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ELLIPTIC CURVES COMING FROM HERON
TRIANGLES

ANDREJ DUJELLA AND JUAN CARLOS PERAL

ABSTRACT. Triangles having rational sides a, b, c and
rational area Q are called Heron triangles. Associated to
each Heron triangle is the quartic

v2 = u(u− a)(u− b)(u− c).

The Heron formula states that Q =
√

P (P − a)(P − b)(P − c)
where P is the semi-perimeter of the triangle, so the point
(u, v) = (P,Q) is a rational point on the quartic. Also, the
point of infinity is on the quartic. By a standard construc-
tion, it can be proved that the quartic is equivalent to the
elliptic curve

y2 = (x+ a b)(x+ b c)(x+ c a).

The point (P,Q) on the quartic transforms to

(x, y) =

(
−2abc

a+ b+ c
,

4Qabc

(a+ b+ c)2

)
on the cubic, and the point of infinity goes to (0, abc). Both
points are independent, so the family of curves induced by
Heron triangles has rank ≥ 2. In this note we construct
subfamilies of rank at least 3, 4 and 5. For the subfamily
with rank ≥ 5, we show that its generic rank is exactly equal
to 5, and we find free generators of the corresponding group.
By specialization, we obtain examples of elliptic curves over
Q with rank equal to 9 and 10. This is an improvement of
results by Izadi et al., who found a subfamily with rank ≥ 3
and several examples of curves of rank 7 over Q.

1. Triangles and elliptic curves.

1.1. Heron triangles.

Definition. A triangle with sides of rational lengths {a, b, c} is called
a Heron triangle if its area Q is also a rational number.
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The Heron formula states that the area Q of a triangle with sides
{a, b, c} is equal to

Q =
√
P (P − a)(P − b)(P − c), where P =

a+ b+ c

2
.

So, a triangle with sides a, b, c is a Heron triangle when

(a+ b+ c)(−a+ b+ c)(a− b+ c)(a+ b− c)

is a rational square. The Indian mathematician, Brahmagupta, 598–
668 A.D., showed that, for a triangle with integral sides {a, b, c} and
integral area Q, there are positive integers k,m, n, with k2 < mn, such
that 

a = n(k2 +m2),

b = m(k2 + n2),

c = (m+ n)(mn− k2),

Q = kmn(m+ n)(mn− k2).

Observe that the value of Q is a consequence of the Heron formula. A
classical reference for Heron triangles is the second volume of the book
by Dickson [10].

1.2. Elliptic curves associated to Heron triangles. Given a
Heron triangle of sides {a, b, c} and area Q, consider the quartic

(1) v2 = u(u− a)(u− b)(u− c).

The point (u, v) = ((a + b + c)/2, Q) is on the quartic (1), due to the
Heron formula. The point at infinity is also on the quartic. Now the
change of coordinates

(u, v) −→
(
− abc

1

x
, abc

y

x2

)
transforms the quartic (1) into the cubic

(2) y2 = (x+ ab)(x+ bc)(x+ ca),

and the two points mentioned above into

(x, y) =

(
−2abc

a+ b+ c
,

4Qabc

(a+ b+ c)2

)
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and
(x, y) = (0, abc),

respectively.

The relation between elliptic curves and Heron triangles appears
in the work of many authors in the mathematical literature. Let us
mention some of them.

The quartics (1) have been used by Bremner in [2] in order to study
the existence of sets of N Heron triangles with given perimeter and
area, for a given positive integer N . Similar kind of problems have
been treated in [15, 16].

The existence of infinitely many Heron triangles with a given area
has been shown in [20]. This result is also obtained in [12], by
exploiting properties of a family of elliptic curves which generalize the
congruent number elliptic curves.

In [3] it is shown that there exists an infinite set of Heron triangles
having two rational medians.

Elliptic curves of the shape (2) appear in a natural way in the study
of elliptic curves induced by Diophantine m-tuples (see [1, 6, 7, 8, 9]),
where the values a, b and c represent three components of a Diophantine
triple, instead of the sides of a Heron triangle as in the present context.

In [4], the authors describe connections between the problem of
finding Heron triangles with a given area and finding Diophantine
quadruples, and they are led to study the relation of these problems
with the elliptic curves over Q having rational torsion group equal to
Z/2Z× Z/8Z.

In [14] the authors show a family of Heron triangles whose associated
elliptic curves have generic rank equal to 3, and they also exhibit
particular examples of curves with rank equal to 7 over Q. The purpose
of this note is to improve their results. In fact, we have found families
of elliptic curves induced by Heron triangles having rank ≥ 4 and ≥ 5.
Using the algorithm from [13], we are able to show that the generic
rank of the last family is equal to 5 and to find generators of its Mordell-
Weil group. Furthermore, we have found particular examples of curves
whose rank over Q is 9 and 10.
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2. Search for higher rank.

2.1. Rank 2. As an initial step in our construction we transform the
cubic (2) into the form

(3) y2 = x3 +Ax2 +Bx,

by x 7→ x− ab. The coefficients A and B are{
A = −2ab+ ac+ bc,

B = ab(a− c)(b− c).

Now we insert the values of the Brahmagupta parametrization with
k = 1. There is no loss of generality since k acts as a scaling factor.
We get

A2 = −m2 − 4mn− 2m3n− n2 +m4n2 − 2mn3 +m2n4,

B2 = mn(1 +m2)(−2m− n+m2n)(1 + n2)(−m− 2n+mn2).

The cubic y2 = x3 + A2x
2 + B2x has rank ≥ 2 over Q(m,n). In

terms of m and n, the X-coordinates of the two independent infinite
order points are

X1 = mn(1 +m2)(1 + n2),

X2 = (1 +m2)(1 + n2).

Observe that the condition k2 < mn becomes 1 < mn.

Just a word of explanation on how we have found the conditions
for new points. In every case we have curves with the shape y2 =
x3 + Ax2 + Bx, where the coefficient B is a polynomial expression in
the parameters involved. Since B has several polynomial factors Fj , we
look for new points in the homogenous spaces corresponding to each
Fj , i.e., we search for conditions like

FjU
4 +AU2V 2 +

B

Fj
V 4

that can be converted into squares by an adequate choice of the
parameters. In all the cases with (U, V ) = (1, 1), we have been able to
impose a new point into the curve for the values of Fj quoted in each
step below.
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2.2. Rank 3. Now we impose that (a + b − c)/2 is the u-coordinate
for a new point in the quartic, or equivalently that

−mn (1 +m2)(−2 +mn)(1 + n2)

is the X-coordinate for a point on the cubic (3). This can be done with
the substitution m = 2/[n(1 + w2)]. The subfamily corresponding to
this specialization of the parameter has rank ≥ 3. After getting rid of
denominators, the coefficients of the cubic are

A3 = −4− 8n2 − n4 − 24w2 − 24n2w2 − 8n4w2 − 4w4 − 24n2w4

− 14n4w4 − 8n2w6 − 8n4w6 − n4w8

B3 = 4(1 + n2)(1 + w2)2(1 + n2w2)(4 + n2 + 2n2w2 + n2w4)

(n2 + 4w2 + 2n2w2 + n2w4).

The X-coordinates of the three independent points are

X1 = 2(1 + n2)(1 + w2)(4 + n2 + 2n2w2 + n2w4),

X2 = (1 + n2)(1 + w2)2(4 + n2 + 2n2w2 + n2w4)

X3 = 4(1 + n2)w2(4 + n2 + 2n2w2 + n2w4).

The formal proof of independence will be given in subsection 2.5. The
condition for the sides is w2 < 1, since mn > 1 transforms into
mn = 2/(1 + w2) > 1. The sides of the corresponding Heron triangle
are:

a = 4 + n2 + 2n2w2 + n2w4,

b = 2(1 + n2)(1 + w2),

c = −(−1 + w)(1 + w)(2 + n2 + n2w2).

2.3. Another rank 3 family. We constructed the previous family of
rank 3 by imposing (a+ b− c)/2 as a new point on the quartic, which
turns out to be equivalent to parametrizing a conic. In a similar way,
we get the following family of rank at least 3. We impose (a + b)/2
as a new point on the quartic, which is equivalent to specializing
m = (−3− w2)/[n(−1 + w2)]. In this case the new family has the
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following coefficients:

A31 = 2(9− 6n2 + n4 + 60w2 + 16n2w2 + 4n4w2 + 46w4

− 12n2w4 − 10n4w4 + 12w6 + 4n4w6 + w8 + 2n2w8 + n4w8),

B31 = −(1 + n2)(−1 + w)2(1 + w)2(3 + w2)(3− n2 + k2w2 − 3n2w2)

× (3− n2 + 10w2 + 2n2w2 + 3w4 − n2w4)

× (9 + n2 + 6w2 − 2n2w2 + w4 + n2w4).

The sides, for w2 < 1, are

a = 9 + n2 + 6w2 − 2n2w2 + w4 + n2w4,

b = −(1 + n2)(−1 + w)(1 + w)(3 + w2),

c = 2(1 + w2)(3 + n2 + w2 − n2w2).

2.4. Rank 4. We can force (1+n2)(1+w2)2(n2+4w2+2n2w2+n2w4)
to became the X-coordinate for a new point on the cubic given by the
coefficients {A3, B3}, solving (3 + w2)(4 − n2 + n2w2) = square. This
can be realized by choosing

n =
−3− 6t+ t2 + 2w2 − 2tw2 + w4

3 + t2 − 2w2 − w4
.

The subfamily corresponding to this specialization of the parameters
has rank ≥ 4. The X-coordinates of the four independent points are:

X1 = 4(1 + w2)(9 + 18t+ 18t2 − 6t3 + t4 − 12w2 − 6tw2 + 12t2w2

− 2t3w2 − 2w4 − 10tw4 + 2t2w4 + 4w6 − 2tw6 + w8)

(45+36t+54t2−12t3+5t4−42w2+60tw2+72t2w2−28t3w2

+2t4w2−25w4−8tw4+84t2w4−20t3w4+t4w4+4w6−56tw6

+40t2w6−4t3w6+11w8−28tw8+6t2w8+6w10−4tw10+ w12),

X2 = 2(1 + w2)2(9 + 18t+ 18t2 − 6t3 + t4 − 12w2 − 6tw2 + 12t2w2

− 2t3w2 − 2w4 − 10tw4 + 2t2w4 + 4w6 − 2tw6 + w8)

(45+36t+54t2−12t3+5t4−42w2+60tw2+72t2w2−28t3w2

+ 2t4w2−25w4−8tw4+84t2w4−20t3w4+t4w4+4w6−56tw6

+40t2w6−4t3w6+11w8−28tw8+6t2w8+6w10−4tw10+w12),
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X3 = 8w2(9+18t+18t2−6t3+t4−12w2−6tw2+12t2w2−2t3w2

− 2w4 − 10tw4 + 2t2w4 + 4w6 − 2tw6 + w8)

(45+36t+54t2−12t3+5t4−42w2+60tw2+72t2w2−28t3w2

+2t4w2−25w4−8tw4+84t2w4−20t3w4+t4w4+4w6−56tw6

+40t2w6−4t3w6+11w8−28tw8+6t2w8+6w10−4tw10+w12),

X4 = 2(1+w2)2(9+18t+18t2−6t3+t4−12w2−6tw2+12t2w2−2t3w2

− 2w4 − 10tw4 + 2t2w4 + 4w6 − 2tw6 + w8)

(9+36t+30t2−12t3+t4+42w2+60tw2+112t2w2−28t3w2

+6t4w2−65w4−8tw4+76t2w4−20t3w4+t4w4−20w6−56tw6

+32t2w6−4t3w6+23w8−28tw8+6t2w8+10w10−4tw10 + w12).

The sides are, for w2 < 1,

a = 45+36t+54t2−12t3+5t4−42w2+60tw2+72t2w2−28t3w2+2t4w2

−25w4−8tw4+84t2w4−20t3w4+t4w4+4w6−56tw6+40t2w6

− 4t3w6 + 11w8 − 28tw8 + 6t2w8 + 6w10 − 4tw10 + w12,

b = 4(1+w2)(9+18t+18t2−6t3+t4−12w2−6tw2+12t2w2−2t3w2

− 2w4 − 10tw4 + 2t2w4 + 4w6 − 2tw6 + w8),

c = (1−w)(1+w)(3+w2)(9+12t+14t2−4t3+t4−12w2+4tw2

+ 12t2w2 − 4t3w2 − 2w4 − 12tw4 + 6t2w4 + 4w6 − 4tw6 + w8).

2.5. Rank 5. In our last step, we impose

X = 8(9 + 18t+ 18t2 − 6t3 + t4 − 12w2 − 6tw2 + 12t2w2 − 2t3w2

− 2w4 − 10tw4 + 2t2w4 + 4w6 − 2tw6 + w8)

(9+36t+30t2−12t3+t4+42w2+60tw2+112t2w2−28t3w2+6t4w2

−65w4−8tw4+76t2w4−20t3w4+t4w420w6−56tw6+32t2w6

− 4t3w6 + 23w8 − 28tw8 + 6t2w8 + 10w10 − 4tw10 + w12)

asX-coordinate of a new point on the cubic of rank 4. This is equivalent
to solving

square = 12t+ 8t2 − 4t3 + 9w2 + 16tw2
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+ 30t2w2 − 8t3w2 + t4w2 − 12w4 − 8tw4

+ 20t2w4 − 4t3w4 − 2w6 − 16tw6

+ 6t2w6 + 4w8 − 4tw8 + w10.

This condition can be achieved with t = (w4 − 1)/2w2. The sub-
family corresponding to this specialization of the parameter has rank
equal to 5 over Q(w), as shown below. The X-coordinates of the five
independent points are:

X1 = 4(1 + w2)(1 + 14w2 + 99w4 + 52w6 + 55w8 + 30w10 + 5w12)

(5 + 36w2 + 320w4 + 564w6 + 818w8

+ 300w10 + 8w12 − 4w14 + w16),

X2 = 2(1 + w2)2(1 + 14w2 + 99w4 + 52w6 + 55w8 + 30w10 + 5w12)

(5 + 36w2 + 320w4 + 564w6 + 818w8

+ 300w10 + 8w12 − 4w14 + w16),

X3 = 8w2(1 + 14w2 + 99w4 + 52w6 + 55w8 + 30w10 + 5w12)

(5 + 36w2 + 320w4 + 564w6 + 818w8 + 300w10

+ 8w12 − 4w14 + w16),

X4 = 2(1 + w2)2(1 + 6w2 + w4)

× (1 + 26w2 + 79w4 + 44w6 + 79w8 + 26w10 + w12)

× (1 + 14w2 + 99w4 + 52w6 + 55w8 + 30w10 + 5w12)

X5 = 8(1 + 6w2 + w4)

× (1 + 26w2 + 79w4 + 44w6 + 79w8 + 26w10 + w12)

× (1 + 14w2 + 99w4 + 52w6 + 55w8 + 30w10 + 5w12).

The coefficients of the cubic are:

A5 = −13− 348w2 − 4452w4 − 35100w6 − 202264w8

− 697036w10 − 1414884w12 − 1913548w14 − 1779178w16

− 1349396w18 − 721420w20 − 227540w22 − 38768w24
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− 4036w26 − 556w28 − 68w30 − w32,

B5 = 8(1 + w2)3(1 + 6w2 + w4)

(1 + 2w2 + 47w4 + 156w6 + 47w8 + 2w10 + w12)

(1 + 26w2 + 79w4 + 44w6 + 79w8 + 26w10 + w12)

(1 + 14w2 + 99w4 + 52w6 + 55w8 + 30w10 + 5w12)

(5 + 36w2 + 320w4 + 564w6 + 818w8 + 300w10

+ 8w12 − 4w14 + w16).

The sides are, for w2 < 1, as follows,

a = 5 + 36w2 + 320w4 + 564w6 + 818w8

+ 300w10 + 8w12 − 4w14 + w16,

b = 4(1 + w2)(1 + 14w2 + 99w4

+ 52w6 + 55w8 + 30w10 + 5w12),

c = −(−1 + w)(1 + w)(3 + w2)

(1− 2w + 7w2 + 4w3 + 7w4 − 2w5 + w6)

(1 + 2w + 7w2 − 4w3 + 7w4 + 2w5 + w6).

By the Silverman specialization theorem [21, Theorem 11.4], in
order to prove that the family of elliptic curves

(4) E : y2 = x3 +A5(w)x
2 +B5(w)x

has rank ≥ 5 over Q(w), it suffices to find a specialization w =
w0 such that the points with X-coordinates X1(w0), . . . , X5(w0) are
independent points on the specialized curve over Q. Let us take w = 2.
Then the points

(829979290180, 709888756704565620),

(2074948225450, 257727244134919050),

(1327966864288, 82472718123174096),

(7939152098050, 17599028082679258950),

(2135602557625, 421478249567754750)
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are independent points of infinite order on the elliptic curve

(5) y2 = x3 − 3366916713149x2 + 2712779764155114364021000x.

Indeed, the value of the discriminant of the canonical height matrix of
these five points is ≈ 115940.98 ̸= 0. Let us mention that the rank of
curve (5) is equal to 8.

Our next goal is to prove that the curve E given by (4) has rank over
Q(w) exactly equal to 5, and moreover to find free generators of the
group E(Q(w)). We have noted experimentally that the points with
the X-coordinates X1, . . . , X5 do not generate the full group, but its
subgroup of index 2. So we searched for other points on E such that
X-coordinate divides B5. In that way, we find the point on E with
X-coordinate

X ′
5 = 2(w − 1)2(w2 + 1)(w4 + 6w2 + 1)3

(w16−4w14+8w12+300w10+818w8+564w6+320w4+36w2+5).

Now we use the algorithm by Gusić and Tadić [13, Theorem 3.1 and
Corollary 3.2]. It is applicable to our situation since the curve E has
three nontrivial 2-torsion points, i.e., the equation for E can be written
in the form

y2 = (x− e1)(x− e2)(x− e3),

with (e1, e2, e3 ∈ Z[w]). Indeed,

e1 = 0,

e2 = 40w30+440w28+3880w26+28216w24+126792w22+345368w20

+630984w18+885528w16+976760w14+749608w12+345464w10

+ 86184w8 + 13080w6 + 1800w4 + 152w2 + 8,

e3 = w32+28w30+116w28+156w26+10552w24+100748w22+376052w20

+718412w18+893650w16+936788w14+665276w12+351572w10

+ 116080w8 + 22020w6 + 2652w4 + 196w2 + 5.

Write

(e1 − e2) · (e1 − e3) · (e2 − e3) = α · fα1
1 (w) · · · fαl

l (w),
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where α ∈ Z and fi ∈ Z[w] are irreducible (of positive degree) and
αi ≥ 1. Let w0 ∈ Q. Assume that, for each i = 1, . . . , l, the in-
teger square-free part of each of fi(w0) has at least one prime factor
that does not appear in the integer square-free part of any of fj(t0)
(for j ̸= i) and does not appear in the factorization of α. Then
the specialization homomorphism E(Q(w)) → E(w0)(Q) is injective
([13, Theorem 3.1]). Furthermore, if |E(w0)(Q)tors| = 4 and there
exist points P1, . . . , Pr ∈ E(Q(w)) such that P1(w0), . . . , Pr(w0) are
the free generators of E(w0)(Q), then the specialization homomor-
phism E(Q(w)) → E(w0)(Q) is an isomorphism. Thus, E(Q(w)) and
E(w0)(Q) have the same rank r, and P1, . . . , Pr are the free generators
of E(Q(w)) ([13, Corollary 3.2]).

We have α = 8 and l = 13, with

f1 = w − 1,

f2 = w + 1,

f3 = w2 + 1,

f4 = w2 + 3,

f5 = w4 + 6w2 + 1,

f6 = w6 + 6w5 + 7w4 + 20w3 + 7w2 + 6w + 1,

f7 = w6 − 6w5 + 7w4 − 20w3 + 7w2 − 6w + 1,

f8 = w6 + 2w5 + 7w4 − 4w3 + 7w2 + 2w + 1,

f9 = w6 − 2w5 + 7w4 + 4w3 + 7w2 − 2w + 1,

f10 = 5w12 + 30w10 + 55w8 + 52w6 + 99w4 + 14w2 + 1,

f11 = w12 + 2w10 + 47w8 + 156w6 + 47w4 + 2w2 + 1,

f12 = w12 + 26w10 + 79w8 + 44w6 + 79w4 + 26w2 + 1,

f13 = w16−4w14+8w12+300w10+818w8+564w6+320w4+36w2+5.

If we take w0 = 12, than it is easy to check that the conditions of [13,
Theorem 3.1], given above, are satisfied. We have

E(12) : y2 = x3 − 51289727495763299303985770723092429x2

+421183417712526829656944728081554833692892562346406588197120401049000x.

Using mwrank [5], we compute that rank (E(12)(Q)) = 5. Hence, we
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proved that
rank (E(Q(w))) = 5.

Moreover, mwrank is able to find free generators of E(12)(Q) (we
increased the default saturation bound from 100 to 350 to ensure that
we get the full basis):

P1 = (49375096502864171324367807393771554457526810/24389000,

69361036898001232948930532710952449724275349458333827937855113/

24389000),

P2 = (12621254444932104170882927375313600000/1331,

−644742277873699114460115228940554043287598858706280000/1331),

P3 = (63604587076589371413390852909956890,

8752685157313155792157312102674789283888745983201910),

P4 = (67409981025385875426337353460527890,

10081869846217955542616878834848663934971209883931590),

P5 = (6147015036272127066795441511882180,

− 939823161347572492401782456798530394750552461834180).

Let us denote by Q1, . . . , Q5 the points on E with X-coordinates
X1, X2, X3, X4, X

′
5, respectively, and let T1 = (0, 0), T2 = (e2, 0)

and T3 = (e3, 0) be torsion points of E. The corresponding points
on E(12) obtained by the specialization w = 12 are denoted by
Q1(12), . . . , Q5(12), T1(12), T2(12), T3(12). We check in SAGE that
E(12)(Q)tors = {O, T1(12), T2(12), T3(12)}. Now we express Qi(12),
i = 1, . . . , 5, (modulo torsion) in the basis P1, . . . , P5. We get:

Q1(12) = P5 + T3,

Q2(12) = −P1 + P2 + P3 − P4 − P5,

Q3(12) = P1 + P4 + P5,

Q4(12) = −P1 + P2 − P5,

Q5(12) = P3.

Since the transformation matrix has determinant equal to 1, we con-
clude that Q1(12), . . . , Q5(12) also represent a full basis for E(12). Fi-
nally, by [13, Corollary 3.2], we conclude that Q1, . . . , Q5 are free
generators of E(Q(w)).
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2.6. Ranks 9 and 10. In [14] Izadi et al., using a result of Fine [11],
found a subfamily of rank ≥ 3 and also several examples of elliptic
curves with rank 7 over Q associated to Heron triangles. Here we will
give some examples of such curves with rank 9 and 10.

Our starting point is the families of elliptic curves with rank ≥ 3
from subsections 2.2 and 2.3. We use the sieving method based on
Mestre-Nagao sums

S(N,E) =
∑
p≤N

pprime

(
1− p− 1

#E(Fp)

)
log(p)

(see [6, 17, 18]). For curves with large values of S(N,E), with N
up to 2000, we compute the Selmer rank, which is a well-known upper
bound for the rank. We combine this information with the conjectural
parity for the rank.

Finally, we try to compute the rank and find generators for the best
candidates for large rank. We have implemented this procedure in
PARI [19], using Cremona’s program mwrank [5] for the computation
of rank and Selmer rank.

In the following tables, we present examples of rank 9. We give the
corresponding parameters n,w and also the sides of the corresponding
Heron triangle (normalized such that they are coprime integers). Tables
1 and 2 correspond to the families from subsections 2.2 and 2.3,
respectively.

Table 1. Heron triangles inducing curves with rank 9-first family.

n w a b c

221/48 4/17 18384649 31198450 15329769

41/194 11/41 64077917 35424617 30058860

79/20 4/33 65640625 110226402 57479537

87/52 3/41 77191201 86344565 54123476

71/107 13/17 122058701 109132469 26778900

178/117 9/20 309450037 335760200 160672963

179/81 5/31 6923377145 9144292673 5171712156

71/43 17/26 8074099721 8989245200 2850027831
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Table 2. Heron triangles inducing curves with rank 9-second family.

n w a b c

167/33 4/5 626501 1318499 1594900

97/12 1/17 771626 2073001 1427235

109/73 3/4 1789609 686679 1934600

227/120 5/7 4746774 2834947 5724973

206/43 3/7 7055929 17271150 14397659

204/245 3/4 9383829 1931179 8839850

95/67 7/11 50547901 25054956 53109445

245/239 1/11 75291643 45686940 60989203

227/169 3/16 156821821 118236867 142364360

171/125 9/17 318902763 184309528 322125515

43/10 87/97 419985425 401156823 740852008

7/55 14/81 4128925645 1341216251 2816777076

For the parameters (n,w) = (45/173, 1/95) in the family from
subsection 2.2 we get by mwrank that rank is equal to 9 or 10, while
the root number is 1, so according to the Parity conjecture the rank
should be even and therefore equal to 10. Here the sides are

a = 49579585457, b = 26029616561, c = 25199344032,

and the equation in minimal Weierstrass form is

y2 + xy = x3 − 7881226746551489213016065979516857217096x

− 265236028744207146756504666260405073058501079074967742413760.

Finally, for the parameters (n,w) = (21/328, 6/7) in the family from
subsection 2.2, we get the curve with rank equal to 10, unconditionally.
Here the sides are

a = 21151489, b = 18364250, c = 2807129.

The equation in minimal Weierstrass form is

y2 = x3 − x2 − 36971276861970806346470557520x
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+ 2731084763358858501141649586776465069957632.

The ten independent points found by mwrank and further reduced by
the LLL algorithm are:

P1 = (63406532576504, 801113711642717115240),

P2 = (2237297792773394, 105445780346586956755050),

P3 = (−93593058891631, 2317648855799791495800),

P4 = (24036048058997, 1362471196229901177966),

P5 = (33228567635744, 1240673649293544991200),

P6 = (3850001393944, 1608975563080858775000),

P7 = (−79722558761326, 2274167534491017899370),

P8 = (93776244351274, 297865847675487142730),

P9 = (115077802151832, 21802947657723652056),

P10 = (1788254015658016/9, 48521092864923720268640/27) .
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