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POSITIVE SOLUTIONS TO A THREE POINT FOURTH
ORDER FOCAL BOUNDARY VALUE PROBLEM

JOHN R. GRAEF AND BO YANG

ABSTRACT. We consider a three point fourth order
boundary value problem of focal type. Some upper and lower
estimates for positive solutions of the problem are obtained.
Sufficient conditions for the existence and nonexistence
of positive solutions for the problem are established. An
example is included to illustrate the results.

1. Introduction. Boundary value problems are important both
from a theoretical perspective as well as for their many applications in
the physical and engineering sciences. The study of positive solutions
for boundary value problems has been very active for the last two
decades. In an interesting paper in this journal [3], Anderson and
Avery considered the fourth order four-point right focal boundary value
problem

(1) x′′′′(t) + f(x(t)) = 0, 0 < t < 1,

(2) x(0) = x′(q) = x′′(r) = x′′′(1) = 0,

under the assumption that 0 < q < r < 1. We see that the case q = r
was not covered in [3] and it is this that motivates our work here.

We consider the three point fourth order boundary value problem

(3) u′′′′(t) + g(t)f(u(t)) = 0, 0 < t < 1,

(4) u(0) = u′(p) = u′′(p) = u′′′(1) = 0.

Although our primary motivation for this work is to consider the
case q = r that is not covered by Anderson and Avery, it is worth
pointing out that boundary conditions of the type (4) do have a physical
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interpretation. For example, if we were modeling an elastic beam under
a load, conditions (4) mean that the beam is held at the left end and
the load is distributed in such a way that the slope of the beam and the
bending moment at t = p are zero, and the shear force at the right end
of the beam vanishes. (See, for example, McLachlan [13].) Another
place where problems of this type can arise is in Abel-Gontscharoff
interpolation (see Agarwal [1]).

As is pointed out in [3], if in problem (1)–(2) we let q → 0 and
r → 1, then condition (2) becomes

(5) x(0) = x′(0) = x′′(1) = x′′′(1) = 0,

which would model a beam with the left end clamped and the right end
free with zero bending moment and shear force. Our condition (4) only
involves one intermediate point, and letting p → 0 gives the well-known
right focal boundary conditions

(6) u(0) = u′(0) = u′′(0) = u′′′(1) = 0.

On the other hand, letting p → 1 gives

(7) u(0) = u′(1) = u′′(1) = u′′′(1) = 0,

which describes a beam attached at the left end and having a sliding
clamp at the right end point.

Throughout the paper, we assume that

(H1) f : [0,∞) → [0,∞) and g : [0, 1] → [0,∞) are continuous
functions, g(t) ̸≡ 0 on [0, 1] and p ∈ (0, 1) is a constant.

The main purpose of this paper is to prove some upper and lower es-
timates for positive solutions of the problem (3)–(4). As an application
of the estimates, we shall establish some existence and nonexistence re-
sults for positive solutions to the problem (3)–(4). Here, by a positive
solution, we mean a solution u(t) such that u(t) > 0 for 0 < t < 1.

Now we define G : [0, 1]× [0, 1] → (−∞,∞) by

G(t, s) =


s3/6, if s ≤ p and s ≤ t,

((t− p)3 + p3)/6, if s > p and s > t,

((t− s)3 + s3)/6, if s ≤ p and s > t,

(p3 + (s− t)3 + (t− p)3)/6, if s > p and s ≤ t.
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Then, G(t, s) is the Green function for the problem (3)–(4), and the
problem (3)–(4) is equivalent to the integral equation

(8) u(t) =

∫ 1

0

G(t, s)g(s)f(u(s)) ds, 0 ≤ t ≤ 1.

We will use the following theorem, known as the Krasnosel’skii fixed
point theorem (see [12]), to prove some of our results.

Theorem 1.1. Let (X, ∥ · ∥) be a Banach space over the reals, and
let P ⊂ X be a cone in X. Let H1 and H2 be real numbers such that
H2 > H1 > 0, and let

Ωi = {v ∈ X | ∥v∥ < Hi}, i = 1, 2.

If L : P ∩(Ω2−Ω1) → P is a completely continuous operator such that,
either

(K1) ∥Lv∥ ≤ ∥v∥ if v ∈ P ∩∂Ω1, and ∥Lv∥ ≥ ∥v∥ if v ∈ P ∩∂Ω2, or
(K2) ∥Lv∥ ≥ ∥v∥ if v ∈ P ∩ ∂Ω1, and ∥Lv∥ ≤ ∥v∥ if v ∈ P ∩ ∂Ω2,

then L has a fixed point in P ∩ (Ω2 − Ω1).

Throughout the paper, we let X = C[0, 1] be equipped with norm

∥v∥ = max
t∈[0,1]

|v(t)|, v ∈ X.

We also define

F0 = lim sup
x→0+

(f(x)/x), f0 = lim inf
x→0+

(f(x)/x),

F∞ = lim sup
x→+∞

(f(x)/x), f∞ = lim inf
x→+∞

(f(x)/x).

These constants will be used later in the statements of our existence
and nonexistence theorems.

This paper is organized as follows. In Section 2, we obtain some new
upper and lower estimates for positive solutions to the problem (3)-(4).
In Sections 3 and 4, we establish some new existence and nonexistence
results for positive solutions of the problem. An example is given at
the end of the paper to illustrate the main results of the paper.
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2. Estimates for positive solutions. In this section, we shall
prove some upper and lower estimates for positive solutions of the
problem (3)–(4). Our first lemma provides some information about
the sign property of G(t, s).

Lemma 2.1. The function G(t, s) has the following sign properties.

(1) If (t, s) ∈ [0, 1]× [0, 1], then G(t, s) ≥ 0.
(2) If (t, s) ∈ (0, 1)× (0, 1), then G(t, s) > 0.

Proof. Let (t, s) ∈ [0, 1]× [0, 1]. If s ≤ p and s ≤ t, then

G(t, s) =
s3

6
≥ 0.

If s > p and s > t, then

G(t, s) =
(t− p)3 + p3

6
=

t

6

((
t− 3p

2

)2

+
3p2

4

)
≥ 0.

If s ≤ p and s > t, then

G(t, s) =
(t− s)3 + s3

6
=

t

6

((
t− 3s

2

)2

+
3s2

4

)
≥ 0.

If s > p and s ≤ t, then s− t > p− t, and

G(t, s) =
p3+(s−t)3 + (t−p)3

6
>

p3+(p−t)3 + (t−p)3

6
=

p3

6
≥ 0.

So part (1) of the lemma is proved.

If we take a closer look at the above four cases, we will see that
part (2) of the lemma is also true. The proof of the lemma is now
complete. �

Lemma 2.2. If u ∈ C4[0, 1] satisfies the boundary conditions (4) and
is such that

(9) u′′′′(t) ≤ 0 for 0 ≤ t ≤ 1,

then u′(t) ≥ 0 for 0 ≤ t ≤ 1, and

(10) 0 ≤ u(t) ≤ u(1), 0 ≤ t ≤ 1.
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Proof. Since (9) holds and u′′′(1) = 0, we have u′′′(t) ≥ 0 for
0 ≤ t ≤ 1. This means that u′ is concave upward on [0, 1]. Because
u′(p) = u′′(p) = 0, we have u′(t) ≥ 0 for 0 ≤ t ≤ 1. Therefore, u(t)
is nondecreasing on [0, 1]. Combining this with the fact that u(0) = 0,
we get (10). The proof is now complete. �

Our next lemma proves to be very useful in our efforts to obtain
upper and lower estimates on solutions.

Lemma 2.3. Let q1, q2, and q3 be real numbers such that q1 < q2 < q3.

(1) If u ∈ C3[q1, q3] is such that u(q1) = 0, u(q2) < 0, u(q3) ≥ 0,
u′(q3) = u′′(q3) = 0, then there exist β1, β2 ∈ (q1, q3) such that
β1 < β2, u

′′′(β1) < 0, and u′′′(β2) > 0.
(2) If u ∈ C3[q1, q3] is such that u(q3) = 0, u(q2) < 0, u(q1) ≥ 0,

u′(q1) = u′′(q1) = 0, then there exist β1, β2 ∈ (q1, q3) such that
β1 < β2, u

′′′(β1) < 0, and u′′′(β2) > 0.

Proof. We shall prove part (1) of the lemma only. By the mean
value theorem, since u(q1) = 0 > u(q2) and u(q2) < 0 ≤ u(q3),
there exist q4 ∈ (q1, q2) and q5 ∈ (q2, q3) such that u′(q4) < 0 and
u′(q5) > 0. Since u′(q4) < 0 < u′(q5) and u′(q5) > 0 = u′(q3),
there exist q6 ∈ (q4, q5) and q7 ∈ (q5, q3) such that u′′(q6) > 0 and
u′′(q7) < 0. Since u′′(q6) > 0 > u′′(q7) and u′′(q7) < 0 = u′′(q3),
there exist β1 ∈ (q6, q7) and β2 ∈ (q7, q3) such that u′′′(β1) < 0 and
u′′′(β2) > 0. Thus, we have proved part (1) of the lemma.

Part (2) of the lemma can be proved in a very similar way. �

The next two lemmas will yield lower and upper bounds on solutions
to our problem. We define the function a : [0, 1] → [0,+∞) by

a(t) =
(t− p)3 + p3

3p2 − 3p+ 1
, 0 ≤ t ≤ 1.

Lemma 2.4. If u ∈ C4[0, 1] satisfies (4) and (9), then

u(t) ≥ a(t)u(1) for 0 ≤ t ≤ 1.

Proof. If we let h(t) = u(t)− a(t)u(1), 0 ≤ t ≤ 1, then

(11) h′(t) = u′(t)− u(1) · 3(t− p)2/(3p2 − 3p+ 1),
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(12) h′′(t) = u′′(t)− u(1) · 6(t− p)/(3p2 − 3p+ 1),

(13) h′′′(t) = u′′′(t)− u(1) · 6/(3p2 − 3p+ 1),

(14) h′′′′(t) = u′′′′(t) ≤ 0, 0 ≤ t ≤ 1.

It follows from the definition of h(t) that h(0) = h(1) = 0. We also
note that (14) implies that h′′(t) is concave downward and h′′′(t) is
nonincreasing. It is easy to see from (11) and (12) that h′(p) = h′′(p) =
0. To prove the lemma, it suffices to show that h(t) ≥ 0 for 0 ≤ t ≤ 1.

Claim I. h(p) ≥ 0.

Proof of Claim I. Assume to the contrary that h(p) < 0. Since
h(0) = 0, there exists s ∈ (0, p) such that h′(s) < 0. Since h′(p) = 0,
there exists r ∈ (s, p) such that h′′(r) > 0. Since h′′(p) = 0 and h′′ is
concave downward, we have h′′(t) < 0 for p < t < 1. Because h′(p) = 0,
we have h′(t) < 0 for p < t < 1. Because h(p) < 0, we have h(t) < 0
for p < t ≤ 1. In particular, we have h(1) < 0. This contradicts the
fact that h(1) = 0. The proof of the claim is complete. �

Claim II. h(t) ≥ 0 for 0 ≤ t ≤ p.

Proof of Claim II. Assume to the contrary that there exists t0 ∈ (0, p)
such that h(t0) < 0. Then we have

h(0) = 0, h(t0) < 0, h(p) ≥ 0, h′(p) = h′′(p) = 0.

By part (1) of Lemma 2.3, there exist β1, β2 ∈ (0, p) such that β1 < β2,
h′′′(β1) < 0 and h′′′(β2) > 0. This contradicts the fact that h′′′ is
nonincreasing. The proof of the claim is complete. �

Claim III. h(t) ≥ 0 for p ≤ t ≤ 1.

Proof of Claim III. Assume there exists t1 ∈ (p, 1) such that
h(t1) < 0. Then we have

h(1) = 0, h(t1) < 0, h(p) ≥ 0, h′(p) = h′′(p) = 0.

By part (2) of Lemma 2.3, there exist τ1, τ2 ∈ (0, p) such that τ1 < τ2,
h′′′(τ1) < 0 and h′′′(τ2) > 0. This contradicts the fact that h′′′ is
nonincreasing. The proof of the claim is complete. �

In summary, we have h(t) ≥ 0 for 0 ≤ t ≤ 1, and this proves the
lemma. �
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Now we define the function c : [0, 1] → [0,+∞) by

c(t) =
(−12p2 + 8p3)t+ (12p− 6p2)t2 − 4t3 + t4

−18p2 + 8p3 + 12p− 3
.

Lemma 2.5. If u ∈ C4[0, 1] satisfies (4) and (9), and u′′′′(t) is
nonincreasing on [0, 1], then

u(t) ≤ c(t)u(1) for 0 ≤ t ≤ 1.

Proof. If we define h(t) = c(t)u(1)− u(t), 0 ≤ t ≤ 1, then

(15) h′(t) = u(1) · (−12p2 + 8p3) + (24p− 12p2)t− 12t2 + 4t3

−18p2 + 8p3 + 12p− 3
−u′(t),

(16) h′′(t) = u(1) · (24p− 12p2)− 24t+ 12t2

−18p2 + 8p3 + 12p− 3
− u′′(t),

(17) h′′′(t) = u(1) · −24 + 24t

−18p2 + 8p3 + 12p− 3
− u′′′(t),

(18) h′′′′(t) = u(1) · 24

−18p2 + 8p3 + 12p− 3
− u′′′′(t), 0 ≤ t ≤ 1.

It follows from the definition of h(t) that h(0) = h(1) = 0. We
also note that (18) implies that h′′′′(t) is nondecreasing and h′′′ is
concave upward on [0, 1]. It is easy to see from (15) and (16) that
h′(p) = h′′(p) = 0. To prove the lemma, it suffices to show that h(t) ≥ 0
for 0 ≤ t ≤ 1.

Claim I. h(p) ≥ 0.

Proof of Claim I. Assume that h(p) < 0. Since h(0) = 0, there exists
s ∈ (0, p) such that h′(s) < 0. Since h′(p) = 0, there exists r ∈ (s, p)
such that h′′(r) > 0. Since h′′(p) = 0, there exists β ∈ (s, p) such that
h′′′(β) < 0. It is easy to see that h′′′(1) = 0. Because h′′′ is concave
upward, we have h′′′(t) < 0 for β < t < 1. In particular, h′′′(t) < 0 for
p < t < 1. Since h′′(p) = 0, we have h′′(t) < 0 for p < t < 1. Because
h′(p) = 0, we have h′(t) < 0 for p < t < 1. Since h(p) < 0, we have
h(t) < 0 for p < t ≤ 1. This contradicts the fact that h(1) = 0. The
proof of the claim is complete. �
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Claim II. h(t) ≥ 0 for 0 ≤ t ≤ p.

Proof of Claim II. Assume there exists t0 ∈ (0, p) such that h(t0) < 0.
Then we have

h(0) = 0, h(t0) < 0, h(p) ≥ 0, h′(p) = h′′(p) = 0.

By part (1) of Lemma 2.3, there exist β1, β2 ∈ (0, p) such that β1 < β2,
h′′′(β1) < 0 and h′′′(β2) > 0. Note that (17) implies that h′′′(1) = 0.
Because h′′′(β1) < 0 = h′′′(1) = 0 and h′′′ is concave upward, we have
h′′′(t) < 0 for β1 < t < 1. This contradicts the fact that h′′′(β2) > 0.
This completes the proof of the claim. �

Claim III. h(t) ≥ 0 for p ≤ t ≤ 1.

Proof of Claim III. Assume there exists t1 ∈ (p, 1) such that
h(t1) < 0. Then we have

h(1) = 0, h(t1) < 0, h(p) ≥ 0, h′(p) = h′′(p) = 0.

By part (2) of Lemma 2.3, there exist τ1, τ2 ∈ (p, 1) such that τ1 < τ2,
h′′′(τ1) < 0 and h′′′(τ2) > 0. Note that (17) implies that h′′′(1) = 0.
Because h′′′(τ1) < 0 = h′′′(1) = 0 and h′′′ is concave upward, we have
h′′′(t) < 0 for τ1 < t < 1. This contradicts the fact that h′′′(τ2) > 0.
This completes the proof of the claim. �

In summary, we have h(t) ≥ 0 for 0 ≤ t ≤ 1, and this completes the
proof of the lemma. �

Now we can obtain bounds on solutions to the problem (3)–(4).

Theorem 2.6. Suppose that, in addition to (H1), the following condi-
tion holds:

(H2) Both f and g are non-decreasing functions.

If u ∈ C4[0, 1] is a non-negative solution of the problem (3)–(4), then
u(t) ≤ c(t)u(1) for 0 ≤ t ≤ 1.

Proof. Suppose that u ∈ C4[0, 1] is a non-negative solution of the
problem (3)–(4). Obviously u(t) satisfies (4) and (9). From Lemma 2.2,
we see that u(t) is nondecreasing. If (H2) holds, then

u(4)(t) = −g(t)f(u(t))
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is nonincreasing on [0, 1]. Now it follows immediately from Lemma 2.5
that u(t) ≤ c(t)u(1) for 0 ≤ t ≤ 1. The proof is now complete. �

Theorem 2.7. Suppose that (H1) holds. If u ∈ C4[0, 1] is a non-
negative solution of the problem (3)–(4), then u(t) ≥ a(t)u(1) for
0 ≤ t ≤ 1.

Theorem 2.7 follows directly from Lemma 2.4. Note that Theorems
2.6 and 2.7 provide some upper and lower estimates for positive solu-
tions for the boundary value problem (3)–(4). These upper and lower
estimates are new and have not been obtained before.

Now we define

P = {v ∈ X | v(1) ≥ 0, a(t)v(1) ≤ v(t) ≤ v(1) on [0, 1]},

and

Q =

{
v ∈ X

∣∣∣∣ v(1) ≥ 0, v(t) is non-decreasing, and
a(t)v(1) ≤ v(t) ≤ c(t)v(1) on [0, 1]

}
.

Then, it is easily seen that both P and Q are positive cones of the
Banach space X. We then have the following result.

Lemma 2.8. If u ∈ P or u ∈ Q, then u(1) = ∥u∥.

Proof. If u ∈ P , then

u(1) ≥ u(t) ≥ u(1)a(t) ≥ 0, 0 ≤ t ≤ 1.

Hence u(1) = ∥u∥.
Note that Q is a subset of P . If u ∈ Q, then u ∈ P and therefore

u(1) = ∥u∥. �

With these definitions of P and Q, we can restate Theorems 2.6 and
2.7 as follows.

Theorem 2.9. Suppose that (H1) holds. If u(t) is a non-negative
solution to the problem (3)–(4), then u ∈ P .

Theorem 2.10. Suppose that (H1) and (H2) hold. If u(t) is a non-
negative solution to the problem (3)–(4), then u ∈ Q.
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Define an operator T : P → X by

(Tu)(t) =

∫ 1

0

G(t, s)g(s)f(u(s))ds, 0 ≤ t ≤ 1.

Now the integral equation (8) is equivalent to the equality

Tu = u, u ∈ P.

It is well known that T : P → X is a completely continuous operator.
In order to solve the problem (3)–(4), we only need to find a fixed point
of T .

By arguments similar to those used in the proofs of Theorems 2.6
and 2.7, the next two theorems can be proved without any difficulty.

Theorem 2.11. If (H1) holds, then T (P ) ⊂ P .

Theorem 2.12. If (H1) and (H2) hold, then T (Q) ⊂ Q.

3. Existence results. We define

A =

∫ 1

0

G(1, s)g(s)a(s) ds, B =

∫ 1

0

G(1, s)g(s) ds,

and

C =

∫ 1

0

G(1, s)g(s)c(s) ds.

The next theorem is our first existence result.

Theorem 3.1. Suppose that (H1) holds. If BF0 < 1 < Af∞, then the
problem (3)–(4) has at least one positive solution.

Proof. Choose ε > 0 such that (F0 + ε)B < 1. There exists H1 > 0
such that

f(x) ≤ (F0 + ε)x for 0 < x ≤ H1.

For each u ∈ P with ∥u∥ = H1, we have
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(Tu)(1) =

∫ 1

0

G(1, s)g(s)f(u(s)) ds

≤
∫ 1

0

G(1, s)g(s)(F0 + ε)u(s) ds

≤ (F0 + ε)∥u∥
∫ 1

0

G(1, s)g(s)ds

= (F0 + ε)∥u∥B
≤ ∥u∥,

which means ∥Tu∥ ≤ ∥u∥. So, if we let Ω1 = {u ∈ X| ∥u∥ < H1}, then

∥Tu∥ ≤ ∥u∥, for u ∈ P ∩ ∂Ω1.

To construct Ω2, we choose β ∈ (0, 1/4) and δ > 0 such that

(f∞ − δ)

∫ 1

β

G(1, s)g(s)a(s) ds > 1.

There exists H3 > 0 such that

f(x) ≥ (f∞ − δ)x for x ≥ H3.

Let H2 = max{H3(a(β))
−1, 2H1}. If u ∈ P with ∥u∥ = H2, then

u(t) ≥ a(t)H2 ≥ a(β)(a(β))
−1

H3 = H3 for β ≤ t ≤ 1.

Therefore, if u ∈ P with ∥u∥ = H2, then

(Tu)(1) ≥
∫ 1

β

G(1, s)g(s)f(u(s)) ds

≥
∫ 1

β

G(1, s)g(s)(f∞ − δ)u(s) ds

≥ (f∞ − δ)∥u∥
∫ 1

β

G(1, s)g(s)a(s) ds

≥ ∥u∥,

which means ∥Tu∥ ≥ ∥u∥. So, if we let Ω2 = {u ∈ X| ∥u∥ < H2}, then
Ω1 ⊂ Ω2 and so

∥Tu∥ ≥ ∥u∥, for u ∈ P ∩ ∂Ω2.
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Now condition (K1) of Theorem 1.1 is satisfied, so there exists a fixed
point of T in P .

This completes the proof of the theorem. �

The proof of the following theorem is very similar to the one above
and will therefore be omitted.

Theorem 3.2. Suppose that (H1) holds. If BF∞ < 1 < Af0, then the
problem (3)–(4) has at least one positive solution.

The proofs of Theorems 3.3 and 3.4 below are very similar to those
of Theorems 3.1 and 3.2. The only difference is that we use the positive
cone Q, instead of P , in their proofs.

Theorem 3.3. Suppose that (H1) and (H2) hold. If CF0 < 1 < Af∞,
then the problem (3)–(4) has at least one positive solution.

Theorem 3.4. Suppose that (H1) and (H2) hold. If CF∞ < 1 < Af0,
then the problem (3)–(4) has at least one positive solution.

4. Nonexistence results. In this section, we give some nonexis-
tence results for positive solutions to the problem (3)–(4).

Theorem 4.1. Suppose that (H1) holds. If Bf(x) < x for all x > 0,
then the problem (3)–(4) has no positive solutions.

Proof. Assume to the contrary that u(t) is a positive solution of the
problem (3)–(4). Then u ∈ P , u(t) > 0 on (0, 1], and

u(1) =

∫ 1

0

G(1, s)g(s)f(u(s)) ds

< B−1

∫ 1

0

G(1, s)g(s)u(s) ds

≤ B−1u(1)

∫ 1

0

G(1, s)g(s) ds

= u(1).

This contradiction proves the theorem. �
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The proofs of the next two theorems are quite similar to that of
Theorem 4.1, and so we omit the details.

Theorem 4.2. Suppose that (H1) holds. If Af(x) > x for all x > 0,
then the problem (3)–(4) has no positive solutions.

Theorem 4.3. Suppose that (H1) and (H2) hold. If Cf(x) < x for
all x > 0, then the problem (3)–(4) has no positive solutions.

We conclude this paper with an example.

Example 4.4. Consider the boundary value problem

(19) u′′′′(t) + g(t)f(u(t)) = 0, 0 < t < 1,

(20) u(0) = u′(2/3) = u′′(2/3) = u′′(1) = 0,

where
g(t) = 1 + 2t, 0 ≤ t ≤ 1,

and

f(x) =
λx(1 + 3x)

1 + x
, x ≥ 0.

Here λ > 0 is a parameter. The problem (19)–(20) is a special case of
the problem (3)–(4) in which p = 2/3.

It is easy to see that, for the problem (19)–(20), we have f0 = F0 = λ
and f∞ = F∞ = 3λ. It is also easy to see that λx < f(x) < 3λx
for x > 0. Using the software Maple or Mathematica, we can easily
compute the constants

A =
803

13608
, B =

211

3240
, and C =

429011

6940080
.

From Theorem 3.1, we see that if

5.64882 ≈ 1

3A
< λ <

1

B
≈ 15.35545,

then the problem (19)–(20) has at least one positive solution. From
Theorems 4.1 and 4.2 we see that if

either λ ≤ 1

3B
≈ 5.11848 or λ ≥ 1

A
≈ 16.94646,
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then the problem (19)–(20) has no positive solutions.

Note that the function g(t) is increasing in t, and f(x) is increasing
in x for each fixed λ > 0; therefore, Theorems 3.3 and 4.3 apply. From
Theorem 3.3, we see that if

5.64882 ≈ 1

3A
< λ <

1

C
≈ 16.17692,

then the problem (19)–(20) has at least one positive solution. From
Theorem 4.3, we see that if

λ ≤ 1

3C
≈ 5.39230,

then the problem (19)–(20) has no positive solutions.

This example shows that our existence and nonexistence results work
very well.
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