · · < tm = 1

such that L([sk−1, sk]) ∪ L′([tk−1, tk]) ⊂ St(vk,K) for each k =
1, 2, . . . ,m, then L and L′ are freely homotopic in |K|. If z1 = z2,
then L and L′ are homotopic rel. basepoint.

Proof. Since a non-empty intersection of two stars in a simplicial
complex is path connected, there is a path γk : [0, 1] → St(vk,K) ∩
St(vk+1,K) from L(sk) to L′(tk) for k = 1, . . . ,m − 1. Let γ0 =
γm be a path in St(vm,K) ∩ St(v1,K) from z1 to z2. Each loop

L|[sk−1,sk] ∗ γk ∗ L′|[tk−1,tk] ∗ γk−1, k = 1, . . . ,m has image in the star
of a vertex and is therefore nonessential. Thus, L and L′ are freely
homotopic. If z1 = z2, the same argument produces a basepoint-
preserving homotopy when we take γ0 = γm to be the constant path
at z1 = z2. �

Lemma 5.5. If U consists of path connected sets and E = [U1, U2] ∗
[U2, U3]∗· · ·∗ [Un−1, Un] is an edge loop in |N(U )| such that U1 = U0 =
Un, then there is a loop α : [0, 1]→ X based at x0 such that L = pU ◦α
and E are homotopic rel. basepoint.

Proof. Since each Uj is path connected and Uj ∩ Uj+1 ̸= ∅, there is

a loop α : [0, 1]→ X based at x0 such that α
([

j−1
n , j

n

])
⊆ Uj for each

j = 1, . . . , n. We claim E is homotopic to L = pU ◦ α.
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Recall VU = p−1
U (St(U,N(U ))) ⊆ U for each U ∈ U so that

V = {VU |U ∈ U } is an open refinement of U . Consequently, for
each j = 1, . . . , n, there is a subdivision (j − 1)/n = s0j < s1j <

· · · < s
mj

j = j/n and a sequence W 1
j , . . . ,W

mj

j ∈ U such that

α([sk−1
j , skj ]) ⊆ VWk

j
⊆ W k

j for k = 1, . . . ,mj . We may assume

W
mj

j =W 1
j+1 for j = 1, . . . , n− 1 and, since x0 ∈ VU0

, we may assume

W 1
1 = U0 =Wmn

n . Note that L([sk−1
j , skj ]) ⊆ St(W k

j , N(U )).

Define an edge loop L′ based at the vertex U0 as(
∗m1−1
k=1 [W k

1 ,W
k+1
1 ]

)
∗· · ·∗

(
∗mj−1
k=1 [W k

j ,W
k+1
j ]

)
∗· · ·∗

(
∗mn−1
k=1 [W k

n ,W
k+1
n ]

)
.

To see L′ is homotopic to L, observe the set of intervals [sk−1
j , skj ],

and consequently the set of neighborhoods W k
j , inherits an ordering

from the natural ordering of [0, 1]. Suppose the intervals [sk−1
j , skj ] are

ordered as A1, . . . , AN ⊆ [0, 1] and the neighborhoods W k
j are ordered

as w1, . . . , wN so that L(Aℓ) ⊆ St(wℓ, N(U )). For ℓ = 1, . . . , N − 1,
let bℓ be the barycenter of [wℓ, wℓ+1]. Find a partition 0 = t0 < t1 <
· · · < tN = 1 such that L′([tℓ−1, tℓ]) ⊆ St(wℓ, N(U )) for ℓ = 1, . . . , N
by choosing tℓ so that L′(tℓ) = bℓ for ℓ = 1, . . . , N . Lemma 5.4 applies
and gives a basepoint preserving homotopy between L and L′.

It now suffices to show the edge loops L′ and E = [U1, U2]∗ [U2, U3]∗
· · ·∗[Un−1, Un] are homotopic. We do so by showing L′∗E is homotopic
to a concatenation of inessential loops based at U0. First, for each
j = 1, . . . , n, let Ej = [U1, U2] ∗ · · · ∗ [Uj−1, Uj ]. Observe E1 = [U1, U1]
is constant and En = E.

(1) For j = 1, . . . , n and k = 1, . . . ,mj − 1, let

akj = Ej ∗ [Uj ,W
k
j ] ∗ [W k

j ,W
k+1
j ] ∗ [W k+1

j , Uj ] ∗ Ej .

These loops are well-defined and nonessential since Uj ∩W k
j ∩

W k+1
j ̸= ∅ determines a 2-simplex in N(U ). Even in the

case of two or more of Uj , W
k
j , W

k+1
j being equal, akj is still

nonessential.
(2) For j = 1, . . . , n− 1, let

bj = Ej ∗ [Uj ,W
mj

j ] ∗ [Wmj

j , Uj+1] ∗ [Uj+1, Uj ] ∗ Ej .
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These loops are well-defined and nonessential since Uj ∩W
mj

j ∩
Uj+1 ̸= ∅.

Therefore, the product

p =
(
∗m1−1
k=1 ak1

)
∗ b1 ∗ · · · ∗

(
∗mj−1
k=1 akj

)
∗ bj ∗ · · · ∗ bn−1 ∗

(
∗mn−1
k=1 akn

)
is nonessential. We observe p is homotopic to L′ ∗E by reducing words.

Indeed, for each j = 1, . . . , n− 1,
(
∗mj−1
k=1 akj

)
∗ bj reduces to

Ej ∗ [Uj ,W
1
j ] ∗

(
∗mj−1
k=1 [W k

j ,W
k+1
j ]

)
∗ [Wmj

j , Uj+1] ∗ Ej ,

and the last factor
(
∗mn−1
k=1 akn

)
reduces to En−1 ∗ [Un,W

1
n ]∗(∗

mn−1
k=1 [W k

n ,

W k+1
n ]) ∗ En (recall that Wmn

n = U0 = Un). Using the fact that
W 1

1 = U1 = Un and W
mj

j =W 1
j+1 to identify constant paths, it follows

that p reduces to L′ ∗ En = L′ ∗ E. �

Theorem 5.6. If (U , U0) ∈ Λ where U consists of path connected sets
and pU : X → |N(U )| is a canonical map, then pU ∗ is surjective.

Proof. Since edge loops in |N(U )| represent all homotopy classes in
π1(|N(U )|, U0), the theorem follows from Lemma 5.5. �

5.2. ΠSp(U , x0) ⊆ ker pU ∗. The flavor of the proof of the following
Lemma is quite similar to that of Lemma 5.5 but holds when the
elements of U are not necessarily path connected.

Lemma 5.7. Let U be an open cover of X. Suppose γ1, γ2 are paths
in X such that γ1(1) = γ2(0) and γ1(0) = γ2(1). If γi has an image in
Ui ∈ U , then L = pU ◦ (γ1 ∗ γ2) is nonessential loop in |N(U )|.

Proof. We again use that V = {VU = p−1
U (St(U,N(U )))|U ∈

U } is an open refinement of U . Find partitions 0 = s01 < s11 <
· · · < sm1

1 = 1/2 and 1/2 = s02 < s12 < · · · < sm2
2 = 1 and a

sequence of neighborhoodsW 1
1 , . . . ,W

m1
1 ,W 1

2 , . . . ,W
m2
2 ∈ U such that

γi([s
k−1
j , skj ]) ⊆ VWk

j
⊆ W k

j for j = 1, 2 and k = 1, . . . ,mj . Since

γ1(0) = γ2(1), we may assume W 1
1 =Wm2

2 and since γ1(1) = γ2(0), we

may assumeWm1
1 =W 1

2 . Observe that L([sk−1
j , skj ]) ⊆ St(W k

j , N(U )).
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Let L′ be the loop defined as the concatenation(
∗m1−1
k=1 [W k

1 ,W
k+1
1 ]

)
∗
(
∗m2−1
k=1 [W k

2 ,W
k+1
2 ]

)
.

Find a partition

0 = t01 < t11 < · · · < tm2
1 = t02 < t12 < · · · < tm2

2 = 1

such that L′([tk−1
j , tkj ]) ⊆ St(W k

j , N(U )). By Lemma 5.4, L and L′ are
freely homotopic.

It now suffices to show L′ is inessential. We do so by showing
L′ is homotopic to a concatenation of inessential loops. First, let
E1 = [W 1

1 , U1] and E2 = [W 1
1 , U1] ∗ [U1, U2].

(1) For k = 1, . . . ,m1 − 1, let

ak1 = E1 ∗ [U1,W
k
1 ] ∗ [W k

1 ,W
k+1
1 ] ∗ [W k+1

1 , U1] ∗ E1.

(2) Let b1 = E1 ∗ [U1,W
m1
1 ] ∗ [W 1

2 , U2] ∗ [U2, U1] ∗ E1.
(3) For k = 1, . . . ,m2 − 1, let

ak2 = E2 ∗ [U2,W
k
2 ] ∗ [W k

2 ,W
k+1
2 ] ∗ [W k+1

2 , U2] ∗ E2.

(4) Let b2 = E2 ∗ [U2,W
1
1 ] = [W 1

1 , U1] ∗ [U1, U2] ∗ [U2,W
1
1 ].

Note the loop ak1 is well-defined and inessential since U1∩W k
1 ∩W k+1

1 ̸=
∅ determines a 2-simplex in N(U ). Similarly, the loops defined in 2–4
are well-defined and inessential.

Consequently, the concatenation

p =
(
∗m1−1
k=1 ak1

)
∗ b1 ∗

(
∗m2−1
k=1 ak2

)
∗ b2

is nonessential loop based at W 1
1 . We observe p is homotopic to L′ by

reducing words. Indeed,
(
∗m1−1
k=1 ak1

)
∗b1 reduces to

(
∗m1−1
k=1 [W k

1 ,W
k+1
1 ]

)
∗

[W 1
2 , U2]∗E2 and

(
∗m2−1
k=1 ak2

)
∗ b2 reduces to E2 ∗ [U2,W

1
2 ]∗ (∗

m2−1
k=1 [W k

2 ,

W k+1
2 ]). �

Theorem 5.8. If (U , U0) ∈ Λ and pU : X → |N(U )| is a canonical
map, then ΠSp(U , x0) ⊆ ker pU ∗.

Proof. Suppose g = [α][γ1∗γ2][α] is a generator of ΠSp(U , x0) where
γi is a path with image in Ui ∈ U . Since pU ∗(g) = [pU ◦ α][pU ◦ (γ1 ∗
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γ2)][pU ◦ α] and pU ◦ (γ1 ∗ γ2) is nonessential by Lemma 5.7, pU ∗(g)
is trivial in π1(|N(U )|, U0). �

5.3. ker pU ∗ ⊆ ΠSp(U , x0). To show the inclusion ker pU ∗ ⊆ ΠSp(U ,
x0) holds under the hypotheses of Theorem 5.1, we work to extend
loops |∂∆2| → X to maps on the 1-skeleton of subdivisions of |∆2|.

Definition 5.9. An edge loop L is short if it is the concatenation
L = [v0, v1] ∗ [v1, v2] ∗ [v2, v3] of three linear paths. A Spanier edge loop
is an edge loop of the form E ∗ L ∗ E where E is an edge path and L
is a short edge loop.

Lemma 5.10. Let H be a subgroup of π1(X,x0) and n ≥ 1 an integer.
Let f : (sdn|∆2|)1 → X be a based map on the 1-skeleton of sdn|∆2|,
and β = f ||∂∆2| : |∂∆2| → X be the restriction. If [f ◦σ] ∈ H for every
Spanier edge loop σ in sdn|∆2|, then [β] ∈ H.

Proof. Elementary planar graph theory shows that π1((sd
n|∆2|)1,

(0, 0)) is generated by the homotopy classes of Spanier edge loops.
Thus, if [f ◦ σ] ∈ H for every Spanier edge loop σ in sdn|∆2|, then
f∗(π1((sd

n|∆2|)1, (0, 0))) ⊆ H. In particular [β] ∈ H. �

Let sd1|∂∆2| be the first barycentric subdivision of |∂∆2|. The 0-
skeleton consists of six vertices: Let v1, v2, v3 be the vertices (0, 0), (1, 0),
(0, 1) of |∂∆2| respectively andmi be the vertex which is the barycenter
of the edge opposite vi for i = 1, 2, 3.

Definition 5.11. Let U be an open cover of X. A map δ : |∂∆2| → X
is U -admissible if there are open neighborhoods U1, U2, U3 ∈ U such
that

∩
i Ui ̸= ∅ and δ(St(vi, sd1|∂∆2|)) ⊆ Ui for i = 1, 2, 3.

Remark 5.12. The condition δ(St(vi, sd
1|∂∆2|)) ⊆ Ui in the previous

definition means precisely that δ([v1,m2] ∪ [v1,m3]) ⊆ U1, δ([v2,m1] ∪
[v2,m3]) ⊆ U2, and δ([v3,m1] ∪ [v3,m2]) ⊆ U3.

Lemma 5.13. Let U be an open cover of X consisting of path con-
nected sets. If δ : |∂∆2| → X is U -admissible and α : [0, 1] → X is a
path from x0 to δ(v1), then [α][δ][α] ∈ ΠSp(U , x0).
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Proof. Since δ : |∂∆2| → X is U -admissible, there are sets
U1, U2, U3 ∈ U such that

∩
i Ui contains a point z and δ(St(vi, |∂∆2|)) ⊆

Ui for i = 1, 2, 3.

Whenever j, k ∈ {1, 2, 3} and j ̸= k, let γj,k be the path which is the
restriction of δ to [vj ,mk]. With this notation

[δ] = [γ1,3][γ2,3][γ2,1][γ3,1][γ3,2][γ1,2].

Note Im (γj,k) ⊆ Uj for all choice of j, k. Thus, if j, k, l ∈ {1, 2, 3} are
distinct, the endpoint of γj,k lies in Uj ∩ Ul.

Define six paths in X. Whenever j, k ∈ {1, 2, 3} and j ̸= k, let
ηj,k be a path in Uj from δ(mk) to z. Such paths are guaranteed to
exist since each element of U is path connected. Now, given any path
α : [0, 1]→ X from x0 to δ(v1) let

ζ1 = [α][γ1,3 ∗ η1,3 ∗ η1,2 ∗ γ1,2][α]
ζ2 = [α ∗ γ1,2 ∗ η1,2][η1,3][η2,3][α ∗ γ1,2 ∗ η1,2]
ζ3 = [α ∗ γ1,2 ∗ η1,2][η2,3 ∗ γ2,3 ∗ γ2,1 ∗ η2,1][α ∗ γ1,2 ∗ η1,2]
ζ4 = [α ∗ γ1,2 ∗ η1,2][η2,1][η3,1][α ∗ γ1,2 ∗ η1,2]
ζ5 = [α ∗ γ1,2 ∗ η1,2][η3,1 ∗ γ3,1 ∗ γ3,2 ∗ η3,2][α ∗ γ1,2 ∗ η1,2]
ζ6 = [α ∗ γ1,2][η1,2][η3,2][α ∗ γ1,2]

Note each ζi is written as a product to illustrate that ζ1, ζ3, ζ5 ∈
πSp(U , x0) and ζ2, ζ4, ζ6 ∈ ΠSp(U , x0). Since πSp(U , x0) ⊆
ΠSp(U , x0), we have ζi ∈ ΠSp(U , x0) for each i. A straight-
forward check gives [α][δ][α] = ζ1ζ2ζ3ζ4ζ5ζ6, and thus [α][δ][α] ∈
ΠSp(U , x0). �

Lemma 5.14. If f : (sdn|∆2|)1 → X is a map such that the restriction
of f to the boundary ∂τ of every 2-simplex τ in sdn|∆2| is U -admissible
and β = f ||∂∆2|, then [β] ∈ ΠSp(U , x0).

Proof. By Lemma 5.10 it suffices to show [f ◦ σ] ∈ ΠSp(U , x0) for
any Spanier edge loop σ in sdn|∆2|. Suppose σ = E ∗ L ∗ E is such a
Spanier edge loop where E is an edge path from (0, 0) to a vertex of ∂τ
and L is a short edge loop traversing ∂τ . Let α = f ◦E and δ = f ◦L.
Since δ is U -admissible by assumption, [f ◦σ] = [α][δ][α] ∈ ΠSp(U , x0)
by Lemma 5.13. �
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Lemma 5.15. Suppose (U , U0) ∈ Λ where U consists of path con-
nected sets and pU : X → |N(U )| is a canonical map. If β : |∂∆2| →
X is a loop such that [β] ∈ ker pU ∗, then there exist an integer n ≥ 1
and an extension f : (sdn|∆2|)1 → X of β such that the restriction of
f to the boundary ∂τ of every 2-simplex τ in sdn|∆2| is U -admissible.

Proof. Since pU ◦β : |∂∆2| → |N(U )| is a null-homotopic loop based
at the vertex U0, it extends to a map h : |∆2| → |N(U )|. Since, by the
definition of pU , we have VU = p−1

U (St(U,N(U ))) ⊆ U for each U ∈ U ,
the cover V = {VU |U ∈ U } is an open refinement of U . Additionally,
if WU = h−1(St(U,N(U ))), the collection W = {WU |U ∈ U } is an
open cover of |∆2|.

Following [19, Theorem 16.1] (finite simplicial approximation), find
a simplicial approximation for h using the cover W . Let λ be a Lebesgue
number for W so that any subset of |∆2| of diameter less than λ lies
in some element of W . Choose an integer n such that each simplex
in sdn|∆2| has diameter less than λ/2. Thus, the star St(a, sdn|∆2|)
of each vertex a in sdn|∆2| lies in a set WUa for some Ua ∈ U . The
assignment a 7→ Ua on vertices extends to a simplicial approximation
h′ : sdn∆2 → N(U ) of h, i.e., a simplicial map h′ such that

h(St(a, sdn∆2)) ⊆ St(h′(a), N(U )) = St(Ua, N(U ))

for each vertex a [19, Lemma 14.1].

We construct an extension f : (sdn|∆2|)1 → X of β such that
the restriction of f to the boundary of each 2-simplex of sdn|∆2|
is U -admissible. First, define f on vertices: for each vertex a ∈
(sdn|∆2|)0, pick a point f(a) ∈ Ua. In particular, if a is a vertex of the
subcomplex sdn|∂∆2| of (sdn|∆2|)1, take f(a) = β(a). This choice is
well defined since, whenever a ∈ sdn|∂∆2|, we have pU ◦β(a) = h(a) ∈
St(Ua, N(U )), and thus β(a) ∈ VUa ⊆ Ua.

Observe if [a, b, c] is any 2-simplex in sdn∆2, then h′([a, b, c]) is a
simplex of N(U ) spanned by the set of vertices {Ua, Ub, Uc} (possibly
containing repetitions). By the construction of N(U ), the intersection
Ua ∩ Ub ∩ Uc is non-empty.

Extend f to the interiors of 1-simplices of (sdn|∆2|)1; to define f on
a given 1-simplex [a, b], consider two cases:

Case I: Suppose 1-simplex [a, b] is the intersection of two 2-simplices
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in sdn|∆2|. Extend f to the interior of [a, b] by taking f |[a,b] to be a
path in Ua ∪ Ub from f(a) to f(b) such that if m is the barycenter of
[a, b], then f |[a,b]([a,m]) ⊆ Ua and f |[a,b]([m, b]) ⊆ Ub. Such a path
is guaranteed to exist since Ua, Ub are path connected and have non-
trivial intersection.

Case II: Suppose 1-simplex [a, b] is the face of a single 2-simplex
or, equivalently, that [a, b] is a 1-simplex of sdn|∂∆2|. In this case, let
f |[a,b] = β[a,b]. Again, note Ua ∩ Ub ∩ Uc ̸= ∅. Since St(a, sdn|∆2|) ⊆
WUa and St(b, sdn|∆2|) ⊆WUb

, we have

pU ◦ β(int([a, b])) = h(int([a, b])) ⊆ St(Ua, N(U )) ∩ St(Ub, N(U )).

Thus β(int([a, b])) ⊆ VUa ∩ VUb
⊆ Ua ∩Ub. Note if m is the barycenter

of [a, b], then f([a,m]) ⊆ Ua and f([m, b]) ⊆ Ub.

Now f : (sdn|∆2|)1 → X is a map extending β such that the
restriction of f to the boundary ∂τ of every 2-simplex τ in sdn|∆2|
is U -admissible. �

Theorem 5.16. If (U , U0) ∈ Λ where U consists of path connected
sets and pU : X → |N(U )| is a canonical map, then ker pU ∗ ⊆
ΠSp(U , x0).

Proof. The theorem follows directly from Lemmas 5.14 and 5.15. �

6. Characterizations of kerΨX . Theorem 5.1 allows us to char-
acterize the kernel of the natural map ΨX : π1(X,x0) → π̌1(X,x0) as
the Spanier group πSp(X,x0).

Theorem 6.1. If X is a locally path connected, paracompact Hausdorff
space, then there is a natural exact sequence

1 // πSp(X,x0) // π1(X,x0)
ΨX // π̌1(X,x0)

where the second map is inclusion.

Proof. It suffices to show kerΨX = πSp(X,x0). The inclusion
πSp(X,x0) ⊆ kerΨX holds for arbitrary X; this fact follows from
Propositions 3.9 and 3.12 and is proved directly in [14]. Since X is
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paracompact Hausdorff, πSp(X,x0) = ΠSp(X,x0) by Theorem 3.13.
Thus, it suffices to show kerΨX ⊆ ΠSp(X,x0).

Suppose [β] ∈ kerΨX (equivalently [β] ∈ ker pW ∗ for every (W ,W0) ∈
Λ) and U is a given open cover of X. It suffices to show [β] ∈
ΠSp(U , x0). Pick a set U0 ∈ U such that x0 ∈ U0. Let V0 be
a path connected neighborhood of x0 contained in U0. Every point
x ∈ X\V0 is an element of some Ux ∈ U . Let Vx be a path connected
neighborhood of x contained in Ux which is disjoint from {x0}. Now
V = {V0} ∪ {Vx|x ∈ X\V0} is an open cover of X consisting of path
connected sets which is a refinement of U . Note that V0 is the only ele-
ment of V having x0 as an element. Since X is paracompact Hausdorff,
V is normal and thus (V , V0) ∈ Λ.

Since [β] ∈ ker pV ∗ and ker pV ∗ ⊆ ΠSp(V , x0) by Theorem 5.1, we
have [β] ∈ ΠSp(V , x0). Note that ΠSp(V , x0) ⊆ ΠSp(U , x0) since V
refines U . Thus [β] ∈ ΠSp(U , x0).

Regarding naturality, it is well known that ΨX is natural in X.
Therefore, it suffices to check that if f : X → Y , f(x0) = y0 is a
map, then f∗(π

Sp(X,x0)) ⊆ πSp(Y, y0). This follows directly from
Remark 3.7. �

Corollary 6.2. If X is a locally path connected, paracompact Hausdorff
space, then X is π1-shape injective if and only if πSp(X,x0) = 1.

Example 6.3. Theorem 6.1 fails to hold in the non-locally path
connected case. A counterexample is the compact space Z ⊂ R3 of [12]
obtained by rotating the closed topologist’s sine curve so the linear path
component forms a cylinder and connecting the two resulting surface
components by attaching a single arc. We have π1(Z, z0) ∼= Z and
πSp(Z, z0) = 1, yet kerΨZ = π1(Z, z0).

The identification πSp(X,x0) = kerΨX in Theorem 6.1 allows us to
give two alternative characterizations of kerΨX : one in terms of U -
homotopy (from Section 4) and one in terms of covering spaces of X.
Here covering spaces and maps are meant in the classical sense [20].

Corollary 6.4. Suppose X is a locally path connected, paracompact
Hausdorff space and α : [0, 1]→ X is a loop based at x0. The following
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are equivalent :

1. [α] ∈ kerΨX .
2. For every open cover U of X, α is null-U -homotopic.
3. For every covering map r : Y → X, r(y0) = x0, the unique lift
α̃ : [0, 1] → Y of α (i.e., such that r ◦ α̃ = α) starting at y0 is
a loop in Y .

Proof. (1. ⇔ 2.) By Theorems 3.13 and 6.1, we have ΠSp(X,x0) =
πSp(X,x0) = kerΨX . Since X is locally path connected, every
open cover U admits an open refinement V whose elements are path
connected and thus ΠSp(V , x0) = ν(V , x0) by Theorem 4.4. Since
ΠSp(V , x0) = ν(V , x0) for all V in a cofinal subset ofO(X) the equality
ΠSp(X,x0) =

∩
U ν(U , x0) follows.

(1. ⇔ 3.) Since πSp(X,x0) = kerΨX , we show πSp(X,x0) is the
intersection of all images r∗(π1(Y, y0)) where r : Y → X, r(y0) = x0 is
a covering map. This equality follows directly from the following well-
known result from the covering space theory of locally path connected
spaces (see [20, Lemma 2.5.11 and Theorem 2.5.13]): given a subgroup
H of π1(X,x0), there is an open cover U of X such that πSp(U , x0) ⊆
H if and only if there is a covering map r : Y → X, r(y0) = x0 with
r∗(π1(Y, y0)) = H. �

Example 6.5. Consider the Peano continua Y ′ and Z ′ of [12] con-
structed as subspaces of R3 (these spaces also appear as the spaces A
and B in [4], respectively). The space Y ′ is constructed by rotating the
topologists’ sine curve T = {(x, 0, sin(1/x))|0 < x ≤ 1} ∪ {0} × {0} ×
[0, 1] about the “central axis” (i.e., the portion {0}× {0}× [0, 1] of the
z-axis) and attaching horizontal arcs so Y ′ is locally path connected
and so the arcs become dense only on the central axis. The space Z ′

is an inverted version of Y ′ in the sense that T is now rotated around
the vertical line passing through (1, 0, sin 1), and arcs are attached be-
coming dense around the outside cylinder. Take the basepoint z0 of Z ′

to lie on the outer cylinder.

The authors of [12] observe both spaces have non-vanishing Spanier
group and thus fail π1-shape injectivity. The Spanier group of Y ′ is
known to be non-trivial [12, Proposition 3.2 (1)]; however, slightly
more effort is required to show a simple closed curve L, based at
z0, traversing the outer cylinder of Z ′ is homotopically non-trivial [4,
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Lemma 3.1] and satisfies [L] ∈ πSp(Z ′, z0). To do so, one can, given an
open cover U of X, look for small arcs in the intersections of elements
of U and factor [L] as a product of generators of πSp(U , z0).

Using the above results, we can observe [L] ∈ πSp(Z ′, z0) without
having to construct explicit factorizations and without having to rely
on convenient covers with “enough” arcs lying in intersections. For
instance, to see [L] ∈ πSp(Z ′, z0), let U be an open cover of Z ′, and
find a subdivision of 0 = t0 < t1 < · · · < tn = 1 so L([ti−1, ti]) ⊆ Ui for
Ui ∈ U and U1 = Un. There is an arc α connecting L(0) to the surface
portion with image in U1 and a loop L′ on the surface portion based at
α(1) such that L′([ti−1, ti]) ⊆ Ui for each i. Thus, L is U -homotopic to
the homotopically trivial loop α∗L′ ∗α. Since [L] is null-U -homotopic
for any given U , we have [L] ∈ kerΨX = πSp(Z ′, z0) by Corollary 6.4.

Remark 6.6. If, in addition to the hypotheses on X in Theorem 6.1,
Λ admits a cofinal, directed subsequence (Un, Un) where (Uk+1, Uk+1)
refines (Uk, Uk) (for instance, when X is compact metric), the exact
sequence in Theorem 6.1 extends to the right via the first derived limit
lim←−

1 for non-abelian groups [16, Ch. II, §6.2]. In doing so, we obtain
a connecting function δ and an exact sequence

1 // πSp(X,x0) // π1(X,x0)
ΨX // π̌1(X,x0)

δ // lim←−
1 ΠSp(Un, x0) // ∗

in the category of pointed sets. Thus, elements in the image of ΨX are
precisely those mapped to the basepoint of the first derived limit of the
inverse sequence

· · · ⊆ ΠSp(U3, x0) ⊆ ΠSp(U2, x0) ⊆ ΠSp(U1, x0)

of thick Spanier groups.

7. A shape group topology on π1(X,x0). For a general space X,
the fundamental group π1(X,x0) admits a variety of distinct natural
topologies [1, 2, 10], one of which is the pullback from the product of
discrete groups [9, 18] described as follows.
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By definition, the geometric realization of a simplicial complex is
locally contractible. Hence, the inverse limit space π̌1(X,x0) admits
a natural topology as a subspace of the product of discrete groups
ΠΛπ1(|N(U )|, U0).

To impart a topology on π1(X,x0), recall the homomorphism ΨX :
π1(X,x0) → π̌1(X,x0) and declare the open sets of π1(X,x0) to be
precisely sets of the form Ψ−1

X (W ) where W is open in π̌1(X,x0). We
refer to this group topology on π1(X,x0) as the shape topology.

The space π̌1(X,x0) is Hausdorff (since π̌1(X,x0) is a subspace of the
arbitrary product of Hausdorff spaces). Hence, if ψX is one-to-one, then
π1(X,x0) is Hausdorff (since in general the preimage under a continuous
injective map of a Hausdorff space is Hausdorff). Conversely, if ψX

is not one-to-one, then π1(X,x0) is not Hausdorff (since, with the
pullback topology, if x ̸= y and ψX(x) = ψX(y) then x and y cannot
be separated by open sets). The foregoing is summarized as follows.

Proposition 7.1. The following are equivalent for any space X:

1. X is π1-shape injective.
2. π1(X,x0) is Hausdorff.

We characterize a basis for the shape topology using the short exact
sequences from Section 5.

Remark 7.2. Note if G is a topological group, H is a subgroup of G,
and K is a subgroup of H which is open in G, then H is also open in
G since H decomposes as a union of open cosets of K.

Lemma 7.3. If X is locally path connected, paracompact Hausdorff,
then for every open cover U of X, both πSp(U , x0) and ΠSp(U , x0)
are open in π1(X,x0).

Proof. Suppose U is an open cover of X. Pick a set U0 ∈ U
such that x0 ∈ U0. Since X is locally path connected, paracompact
Hausdorff, there exists (V , V0) ∈ Λ refining (U , U0) such that V
consists of path connected sets (e.g., see the second paragraph in the
proof of Theorem 6.1). Let pV : X → |N(V )| be a based canonical
map. Recall π1(|N(V )|, V0) is discrete, and observe pV ∗ : π1(X,x0)→
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π1(|N(V )|, V0) is continuous. Additionally, ΠSp(V , V0) = ker pV ∗ by
Theorem 5.1. Thus, ΠSp(V , V0) is an open subgroup of π1(X,x0).
Since V refines U , we have ΠSp(V , x0) ⊆ ΠSp(U , x0) and therefore
ΠSp(U , x0) is open by Remark 7.2.

Since X is paracompact Hausdorff, there is an open refinement W of
U such that ΠSp(W , x0) ⊆ πSp(U , x0) (see the proof of Theorem 3.13).
By the previous paragraph, ΠSp(W , x0) is open. Thus, πSp(U , x0) is
open by Remark 7.2. �

Theorem 7.4. If X is locally path connected, paracompact Hausdorff,
the set of thick Spanier groups ΠSp(U , x0) form a neighborhood base
at the identity of π1(X,x0).

Proof. The hypotheses on X allow us to replace Λ with the cofinal
directed subset Λ′ consisting of pairs (U , U0) such that U contains only
path connected sets. We alter notation for brevity. For λ = (U , U0) ∈
Λ′, let eλ be the identity of Gλ = π1(|N(U )|, U0). Additionally, let
Sλ = ΠSp(U , x0) and pλ = pU ∗ : π1(X,x0)→ Gλ. If λ′ ≥ λ in Λ′, let
pλλ′ : Gλ′ → Gλ be homomorphism induced by the projection. Thus,
π̌1(X,x0) ∼= lim←−(Gλ, pλλ′ ,Λ′) ⊆

∏
Λ′ Gλ and ΨX(α) = (pλ(α)).

In π̌1(X,x0), a basic open neighborhood of the identity is of the form

WF = π̌1(X,x0) ∩
( ∏

λ∈F

{eλ} ×
∏

λ∈Λ′−F

Gλ

)
where F is a finite subset of Λ′. Therefore, the sets Ψ−1

X (WF ) form a
neighborhood base at the identity of π1(X,x0).

By Theorem 5.1, Sλ = ker pλ for each λ ∈ Λ′. Thus, Ψ−1
X (WF ) =∩

λ∈F Sλ for each finite set F ⊂ Λ′. For given F , take µ ∈ Λ′ such that

µ refines λ for each λ ∈ F . This gives Sµ ⊆ Ψ−1
X (WF ). Consequently,

the open subgroups Sλ for a neighborhood base at the identity. �

Corollary 7.5. If X is locally path connected, paracompact Hausdorff,
the set of Spanier groups πSp(U , x0) form a neighborhood base at the
identity of π1(X,x0).

Proof. By Theorem 7.4, the thick Spanier groups ΠSp(U , x0) form a
neighborhood base at the identity of π1(X,x0). For every open cover U
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of X, the Spanier group πSp(U , x0) is an open subgroup of π1(X,x0)
by Lemma 7.3 and πSp(U , x0) ⊆ ΠSp(U , x0) by Proposition 3.5.
Thus, the Spanier groups πSp(U , x0) form a neighborhood base at the
identity. �

The basis in Corollary 7.5 shows the shape topology on π1(X,x0)
consists precisely of the data of the covering space theory of X.

Theorem 7.6. Suppose X is locally path connected, paracompact Haus-
dorff and H is a subgroup of π1(X,x0). The following are equivalent :

1. H is open in π1(X,x0).
2. There is an open cover U of X such that πSp(U , x0) ⊆ H.
3. There is a covering map r : Y → X, r(y0) = x0 such that
r∗(π1(Y, y0)) = H.

Proof. (1. ⇔ 2.) follows directly from Corollary 7.5 and Remark 7.2.

(2. ⇔ 3.) is a well-known result from covering space theory (used
above in the proof of Corollary 6.4). �

Thus, the well-known classification of covering spaces can be ex-
tended to non-semilocally simply connected spaces in the following way:
If X is locally path connected, paracompact Hausdorff, then there is
a canonical bijection between the equivalence classes of connected cov-
erings of X (in the classical sense) and conjugacy classes of open sub-
groups of π1(X,x0) with the shape topology.
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