
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 44, Number 4, 2014

SOME K0-MONOID PROPERTIES PRESERVED BY
TRACIAL APPROXIMATION

QINGZHAI FAN

ABSTRACT. We show that the following K0-monoid
properties of C∗-algebras in the class Ω are inherited by
simple unital C∗-algebras in the class TAΩ:
(1) almost divisible,
(2) directly finite,
(3) strong Riesz interpolation property.

1. Introduction. The Elliott conjecture asserts that all nuclear,
separable C∗-algebras are classified up to isomorphism by an invariant,
called the Elliott invariant. A first version of the Elliott conjecture
might be said to have begun with the K-theoretical classification of
AF-algebras in [2]. Since then, many classes of C∗-algebras have been
classified by the Elliott invariant. Among them, one important class is
that of simple unital AH-algebras without dimension growth. A very
important axiomatic version of the classification of AH-algebras with-
out dimension growth was given by Lin. Instead of assuming inductive
limit structure, he started with a certain abstract approximation prop-
erty and showed that C∗-algebras with this abstract approximation
property and certain additional properties are AH-algebras without di-
mension growth. More precisely, Lin introduced the class of tracially
approximate interval algebras which he also called C∗-algebras of tra-
cial topological rank one.

Following the notion of Lin on the tracial approximation by interval
algebras, Elliott and Niu in [6] considered tracial approximation by
certain C∗-algebras.

The question of the behavior of C∗-algebra properties under passage
from a class Ω to the class TAΩ is interesting and sometimes important.
In fact, the property of having tracial states, the property of being of
stable rank one, and the property that the strict order on projections
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is determined by traces were used in the proof of the classification
theorem in [6, 14] by Elliott and Niu.

In this paper, we show that the following K0-monoid properties of
C∗-algebras in the class Ω are inherited by simple unital C∗-algebras
in the class TAΩ:

(1) almost divisible,
(2) directly finite,
(3) strong Riesz interpolation property.

2. Preliminaries and definitions. Let a and b be two positive
elements in a C∗-algebra, A. We write [a] ≤ [b] (cf., [13, Definition
3.5.2]), if there exists a partial isometry v ∈ A∗∗ such that, for every
c ∈ Her (a), v∗c, cv ∈ A, vv∗ = Pa, where Pa is the range projection of
a in A∗∗, and v∗cv ∈ Her (b). We write [a] = [b] if v∗Her (a)v = Her (b).
Let n be a positive integer. We write n[a] ≤ [b], if there are n mutually
orthogonal positive elements b1, b2, . . . , bn ∈ Her (b) such that [a] ≤ [bi],
i = 1, 2, . . . , n.

Let 0 < σ1 < σ2 ≤ 1 be two positive numbers. Define

fσ2
σ1

(t) =

 1 if t ≥ σ2

(t− σ1)/(σ2 − σ1) if σ1 ≤ t ≤ σ2

0 if 0 < t ≤ σ1

Let Ω be a class of unital C∗-algebras. Then the class of C∗-algebras
which can be tracially approximated by C∗-algebras in Ω is denoted by
TAΩ.

Definition 2.1 ([6]). A simple unital C∗-algebra A is said to belong
to the class TAΩ if, for any ε > 0, any finite subset F ⊆ A, and any
nonzero element a ≥ 0, there exist a nonzero projection p ∈ A and a
C∗-subalgebra B of A with 1B = p and B ∈ Ω, such that

(1) ∥xp− px∥ < ε for all x ∈ F ,
(2) pxp ∈ε B for all x ∈ F ,
(3) [1− p] ≤ [a].

Definition 2.2 ([8]). Let Ω be a class of unital C∗-algebras. A unital
C∗-algebra A is said to have property (III) if, for any positive numbers
0 < σ3 < σ4 < σ1 < σ2 < 1, any ε > 0, any finite subset F ⊆ A,
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any nonzero positive element a, and any integer n > 0, there exist a
nonzero projection p ∈ A and a C∗-subalgebra B of A with B ∈ Ω and
1B = p, such that:

(1) ∥xp− px∥ < ε for all x ∈ F ,
(2) pxp ∈ε B for all x ∈ F , ∥pap∥ ≥ ∥a∥ − ε,
(3) n[fσ2

σ1
((1− p)a(1− p))] ≤ [fσ4

σ3
(pap)].

Lemma 2.3 ([6]). If the class Ω is closed under tensoring with matrix
algebras or closed under taking unital hereditary C∗-subalgebras, then
TAΩ is closed under passing to matrix algebras or unital hereditary
C∗-subalgebras.

Theorem 2.4 ([8]). Let Ω be a class of unital C∗-algebras such that
Ω is closed under taking unital hereditary C∗-subalgebras and closed
taking finite direct sums. Let A be a simple unital C∗-algebra. Then
the following are equivalent:

(1) A ∈ TAΩ,
(2) A has property (III).

Call projections p, q ∈ M∞(A) equivalent, denoted p ∼ q, when
there is a partial isometry v ∈ M∞(A) such that p = v∗v, q = vv∗.
The equivalent classes are denoted by [.], and the set of all these is:

V (A) := {[p]|p = p∗ = p2 ∈ M∞(A)}.

Addition in V (A) is defined by

[p] + [q] := [diag (p, q)],

V (A) becomes an abelian monoid, and we call V (A) the K0-monoid of
A.

All abelian monoids have a natural pre-order, the algebraic ordering,
defined as follows: if x, y ∈ M , we write x ≤ y if there is a z in M such
that x + z = y. In the case of V (A), the algebraic ordering is given
by Murray-von Neumann subequivalence, that is, [p] ≤ [q] if and only
if there is a projection p′ ≤ q such that p ∼ p′. We also write, as is
customary, p ≼ q to mean that p is subequivalent to q.

Let M be an abelian monoid. If x, y ∈ M , we will write x ≤∗ y if
there is a nonzero element z in M , such that x+ z = y.
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We say that a monoid M is conical if x+y = 0 only when x = y = 0.
Note that, for any C∗-algebra A, the monoid V (A) is conical.

We say that an order abelian monoid M is almost divisible when it
satisfies the statement that, for any x ∈ M and any n ∈ N, there is
y ∈ M such that ny ≤ x ≤ (n+ 1)y.

Let M be an abelian monoid. An element x of M is directly finite
if x + y = x implies that y = 0, for all y ∈ M . M is directly finite if
for any x ∈ M is directly finite. M is said to satisfy the strong Riesz
interpolation property provided that M satisfies the conditions that,
given any x1, x2, y1, y2 in M such that xi ≤∗ yj for all i, j, there exists
z such that xi ≤∗ z ≤∗ yj for all i, j.

3. The main results.

Theorem 3.1. Let Ω be a class of unital C∗-algebras such that, for any
B ∈ Ω, the K0-monoid V (B) is almost divisible. Then the K0-monoid
V (A) is almost divisible for any simple unital C∗-algebra A ∈ TAΩ.

Proof. We need to show that there exist y ∈ V (A) such that
ny ≤ x ≤ (n + 1)y for any x ∈ V (A) and any n ∈ N. By Lemma 2.3,
we may assume that x = [p] for some projection p ∈ proj (A). For
F = {p}, any ε > 0, since A ∈ TAΩ, there exist a projection r ∈ A
and a C∗-subalgebra B ⊆ A with B ∈ Ω, 1B = r such that

(1) ∥pr − rp∥ < ε,
(2) rpr ∈ εB.

By (1) and (2) there exist projections p1 ∈ B and p2 ∈ (1−r)A(1−r)
such that

∥p− p1 − p2∥ < ε.

Therefore, we have
[p] = [p1] + [p2].

Since B ∈ Ω and V (B) is almost divisible, we may assume that there
exists a projection e1 ∈ B such that n[e1] ≤ [p] ≤ (n+ 1)[e1] in V (B).
We prove this theorem by two steps.

Firstly, we may assume that n[e1] = [p1].
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For G = {p2, e1}, any ε > 0, since A ∈ TAΩ, there exist a projection
s ∈ A and a C∗-subalgebra C ⊆ A with C ∈ Ω, 1C = s such that

(1′) ∥xs− sx∥ < ε for all x ∈ G,
(2′) sxs ∈ εC for all x ∈ G,
(3′) [1− s] ≤ [e1].

By (1′) and (2′) there exist projections p3 ∈ C and p4 ∈ (1 − s)A
(1− s) such that

∥p2 − p3 − p4∥ < ε.

Therefore, we have
[p2] = [p3] + [p4].

Since C ∈ Ω and V (C) is almost divisible, we may assume that there
exists a projection e3 ∈ C such that n[e3] ≤ [p3] ≤ (n+1)[e3] in V (C).

By (3′) we have [p4] ≤ [e1]; therefore, we have

n([e1] + [e3]) = n[e1] + n[e3]

≤ [p1] + [p3] + [p4] ≤ n[e1] + (n+ 1)[e3] + [p4]

≤ (n+ 1)[e1] + (n+ 1)[e3]

= (n+ 1)([e1] + [e3]).

Secondly, we assume that n[e1] ≤∗ [p1] ≤ (n + 1)[e1]. Since
n[e1] ≤∗ [p1], there exist a nonzero projection g ∈ A such that
n[e1] + [g] = [p1].

For H = {p2, g}, any ε > 0, since A ∈ TAΩ, there exist a projection
t ∈ A and a C∗-subalgebra D ⊆ A with D ∈ Ω, 1D = t such that

(1′′) ∥xt− tx∥ < ε for all x ∈ G,
(2′′) txt ∈ εC for all x ∈ G,
(3′′) n[1− t] ≤ [g].

By (1′′) and (2′′) there exist projections p3 ∈ D and p4 ∈ (1 − t)A
(1− t) such that

∥p2 − p3 − p4∥ < ε.

Therefore, we have
[p2] = [p3] + [p4].
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Since D ∈ Ω and V (D) is almost divisible, we may assume that there
exists a projection e3 ∈ C such that n[e3] ≤ [p3] ≤ (n+1)[e3] in V (C).
By (3′′), n[p4] ≤ n[1− t] ≤ [g]; therefore, we have

n[e1] + n[e3] + n[p4] ≤ [p1] + [p3] + [p4]

≤ (n+ 1)[e1] + (n+ 1)[e3] + (n+ 1)[p4]

= (n+ 1)([e1] + [e3] + [p4]). �

Let Ω denote the class of all finite dimensional C∗-algebras. Then the
K0-monoid V (A) is almost divisible for any simple unital C∗-algebra
A ∈ TAΩ. That is to say, any K0-monoid V (A) is almost divisible for
any simple unital C∗-algebra A with tracial topological rank zero.

Theorem 3.2. Let Ω be a class of unital C∗-algebras such that, for any
B ∈ Ω, the K0-monoid V (B) is directly finite. Then the K0-monoid
V (A) is directly finite for any simple unital C∗-algebra A ∈ TAΩ.

Proof. We need to show that y = 0 for any x, y ∈ V (A) with
x + y = x. By Lemma 2.3, we may assume that x = [p], y = [q]
for some projections p, q ∈ proj (A). For F = {p, q}, any ε > 0 and
any positive numbers 0 < σ3 < σ4 < σ1 < σ2 < 1, since A ∈ TAΩ,
there exist a projection r ∈ A and a C∗-subalgebra B ⊆ A with B ∈ Ω,
1B = r such that

(1) ∥rx− xr∥ < ε for all x ∈ F ,
(2) rxr ∈ εB for all x ∈ F .
(3) [fσ2

σ1
((1− r)q(1− r))] ≤ [fσ4

σ3
(rqr)]

By (1) and (2), there exist projections p1, q1 ∈ B and p2, q2 ∈
(1− r)A(1− r) such that

∥p− p1 − p2∥ < ε, ∥q − q1 − q2∥ < ε.

Therefore, we have

[p] = [p1] + [p2], [q] = [q1] + [q2],

and
[p1] + [q1] = [p1], [p2] + [q2] = [p2].

Since B ∈ Ω and V (B) is directly finite, we have [q1] = 0. By (3),
[q2] ≤ [q1]; therefore, [q2] = 0. We have [q] = [q1] + [q2] = 0. �
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Let Ω denote the class of all interval C∗-algebras. Then the K0-
monoid V (A) is directly finite for any simple unital C∗-algebra A ∈
TAΩ. That is to say, K0-monoid V (A) is directly finite for any simple
unital C∗-algebra A with tracial topological rank no more than one.

Theorem 3.3. Let Ω be a class of unital C∗-algebras such that, for
any B ∈ Ω, the K0-monoid V (B) has the strong Riesz interpolation
property. Then the K0-monoid V (A) has the strong Riesz interpolation
property for any simple unital C∗-algebra A ∈ TAΩ.

Proof. We need to show that there exist z ∈ V (A) such that
xi ≤∗ z ≤∗ yj for any x1, x2, y1, y2 in V (A) with xi ≤∗ yj for all
i, j. By Lemma 2.3, we may assume that x1 = [p1], x2 = [p2],
y1 = [q1], y2 = [q2] for some projections p1, p2, q1, q2 ∈ proj (A). For
F = {p1, p2, q1, q2}, any ε > 0, since A ∈ TAΩ, there exist a projection
r ∈ A and a C∗-subalgebra B ⊆ A with B ∈ Ω, 1B = r such that

(1) ∥xr − rx∥ < ε for all x ∈ F ,
(2) rxr ∈ εB for all x ∈ F .

By (1) and (2) there exist projections p′1, q
′
1, p

′
2, q

′
2 ∈ B and p′′2 , q

′′
2 , p

′′
1 ,

q′′1 ∈ (1− r)A(1− r) such that

∥p1 − p′1 − p′′1∥ < ε, ∥q1 − q′1 − q′′1∥ < ε,

∥p2 − p′2 − p′′2∥ < ε, ∥q2 − q′2 − q′′2∥ < ε.

Therefore, we have

[p1] = [p′1] + [p′′1 ], [q1] = [q′1] + [q′′1 ],

[p2] = [p′2] + [p′′2 ], [q2] = [q′2] + [q′′2 ],

and [p′i] ≤∗ [q′j ], [p
′′
i ] ≤∗ [q′′j ] for all i, j.

Since B ∈ Ω and V (B) has the strong Riesz interpolation property,
we may assume that there exists a projection e′ ∈ B such that
[p′i] ≤∗ [e′] ≤∗ [q′j ] for all i, j.

Since [e′] ≤∗ [q′1] and [e′] ≤∗ [q′2], there exist nonzero projections
g, h ∈ A such that [e′] + [g] = [q′1], [e

′] + [h] = [q′2].

For G = {p′′1 , p′′2 , q′′1 , q′′2 , g, h}, any ε > 0, since A ∈ TAΩ, there exist
a projection s ∈ A and a C∗-subalgebra D ⊆ A with D ∈ Ω, 1D = s,
such that
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(1′) ∥xs− sx∥ < ε for all x ∈ G,
(2′) sxs ∈ εD for all x ∈ G,
(3′) 2[1− s] ≤ [g], 2[1− s] ≤ [h].

By (1′) and (2′), there exist projections p′′′1 , q′′′1 , p′′′2 , q′′′2 ∈ D and
p′′′′2 , q′′′′2 , p′′′′1 , q′′′′1 ∈ (1− s)A(1− s) such that

∥p′′1 − p′′′1 − p′′′′1 ∥ < ε, ∥q′′1 − q′′′1 − q′′′′1 ∥ < ε,

∥p′′2 − p′′′2 − p′′′′2 ∥ < ε, ∥q′′2 − q′′′2 − q′′′′2 ∥ < ε.

Therefore, we have

[p′′1 ] = [p′′′1 ] + [p′′′′1 ], [q′′1 ] = [q′′′1 ] + [q′′′′1 ],

[p′′2 ] = [p′′′2 ] + [p′′′′2 ], [q′′2 ] = [q′′′2 ] + [q′′′′2 ],

and [p′′′i ] ≤∗ [q′′′j ], [p′′′′i ] ≤∗ [q′′′′j ] for all i, j.

Since D ∈ Ω and V (D) has the strong Riesz interpolation property,
we may assume that there exists a projection e′′′ ∈ D such that
[p′′′i ] ≤∗ [e′′′] ≤∗ [q′′′j ] for all i, j.

By (3′), we have [p′′′′1 ] + [p′′′′2 ] ≤ [g], [p′′′′1 ] + [p′′′′2 ] ≤ [h]. We have

[p′1] + [p′′′1 ] + [p′′′′1 ] ≤∗ [e′] + [e′′′] + [p′′′′1 ] + [p′′′′2 ] ≤∗ [q′1] + [q′′′1 ] + [q′′′′1 ],

[p′2] + [p′′′2 ] + [p′′′′2 ] ≤∗ [e′] + [e′′′] + [p′′′′1 ] + [p′′′′2 ] ≤∗ [q′1] + [q′′′1 ] + [q′′′′1 ],

[p′1] + [p′′′1 ] + [p′′′′1 ] ≤∗ [e′] + [e′′′] + [p′′′′1 ] + [p′′′′2 ] ≤∗ [q′2] + [q′′′2 ] + [q′′′′2 ],

[p′2] + [p′′′2 ] + [p′′′′2 ] ≤∗ [e′] + [e′′′] + [p′′′′1 ] + [p′′′′2 ] ≤∗ [q′1] + [q′′′1 ] + [q′′′′1 ].

Therefore, we have [pi] ≤∗ [e′] + [e′′′] + [p′′′′1 ] + [p′′′′2 ] ≤∗ [qj ] for all
i, j. �

Let Ω denote the class of all finite-dimensional C∗-algebras. Then
the K0-monoid V (A) has the strong Riesz interpolation property for
any simple unital C∗-algebra A ∈ TAΩ. That is to say, K0-monoid
V (A) has the strong Riesz interpolation property for any simple unital
C∗-algebra A with tracial topological rank zero.
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