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CARLITZ INVERSIONS AND IDENTITIES OF THE
ROGERS-RAMANUJAN TYPE

XIAOJING CHEN AND WENCHANG CHU

ABSTRACT. By means of the inverse series relations due
to Carlitz [11], we establish several transformation formulae
for nonterminating q-series, which will systematically be
employed to review identities of the Rogers-Ramanujan type
moduli 5, 7, 8, 10, 14 and 27.

1. Introduction and notation. For two indeterminate x and q,
the shifted factorial of x with base q is defined by

(x; q)0 = 1

and
(x; q)n = (1− x) (1− xq) · · · (1− xqn−1) for n ∈ N.

When |q| < 1, we have two well-defined infinite products

(x; q)∞ =

∞∏
k=0

(1− qkx) and (x; q)n =
(x; q)∞

(qnx; q)∞
.

The product and fraction of shifted factorials are abbreviated, respec-
tively, as

[ α, β, · · · , γ; q ]n = (α; q)n (β; q)n · · · (γ; q)n ,[
α, β, · · · , γ
A, B, · · · , C

∣∣∣ q]
n

=
(α; q)n (β; q)n · · · (γ; q)n
(A; q)n (B; q)n · · · (C; q)n

.
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Following Gasper and Rahman [18, page 4], the basic hypergeometric
series is defined by

1+rϕs

[
a0, a1, . . . , ar

b1, . . . , bs

∣∣∣ q; z]
=

∞∑
n=0

{
(−1)nq(

n
2)
}s−r

[
a0, a1, . . . , ar
q, b1, . . . , bs

∣∣∣ q]
n

zn

where the base q will be restricted to |q| < 1 for nonterminating q-series.

In 1973, Gould and Hsu [20] discovered a very general pair of in-
verse series relations. Its q-analogue was established by Carlitz [11]
in the same year. Subsequently, Chu [14, 15, 16] found its important
applications to the evaluation of terminating q-series. Specializing Car-
litz’s inversions, Chu [12] in 1990 derived the following transformation
formula.

Theorem 1.1. Let f(n) and g(n) be two sequences tied by one of the
equations

f(n) =
n∑

k=0

(−1)k
[
n

k

]
q(

n−k
2 )(qka; q)n g(k),(1a)

g(n) =

n∑
k=0

(−1)k
[
n

k

]
1− q2ka

(qna; q)k+1
f(k).(1b)

Then the transformation formula holds:

(2)
∞∑

n=0

qn
2

an

(q; q)n(a; q)n
g(n) =

∞∑
k=0

1− q2ka

(a; q)∞

qk
2

(−a)k

(q; q)k
f(k).

This theorem has been utilized in the same paper to review the
celebrated Rogers-Ramanujan identities (cf., Bailey [7, subsection 8.6],
Slater [27, subsection 3.5] and Watson [30])

∞∑
n=0

qn
2

(q; q)n
=

[
q5, q2, q3; q5

]
∞

(q; q)∞
and

∞∑
n=0

qn
2+n

(q; q)n
=

[
q5, q, q4; q5

]
∞

(q; q)∞
.

There exist numerous identities of this type expressing infinite sums
in terms of infinite products. Their proofs require, in general, deep
understanding of q-series theory. Among different approaches, the
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Bailey lemma has been shown powerful to deal with identities of the
Rogers-Ramanujan type (RR-identities) in [8, 9, 28, 29, 6]. The
purpose of this paper is to explore further applications of Theorem 1.1
to RR-identities. Several transformation formulae will be established.
As consequences, numerous identities of the Rogers-Ramanujan type
moduli 5, 7, 8, 10, 14 and 27 will systematically be reviewed.

2. Three identities modulo 5. By combining Theorem 1.1 with
the following q-analog of Bailey’s 2F1(1/2)-sum due to Andrews [2,
equation (1.9)] (cf., Gasper-Rahman [18, II-10])

(3) 2ϕ2

[
e, q/e
−q, c

∣∣∣ q;−c

]
=

[
ce, qc/e
c, qc

∣∣∣ q2]
∞

,

we first prove the following transformation formula.

Proposition 2.1.

∞∑
n=0

q3n
2−ncn

(q4; q4)n(c; q2)n
=

∞∑
k=0

(−1)k
1− q4k+2

(q2; q2)∞

(q−2kc; q4)k
(c; q2)k

q3k
2+k.

Proof. Define the sequence g(k) by

g(k) =
(q; q)k(c/q)

k

(−q; q)k(c; q)k
q(

k
2).

Then, for a = q, we can determine, by means of (1a) and (3), the dual
sequence f(n) as follows:

f(n) = q(
n
2)(q; q)n

n∑
k=0

ck
(q−n; q)k(q

n+1; q)k
(q; q)k(−q; q)k(c; q)k

q(
k
2)

= (q; q)n
(q−nc; q2)n

(c; q)n
q(

n
2).

Substituting them into (2) and replacing q by q2, we get the transfor-
mation displayed in Proposition 2.1. �

We are going to show three RR-identities modulo 5 by means of
Proposition 2.1.
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Corollary 2.2. ([23], [29, equation 19]).

∞∑
n=0

(−1)n
(q; q2)n
(q2; q2)2n

q3n
2

=

[
q5, q2, q3; q5

]
∞

(q2; q2)∞
.

Proof. Letting c = −q in Proposition 2.1 and then observing that

(4) (−q1−2k; q4)k = q−(
k+1
2 )(−q; q2)k,

we may reformulate the sum on the right hand side as follows:

∞∑
k=0

(−1)kq5(
k
2)+3k(1− q4k+2) =

∞∑
k=−∞

(−1)kq5(
k
2)+3k.

Recalling Jacobi’s triple product identity [22] (see [13] and [18, sub-
section 1.6] also)

(5)
+∞∑

n=−∞
(−1)n q(

n
2) xn = [q, x, q/x; q]∞ ,

we find that the last bilateral sum with respect to k factorizes into the
infinite product

[
q5, q2, q3; q5

]
∞. This proves the identity stated in the

corollary. �

Instead, taking c = −q3 in Proposition 2.1 and then observing that

(6) (−q3−2k; q4)k = q−(
k
2)(−q; q2)k,

we may recover another identity of the Rogers-Ramanujan type.

Corollary 2.3. ([21, 24]).

∞∑
n=0

(−1)n
(q; q2)n+1

(q2; q2)2n+1
q3n

2+2n =

[
q5, q, q4; q5

]
∞

(q2; q2)∞
.

In addition, for the Un-sequence defined by

Un =
(−1)nq3n

2−2n

(−q; q2)n(q4; q4)n−1
,
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it is trivial to check the difference

Un − Un+1 = (−1)n
(q; q2)n
(q2; q2)2n

q3n
2−2n − (−1)n

(q; q2)n+1

(q2; q2)2n+1
q3n

2+2n.

According to the telescoping method, Corollary 2.3 implies the follow-
ing identity.

Corollary 2.4. ([8], [19, equation (7.11)]).

∞∑
n=0

(−1)n
(q; q2)n
(q2; q2)2n

q3n
2−2n =

[
q5, q, q4; q5

]
∞

(q2; q2)∞
.

3. Three identities modulo 7. Recall the terminating q-analogue
of Whipple’s theorem on 3F2-series due to Andrews [3, Theorem 2]
(see also [18, II-19])

(7) 4ϕ3

[
q−n, q1+n,

√
c, −

√
c

−q, e, qc/e

∣∣∣ q; q] = q(
n+1
2 ) [q

−ne, q1−nc/e; q2]n
[e, qc/e; q]n

.

According to Theorem 1.1, we are going to utilize this formula to derive
two general transformations and review the Rogers-Selberg identities
modulo 7.

Consider the case a = q of Theorem 1.1. For the sequence g(k)
defined by

g(k) =
(q; q)k(c; q

2)k
(−q; q)k(e; q)k(qc/e; q)k

,

we can compute, according to (1a) and (7), the dual sequence f(n) as
follows:

f(n) = q(
n
2)(q; q)n

n∑
k=0

(q−n; q)k(q
1+n; q)k(c; q

2)k
(q2; q2)k(e; q)k(qc/e; q)k

qk

= qn
2 [q−ne, q1−nc/e; q2]n

[e, qc/e; q]n
(q; q)n.

Substituting them into (2) and then replacing q by q2, we derive the
following transformation formula.
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Proposition 3.1.

∞∑
n=0

q2n
2+2n(c; q4)n

(q4; q4)n[e, q2c/e; q2]n

=
∞∑
k=0

(−1)k
1−q4k+2

(q2; q2)∞

[q−2ke, q2−2kc/e; q4]k
[e, q2c/e; q2]k

q4k
2+2k.

Now we examine the limiting case c → 0 of this proposition. For
e = −q and e = −q3, taking into account (4) and (6) and then
factorizing the corresponding right members through (5), we recover
the following two Rogers-Selberg identities, respectively.

Corollary 3.2 ([23, 25]).

∞∑
n=0

(q; q2)n
(q2; q2)2n

q2n
2+2n =

[
q7, q2, q5; q7

]
∞

(q2; q2)∞
.

Corollary 3.3 ([24, 25]).

∞∑
n=0

(q; q2)n+1

(q2; q2)2n+1
q2n

2+2n =

[
q7, q, q6; q7

]
∞

(q2; q2)∞
.

There is a third Rogers-Selberg identity which reads as follows.

Corollary 3.4 ([23, 25]).

∞∑
n=0

(q; q2)n
(q2; q2)2n

q2n
2

=

[
q7, q3, q4; q7

]
∞

(q2; q2)∞
.

It follows by specifying a → 1 and c → ∞ in the next transformation
formula.
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Proposition 3.5.

∞∑
n=0

q2n
2

an(−
√
a/c; q)2n

[q2, a/c2; q2]n(−q
√
a; q)2n

=
∞∑
k=0

1− q2k
√
a

1− qk
√
a

[
q
√
a, qc

q,
√
a/c

∣∣∣ q]
k

(a3/2/c)k

(q2a; q2)∞
q3k

2−k.

Proof. Define the sequence f(k) by

f(k) = q(
k
2) [−q1/2,

√
a, q1/2c; q1/2]k

(1 + qk
√
a) (

√
a/c; q1/2)k

(
−

√
a

c

)k

.

Then the dual sequence g(n) corresponding to (1b) reads as follows

g(n)=
1−

√
a

1−qna
6ϕ5

[√
a, ±q

1
2 4
√
a, ±q−

n
2 , q

1
2 c

± 4
√
a, ±q

1+n
2
√
a,
√
a/c

∣∣∣ q 1
2 ;−qn

√
a

c

]
.

Evaluating the last 6ϕ5-series by the q-Dougall sum (11a)–(11b) (see
page 1138), we find that g(n) admits the closed expression below

g(n) =
(a; q)n

(a/c2; q)n

(−
√
a/c; q1/2)2n

(−
√
a; q1/2)2n+1

.

Substituting f(k) and g(n) into (2) and then replacing q by q2, we get
the transformation stated in Proposition 3.5. �

In addition, we point out that when c → ∞, Proposition 3.1 leads
to alternative proofs of Corollaries 2.2 and 2.3, respectively, under the
specifications e = −q and e = −q3. Instead, we can derive two RR-
identities modulo 6 from Proposition 3.5. The first one follows from
the case a = 1 and c = −q−1.

Corollary 3.6. ([4, equation (3.2)]).

∞∑
n=0

(q; q2)n q2n
2

(−q; q2)n(q4; q4)n
=

[
q6, q3, q3; q6

]
∞

(q2; q2)∞
.

The second one is done by letting a = q2 and c = −1 in Proposi-
tion 3.5.
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Corollary 3.7. ([29, equation (27)]).

∞∑
n=0

(q; q2)n q2n
2+2n

(−q; q2)n+1(q4; q4)n
=

[
q6, q, q5; q6

]
∞

(q2; q2)∞
.

This can also be proved by putting c = q2 and e = −q in Proposi-
tion 3.1.

4. Two identities modulo 8. Recall the q-Chu-Vandermonde-
Gauss summation formula (cf., [7, Section 8] and [27, subsection 3.3]):

(8) 2ϕ1

[
q−n, a

c

∣∣∣ q; q] =
(c/a; q)n
(c; q)n

an.

For the sequence g(k) defined by

g(k) =
(a; q)k

(q1/2a; q)k
,

we can determine, according to (1a) and (8), the dual sequence f(n)

f(n) = q(
n
2)(a; q)n

n∑
k=0

(q−n; q)k(q
na; q)k

(q; q)k(q1/2a; q)k
qk

= (−a)n
(a; q)n(q

1/2; q)n
(q1/2a; q)n

qn
2−(n/2).

Then the transformation corresponding to (2) reads as follows.

Proposition 4.1.

∞∑
n=0

qn
2

an

(q; q)n(q1/2a; q)n
=

∞∑
k=0

{1−q2ka} a2k

(a; q)∞

(a; q)k(q
1/2; q)k

(q; q)k(q12a; q)k
q2k

2−(k/2).

Letting a → q in Proposition 4.1 and then evaluating the right
member by means of Jacobi’s triple product identity (5), we obtain,
under the base change q → q2, the following RR-identity.
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Corollary 4.2. ([29, equation (38)], [17, equation (1.6)]).

∞∑
n=0

q2n
2+2n

(q; q)2n+1
=

[
q8,−q,−q7; q8

]
∞

(q2; q2)∞
.

We also can derive from Proposition 4.1 another identity given below.

Corollary 4.3. ([10, equation (3.2)], [29, equation (39)]).

∞∑
n=0

q2n
2

(q; q)2n
=

[
q8,−q3,−q5; q8

]
∞

(q2; q2)∞
.

Proof. Letting a → 1 in Proposition 4.1 and then separating the
initial term from the others, we can reformulate the corresponding right
member as follows:

∞∑
n=0

qn
2

(q; q)n(q1/2; q)n
=

1

(q; q)∞

{
1 +

∞∑
k=1

q2k
2−(k/2)(1 + qk)

}

=
1

(q; q)∞

∞∑
k=−∞

q2k
2−(k/2)

where the replacement k → −k has been made for the sum correspond-
ing to qk in the factor 1+ qk. Applying again (5) and replacing q by q2

in the resulting equation, we get the identity stated in the corollary. �

5. Three identities modulo 10. This section will review three
RR-identities. Recall the q-analogue of Gauss’s 2F1(1/2)-sum due to
Andrews [2, equation (1.8)] (cf., [18, II-11]):

(9) 2ϕ2

[
a, b√

qab, −
√
qab

∣∣∣ q;−q

]
=

[
qa, qb
q, qab

∣∣∣ q2]
∞

.

We can establish the infinite series transformation formula.

Proposition 5.1.

∞∑
n=0

qn
2+(n2)an

(q; q)n(qa; q2)n
=

∞∑
k=0

{1− q4ka} (−a2)k

(a; q)∞

(a; q2)k
(q2; q2)k

q5k
2−k.
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Proof. For the sequence g(k) defined by

g(k) =
(a; q)k
(qa; q2)k

q(
k
2),

the dual sequence f(n) in (1a) can be determined, by means of (9), as
follows:

f(n) =
n∑

k=0

(−1)k
[
n

k

]
q(

n−k
2 )(qka; q)n g(k)

= q(
n
2)(a; q)n

n∑
k=0

[
q−n, qna
q, ±√

qa

∣∣∣ q]
k

q(
k+1
2 )

=

{
0, n-odd;

(−1)ℓ
[
q, a; q2

]
ℓ
qℓ

2−ℓ, n = 2ℓ.

Then Proposition 5.1 follows immediately from (2). �

For a → 1 and a = q2, the transformation displayed in Proposi-
tion 5.1 leads, respectively, to the following two RR-identities mod-
ulo 10.

Corollary 5.2. ([8, equation (10.4)], [29, equation (46)]).

∞∑
n=0

qn
2+(n2)

(q; q)n(q; q2)n
=

[
q10, q4, q6; q10

]
∞

(q; q)∞
.

Corollary 5.3. ([24], [8, equation (10.5)]).

∞∑
n=0

q3(
n+1
2 )

(q; q)n(q; q2)n+1
=

[
q10, q2, q8; q10

]
∞

(q; q)∞
.

In the same manner as the derivation from Corollary 2.3 to Corol-
lary 2.4, we can deduce another identity from Corollary 5.2. In fact,
define the Vn-sequence by

Vn =
qn

2+(n2)

(q; q)n−1(q; q2)n
.
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It is not hard to verify the difference equation

Vn − Vn+1 =
qn

2+(n2)

(q; q)n(q; q2)n
− qn

2+(n+1
2 )

(q; q)n(q; q2)n+1
.

This yields the following identity of Rogers-Ramanujan type.

Corollary 5.4. ([5], [1, equation (2.3)]).

∞∑
n=0

qn
2+(n+1

2 )

(q; q)n(q; q2)n+1
=

[
q10, q4, q6; q10

]
∞

(q; q)∞
.

6. Three identities modulo 14. Recall the terminating q-analogue
of Watson’s theorem on 3F2-series due to Andrews [3, Theorem 1] (see
also [18, II-17])
(10)

4ϕ3

[
q−n, qna,

√
c, −

√
c

c,
√
qa,−√

qa

∣∣∣ q; q] =


cn/2

[
q, qa/c

qa, qc

∣∣∣ q2]
n/2

n-even;

0 n-odd.

For the sequence g(k) defined by

g(k) =
(a; q)k(c; q

2)k
(c; q)k(qa; q2)k

we can compute, according to (1a) and (10), the dual sequence f(n) as
follows:

f(n) = q(
n
2)(a; q)n

n∑
k=0

(q−n; q)k(q
na; q)k(c; q

2)k
(q; q)k(c; q)k(qa; q2)k

qk

=

q2ℓ
2−ℓ

[
q, a, qa/c

qc

∣∣∣ q2]
ℓ

cℓ, n = 2ℓ;

0, n-odd.

Substituting them into (2), we derive the following transformation.
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Proposition 6.1.

∞∑
n=0

qn
2

an(c; q2)n
(q; q)n(c; q)n(qa; q2)n

=

∞∑
k=0

{1−q4ka} (a2c)k

(a; q)∞

[
a, qa/c
q2, qc

∣∣∣ q2]
k

q6k
2−k.

Letting a = q2 and c → 0 in the last equation and then factorizing
the right member through the Jacobi triple product identity (5), we
get the following RR-identity.

Corollary 6.2. ([24], [8, equation (10.2)]).

∞∑
n=0

qn
2+2n

(q; q)n(q; q2)n+1
=

[
q14, q2, q12; q14

]
∞

(q; q)∞
.

Similarly letting a → 1 and c → 0 in Proposition 6.1 leads us to
another identity.

Corollary 6.3. ([23], [8, equation (10.3)]).

∞∑
n=0

qn
2

(q; q)n(q; q2)n
=

[
q14, q6, q8; q14

]
∞

(q; q)∞
.

Define the sequence g(k) by

g(k) =
(a; q)k(c; q

2)k
(c; q)k(a; q2)k+1

.

The dual sequence f(n) corresponding to (1a) reads as

f(n) =
(a; q)n
1− a

q(
n
2)

n∑
k=0

(q−n; q)k(q
na; q)k(c; q

2)k
(q; q)k(c; q)k(q2a; q2)k

qk.

By inserting the factor

1 =
1− qk+na

1− q2na
− 1− qk−n

1− q2na
q2na
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in the last sum, we can evaluate it through (10) as follows:

n∑
k=0

(q−n; q)k(q
na; q)k(c; q

2)k
(q; q)k(c; q)k(q2a; q2)k

qk

=
1− qna

1− q2na
4ϕ3

[
q−n, qn+1a,

√
c, −

√
c

c, q
√
a,−q

√
a

∣∣∣ q; q]
+

qna− q2na

1− q2na
4ϕ3

[
q1−n, qna,

√
c, −

√
c

c, q
√
a,−q

√
a

∣∣∣ q; q]

=


1− a

1− q4ℓa

[
q, q2a/c

a, qc

∣∣∣ q2]
ℓ

cℓ, n = 2ℓ;

q2ℓ+1a(1− q)

1− q4ℓ+2a

[
q3, q2a/c

q2a, qc

∣∣∣ q2]
ℓ

cℓ, n = 2ℓ+ 1.

Therefore, we have the following expression

f(n) =


q(

2ℓ
2 )

1− q4ℓa

[
q, qa, q2a/c

qc

∣∣∣ q2]
ℓ

cℓ, n = 2ℓ;

q(
2ℓ+2

2 )a(1− q)

1− q4ℓ+2a

[
q3, qa, q2a/c

qc

∣∣∣ q2]
ℓ

cℓ, n = 2ℓ+ 1.

Substituting f(n) and g(k) into (2) and then simplifying the result, we
derive the following transformation formula.

Proposition 6.4.

∞∑
n=0

qn
2

an(c; q2)n
(q; q)n(c; q)n(a; q2)n+1

=

∞∑
k=0

{1− q8k+2a2} (a2c)k

(a; q)∞

[
qa, q2a/c
q2, qc

∣∣∣ q2]
k

q6k
2−k.

Letting a = q and c → 0 in this equation gives rise to the following
RR-identity.
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Corollary 6.5. ([24], [29, equation (60)]).

∞∑
n=0

qn
2+n

(q; q)n(q; q2)n+1
=

[
q14, q4, q10; q14

]
∞

(q; q)∞
.

Furthermore, we can also derive three RR-identities modulo 12.

For the case c = −q of Proposition 6.1, specifying further a → 1 and
a → q2, we recover the following two identities.

Corollary 6.6. ([26, equation 5.4]).

∞∑
n=0

(−q; q2)n
(q; q)2n

qn
2

=

[
q12, q6, q6; q12

]
∞

(q; q)∞
.

Corollary 6.7. ([29, equation (50)]).

∞∑
n=0

(−q; q2)n
(q; q)2n+1

qn
2+2n =

[
q12, q2, q10; q12

]
∞

(q; q)∞
.

Similarly, letting a = −c = q in Proposition 6.4 leads us to another
RR-identity.

Corollary 6.8. ([29, equation (51)]).

∞∑
n=0

(−q; q2)n
(q; q)2n+1

qn
2+n =

[
q12, q4, q8; q12

]
∞

(q; q)∞
.

7. Four identities modulo 27. This section will review four RR-
identities modulo 27 by combining Theorem 1.1 with the following
identity of the q-Dougall sum [18, II-20]:

6ϕ5

[
a, q

√
a, −q

√
a, b, c, d√

a, −
√
a, qa/b, qa/c, qa/d

∣∣∣ q; qa

bcd

]
(11a)

=

[
qa, qa/bc, qa/bd, qa/cd
qa/b, qa/c, qa/d, qa/bcd

∣∣∣ q]
∞

(11b)

provided |qa/bcd| < 1.
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For the sequence f(m) defined by

f(m) =


q(

3k
2 ) (a;q3)k

(q3;q3)k
(q; q)3ka

k, m = 3k

0, m = 3k + 1;

0, m = 3k + 2,

we can evaluate the sequence g(n) corresponding to (1b) through (11a)–
(11b) as

g(n) =
1− a

1− qna
6ϕ5

[
a, ±q3

√
a, q−n, q1−n, q2−n

±
√
a, q3+na, q2+na, q1+na

∣∣∣ q3; q3na]
=

(a; q3)n(a; q)n
(a; q)2n

.

Substituting them into (2), we find the transformation formula.

Proposition 7.1.

∞∑
n=0

qn
2

an(a; q3)n
(q; q)n(a; q)2n

=
∞∑
k=0

(−a4)k
1− q6ka

(a; q)∞

(a; q3)k
(q3; q3)k

q27(
k
2)+12k.

When a → 1, this transformation results in the following identity.

Corollary 7.2. ([8, equation (10.7)], [29, equation (93)]).

1 +
∞∑

n=1

(q3; q3)n−1q
n2

(q; q)n(q; q)2n−1
=

[
q27, q12, q15; q27

]
∞

(q; q)∞
.

Alternatively, when a = q3, we get another identity from Proposi-
tion 7.1.

Corollary 7.3. ([8, equation (10.8)], [29, equation (90)]).

∞∑
n=0

(q3; q3)nq
n2+3n

(q; q)n(q; q)2n+2
=

[
q27, q3, q24; q27

]
∞

(q; q)∞
.
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Similarly in Theorem 1.1, define the sequence f(m) by

f(m) =


q(

3k
2 )+k (qa;q3)k

(q3;q3)k

(q;q)3k
1−q6ka

ak, m = 3k;

q(
3k+2

2 )+k (qa;q3)k
(q3;q3)k

(q;q)3k+1

1−q6k+2a
ak+1, m = 3k + 1;

0, m = 3k + 2.

According to (1b), we may evaluate

g(n) =
1− qa

(qna; q)2

∑
k≥0

1− q6k+1a

1− qa

(qa; q3)k(q
−n; q)3k

(q3; q3)k(qn+2a; q)3k
q3nk+kak

=
(a; q)n(qa; q

3)n
(a; q)2n+1

.

Substituting them into (2) and simplifying the result, we get the
transformation.

Proposition 7.4.

∞∑
n=0

qn
2

an(qa; q3)n
(q; q)n(a; q)2n+1

=
∞∑
k=0

{
1−q12k+2a2

} (−a4)k

(a; q)∞

(qa; q3)k
(q3; q3)k

q27(
k
2)+13k.

For a = q2, this proposition recovers the following identity.

Corollary 7.5. ([8, B2], [29, equation (91)]).

∞∑
n=0

(q3; q3)nq
n2+2n

(q; q)n(q; q)2n+2
=

[
q27, q6, q21; q27

]
∞

(q; q)∞
.

Finally, in Theorem 1.1, let f(m) be the sequence given by

f(m) =


q(

3k
2 )+2k (q2a;q3)k

(q3;q3)k

(q;q)3k
1−q6ka

ak, m = 3k;

0, m = 3k + 1;

−q(
3k+3

2 ) (q2a;q3)k
(q3;q3)k

(q;q)3k+2

1−q6k+4a

(
a
q

)k+1

, m = 3k + 2.
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The dual sequence g(n) corresponding to (1b) may be evaluated as

g(n) =
1− q2n+1a

(qna; q)3

∑
k≥0

{
1− q6k+2a

} (q2a; q3)k(q
−n; q)3k

(q3; q3)k(qn+3a; q)3k
q3nk+2kak

=
(a; q)n(q

2a; q3)n
(a; q)2n+1

.

Substituting them into (2) and then unifying the two sums with respect
to k, we derive the transformation formula.

Proposition 7.6.

∞∑
n=0

qn
2

an(q2a; q3)n
(q; q)n(a; q)2n+1

=
∞∑
k=0

{
1−q18k+6a3

} (−a4)k

(a; q)∞

(q2a; q3)k
(q3; q3)k

q27(
k
2)+14k.

For a = q, this proposition yields the following identity.

Corollary 7.7. ([8, B3], [29, equation (92)]).

∞∑
n=0

(q3; q3)nq
n2+n

(q; q)n(q; q)2n+1
=

[
q27, q9, q18; q27

]
∞

(q; q)∞
.
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